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3FOREWORD

Dr. Thomas P. Russell 
Director, U.S. Army Research Laboratory

Welcome to our most recent edition of the Research@ARL: Materials Modeling at 
Multiple Scales. Throughout human existence, human beings have used natural 
(arrow heads) and synthetic (Samurai sword) materials for economic advantage as 
well as preserving their security. 

Materials are ubiquitous in all Army materiel. The Army’s critical needs relate to 
the development of advanced materials for sensors, devices, power and energy, 
as well as for lightweight vehicle and Soldier protection. The performance and 
function of every Army system is determined by the underlying properties of the 
materials and the (structural/electrical) design of the engineering system. In 
turn, the properties of the materials themselves are a product of the hierarchy 
of structures found within. From atoms, to molecules, to crystals, to grains, to 
laminates, etc., the final performance of any system is a “sum of the parts” of the 
underlying physics down to the smallest level. The potential to gain extraordinary 
component or system improvements through the effective design and control 
of the constituent materials remains untapped. Enabling the design of these 
hierarchical materials structures in concert with the overall design and function of 
the system will allow for transformational gains in the performance of Army materiel.  

The refinement and revolutionary development of new materials can be significantly accelerated with the appropriate use of 
modeling and simulation at scales that encompass the atomic, single crystal, microstructure, macrostructure and material 
assembly scales. Success in this activity will make possible a “Materials by Design” process to predict performance and 
design materials from the atomic to the macroscopic scale for a particular suite of mechanisms and properties that are 
required for defined performance/applications. Our researchers are at the forefront of this multidisciplinary activity that will 
dramatically influence the way the U. S. Army operates in the 10, 20 and 30 year time periods. 

To achieve these goals, ARL initiated its transformational materials science and engineering program, the “Enterprise 
for Multiscale Research in Materials,” which includes Collaborative Research Alliances in Materials in Extreme Dynamic 
Environments and Multiscale Modeling of Electronic Materials and also Multiscale Research in Energetic Materials, all 
supported by in-house development of cross-cutting, multiscale computational science, including advances in physics based 
algorithms in materials to enhance computational discovery.

The U.S. Army has been a worldwide leader in transformational computer computational processes since funding the 
development of the ENIAC computer that was used for scientific modeling at the Aberdeen Proving Ground from 1947 
until 1955. The ENIAC used fully electronic switches vacuum tubes which resulted in a gigantic 30-ton machine that 
occupied 1,800 square feet of space. ENIAC was able to perform approximately 400 operations per second, such as 
multiplications, so we could classify the ENIAC as a 400 floating point operations per second (FLOPS) computer. Currently, 
ARL researchers have access to petaflop computers, a quadrillion (1015) FLOPS and expect to use a thousand times more 
powerful exaflop computers within a decade. This ever increasing power of next generation of supercomputers coupled with 
revolutionary enhancements of computational multiscale methodologies, which are also being developed at ARL, will enable 
unprecedented transformational change in designing novel materials.

This monograph is a compendium of recent peer-reviewed publications by our scientists and engineers in a variety of archival 
journals and represents highlights of the best of the ARL efforts in this area. Included are highlights of modeling at a variety 
of scales in molecular complexes, non-crystalline (amorphous) materials, polymers, ceramics, metals and composites. I hope 
that you will enjoy perusing the articles contained herein and have some sense of the advances our scientists and engineers 
are making that will ensure the technological superiority of our warfighter. 
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Introduction to ARL Research in Materials Modeling at Multiple Scales   
by Dr. Jan W. Andzelm, Dr. George A. Gazonas and Dr. James W. McCauley

1. Introduction and Background

The discovery of novel materials enables advancement in weapon technologies as the history of one of the most 
important and most beautiful weapons, the sword, shows. Daggers made during the Bronze Age were too brittle. 
The advent of the Iron Age allowed transformation of the dagger into a powerful cutting weapon, the sword.  Add-
ing 0.2-1.2 percent of carbon and improving processing conditions (quenching, tempering) resulted in hard and 
versatile steel swords.1 The uniform distribution of carbon throughout the iron gave rise to wootz steel, one of 
the best materials for swords in antiquity. The improvements in the materials were followed by advancements in 
sword design to produce lighter and more lethal weapons. The crucial issue for sword design is the center of per-
cussion, the strike point on the blade, where the shock felt by a swordsman is minimized as he strikes a target. 
The sword design evolved empirically over many centuries until the Renaissance, when giants such as Galileo at-
tempted to understand sword dynamics. At present, using Newtonian dynamics and knowing material properties, 
we can computationally design the sword and predict the optimal location of the center of percussion.1 Yet many 
mysteries of the techniques of medieval swords craftsmen still remain to be rediscovered such as the process-
ing technique that led to the insertion of carbon nanotubes and cementite nanowires in the steel of Damascus 
blades — one of the most advanced sabres of all time.2 Clearly, material characteristics at the small atomic level 
impact material performance at larger, macroscopic scales, and therefore understanding this relation calls for 
multiscale research. 

The U.S. Army Research Laboratory (ARL) recognizes the importance of rational and comprehensive materials 
development. This recognition is evidenced by establishing the Enterprise for Multiscale Research of Materials, 
which include the MEDE (Materials in Extreme Dynamic Environments) and MSME (Multiscale Multidisciplinary 
Modeling of Electronic Materials) programs. These programs focus on the development of revolutionary materi-
als for Soldier protection, in categories such as metals, ceramics, polymers and composites, as well as materi-
als for energy, power and sensor applications. The main stages of a Materials by Design approach, which is the 
foundation of the program, are modeling and simulations, bridging the scales, multiscale material characteristics 
and metrics, synthesis and processing and advanced experimental techniques. These stages are pursued within 
those initiatives. The state of the art in multiscale research in materials, including leading ARL contributions in the 
MEDE program, is being showcased at the annual MACH conference.3 Multiscale modeling and simulations have 
become one of the main stages for advanced material development, and they are recognized as a critical com-
ponent of the Integrated Computational Materials Engineering (ICME), 4 as well as Material Genome, initiative.  In 
the 20th century, advances in computer hardware, software, and theory enabled multiscale physics-based predic-
tive modeling to become a transformational component of the materials development process. 

2. Materials Modeling in Materials Science

The hypothesis that all materials around us are composed of small particles, i.e., atoms, that cannot be divided 
further, is credited to the Greek philosopher Democritus who lived more than 2400 years ago. However, only with 
the advent of quantum mechanics (QM) in the 20th century was the true structure of atoms understood. Isaac 
Newton postulated the existence of forces between atoms. Since atoms have masses, the assembly of atoms 
can move according to Newton’s equations of motion. QM better describes the forces between atoms as a result 
of interactions between electrons, and the nuclei represented with a wave function as they move according to 
Schrödinger’s equation of motion. Thus, the solution of Newton’s and Schrödinger’s equations give rise to atom-
istic and QM modeling of materials, respectively. At the higher scales, beyond atoms, the finite element method 
(FEM) is typically used to describe continuous media. In this method, the continuum is discretized into various 
geometries that represent the global structure to be modeled — which is subjected to Newton’s laws of motion, 
the laws of thermodynamics, and possibly even Maxwell’s equations.

QM modeling is concerned with studying properties of materials at the angstrom length scale (10-10 m) and time 
events of femtoseconds (10-15 s). Quantum chemistry or solid state physics study events such as molecular or 
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crystal structures, chemical reactions and electronic transitions.  At the atomistic modeling level, the length scale 
events are at nanometer range (10-9 m) and the time events probe molecular dynamics (MD) for nanoseconds 
(10-9 s). The sophisticated theories and algorithms implemented for parallel (computer processors operating at the 
same time on different parts of the overall problem) supercomputers can extend applicability of these techniques 
for systems much larger and events much slower for several orders of magnitude. Simulations that reach microm-
eter length (10-6 m) and microseconds (10-6 s) are typically referred to as mesoscale calculations. The macroscale 
simulations can extend the temporal and length scales farther to meters and minutes and beyond. The fact that 
features and processes occurring at angstrom and femtosecond scales impact material behavior at larger space 
and time scales gave rise to multiscale modeling.6

The key challenge for multiscale modeling is scale bridging, for example, passing information about behavior 
of atoms described at the lower QM scale to the next higher atomic scale. It might be tempting to contemplate 
simulations only at the most fundamental QM level. However, this is impractical due to the high cost of simula-
tions, because properties of large ensembles of atoms are often unnecessary, and governed by different physical 
phenomena. For example, the energy of covalent bonds (e.g., C—C bond in the ethane molecule, CH3—CH3) is ~85 
kcal/mol, while the interaction between two methane molecules (CH4 — CH4) is weak and amounts to ~2 kcal/mol, 
and is comparable with thermal energy at room temperature. Therefore, processes in hard materials (molecules 
and solids) with many covalent bonds are dominated by their energy landscape, while for soft materials (polymers 
and proteins) entropy (increasing disorder) dominates the material behavior. Multiscale modeling can be divided 
roughly into two categories: sequential (or hierarchical) and concurrent. In sequential multiscale modeling, the  
higher-level model uses homogenized relations from a more detailed, lower-scale model while the concurrent 
model is two-way coupled and uses input from the lower-scale model to calculate larger-scale properties on-the-fly 
as the computation proceeds.

The importance of multiscale modeling was finally recognized by a most recent 2013 Nobel Prize in Chemistry 
awarded to Martin Karplus, Michael Levitt and Arieh Warshel “for the development of multiscale models for com-
plex chemical systems.” 

Professor Gunnar Karlstrom, on delivering the presentation speech for the 2013 Nobel Prize in Chemistry at the 
Stockholm Concert Hall, noticed that today’s chemistry has merged with other disciplines of physics and biol-
ogy, and has been advanced and profoundly influenced by ever faster, computers. The 2013 Nobel laureates had 
made seminal contributions at the intersection of chemistry, physics, biology and computer science. 

In the Nobel lectures, laureates presented their work to bridge temporal and length scales between atomistic and 
mesoscale models of biological systems, such as proteins and enzymes.7 The Newtonian dynamics with atomic 
representation of systems was used for short time scales, while other techniques, such as Brownian motion dy-
namics or Monte Carlo statistical methods, had to be applied to long-time simulations. The details of bond break-
ing occurring during reactions were studied by using QM methods embedded into an atomistic environment (QM/
Molecular Mechanics). Scale bridging for the 2013 Nobel Prize research was accomplished through sequential 
means. The QM calculations led to approximate interactions between atoms with the so-called force-field that 
facilitated simulations at the atomistic-scale level. Next, the atoms of a system were divided into groups of atoms 
(referred to as coarse graining in this work), and the atomistic simulations helped to parameterize interactions for 
these coarse-grained mesoscale simulations. 

The impact of QM modeling on chemistry and physics was also recognized by the 1988 Nobel Prize in Chemistry, 
which was awarded to Walter Kohn for his development of density-functional theory (DFT) and John Pople for his 
development of computational methods in quantum chemistry.

The most popular QM methods used at ARL rely on two fundamental quantities describing the motion of electrons 
in a molecule or solid, the wave function (Ψ) and the electron density (ρ). These quantities can be obtained by 
solving quantum-mechanical equations, and they are related as the square of the wave function which defines the 
probability of finding an electron at a particular position in a molecule. The wave function of a system can be ob-
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tained by solving Schrödinger equations, which are readily available in numerous solid-state physics and quantum 
chemistry programs. John Pople, the 1988 Nobel laureate, made seminal contributions to the theory and practi-
cal applications in the quantum chemistry field. 

Walter Kohn, Pierre Hohenberg, and Lu Jeu Sham in 1964 and 1965 showed that quantum-mechanical equa-
tions can be efficiently approximated by containing all of the many-body interactions in an exchange-correlation 
energy (Exc), which depends on the electron density of the simulated system. Unlike the wave function Ψ, which is 
a function of the position of all electrons in the system, the electron density ρ is only a function of three positional 
coordinates. Therefore, the DFT equations can be programmed much more efficiently and applied to more com-
plex solid and molecular systems of practical importance for materials science. Today, most quantum mechanical 
calculations are performed by using the DFT method. 8,9

Zienkiewicz10 attributes the origins of modern computational FEMs to the weighted residual methods of Gauss in 
1795, the variational methods of Lord Rayleigh in 1870, and the finite difference methods of Richardson in 1910. 
Yet the term “finite element method” was coined by Ray Clough in 1960. Legacy FEMs employ macrophenomeno-
logical continuum-scale constitutive (stress-strain response) and failure models that exclude smaller spatio-tem-
poral scales needed for the optimal design of new high-performance Army materials. Furthermore, in his mono-
graph on composites, Milton11 states in his account of the classic heat conduction problem of Tartar that “if one 
seeks the optimal configuration by using the standard finite elements (FE) numerical approach, the result will be a 
configuration with a microstructure on the same length scale as the FE, indicating that the FE approach is unreli-
able.” Despite this, material modeling at the global scale is dominated by computational FE solvers (codes) which 
have been under continuous development since the early 1970s. The codes provide deterministic solutions to 
boundary value problems governed by the field equations, which include those of kinetics, kinematics, thermody-
namics, and material constitution. Regarding material constitution, the codes utilize a number of “hydrodynamic” 
models for the deviatoric behavior of the material, e.g., Johnson-Cook, Zerilli-Armstrong, Steinberg-Guinan, and 
Mechanical Threshold Stress, that require definition of a separate set of equations (equations of state) for charac-
terizing the volumetric material behavior, e.g., linear polynomial, Jones-Wilkins-Lee, Gruneisen, etc.  

Material failure models in continuum FEMs have been classically treated using continuum damage mechanics 
(CDM) which employs algorithms that degrade element strength, and are dependent upon effective plastic strain 
or volumetric strain. In addition, material failure can be coupled to spall (tensile failure) models that are depen-
dent upon user-specified limits on hydrostatic tension or maximum principal stress. However, cohesive zone (CZ) 
elements and extended finite elements (XFEM) are gradually replacing CDM in large-scale FE codes for modeling 
fracture and the influence of pre-existing defects on material behavior. Implementation of CZ or XFEM into large-
scale FE codes requires considerable code reformulation since the production of new surface area within a finite 
element mesh poses special programming challenges for codes running on modern parallel architectures. Finally, 
continuum element erosion (deletion) or conversion to particles can occur in highly deformed regions of the mesh 
as a result of projectile impact and penetration.  The complex many-body contact problem also introduces addi-
tional challenges for finite element solution of the already highly nonlinear boundary value problem. 

3. Materials Modeling at Multiple Scales at ARL

For more than 20 years researchers at ARL have been studying materials of Army significance with the help of 
modeling at various scales, from quantum, through atomistic, mesoscale to macroscale using FE techniques. 
This monograph intends to present representative examples of the most recent achievements of ARL scientists in 
modeling of the major classes of materials, and the underlying theoretical and computational research performed 
at ARL.  

3.1 Molecular complexes

Molecules are building blocks of many important Army materials. These include molecular crystals used as 
energetic materials or in thin film flexible electronics, while molecules with nitrogen atoms have applications as 
propellants in rocket propulsion systems. Performance of electrical storage devices depends on electrochemical 
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properties of electrolyte molecules. A variety of molecules are used as adhesives, corrosion inhibitors or surface 
passivation agents. In most calculations on molecules, accurate quantum mechanical methods are used to pre-
dict structural, optical and magnetic properties as well as reactivity of molecular systems. At the higher level of 
multiscale, atomistic simulations often using polarizable or reactive potentials are applied.

Electrical energy storage devices are critical for the success of the Army’s mission. Lighter and safer batteries 
are essential for lightening the warfighter burden. Improvement of battery materials presents a difficult multi-
physics and multivariable problem, including designing the electrolytes possessing high ionic conductivity, low 
viscosity, and good thermal and electrochemical stability and, importantly, being compatible with electrodes. As 
higher-energy density, high-voltage cathodes are being developed, many standard electrolytes become unstable 
and undergo oxidative decomposition.  Xing and Borodin (2012) — (these references refer to publications in this 
monograph) — studied oxidation stability and induced decomposition of ethylene carbonate (EC) by determining 
reaction paths and transition states of various reactions. They used first principles (DFT) and ab initio quantum 
mechanical techniques, including solvent environment via a polarized continuum model. They concluded that 
more expensive ab initio calculations support the reaction mechanism predicted from DFT calculations. The key 
finding was that two EC molecules undergo a concerted oxidation reaction yielding CO2 and an ethanol radical cat-
ion followed by the deprotonation of EC. This deprotonation reaction significantly diminished the oxidation stability 
of EC. DFT calculations suggested a mechanism for formation of oligo (EC) on the cathode surface that has been 
observed in recent experiments. Knowledge of electrolyte stability and decomposition is critical for design of novel 
electrolytes that will be compatible with the high-voltage cathodes.

As most electrolytes are unstable at the graphite and silicon anodes, they decompose and form a solid electrolyte 
interphase (SEI). The optimal SEI should form a stable electronically insulating, but ionically conducting, layer 
on the anode surface. Previous experimental work performed at ARL identified dilithium ethylene dicarbonate 
(Li2EDC) as one of the major SEI compounds. The conductivity of the lithium ion through Li2EDC was studied by 
Borodin et al. (2013) using atomistic MD with the many body polarized APPLE&P® force field.
 
The accuracy of the force field was improved by adjusting parameters to reproduce the binding energies in lithium 
carbonate models obtained from extensive ab inito calculations. It was found that ab initio results agree well with 
the latest DFT potentials. The use of a polarizable force field was confirmed to be of key importance as nonpolariz-
able force field performed exceptionally poorly for this process. The Li ion transport and conductivity calculated as 
a function of temperature, and was found it to be in good agreement with experimental data.  The novel mecha-
nism of the Li ion motion, such as chainlike or loop-like hopping, was discovered. In addition to improving the 
understanding of the transport processes in SEI, this work resulted in a much-improved polarizable potential that 
will be applied to investigate other SEI model compounds to optimize battery interfacial resistance and to mini-
mize battery charging time. 

Defect nucleation and propagation in molecular crystals enhance mechanical ductility, which is a beneficial 
property for material processing but can also degrade the performance of, for example, optical and magnetic 
devices that contain them. It is therefore important to understand how defects initiate and propagate in such 
periodic crystalline molecular media. Fortunately, analytical models exist for the nucleation and growth of disloca-
tions, and these can be used to verify atomistic simulations of such processes. The recent article by Munday et 
al. (2013) examines dislocation nucleation at the tip of a Mode II (shear stress) crack in explosive molecular RDX 
(cyclotrimethylenetrimitramine) crystals using the LAMMPS MD Simulator. The computational predictions of the 
generalized stacking fault energy curve induced by the crack are compared with Rice’s continuum dislocation 
nucleation model derived using the J-integral and the Peierls concept relating periodic shear stress and atomic 
shear displacement on a slip plane in a ductile crystal. The authors find that molecular flexibility plays an impor-
tant role in predicting the correct energy barrier to dislocation nucleation. This finding impacts research on other 
molecular crystals of importance to ARL.

To improve the lethality and survivability of its weapons systems, the U.S. Army is interested in developing propel-
lant formulations for guns and rocket motors for tactical missiles with better performance properties than current 
standards but are less sensitive to ignition produced by various external stimuli. Gun and tactical rocket propel-



   
8

lant formulations generally fall into one of three application-defined categories. For gun and minimum-smoke 
rocket propulsion systems, the formulations’ primary ingredients are usually nitrate esters, with nitrocellose and 
nitroglycerin being common.  For high-performance rocket motors, ammonium perchloratep crystals are mixed 
with polymeric binders that serve as a fuel and provide needed mechanical properties. Lastly, more exotic rocket 
motor designs that employ pumpable liquid hypergolic bipropellants are being developed and tested.  In these 
cases the fuels are liquid amines or hydrazines, and the oxidizer is red fuming nitric acid.  In all cases, the formu-
lations will also include catalysts, stabilizing agents and other additives to meet system requirements.  However, 
propellant type, performance and sensitivity are not the only considerations. Issues ranging from the compatibility 
of a formulation’s ingredients to their risks to human health and the environment must also be addressed. Thus, 
in the absence of an ability to predict such properties, trial and error approaches must be employed, making the 
development and qualification of new formulations for emerging technologies a costly and time-consuming under-
taking.  

To reduce the cost and accelerate the pace with which new propellant formulations can be developed and quali-
fied, ARL has developed models to predict a wide variety of their properties.  An Ordnance Environmental Program  
to prescreen candidate hydrazine-alternative hypergols, demonstrated new efficiencies by the application of this 
approach to material development. In this monograph, McQuaid et al. (2013) present a paper that provides an 
overview of the modeling of a critical determinant of a propellant’s performance in a propulsion system, namely, 
the conversion of the propellant (and its stored chemical energy) into sensible heat and a gaseous working fluid.  
Starting from QM-level descriptions of the molecular potential energy surfaces upon which reactions may take 
place, reaction networks that can simulate the conversion were developed and employed as submodels in com-
putational fluid dynamics models for system-level performance predictions and design guidance. Future studies 
will explore the generation and use of such reaction networks for prescreening the compatibility of formulation 
ingredients. 

3.2 Non-crystalline (amorphous) materials

Non-crystalline (amorphous) ceramics or ceramic glasses are used in a variety of vital Army personnel, ground, 
and air vehicle applications that require transparent armor, which is ubiquitous in tactical vehicular windshields 
and side windows. For many years it has been known that the properties of glass can be modified and enhanced 
through compositional modification, chemical strengthening, annealing, and process control of melt cooling. In 
addition, certain glass formulations have been shown to exhibit enhanced performance against shaped-charge 
jets.

As such, an interdisciplinary research team was formed at ARL to develop a physics-based multiscale modeling 
methodology to compositionally design optimum glasses for ballistic and shaped charge jet applications and to 
predict the performance of glasses that have not yet been synthesized. It was discovered that classical MD poten-
tials cannot predict the shock response of fused silica over the entire ballistic pressure range of interest (0 - 60 
GPa), so a new pairwise potential was developed for silica by Izvekov and Rice (2012) that exhibits good transfer-
ability to various silica crystalline polymorphs and amorphous silica. It also reproduces the shock Hugoniot curve 
well at higher pressures. In a typical plate impact experiment a flat plate is propelled at various high velocities 
(which determine the pressure of impact), and the sample back face deflection is measured. The resulting curve 
normally exhibits a Hugoniot Elastic Limit at a characteristic pressure, where materials are not responding elasti-
cally to the impact pressure; basically, the shock Hugoniot is the locus of thermodynamic states accessible by 
shock loading from a given thermodynamic initial condition. The new potential has been parameterized to match 
the total force distribution along quantum mechanical trajectories for the system. The DFT, generalized gradient 
approximation (GGA) potential was used in this work to calculate the MD trajectory that was subsequently used 
to develop potentials by applying the multiscale coarse graining (MS-CG) variational approach. The mechanism of 
silica densification was revealed. Change in oxygen coordination to silicon cations (bonding to Si atoms) was seen 
as a function of increasing pressure. This paper demonstrates that systematic coarse-graining of DFT structural 
information can be successfully used to study glasses under high pressure relevant to ballistic events.  The model 
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was also validated using high-pressure diamond anvil cell experiments in glass that were conducted at ARL, and 
coordinated with external experimental efforts at the Ernst-Mach-Institute, then enhanced with the establishment 
of a new glass processing facility at ARL/WMRD. 

Computational models of the initiation and propagation of discrete defects such as cracks at nanometer scales 
in glass should seamlessly transition into models of glass comminution relevant to fracture and fragmentation at 
the global scale. Ceramic glasses do not have a conventional micro- or mesostructure, as it is understood for crys-
talline ceramics. But these scales must also be accounted for in multiscale modeling of glasses due to the pres-
ence of growing defects at these intermediate spatial scales; although this has been done in the past using classi-
cal homogenization methods, this approach may not be possible for defects in glass that exhibit time-dependent 
growth. To remedy this, recent research by Wildman and Gazonas (2012) has focused on the development of a 
nonlocal formulation of elastodynamics known as peridynamics which shows promise for modeling discontinuities 
and dynamic fracture in glass. In this work, a perfectly matched layer was implemented into a state-based formu-
lation of peridynamics for simulation of boundary value problems with infinite domains; the new code has been 
verified with a number of closed-form analytical solutions to boundary value problems arising in elastodynamics 
and validated by comparison of simulated and observed crack lengths formed in glass indentation experiments. 
Current research is underway to enhance the computational framework by linking peridynamics to a finite differ-
ence time domain code to minimize dispersion effects seen in dynamic simulations of glass fracture; incorpora-
tion of the peridynamics code into a concurrent multiscale framework is also planned.

3.3 Polymers and Macromolecules

Polymers are ubiquitous in Army systems and in many civilian applications. Individual Soldier protection devices 
and shields are often made from light and strong composites composed of high-performance semicrystalline 
polymer fibers within a polymer cross-linked network matrix. Polymer elastomers are used in armor systems as 
adhesives and coatings, in a variety of robotic applications, fuel cell membranes or as protective coatings for 
corrosion or passivation layers in electronic materials. Glassy polymer networks are used in structural polymer 
composites or in a transparent armor. Polymeric gels have multiple applications, such as materials with mechani-
cal properties of human tissue for ballistic testing or as multifunctional robotic soft materials. ARL develops 
computational methods and performs simulations addressing critical challenges in modeling of polymers, such as 
entanglements of extremely long chains, microphase-separated complicated morphologies, dynamics of network 
and semicrystalline polymers as well as elucidating polymer unique mechanisms of energy dissipation, such as 
by strain hardening. To successfully treat the extremely large spatial and long temporal time scales of polymer 
dynamics and micro-phase separation phenomena, mesoscale-level coarse-grained or field theory methods are 
typically used. Scale bridging is realized by providing interaction parameters between grains (a larger assembly of 
atoms) that can be obtained from lower-level atomistic or quantum-level simulations.

The behavior of polymers under extreme conditions (high-pressure-strain rates and temperature) is of interest 
for numerous military applications, such as polymer-bonded explosives or lightweight armor Soldier protective 
equipment. The material response to such extreme conditions can be determined experimentally through shock 
experiments; however, these are extremely difficult to characterize. Instead, computations can provide valuable 
insight at the atomistic level by characterizing non-equilibrium material behavior behind a shock front occurring 
at extremely short time and length scales. Chantawansri et al. (2012) performed QM and atomistic simulations 
using MD to predict the shock Hugoniot for several Army-relevant polymers. They have found that a dispersion-
corrected DFT method can reproduce experimental Hugoniot curves for the PMMA (Poly [methyl methacrylate]) 
polymer. The accuracy is less satisfactory for polymers containing rings, such as polycarbonate, because of the 
complicated phase transition that occurs at long time scales, which cannot be captured through the short time 
scales accessible to QM simulations. Fracture events were studied at high pressures for the PMMA polymers, 
where an interconnected network was formed at high pressures and temperatures. This work enables scale bridg-
ing by providing constitutive equations for FEM simulations, and it can ultimately lead to optimization of polymer 
performance at high, ballistic pressures.
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Polymer elastomers are being extensively studied at ARL because of their potential for blast-wave mitigation 
and versatile mechanisms of projectile impact energy dissipation. The architecture, chemistry and composi-
tion of elastomers can be tailored to achieve large energy dissipation. In particular, segmented polymers, like 
poly(urethane urea) (PUU), exhibit a broad range of mechanical response under high-strain-rate deformation. 
Depending on the distribution, chemical composition and intermolecular interaction of soft and hard segments 
in PUU, the polymer may undergo a transition from a rubbery into a leathery-like or glassy regime with increasing 
strain rate, thus enhancing energy dissipation capabilities. Chantawansri et al. (2012) studied the effect of hard 
and soft segment content and interactions on local morphology and rate-dependent stress-strain behavior in the 
ballistic regime.  They used the Kremer-Grest (KG) and Dissipative Particle Dynamics (DPD) mesocale models to 
study the equilibrium and dynamic properties of PUU polymers. The DPD method is computationally more efficient 
and it was used to quickly obtain the morphology for this system as a function of hard and soft segment content 
and interactions. However, the DPD cannot study mechanical deformations of polymers, so it was replaced with 
the KG model. Through these calculations, the significance of the hard segment orientation and the intermolecu-
lar interactions, particularly at the interface between the hard and soft segments on the stress-strain response, 
was revealed. Results qualitatively agreed with available experimental data. This research validates the compu-
tational model and opens the avenue to study the effect of the microstructure on the segmental dynamics under 
high-strain-rate deformation.

As mentioned above, the standard DPD method is often used in polymer simulations to determine the morphol-
ogy of microphase-separated polymer systems due to its advantageous computational performance. However, the 
soft potentials utilized by the DPD method allow for polymer chains to pass through each other, thus prohibiting 
the method from capturing the effect of entanglements in the mechanical response. To address this shortcoming, 
Sirk et al. (2012) has developed a polymer model that prevents such chain crossings and therefore allows the fa-
vorable coarse-graining features of DPD to be applied to entangled polymer materials. This new model, which we 
have termed the modified segmental repulsive potential, includes an additional non-bonded and angle-bending 
potential that are parameterized to both prevent chain crossings and to preserve the structural and thermody-
namic properties of the original DPD method.  The method has good computational performance and is broadly 
used in computing trends in transport and mechanical properties. It was successfully used to study mechanical 
properties of entangled block copolymers and in design of gel networks with tunable mechanical properties.  The 
method was implemented in the popular program LAMMPS and is already being used by several academic and 
industrial researchers.

Properties of bio-inspired and biological materials are of increasing importance for ARL research on novel Soldier 
protection systems or energy-harvesting devices. The biomimetics strategy of seeking inspiration from nature 
to create hard, tough and lightweight materials is present in numerous mission projects — for example, in bio-
derived high-performance fibers, bio-inspired adhesives and transparent nanocrystalline cellulosic composites. 
Such materials may not only possess superior properties, but will also increase the sustainability and decrease 
supply chain vulnerability. Utilizing nature’s finely tuned light harvesting protein complexes for the conversion of 
light energy to chemical energy could lead to the development of alternative energy sources. The fabrication of a 
photocatalytic bio-STET system of Photosystem I and inorganic materials to produce hydrogen gas requires close 
coupling of experiment and simulation to improve packing and coupling of the protein complex to the electrode 
surface for enhanced stability and electron transfer. Analysis of the metabolic diversity of clostridium acetobuty-
licum may impact Army operations in areas as diverse as biofuel formation to firing range remediation. Iterative 
modeling of peptide-protein interactions for “smart reagent” development yields better understanding of target-
ligand interactions and will enable the design of improved efficiency, rugged sensors for biologial and chemical 
detection. ARL conducts computational analyses in all these areas using QM, MD, an improved in-house docking 
protocol and systems biology and bioinformatics tools. 

In this monograph a recent paper by Adams et al. (2013) is presented outlining the first-ever effort harnessing 
of E. coli cellular machinery to develop an unconstrained bacterial display peptide library designed for interac-
tion with inorganic materials. Tight coupling between experimental evidence and computational analysis dem-
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onstrated the sequence-dependent structure-function relationship leading to improved helicity (axial chirality) 
and preferred binding group alignment for high-affinity peptide interactions. This work is likely to have significant 
impact on the design and development of beneficial biofilms, including living paint for common metals subject to 
corrosion. Future studies will continue to explore the use of this biological approach for advanced material devel-
opment and improved understanding of hybrid material interactions.

3.4 Ceramics

The ultimate failure of structural ceramics in impact events is a function of the temporal and spatial interaction 
of the macro-stresses at the macro-, micro- and nano-structural scale. This includes elastic and inelastic (plastic) 
deformation, damage nucleation and evolution and resulting failure from the macro-scale (top down) or from the 
nano-scale (bottom up). The majority of research in the past has involved continuum-based modeling and simula-
tions using constitutive stress/strain mechanical relationships at larger scales, where the material is assumed 
to be a homogeneous mechanically isotropic body. Unfortunately, these methods ignore, for the most part, the 
anisotropic physics-based spatial/localized nano- and microscale responses at these scales. Current work is now  
being focused on these very small scales and how to embed these results into the larger-scale models and com-
puter codes.

Boron carbide (BC), due to its extreme hardness, low density, and demonstrated protection performance, has 
been used as an armor ceramic for many years. The crystal structure is composed of icosahedra with different 
stoichiometries that depend on the carbon content and processing conditions. Although the structure and forma-
tion enthalpy of BC as a function of stoichiometry are rather well known, the deformation and damage mecha-
nisms occurring during mechanical deformations are much less known. But they are critical to predicting the  
performance of BC as a protective material. Recently, it was discovered that under certain high-strain-rate experi-
ments, BC amorphized into “nano-structural bands” which seem to be an important damage mechanism. Taylor 
et al. (2012) investigated the effect of stoichiometry on the atomic structure and mechanical properties of vari-
ous BC crystallites. The authors used a DFT method at the GGA level to optimize unit cells and calculate elastic 
constants as a function of hydrostatic and uniaxial loads. They also performed MD simulations with the Perdew-
Burke-Ernzerhof functional under hydrostatic, uniaxial and shear loading paths. Computed mechanical properties 
show their significant dependence on the atomic structure and stoichiometry. The mechanism of atomic reorgani-
zation within a deformed unit cell was discovered. They found an unexpected behavior of the C44 modulus, which 
undergoes pressure softening, and suggested that this could contribute to the amorphisation of BC under shear-
ing load. The results of this study significantly contributed to the understanding of BC behavior under mechanical 
loads. 

Over the past ten years significant progress has been made in determining the dynamic and quasi-static mechani-
cal properties, deformation and failure mechanisms of aluminum oxynitride (AlON), a transparent polycrystalline 
cubic spinel structure material used in transparent armor and sensor windows.  Characterization of AlON frag-
ments from high-strain-rate Kolsky bar and edge-on impact tests have revealed that dissociated <110> disloca-
tions on {111} planes seemed to be operative and that subsequent fragmentation formed along {111} cleavage 
planes; use of real-time high-speed photography in these tests has clearly demonstrated the influence of defects 
on the dynamic mechanical response of AlON. 

Recent DFT calculations guided by a genetic algorithm by Batyrev et al. (2014) found that the lowest energy con-
figurations in the AlON (Al23(AlVac)O27N5) system corroborated McCauley’s long-standing constant anion unit cell 
model for AlON. The model with the lowest energy structure has a random distribution of N atoms not adjacent to 
the Al vacancy and is in good agreement with experimental X-ray diffraction spectra. DFT-computed cubic elastic 
constants approached the experimentally measured elastic constants as the number of atoms was increased 
from 55 (unit cell size) to 440; the cubic elastic constants were predicted to increase monotonically to 40 GPa. 
Both infrared and Raman spectra were also predicted using density functional perturbation theory and compared 
with available data supporting the conclusion that some of the Al cations are in tetrahedral sites and the O atoms 
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are next to the cation vacancy site. Future work is planned that will validate the model with both IR and Raman  
spectra and possibly applying the MS-CG variational approach (Izvekov and Rice, 2012) to determine shock Hugo-
niots for AlON.

Another notable paper by Clayton et al. (2012) devoted to explicitly modeling grain boundary (GB) fracture using 
CZs in AlON and silicon carbide, accurately models shear-induced dilatation and the increasing shear stress with 
pressure observed in these ceramic materials. The ceramic mesostructure is characterized by a nonlinear aniso-
tropic elastic constitutive model12 and consists of a 1 mm3 polycrystal (assuming an average ~200 µm grain size) 
constructed using a Monte Carlo synthetic grain growth algorithm. The polycrystalline mesostructural models were 
implemented into the Sierra/Presto suite of codes deformed at increasing pressure and analytically fit to a cap 
plasticity model useful for larger-scale numerical simulation. Under consideration by the authors is enhancement 
of the fidelity of the simulations using realistic microstructures obtained through serial sectioning of specimens 
combined with electron-backscatter diffraction data or using high energy X-ray diffraction microscopy (HEDM) for 
microstructure reconstruction.

A mere few atoms thick two-dimensional (2D) materials, arranged as periodically repeating units, have the poten-
tial to transform Soldier protective systems as well as electronics and sensor devices. This is due to their superior 
electronic, transport, thermal and mechanical properties. The 2010 Nobel Prize was awarded to the discoverers 
of graphene, a 2D material that is a planar structural array of single layers of hexagonal rings of carbon atoms, 
which exhibits extraordinary mechanical, thermal and electrical properties. ARL conducts extensive research in 
graphene and other 2D materials such as BN, ZnO, and hybrid graphene-polyethylene structures to understand 
their electronic and mechanical structures and to design superior multifunctional materials with tunable prop-
erties.  Balu et al. (2012) studied the effects of electric field on the band structures of graphene/boron nitride 
bilayers by using first-principles quantum mechanical calculations. They found that modulation of the band gap in 
graphene/BN bilayers is dominated by the graphene electronic structure. This research suggests new applications 
in semiconductor devices for graphene/BN bilayer materials.

3.5 Metals

Polycrystalline metal alloys play an important role in the ballistic performance of present day and future Army 
protection/lethality systems.  The mechanical, electrical, magnetic, and thermal properties of these alloys heavily 
depend on the following complex underlying microstructures: nanoscale precipitates and their interfaces, grain 
orientation and crystallographic texture, various phases or crystal structures (i.e., intermetallics), point defects 
and solute/impurity atoms, dislocation character and density, and complex GB structures.  Understanding and 
quantifying how these microstructures form and evolve requires modeling techniques that range from the elec-
tronic and atomistic scales (QM, MD) all the way up to the macroscale (continuum mechanics), with an associated 
large span in terms of the time scale as well.  

There are, however, a number of challenges for modeling metal systems for protection/lethality applications.  For 
instance, while the microstructure of metal alloys is related to the atomic arrangement of atoms and their kinet-
ics (associated with processing/application), the number of degrees of freedom related to the microstructure 
complexity may make simulations at the quantum/atomistic scales intractable, necessitating either hierarchical 
or concurrent scale bridging to higher-scale models. In addition, while mesoscale and continuum-level simulations 
have the computational efficiency to handle these problems, the parameters in the constitutive relations of these 
models may be more phenomenological than physically based (i.e., changes in composition or processing that 
result in different microstructures or properties may require a complete recalibration of these models).  Hence, 
understanding how microstructure complexity affects properties at the atomic scale and influences parameters 
in higher-scale models is one challenge for multiscale models in general and for metals specifically.  The payoff, 
though, is that the ability to formulate and integrate predictive models over these multiple length and time scales 
(validated by critical experiments) will enable the Army of the future to computationally tailor alloy composition 
and processing routes in metals to engineer the next generation of protection and lethality systems.      



   
13

One example of how microstructural complexity can be explored at the atomic scale is shown in Rhodes et al. 
(2013).  It is well established that impurities segregate to GBs and ultimately influence mechanical properties, 
such as hardness, toughness and fracture behavior. In their recent work on steels, they studied the segregation 
process for carbon within multiple substitutional and interstitial GB sites over 125 symmetric tilt GBs in iron. The 
authors performed molecular simulations using an interatomic potential based on the embedded-atom method 
formulation, which was fit using and tested against DFT calculations. Thousands of substitutional and intersti-
tial atomic sites for GBs of various tilts were examined. They predicted energetically favorable GB segregation 
processes and optimal positions of carbon atoms. Statistical analysis was performed to quantify the segrega-
tion energy distribution as a function of distance from the GB. This work enabled the authors to build analytical 
models of the segregation energy distribution for higher-scale simulations. This work was instrumental in develop-
ing a methodology capable of ascertaining segregation energies over a wide range of GB structures typical of that 
observed in polycrystalline materials.

A recently developed phase-field FE model has been used to simulate quasistatic Mode I (tensile stress) and 
II crack-tip twin nucleation in magnesium, calcite, and sapphire single crystals (Clayton and Knap (2013).  The 
research enhances our fundamental understanding of twinning energetics and whether twinning precedes or is a 
consequence of fracture (cleavage). The authors plan to extend their phase-field computational model to include 
transient dynamic effects to enable interpretation of defect kinetics observed in plate impact or indentation ex-
periments.

Concurrent multiscale methods are also under development by ARL Scientists & Engineers. For metals, the meth-
od involves development of a parallel dislocation dynamics simulation capability for finite bodies such as in thin 
metallic films (Leiter et al. [2013]). The concurrent coupling uses distributed shared memory architecture to link a 
parallel dislocation simulator (ParaDiS) to a parallel FE solver for the solution of problems in small scale plasticity. 
The authors are studying the dynamic interaction of 4,096 randomly distributed straight-edge dislocations dis-
cretized into 280,261 segments within a ~2.5 µm3 cube of tungsten; the algorithm exhibits nearly ideal scalability 
to 1,024 processors. Future work is aimed at evaluating the benefits of using either an implicit or explicit integra-
tor for numerical solution of the equations of motion for the dislocation segments and validation of the computa-
tional model with experiment.

The constitutive theories of plasticity in metals can be broadly categorized as follows: 1) classical macrophenom-
enological plasticity theories produce rate-independent flow. These are all infinitesimal plasticity theories that 
include the definition of a i) yield function, ii) relation between the stress increment tensor and the elastic strain 
increment tensor, iii) normality conditions, and iv) work-hardening rule for evolution of the yield function under 
loading. The consistency condition provides the condition needed to produce rate independent behavior; 2) rate-
dependent plasticity (viscoplasticity) theories are similar to rate-independent theories in structure but with the 
consistency condition removed. The plastic flow is normally tied to the direction of (deviatoric) stress and scaled in 
relation to the distance currently outside the yield surface; 3) crystal plasticity theories are based on considering 
crystal structure, dislocations, slip planes, slip directions, etc. These can be made exact for large deformations,  
and are typically in rate form, but can also produce rate-independent equations. The microphenomenological form 
of the theory provides parameters associated with microstructural events producing, for example, hardening due 
to dislocation pileup; 4) finite deformation plasticity theories are based on the Fe Fp decomposition and are an 
extension of the classical phenomenological theory to finite deformations; decompositions such as Fe Fp Fθ incor-
porate the laws of thermodynamics and include temperature and heat generation. These are internal variable 
theories that include all the elements of the classical theory. The defining factor, as in the infinitesimal case, is 
the inclusion of a consistency condition that produces rate independence.

Within this framework is the recent contribution to classical plasticity of a new continuum plasticity time-inte-
gration algorithm which was implemented by Becker (2011) into the arbitrary Lagrange-Eulerian code ALE3D. 
The algorithm is based on insight obtained by closed-form integration of a quadratic yield function over a single 
time step and is intended for use with anisotropic and non-quadratic yield functions where numerical integration 
is often difficult. The new algorithm is numerically robust and successfully predicts localization in an expand-
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ing metallic ring and an aluminum plate perforated by a steel projectile. Possible extensions of the algorithm to 
an implicit FE solver are under consideration, which would enable solution of long-time structural dynamics and 
material-processing problems.

3.6 Composites

Composite materials have been used successfully since World War II in both personnel and vehicular protection, 
and the simulation of the anisotropic elastic behavior of homogenized composite materials has been effectively 
characterized up to fracture failure.13 However, dynamic fracture in carbon fiber-reinforced composites widely 
used in the aerospace industry is an extremely challenging physical phenomenon to simulate, particularly in a 
multiscale computational environment, since fracture process zones exist at the nanometer spatial scale in the 
relatively brittle carbon fibers, and the sub-millimeter scale in the relatively ductile matrix of polymer-epoxy resin.  
Modeling progressive failure in composite materials subjected to blast and ballistic impact has been the focus of 
many researchers over the last several decades.

Love and Batra (2010) studied how particle-matrix debonding influences the formation of material instabilities 
known as adiabatic shear bands (ASB) in metal matrix particulate composites. Particle-matrix debonding is mod-
eled with CZs, which are dynamically inserted into the FE mesh when tractions in adjoining FE reach a critical 
value consistent with the Griffith fracture energy. It is shown that in this highly coupled transient thermomechani-
cal problem, the initiation time of the ASBs are strongly influenced by particle-matrix debonding times governed 
by the CZ failure criterion. Future experimental work is required to find cohesive zone relations that are sensitive 
to strain, strain rate and temperature histories, and validation of the finding that strong particle-matrix interfaces 
delays ASB initiation. A review and mathematical analysis of factors that influence ASB formation can be found in 
the classic text of Wright.14

Nilakantan et al. (2012) studied the effects of projectile size and shape on the penetration resistance of a single 
layer of plain weave Kevlar fabric with statistically variable yarn strengths. An important conclusion of these prob-
abilistic simulations is that projectile shape strongly influences predicted V50 (impact velocity at which 50 percent 
of the projectiles perforate the target) values such that both V1 and V99 velocities should also be considered when 
designing composite protective barriers.

C.F. Yen (2012) recently developed a rate-dependent multi-parameter lamina model based on CDM which was 
implemented into the explicit dynamic code LS-DYNA. The model was used to successfully predict the ballistic 
limit velocity, V50, of a fragment-simulating projectile perforating a composite laminate. 

Finally, Wildman and Gazonas (2014) present a fully concurrent multiscale method whereby design loads and 
boundary conditions are applied and objective functions are measured at the global scale, while optimizing the 
topology (using computational geometry and genetic programming) of the local cellular composite microstructure 
described by representative volume elements (RVEs). The multiscale method also has the capability to model lo-
cal-global fracture transition kinetics by injecting cohesive zone microfractures within the local RVE and transition-
ing these to global-scale fractures using XFEM. This work represents one of the few open literature publications 
that optimizes local microstructure using computational geometry, and a forward multiscale FE code MultiMech 
(see  http://multimechrd.com/multimech/) with the additional capability of  transitioning defects from the local to 
the global-scale. The authors intend to extend the algorithms to a 3D framework and simultaneously optimize the 
global-scale topology with the local-scale microstructure. Despite these advances, challenges remain for material 
modeling and simulation of composite materials undergoing finite thermoinelastic deformations, and for develop-
ment of equations-of-state for composites subjected to high pressures induced by shock.

4. Future of multiscale materials modeling

The importance of materials modeling will only increase in the future with the development of new computational 
techniques and the advent of exascale computers. As documented in this volume, materials modeling at ARL is 
at the leading edge of multiscale modeling science, yet mostly sequential multiscale modeling and bridging of 
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few scales is currently the state of the art, while the concurrent modeling concepts begin to emerge. It can be 
expected that the future will bring more concurrent modeling for a variety of materials that would enable design of 
materials at the macroscale by using an inverse design methodology.  

Concurrent modeling can be achieved through further development of a systematic coarse-graining methodology 
that retains microstructure heterogeneities and chemistry of the system at higher scales while the reverse pro-
cess will utilize general backmapping algorithms that can uncover underlying atomistic structure and local hetero-
geneity from the high-level coarse-grained representation.

The new algorithms will likely improve the validity of the modeling results at every scale by making the represen-
tation of the total material system more accurate with better estimates of the uncertainties that have arisen. For 
example, embedded and adaptive methods may enable more accurate calculations of the material system at the 
various scales (quantum, atomistic, micro- and meso-scales) subjected to a dynamically adjusted environment. 
Current, predetermined a priori representation of the multiscale material system for atomistic simulations (force 
fields) or for FE techniques (constitutive equations) could be calculated on the fly, thus adding accuracy and less 
uncertainty to the material system simulation.

Concurrent modeling involving lower scales must be accompanied by development of order-N computational 
methods. These methods have to efficiently utilize the sparsity of the system and improve the performance of 
iterative methods that solve partial differential equations. For example, accurate ab initio quantum mechanical 
methods may scale with the number of atoms, N, much more than linearly (e.g., N4). Therefore, increasing the 
number of processors in the future exascale computers would not increase much usage of such expensive meth-
ods. A new generation of accurate-order N DFT functionals and programming improvements will enable efficient 
use of parallel architecture and consequently dynamics simulations for hundreds of thousands of atoms.

Future exascale computers may have millions of processors, with relatively slow connectivity between nodes and 
increasing possibility of node failures. This new architecture may necessitate the emergence of new techniques 
that currently are not competitive. One such technique could be the Quantum Monte Carlo algorithm that is 
computationally intensive, but has a reduced need for communication between the nodes. A new computational 
programming strategy needs to be developed to account for processors with higher failure rates and to exploit in-
credibly large parallelism. New algorithms must be developed that are resilient to failure of individual processes, 
asynchronous, and reduce needs for global communication.

Undoubtedly, with increased coupling of different algorithms across spatiotemporal scales, understanding de-
ficiencies and the range of applicability of models, as well as estimation of error on simulations, will become of 
vital importance. The field of verification, validation, and uncertainty quantification (VVUQ) will become an integral 
part of concurrent multiscale modeling. The VVUQ procedures will allow determining accuracy of simulations with 
respect to uncertainty of input and will provide guidance on how to perform simulations across the scales with 
predetermined levels of accuracy in the solutions.

In the future, we can expect an increasing integration of multiphysics with multiscale modeling, allowing for 
realistic simulations under various external fields and extreme conditions. Bulk calculations will be replaced with 
realistic simulations including local heterogeneities, such as stochastically distributed defects, grain and interface 
boundaries or microphase-separated morphologies that can dynamically evolve upon influence of external fields. 
Transport and reactions across the scales and interfaces including fracture and toughness studies will become 
commonplace.

Finally, emerging computer architectures such as quantum and DNA computers, novel programming environ-
ments and languages capable of data-intensive and fault-tolerant algorithms will provide an opportunity for 
revolutionary progress in multiscale modeling of materials. Appropriate incorporation of VVUQ procedures will 
allow for the discovery and designing of new classes of materials from the atomic scale, and the prediction of the 
properties and performance of these materials in many extreme environments. Important applications for the 
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Army include some of the following: energy storage, chemical-biological sensing, IR sensing, aviation materials, 
ultralight structural materials, protection materials, and lethality materials, among others. 

Seventy years ago with the installation of ENIAC, ARL’s predecessor, the Ballistic Research Laboratory (BRL), was 
at the forefront of computational science, including materials science applications. Today, ARL’s commitment to 
the development of multiscale theoretical and computational methodologies is as strong as ever, and is docu-
mented in the ARL Computational and Materials Sciences Campaign plans.15
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The oxidation induced reactions of the common lithium battery electrolyte solvent ethylene

carbonate (EC) have been investigated for EC2 using density functional theory and for selected

reaction paths using Møller–Plesset perturbation theory (MP4). The importance of explicitly

treating at least one solvent molecule interacting with EC during oxidation (removal of an

electron) on the EC oxidation potential and decomposition reactions was shown by comparing

oxidation of EC and EC2. Accuracy of DFT results was evaluated by comparing with MP4 and

G4 values for oxidation of EC. The polarized continuum model (PCM) was used to implicitly

include the rest of the surrounding solvent. The oxidation potentials of EC2 and EC4 were found

to be significantly lower than the intrinsic oxidation potential of an isolated EC and also lower

than the oxidation potential of EC–BF4
�. The exothermic proton abstraction from the ethylene

group of EC by the carbonyl group of another EC was responsible for the decreased oxidative

stability of EC2 and EC4 compared to EC. The most exothermic path with the smallest barrier for

EC2 oxidation yielded CO2 and an ethanol radical cation. The reaction paths with the higher

barrier yielded oligo(ethylene carbonate) suggesting a pathway for the experimentally observed

poly(ethylene carbonate) formation of EC-based electrolytes at cathode surfaces.

1. Introduction

Understanding the oxidation induced reaction of electrolytes is

essential in order to improve the performance of lithium ion

batteries, especially with the interest of developing electrolytes

compatible with high-voltage cathode materials that will improve

battery energy density.1,2 At high voltage cathodes electrolytes

containing solvents such as propylene carbonate (PC) and

ethylene carbonate (EC) become electrochemically unstable

resulting in the solvent oxidation and decomposition.1–7 Gaseous

products generated during the oxidation reaction were identified,

specifically, CO2 has been shown to be the main gas component

of the PC, EC and diethyl carbonate (DEC) oxidation,8–10 but

not from dimethyl carbonate (DMC).4 Besides gaseous products,

formation of polycarbonates2,3 and compounds with carboxylic

groups11 has been proposed as a result of oxidation reaction of

EC on a cathode. The growth of this polycarbonate layer on the

cathode surface leads to performance degradation of the battery

upon aging and cycling.12,13

Density functional theory (DFT) calculations have been

used to predict oxidative stability of solvents,8,14–21 redox-

shuttles,22–24 anions25–28 and solvent decomposition path-

ways.8,29,30 Most of the DFT studies of oxidation stability of

electrolyte components focused on understanding oxidation

stability of an isolated molecule and relating it to the bulk

electrolyte oxidation potential. Recent work,30–32 however,

demonstrated that the oxidation process in electrolytes is far

more complex. For example, oxidation of the carbonate and

the sulfone complex with anions such as PF6
�, BF4

� and

ClO4
� resulted in the anion nucleophilic attack on the solvent

occurring upon oxidation (electron removal) and leading to

deprotonation of carbonates and sulfones.31,32 The oxidative

decomposition reactions of PC were significantly influenced by

the presence of PF6
� and ClO4

� in DFT study.32 MD simula-

tions provided evidence of the PF6
� anion being present at the

surface of charged positive electrodes,33 simulations of the

LiFePO4 cathode–electrolyte interface revealed a pronounced

solvent ordering at the cathode surface.

In this work we explore an intriguing possibility that the

carbonyl group of EC might initiate the nucleophilic attack on

the ethylene group of another EC during oxidation of the EC2

complex. Moreover, we examine to what extent such nucleo-

philic attack influences the EC oxidative stability and oxida-

tion induced decomposition reactions. We consider this work

as an initial step towards understanding complicated oxida-

tion electrochemistry of carbonate electrolytes on non-active
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electrodes, while oxidation induced reactions on active elec-

trodes30 are quite complex and depend on a myriad of addi-

tional factors such as activity of the cathode surface, its

structure and crystal orientation.34

2. Oxidation stability

We begin by exploring the initial step of EC2 oxidation,

calculating the EC2 oxidation potential and comparing it to

the oxidation potential of an isolated EC and an EC–BF4
�

complex as shown in Fig. 1. The most stable EC2 configuration

with the binding energy of B50 kJ mol�1 from our previous

work35 was used as a starting point for DFT calculations.

DFT calculations at the B3LYP/6-311++G(d) level were

primarily used in this study to investigate the oxidation-

induced reactions. The energies for a few selected reactions

were also calculated at the MP4/6-311++G(d) level using

B3LYP/6-311++G(d) geometries and compared to B3LYP/

6-311++G(d) results to assess reliability of DFT results as

deficiency of many DFT functionals for predicting the

EC–Li+ binding energy36 and H-transfer in radicals37 might

yield inaccurate results for the EC–anion and EC2 complexes

of interest in this work.

The initial oxidation step for EC2 was also investigated at

M05-2X/cc-pvTz, MP2/cc-pvTz, MP4/6-311++G(d)//B3LYP/

6-311++G(d) and G4MP238 levels to further establish reliability

of DFT predictions. The Gaussian 09 package was used.39

Vibration frequency and intrinsic reaction coordinate (IRC)

analyses were employed to confirm all the transition states of

the reaction pathways at the same level. An effect implicit

solvent with dielectric properties of water (dielectric constant =

78.4) was included via a polarized continuum model (PCM).

Dielectric constant of the order of 78.4 is close to that of EC

(e = 89.78) based electrolytes at room temperature.1 Oxida-

tion potential (Eox) was converted from the absolute oxidation

potential of Li+/Li by subtracting 1.4 V from the former, as

shown in eqn (1).

Eox (Li
+/Li) = [G(M+) – G(M)]/F – 1.4 V, (1)

where G(M) and G(M+) is the free energy of the solvated

complex M and its solvated oxidized form M+ at 298.15 K,

respectively, and F is the Faraday constant.

Geometry optimization of the oxidized EC–BF4
� complex

revealed the BF4
� nucleophilic attack on EC leading to HF

formation resulting in the reduced oxidation potential of the

EC–BF4
� complex compared to the isolated EC oxidation

potential as shown in Fig. 1. Furthermore, initial oxidation of

EC–BF4
�, EC2–BF4

�, EC3–BF4
� complexes studied at the

M05-2X/cc-pvTz level with PCM (acetone) confirmed that

H-abstraction from EC by BF4
� also occurs in these

ECn–BF4
� clusters as shown in ESI.w Location of the solvent

separated anion near the EC ethylene group as shown in Fig. 1

is consistent with MD simulation results.36,40

Remarkably, in the oxidized EC2 complex the carbonyl

group of EC that is hydrogen-bonded to the ethylene group

on another EC also initiates a nucleophilic attack on EC

resulting in a spontaneous proton abstraction and lower

oxidation potential of EC2 compared not only to the isolated

EC oxidation potential but also oxidation potential of

EC–BF4
�. We confirmed that similar H-abstraction occurred

during energy optimization performed at MP2/cc-pvTz,

M05-2X/cc-pvTz, LC-oPBE/6-31+G** and G4MP2 levels

using PCM (acetone) indicating that the correlated methods

such as MP2 and other density functionals support the B3LYP

results. Analysis of the electrostatic potential fit to the grid

around EC2 � e was performed using the ChelpG method with

results shown in ESI.w This analysis revealed that in the oxidized

complex EC(+H) is a cation, while the radical EC(�H) is

essentially neutral. Furthermore, the H-transfer from one EC

to its neighboring EC upon oxidation occurred in the larger

oxidized EC4 complex as a result of geometry optimization at

the LC-oPBE/6-31+G** level with PCM (EC) indicating that

H-abstraction upon oxidation is not limited to EC2 clusters.

The oxidation potential for EC2 of 5.94 V from B3LYP/

6-311++G(d) calculations agreed well with the G4MP2 value

of 5.8 V, the M05-2X/cc-pvTz value of 5.9 V, and the oxidation

energy of 6.0 from MP4/6-311++G(d)//B3LYP/6-311++G(d)

calculations. The energy was used instead of free energy for

the latter calculations as vibrational analysis at MP4/

6-311++G(d) is too expensive. The calculated oxidation

potential values agree well with the experimental values of

6 V for EC–LiPF6 (1 M) on Pt,41 and a value of 6.2 V for EC

with 0.65 M [Et4N][BF4] reported by Ue et al.42

3. Decomposition reactions

We proceed with exploration of the oxidation induced decom-

position of EC2 � e and comparing results to the decomposi-

tion reactions of an isolated EC.8 The transition state (TS)

energies and products of the EC2 � e decomposition were

calculated. They corresponded to the energies needed to break

each of eight C–O bonds along paths 1–8 shown in Fig. 2.

Geometries of all TS states are given in ESI.w The reaction

path activity follows the order path 2 > path 1 > path 7 >

path 3 > path 4 > path 5 > path 6 > path 8 based upon

transition states calculated at the B3LYP/6-311++G(d) level.

The reaction paths 1–4 yielded identical oxidation products:

CO2, EC and an ethanol radical cation with the lowest TS2 of

Fig. 1 Optimized structures and selected bond lengths (Å) of EC,

EC–BF4
�, and EC2 before and after oxidation from B3LYP/

6-311++G(d) optimization. The calculated oxidation potential vs.

Li+/Li is listed below each complex.
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43 kJ mol�1 from B3LYP/6-311++G(d) and 64 kJ mol�1 from

MP4/6-311++G(d) calculations for path 2. The second lowest

barrier TS1 is 99 kJ mol�1 from B3LYP/6-311++G(d) calcu-

lations and 145 kJ mol�1 from MP4/6-311++G(d) calcula-

tions. The lowest TS for breaking the C(ethylene)–O bond as

opposed to the C(carbonyl)–O bond upon oxidation found in

our calculations is in accord with the conclusions of the

electron-spin-resonance study by Matsuta et al.6 but does

not support possible EC oxidation patterns suggested earlier by

Moshkovich et al.,3 who suggested the C(carbonyl)–O bond

cleavage as the first step of EC oxidation decomposition. Inter-

estingly, Moshkovich et al.3 suggested numerous H-abstraction

reactions to occur during EC oxidative decomposition.

The reaction path 5 that results in generation of CO2, EC

and aldehyde (M10) is less exothermic than the reactions

along paths 1–4 and is also expected to be significantly

hindered by the large barrier TS5 of 172 kJ mol�1. Path 7

has the third lowest TS of 130 kJ mol�1 and yields a dimer

product that can be potentially recombined with the reaction

product M6 to form an oligomer of ethylene carbonate.

While both reaction products M6 and M7 are slightly

endothermic from DFT calculations, they might proceed at

high temperature or larger overpotential. Alternatively, large

molecular weight products M6 and M7 might get stabilized by

their interactions with the cathode surfaces that are not

considered in this work. Finally, path 8 is highly improbable

as it is very endothermic and has the highest barrier TS8 of

358 kJ mol�1.

Comparison of the barriers from MP4/6-311++G(d) energy

calculations with the B3LYP/6-311++G(d) barriers is also

shown in Fig. 2. It indicates that MP4 barriers are system-

atically higher than B3LYP barriers but, importantly, the

order of the barrier energies is largely the same for MP4 and

B3LYP results, with the exception of TS9 and TS2. The MP4

energies for these barriers (TS9 and TS2) are essentially the

same, while in B3LYP/6-311++G(d) calculations TS9 has

11 kJ mol�1 higher barrier than TS2. The reaction product

energies from MP4 calculations were slightly higher than

B3LYP energies with the largest difference of 15 kJ mol�1

between MP4 and B3LYP energies observed for the M2

product. We conclude that selected MP4 calculations support

the reaction mechanism extracted from B3LYP calculations.

Oxidation reactions of EC2 are compared to the isolated EC

oxidation decomposition reactions shown in Fig. 3. The EC

oxidation induced decomposition reaction energies were

Fig. 2 The energies (kJ mol�1) of transition states and products in EC2 � e decomposition paths from B3LYP/6-311++G(d) calculations.

Selected MP4/6-311++G(d) energies are also shown and denoted as MP4.

Fig. 3 Optimized structures, bond lengths (in Å) and reaction energies

(in kJ mol�1) of the oxidation decomposition paths of EC – e in implicit

solvent from B3LYP/6-311++G(d). MP4/6-311++G(d) andG4 energies

are also shown and denoted as MP4 and G4, respectively.

D
ow

nl
oa

de
d 

by
 A

rm
y 

R
es

ea
rc

h 
La

bo
ra

to
ry

 A
D

B
V

 - 
A

de
lp

hi
 o

n 
17

 A
ug

us
t 2

01
2

Pu
bl

is
he

d 
on

 2
0 

Ju
ly

 2
01

2 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

2C
P4

11
03

B
View Online



   
21

Phys. Chem. Chem. Phys. This journal is c the Owner Societies 2012

calculated at B3LYP/6-311++G(d), MP4/6-311++G(d)//

B3LYP/6-311++G(d) and using the composite G4 theory43

that builds on the G3SX method that was successfully used for

radicals.37 The EC � e decomposition reactions shown in

Fig. 3 yield CO2 and an aldehyde radical as the main reaction

products in contrast to the formation of the ethanol radical

cation as the most active reaction of the EC2 � e decomposi-

tion. Paths 2 and 3 are the most probable decomposition

reaction paths, yielding similar activation energies for TS-5

(58 kJ mol�1 from B3LYP, 78 kJ mol�1 from G4) and TS-3

(57 kJ mol�1 from B3LYP and 78 kJ mol�1 from G4). Path 1

has a significantly higher barrier than paths 2 and 3 by

B70 kJ mol�1. Comparison of B3LYP, MP4 and G4 results

indicates that B3LYP systematically underestimates reaction

barriers compared to MP4 and G4 but predicts the energy of

the final product M-3 in good agreement with MP4 and G4

results. The MP4 energy agrees well (o6 kJ mol�1) with the

more accurate G4 estimate for M-1, M-3, TS-3, TS-5, while

larger deviations up to 14 kJ mol�1 were observed for M-2,

TS-2 and TS-4. Overall we conclude that while B3LYP/

6-311++G(d) systematically underestimates the transition

state barriers compared to G4 and MP4 results, it predicted

the correct order of the EC oxidation induced decomposition

reactions and the accurate value of the energy of the final

product M-3.

Comparison of the barriers for the most active reaction

paths for EC � e and EC2 � e indicated that the barriers

TS-5 and TS-3 for EC � e reactions are slightly higher by

14 kJ mol�1 at the B3LYP level and 7 kJ mol�1 for the MP4

level than the lowest barrier TS-2 for EC2 � e when measured

relative to the energy of the oxidized closed EC� e and EC2 � e

complexes. However, when one corrects for the large differ-

ence of 1.06 eV = 103 kJ mol�1 in the oxidation potentials

between EC and EC2, the barrier of the isolated EC oxidative

decomposition becomes significantly higher. Fig. 4 compares

oxidation induced reactions of EC2 and isolated EC. The

initial energy of the isolated EC was offset by the difference

in the oxidation potentials between EC and EC2 that corre-

sponds to neutral EC2 and EC used as a baseline instead of the

oxidized counterparts. In addition to lower barriers for EC2

compared to EC, this figure also shows that EC2 oxidation

yields more stable products than EC oxidation.

Possible reactions of the EC2 � e products M6 and M7 were

investigated because they could explain poly(ethylene carbonate)

formation observed on cathodes as a result of EC-based

electrolyte oxidation, especially at high temperature cycling.2,35

Fig. 4 Reaction energy profile of oxidation decomposition of EC2 – e and EC – e in implicit solvent, from B3LYP/6-311++G(d) calculations.

Fig. 5 Possible termination reaction paths and energy of M6 and M7 in implicit solvent from B3LYP/6-311++G(d). Energies are shown in kJ mol�1.D
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Specifically, M6 + M7 termination reactions between radicals

result in the highly exothermic reaction shown in Fig. 5,

forming an oligo(ethylene carbonate) product. Recombination

of M6 and M7 with EC radicals is even more exothermic with

ethylene carbonate groups present in both products. Alterna-

tively, M6 and M7 radicals might cross to the anode side and

undergo reduction reactions. One electron reduction is the

most energetically favourable for both M6 and M7 as shown

in Fig. 5. C2H4 is generated from the reduction of M7,

this reaction would complement C2H2 evolution from EC

reduction and it is consistent with reports of C2H4 generation

upon battery charging with EC-based electrolytes.9 The ring

opening barrier and CO2 detachment were investigated for M6

and neutral M6 + e, as also shown in Fig. 5. The TS for CO2

detachment was 50.2 and 91.2 kJ mol�1 for M6 and M6 + e,

respectively, suggesting that CO2 would generate from this

terminal carbonyl group, even at room temperature, while TS

for ring opening had much higher values of 179–190 kJ mol�1.

This is another pathway for formation of CO2 and alkyl

carbonates at the anode.

4. Conclusions

It has been demonstrated that it is important to consider at

least two EC molecules to accurately predict oxidation

potential and reaction products of EC oxidation induced

decomposition. The carbonyl group of the neighbouring EC

initiates a nucleophilic attack on the EC ethylene group upon

electron removal (oxidation) resulting in a spontaneous

proton abstraction from the ethylene group and lowering of

the oxidation potential of EC2 compared to the isolated EC

similar to the mechanism suggested by Jang and Oh.44 The

oxidation potential calculated with PCM was found to follow

the order EC2 (or EC4) o ECn–BF4
� o EC (isolated), where

n = 1,2,3. The investigated decomposition reaction paths of

EC2 yielded CO2 and an ethanol radical cation, which were

found to be the most probable oxidation products at room

temperature. The isolated EC oxidation yielded aldehyde and

CO2. DFT calculations suggest that at high temperature or

cathode potential, the high activation energy reaction paths

will be activated that will yield oligo(ethylene carbonate),

which was observed experimentally.2 Our calculations also

suggest a path for formation of the lithium alkyl carbonate

products on the anode part of SEI by reduction of the

intermediate oxidation products such as M6.
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ABSTRACT: Understanding the properties of the solid elec-
trolyte interphase (SEI) of lithium batteries is important for
minimizing interfacial resistance and improving battery safety
and cycling. Ion transport has been investigated in the dilithium
ethylene dicarbonate (Li2EDC) component of the SEI by
impedance spectroscopy and molecular dynamics (MD) simu-
lations employing a revised many-body polarizable APPLE&P force
field. The developed force field accurately described the
binding energies in LiCH3CO3, its dimer, and Li2EDC
calculated at the G4MP2 and MP2 levels. M05-2X and LC-
ωPBE functionals predicted too high binding energy in lithium
alkyl carbonates compared to the G4MP2 results, while the
MP2 and M06-L predictions agreed well with the G4MP2 data. The conductivity of Li2EDC at room temperature was found to
be 10−9 S/cm from impedance measurements and extrapolation of MD simulation results. A near Arrhenius temperature
dependence of Li2EDC’s conductivity was found in the MD simulations with an activation energy ranging from 64 to 84 kJ/mol.
At room temperature, the lithium transport was subdiffusive on time scales shorter than ∼10−2 s in MD simulations
corresponding to the onset of the plateau of resistivity vs frequency occurring at frequencies lower than 102 Hz. The influence of
Li2EDC ordering on the ion transport was investigated by contrasting supercooled amorphous melts and ordered material. At
393 K Li+ transport was heterogeneous, showing chainlike and looplike Li+ correlated displacements. The non-Gaussianity of Li+

transport was examined. The influence of polarization on the structure of the lithium coordination shell and ion transport has
been investigated in the molten phase of Li2EDC and contrasted with the previous results obtained for room-temperature ionic
liquids (RTILs). Nonpolarizable Li2EDC exhibited orders of magnitude slower dynamics below 600 K and a higher activation
energy for the Li+ diffusion coefficient. Initial simulations of Li2EDC dissolved in an EC:DMC(3:7)/LiPF6 liquid electrolyte were
performed at 450 K and showed a strong aggregation of Li2EDC consistent with its phase separation from the electrolyte. The
plasticizing effects of carbonate electrolyte on Li2EDC dynamics were examined.

I. INTRODUCTION

During the first cycle of lithium battery operation, common
carbonate-based electrolytes undergo reduction on lithium battery
anodes such as graphite, lithium, or silicon (Si) anodes, leading to
formation of the solid electrolyte interphase (SEI) from the
reduction compounds after their precipitation on the anode
surface. The ability of electrolytes in lithium ion batteries to
form a stable electronically insulating but ionically conducting
SEI on the anode surface is paramount for achieving practical
cycle life, high power density, and improved safety.1−3 It is
generally accepted that electrolytes containing ethylene carbonate
(EC) solvent form a cohesive SEI that usually contains dilithium
ethylene dicarbonate Li2EDC (CH2OCO2

−/Li+)2, while reducing
linear carbonates leads to the formation of lithium alkyl carbonates,
as reported from Fourier transform infrared spectroscopy,4,5 gas
chromatography,6 and nuclear magnetic resonance (NMR)7

studies. LiF and Li2CO3 were also frequently detected in the
SEI, especially if traces of water were present.1,4,5,8 Li2EDC was

reported to be moisture sensitive.9 Its melting point could not
be determined because it showed an onset of decomposition at
around 120 °C, while most of the weight loss occurs at tem-
perature higher than 200 °C before melting was observed.9

Battery impedance is typically the sum of the bulk electrolyte
resistance (Rbulk), resistance of the SEI (RSEI), and a charge transfer
resistance (Rct) that is associated with the Li+ desolvation from the
electrolyte or SEI and intercalation into the electrode and electrode
resistance.10 The electrolyte resistance is usually associated with the
high frequency of the impedance spectrum; Rct is associated
with the lowest frequency of the impedance spectrum; while
RSEI is attributed to the intermediate frequency processes. Analysis
of the temperature dependence of the impedance spectra indicated
the following order to the activation energies associated with these
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resistance contributionsΔE(Rct) > ΔE(RSEI) > ΔE(Rbulk)
with the charge transfer resistance dominating at low tempera-
tures and limiting cell power capabilities.11 Interfacial resistance
at the anode side with the thick SEI and a cathode with a much
thinner passivation layer were also reported to have different
activation energies.10,12 For example, the interfacial impedance
at the graphite anode was found10,12 to have an activation energy
of ΔE = 64 kJ/mol, which is noticeably higher than the
activation energy for the LiNi0.80Co0.15Al0.05O2 cathode side
(ΔE = 50 kJ/mol). These results suggest that the charge-
transfer process and diffusion through the SEI formed on the
anode might influence low-temperature battery power density
to a larger extent than the cathode passivation layer. The activa-
tion energy for the interfacial impedance was also dependent on
the electrolyte composition, which also influences SEI composi-
tion, structure, and activation energy for the Li+ desolvation part to
the interfacial impedance.7,13−17

While ion transport in bulk liquid and ionic liquid electro-
lytes doped with lithium salts has gotten significant attention
from molecular dynamics (MD) simulations,18−26 ab initio simula-
tions,27,28 and quantum chemistry,21,23,29−36 studies of the ion
transport in SEI compounds are rare. Wang et al.37 have studied
interactions of the lithium alkyl dicarbonate (Li2EDC) clusters
in the gas phase and identified bridging of carbonate groups
through intermolecular O···Li···O interactions. Tasaki38,39

studied interactions of the supercooled Li2EDC with graphite,
focusing on the difference between Li2EDC and dilithium 1,2-
propylene glycol dicarbonate cohesive binding energy to graphite;
however, short simulation times did not allow the complete
relaxation of Li2EDC at low simulated temperatures. Tasaki et
al.39 also investigated the solubility of lithium carbonates and
alkyl carbonate SEI components in electrolytes in MD and
experimentally and the Li+ diffusion in them at room tempera-
ture.39 Iddir et al.40 used density functional theory (DFT) to
investigate the Li2CO3 modulus and the migration barriers for
Li+ diffusion between the planes defined by Li2CO3 with units
along the open channels [010] having small migration barriers
of 0.28 eV, while a higher migration barrier of 0.60 eV was
found for the diffusion across the planes. Shi et al.41 discussed
the knock-off mechanism of Li+ diffusion in crystalline Li2CO3
found in DFT calculations at a reported range of activation
energies for Li+ diffusion from 0.67 to 1.07 eV.
In our previous study,42 we reported transport in lithium

methyl carbonate and Li2EDC in a molten supercooled state.
The Li+ diffusion coefficient from our simulations42 was found
to be in stark contrast with a dramatically faster ion transport in
Li2EDC predicted by Tasaki et al.39 at room temperature.
Specifically, the Li+ diffusion in Li2EDC of 8 × 10−12 m2/s
predicted by Tasaki et al.39 is approximately four and a half
orders of magnitude higher than D(Li+) = 2 × 10−17 m2/s
reported by Borodin et al.42 This discrepancy suggests a need
for experimental measurements to validate our previous Li+

transport predictions and establish the Li+ diffusion and con-
ductivity of Li2EDC. Such experimental measurements are
reported in this manuscript together with the development of
the revised force field for Li2EDC and MD simulations. We also
found that when the previous force field42 for Li2EDC was
combined with the APPLE&P force field in simulations of
Li2EDC dissolved in EC:DMC/LiPF6 the simulated system
crashed due to a close approach involving the ethereal oxygen
of Li2EDC indicating a need to revise the previous Li2EDC
force field to enable investigation of the Li2EDC|electrolyte
interface and mixtures of SEI compounds in electrolytes.

In this manuscript, the conductivity of the Li2EDC SEI com-
ponent1,43 is investigated by impedance spectroscopy at room
temperature as reported in Section II. Development of the
revised polarizable force field for MD simulations of lithium
alkyl carbonates is reported in Section III. MD simulation
methodology is given in Section IV, while bulk properties of
Li2EDC are given as a function of temperature and compared
with impedance spectroscopy data in Section V. Two states of
Li2EDC were simulated: a molten (or disordered) state and a
crystal-like ordered Li2EDC. Comparison between these
simulations will allow examination of the influence of ordering
on conductivity of Li2EDC. The influence of polarization on the
structural and transport properties of Li2EDC is reported in
Section VI and compared with the results for room-temperature
ionic liquids (RTILs). Finally, initial results for Li2EDC
aggregation in EC:DMC/LiPF6 electrolytes are reported in
Section VII.

II. EXPERIMENTAL SECTION
The impedance characteristics of SEI-related pure Li compounds,
specifically Li oxalate and Li2EDC, were measured using stainless
steel blocking electrodes in a Swageloc-type cell in a glovebox.
The LEC and Li2EDC were synthesized at the U.S. Army
Research Laboratory (ARL) as described previously.9 The samples
were thin (0.02−0.1 mm) disks made from compacted (1 tonne)
crystals/powders. Qualitatively, the characteristics of all three
compounds were very similar and characteristic of that for pure
Li ion conductors. As an example, the Nyquist plot for Li oxalate
in Figure 1 consists of a single semicircle with a characteristic spur

at low frequency, which points to blocking of Li ions at the
stainless steel electrodes. The compound with the highest con-
ductivity was Li2EDC. The Bode plot for resistivity and phase
angle are shown for LEDC in Figure 2. The Bode plots for
lithium oxalate and LEC were the same as for LEDC, differing
only in the magnitude of the conductivity.
The dispersion of conductivity with frequency in the high-

frequency range (e.g., above 100 Hz) is indicative of dielectric
relaxation as described by the Cole−Cole relaxation model.
The low-frequency dispersion is characteristic of compounds

Figure 1. Nyquist plot of complex impedance of Li oxalate at ambient
temperature.
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that become oriented in the electric field of the electrode and
accumulate ions at the electrode interface, i.e., the behavior of
a blocking electrode with a solid electrolyte. The impedance
behavior of Li2EDC and related compounds is qualitatively
similar to that of Li ion conducting glasses like Li2O−V2O5−
P2O5.

44 The electrical response of Li2EDC is therefore very
similar to that of a solid electrolyte, as befits a compound that
functions as a “solid electrolyte interface” between a metallic
electrode and a liquid electrolyte. However, the absolute value
of the conductivity in Li2EDC is a few orders of magnitude
lower than in Li ion conducting solid electrolytes. Nonetheless,
if the SEI layer thickness is of the order of magnitude suggested
by many studies, e.g., 10−100 nm, the conductivities are high
enough to transport Li ions at a high rate (1 mA/cm2) with
only a small potential drop (10−100 mV) at ambient tem-
perature. The temperature dependence of the conductivity
was measured for Li2EDC between −20 and 30 °C, yielding an
apparent activation energy of 0.5 ± 0.1 eV.

III. QUANTUM CHEMISTRY CALCULATIONS AND
FORCE FIELD DEVELOPMENT

Quantum chemistry calculations were performed for the pur-
pose of APPLE&P45 force field parametrization for lithium alkyl
carbonates. We began by investigating the dependence of the
binding energy between a Li+ cation and a methyl carbonate
anion (MeCO3

−) on the level of theory at two geometries
shown in Figure 3. The binding energy was calculated relative

to the isolated Li+ and MeCO3
−. The results of this investi-

gation are given in Table 1. Stronger binding is observed for
geometry (a) where Li+ has a bidentate binding to carbonate
oxygens. The Li+/MeCO3

− binding energy from the G4MP2
calculations was very similar to the MP2/aug-cc-pvTz and
MP2/aug-cc-pvDz results, while calculations performed at
MP2/cc-pvTz yielded a significantly higher binding energy,
indicating that omission of diffuse functions in the MeCO3

−

anion leads to inaccurate binding energies. The M05-2X density
functional was found to predict too strong binding between Li+

and MeCO3
− in accord with previous studies of the Li+ binding

to carbonates24,25 and acetonitrile (AN).46 However, in the
Li+/ANn complexes, little difference was observed for the binding
energy calculated employing the cc-pvTz and aug-cc-pvTz
basis sets in contrast to the significant difference observed
here for Li2MeCO3. Total binding energy was also calculated
for (Li+/MeCO3

−)2 as shown in Figure 4. A comparison of
(Li+/MeCO3

−)2 binding energies is given in Table 1. It indicates
that binding energies from the MP2/aug-cc-pvTz and MP2/
aug-cc-pvDz level calculations agree well with the G4MP2
energies, while M05-2X and B3LYP DFT methods significantly
overestimate the Li+ binding energy and are not reliable for
force field parametrization. The M06-L density functional, on the

Figure 2. Bode plots of the resistivity and phase angle (proportional
to the dielectric constant) for Li ethylene dicarbonate (Li2EDC) at
ambient temperature.

Figure 3. Li+/MeCO3
− optimized geometries (a,b) from MP2/aug-cc-

pvTz and MM using the APPLE&P force field. Selected distances from
MM optimization and MP2/aug-cc-pvTz (in parentheses) are shown.

Table 1. Binding Energy of Li+/MeCO3
− from QC

Calculations and MM Using a Developed Force Field (FF)

level of theory Geom.-a Geom.-b

Li+/MeCO3
− (Li···O2C−) (Li···O−)

G4MP2 −163.0 −157.4
MP2/aug-cc-pvTz −164.2 −158.4
MP2(fc)/aug-cc-pvTz
//MP2/cc-pvTz −164.2 −158.4
MP2(fc)/aug-cc-pvDz −162.8 −157.4
MP2(fc)/cc-pvTz −171.6 −165.9
M05-2X/aug-cc-pvTz −169.7 −162.7
M05-2X/aug-cc-pvDz −168.5 −161.5
M05-2X/cc-pvTz −173.8 −165.9
M06-L/aug-cc-pvTz −164.3 −159.0
M06-L/aug-cc-pvDz −163.6 −158.1
FF,f1e36 −162.4 −154.5
(Li+/MeCO3

−)2 Geom.-a Geom.-b Geom.-c

G4MP2 −372.3
MP2/aug-cc-pvTz −374.5
MP2/aug-cc-pvDza −373.5 −372.3 −368.8
M05-2X/aug-cc-pvDz −385.0 −384.8
B3LYP/aug-cc-pvDz −382.7
M06-L/aug-cc-pvTz −374.2 −374.3
M06-L/aug-cc-pvDz −372.3 −372.9 −368.5
FF,f1e36 −374.4 −373.6 −365.8

The Journal of Physical Chemistry C Article
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other hand, has much better agreement with the G4MP2 and
MP2 results than the M05-2X and B3LYP functionals. Recently,
Bryantsev47 also reported good accuracy in predicting Li+−
solvent binding energies using the M06-L functional.
Next, the force field parameters were fit for LiMeCO3 and

Li2EDC using a many-body polarizable APPLE&P force
field45 functional form that was previously applied for ionic
liquids45,48,49 and liquid electrolytes.25 Here we briefly outline
the main features of the force field. The nonbonded energy
UNB(r) consists of the sum of the two-body repulsion and
dispersion energy terms URD(r), the energy due to interactions
of fixed charges Ucoul(r), and the polarization energy Upol(r)
arising from the interaction between the induced dipoles with
fixed charges and other induced dipoles
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∑ ∑
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= + +

= − − +
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where μ⃗i = αiE⃗i
tot is an induced dipole at a force center i; αi is

the isotropic atomic polarizability; E⃗i
tot is the total electrostatic

field at the atomic site i due to permanent charges qj and
induced dipoles μ⃗j; ε0 is the dielectric permittivity of vacuum;
E⃗i
0 is the electric field due to fixed charges only; Aαβ and Bαβ are

the repulsion parameters; and Cαβ is the dispersion parameter
for interaction between atoms i and j with atom types α and β.
The term D(12/Bαβrij)

12, with D = 5 × 10−5 kcal/mol for all

pair interactions, is essentially zero at typical nonbonded atomic
separations but becomes the dominant term at rij < 1 Å,
ensuring that exp-6 potential is repulsive at distances much
smaller than the size of an atom. Intramolecular nonbonded
interactions are included for atoms separated by three or more
covalent bonds. We used Thole screening50 (aT = 0.2) that
smears the induced dipoles to prevent the so-called “polar-
ization catastrophe” from occurring. The interaction between
an induced dipole and a partial charge separated by three bonds
was scaled by 0.8. Finally, for heteroatom interactions, the
modified Waldman−Hagler combining rules50 were used. The
exp-6 force of the repulsion−dispersion parameters was used
to represent nonbonded interactions, while atomic charges
centered on atoms and off-atom positions in conjunction with
the atom-centered isotropic dipole polarizability represented
Coulomb and polarization interactions.
The repulsion−dispersion parameters for all interactions

including Li+−X (X = O,C,H) were taken from previous
works.25,45 Bond increments from an oligoether force field45

were used for the O−CH2 and O−CH3 groups, while other
bond increments were fit to the electrostatic potential of
MeCO3

−, EDC2−, and LiEDC− calculated at MP2/aug-cc-pvTz.
The polarization of C and H in the −CH2− and −CH3 groups
from the oligoether force field was used, while the polarizability
of the other atoms was fit to the molecular polarizability
calculated at the MP2/cc-pvTz level and multiple paths probing
interactions with the test charge of +0.5e, as shown in Figure 5.

Developed force field parameters are given in the Supporting
Information.
The developed force field predicted Li+ binding energy in

Li+/MeCO3
− only 0.6 kcal/mol higher than the G4MP2 level

for the most stable geometry (a) and 3 kcal/mol lower binding
energy for the less stable geometry (b), as shown in Table 1.
The Li+···O distances in the Li+/MeCO3

− complexes from MM
using a developed force field were in good agreement with the
MP2/aug-cc-pvTz results, as shown in Figure 3. Away from the
most stable Li+ position, the force field also predicted a Li+

binding energy in good agreement with the MP2/aug-cc-pvTz

Figure 4. (Li+/MeCO3
−)2-optimized geometries (a−c) from MM using

the APPLE&P force field. Selected distances from MM and MP2/aug-cc-
pvDz optimization are shown, with the MP2/aug-cc-pvDz results given in
parentheses. The distances from MP2/aug-cc-pvTz optimization differed
from the MP2/aug-cc-pvDz distances by less than 0.02 Å for complex (a)
and are not shown.

Figure 5. Binding energy of MeCO3
− with Li+ and a test charge of

Q = +0.5e from the MP2/aug-cc-pvTz calculations and FF along the
path shown in (a,b).
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results, as shown in Figure 5 for the Li+/MeCO3
− cluster. The

total binding energy of the LiMeCO3 dimer was accurately
predicted by the developed force field for the geometries shown
in Figure 4a,b, as seen in Table 1. The accuracy of predicting
the binding energy by the force field is similar to the accuracy of
quantum chemistry calculations for these geometries. For the
higher-energy, and therefore less important, cluster geometry
shown in Figure 4c, the developed force field predicted a binding
energy that was ∼3 kcal/mol lower than the QC estimates. The
previous force field,42 however, predicted a binding energy of
Li+/MeCO3

− equal to −170.7 kcal/mol for the most stable
cluster, which is 8.3 kcal/mol higher than the revised force field
developed in this work. The total binding energy for a (Li+/
MeCO3

−)2 cluster of −374.4 kcal/mol from the developed
force field is also significantly lower than the binding energy of
this cluster from the previous force field (−382.2 kcal/mol),
indicating a significant difference between previous42 and recent
versions. The ability of the force field to accurately predict
binding energy in Li+/MeCO3

− clusters indicates that the
cation−anion binding is essentially ionic, as expected. This view
is also consistent with the negligible occupancy of the valence
2S Li orbital compared to the 1S core orbital observed in the
(Li+/MeCO3

−)2 cluster. The ability of the developed force field
to predict the conformational energies of Li2EDC is shown in
the Supporting Information. The g−g+g− Li2EDC conformer
was found to be more stable than the ttt conformer by 31 kcal/mol
in MM calculations using a developed force field and by
28.5 kcal/mol from the MP2/aug-cc-pvTz//MP2/cc-pvTz
calculations.

IV. SIMULATION METHODOLOGY
A MD simulation package Lucretius that includes many-body
polarization was used for all the MD simulations. The Ewald
method was used for calculating charge−charge and charge-
induced dipole interactions with k = 83 vectors used. The Thole
screening parameter of 0.2, as described in the force field
section, was used. The interaction between an induced dipole
and a partial charge separated by three bonds was scaled by
0.8, providing an improved description of the electrostatic
potential around the molecules. Multiple time step integration
was used with an inner time step of 0.5 fs (bonded interactions), a
central time step of 1.5 fs for all nonbonded interactions within
a truncation of 7.0 Å, and an outer time step of 3.0 fs for all
nonbonded interactions between 7.0 Å and the nonbonded
truncation distance of 12 Å, as well as for the reciprocal part of
Ewald. A Nose−Hoover thermostat and a barostat were used to
control the temperature and pressure with the associated freq-
uencies of 10−2 and 0.1 × 10−4 fs.
The initial configuration of Li2EDC was generated by

replicating a Li2EDC complex in a ttt EDC2− conformation
along the x, y, and z directions to generate an orthorhombic
box in which EDC molecules in each layer were bridged by
two Li+. Thus, the simulation box contained 512 Li+ and 256
EDC2−. A 20 ns run was performed at 393 K using NPT
conditions, where P is the stress tensor. At that point, simula-
tions at 450 and 500 K were initiated using an orthorhombic
box, and the 393 K runs were continued. Simulation run
lengths are given in Table 2. Well-ordered layers of Li+ were
observed in these simulations, as shown in Figure 6. The layered
structure of Li2EDC is consistent with XRD data.9 We refer to
these simulations as simulations of the ordered (or crystal-like)
Li2EDC. The crystal was orthorhombic in agreement with experi-
ments,9 but no crystal structure was available from experiments to

compare with the simulation results.9 The simulation box shape
was constrained to be orthorhombic. The average shear stress
was ∼300 atm at 450 and 393 K, indicating that simulated
crystalline Li2EDC is expected to be slightly nonorthorhombic.
To investigate the influence of Li+ order−disorder on ion dif-

fusion, a molten (disordered) Li2EDC configuration was generated
from the ordered sample by melting (disordering) Li2EDC at 900 K
during a 4 ns NPT run following a 20 ns equilibration at 600 K
to obtain a starting configuration for 700, 600, and 500 K runs.
At 600 K, the residence time of Li with the carbonyl group is
1.3 ns, thus more than 15 exchanges occurred between the Li+

and carbonyl group, indicating that the system underwent a
significant relaxation toward equilibrium. The length of the
equilibration and production runs is given in Table 2, while
details of the protocol used to create and equilibrate the three
molten Li2EDC systems are summarized in the Supporting
Information. MD simulations of the molten Li2EDC were also
performed with the polarization turned off, denoted as the two-
body (TB) nonbonded potential, to examine the influence of
polarization on the Li2EDC structure and ion transport. The
initial configuration at 700 K for these simulations was taken
from the final configuration of the simulation run, employing
a many-body polarizable APPLE&P force field at the same
temperature.
MD simulations of Li2EDC in EC:DMC(3:7)/LiPF6, solvent/

salt = 10, were performed to obtain initial information on the time
scale of the Li2EDC percolating network formation in electrolyte.
The simulation cell contained 192 EC, 448 DMC, 64 LiPF6, and
128 Li2EDC molecules. These simulations were performed at
450 K. Higher temperature was chosen to observe aggregation
on a time scale of 30 ns. The Li2EDC in EC:DMC(3:7)/LiPF6
was pre-equilibrated at 500 K with the increased repulsion

Table 2. Density of Simulated Li2EDC Melts and Crystals
and Simulation Run Lengths

Li2EDC melt (v1)

temp (K) 700 600 500 450
length of equilibration (ns) 14 35 40 160
length of the production run (ns) 15 57.6 144 140
MD, density (kg/m3) 1517 1567 1612 1610

Li2EDC melt (v2)

temp (K) 600 500 450 393
length of equilibration (ns) 18 50 150 95
length of the production run (ns) 21 142.4 180 127
MD, density (kg/m3) 1568 1610 1622 1631

Li2EDC melt (v3)

temp (K) 500 450 393
length of equilibration (ns) 30 150 170
length of the production run (ns) 56 300 300
MD, density (kg/m3) 1613 1621 1636

Li2EDC melt

(polarization set to zero)
temp (K) 700 600
length of equilibration (ns) 12 25
length of the production run (ns) 25 60
MD, density (kg/m3) 1544 1591

Li2EDC ordered

temp (K) 500 450 393
length of equilibration (ns) 80 160 150
length of the production run (ns) 280 341 420
MD, density (kg/m3) 1626 1634 1645
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interaction between the carbonate groups of EDC2− to reduce
aggregation.

V. SIMULATION RESULTS FOR BULK LI2EDC
Structural Properties of Li2EDC. We begin analysis of the

Li2EDC structure by examining radial distribution functions
(RDFs) for ordered and molten Li2EDC, as shown in Figure 7.

The Li−Oc first peak is around 2 Å, where Oc denotes oxygen
from O*C. The Li−Oe (ethereal oxygen) is shifted to
slightly larger distances of 2.1 Å compared to the Li−Oc peak.
The Li−Li first peak is located around 3 Å. We observe a strong
preference for Li+ to coordinate carbonate oxygen atoms as
opposed to ether oxygen atoms, with coordination numbers of
3.6 carbonyl oxygen and 0.65 ether oxygen atoms within 2.4 Å
of a Li+ cation. These coordination numbers are similar to
previous Li2EDC simulations.42 The choice of a 2.4 Å cutoff for
the Li−O coordination shell is dictated by the distance where
the Li−O RDFs decay to 1 after the first peak, and thus
oxygens closer than 2.4 Å are considered to be strongly
coordinating to a Li+. The extended Li+ coordination shell of
4.3 Å, defined by the minimum after the first peak of the Li−Li
RDF, indicated that the Li+ cation is surrounded by four other
Li+ in this extended coordination shell. In a molten state, we
observed a slightly enhanced probability for a Li+ to coordinate
the ether oxygen compared to the ordered state because close
packing of the EDC2− anions in the ordered state is expected to
impede access of Li+ to ether groups of EDC2−. The following
picture emerges: a network of Li+ bridges together layers or
aggregates of EDC2− anions where each Li+ coordinates ∼4
oxygens of EDC2− that come predominantly from the different
EDC2− chains. The Li cations are spaced at ∼3 Å from each
other with the preference for each Li+ to be surrounded by four
other Li+.
Transport Properties. Ion transport in Li2EDC was

examined by calculating ion self-diffusion coefficients for ordered
and molten material, ionic conductivity, and Li+ residence times
near anions. The self-diffusion coefficient Di for species i was

calculated using the Einstein relation at temperatures when a
diffusive regime has been reached in NVT simulations

= ⟨ ⟩
→∞

D
t

nt
lim

MSD( )
2t

i (2)

where MSD(t) is mean-square displacement of a molecule
(of type i) center-of-mass during time t, and ⟨ ⟩ denotes an
ensemble average. n is the dimensionality of the space: n = 3 for
3-D diffusion in molten samples, n = 2 for the Li+ diffusion
within Li+ layers in the ordered sample (x−y plane), and n = 1
for Li+ diffusion perpendicular to Li+ layers (z-direction). At the
lowest simulated temperatures when a diffusive regime has not
been reached, we followed our previous work51 and calculated
the diffusion coefficient by superimposing MSD(t) plots at dif-
ferent temperatures for displacements greater than 1 Å2 using
the temperature-dependent time shift factor, a(T), as shown in
Figure 8a. The MSD(t) values below 1 Å2 do not superimpose
due to a smaller Li+ vibrational amplitude at denser cages
observed at lower temperatures that reflect a decrease of the
Debye−Waller factor with decreasing temperature. Assuming
that the same temperature-dependent shift factor that applies in
the subdiffusive regime also applies in the diffusive regime, the
temperature-dependent Li+ self-diffusion coefficients were deter-
mined using eq 3.

=D T D a T( ) (500 K)/ ( ) (3)

where D(500 K) is the ion self-diffusion coefficient at 500 K that
was obtained using eq 1 and a(T) is the temperature-dependent
time-shift factor obtained by superimposing Li+ MSD(t).
Changes of the ion mobility were carefully monitored as MD

simulations progressed to ensure that equilibrium ion diffusion
coefficients were reached during simulations. Figure 8b illustrates
changes of the apparent ion diffusion coefficient obtained from the
consequent blocks of the trajectory. The apparent self-diffusion
coefficient was extracted from the fit to MSD(t) for time greater
than 15 ns for each 40−80 ns block of the trajectory. Figure 8b
indicates that the Li+ self-diffusion coefficient decreases by a factor
of 2 over the first 200 ns at 450 K, indicating that this part of the
trajectory should be excluded from analysis. During the first 200 ns
the Li+ cation moves ∼10 Å2, which is the size of the carbonate
group; thus, at least one Li+ jump should occur on average to
reach equilibrium transport properties. Obtaining the equilib-
rium Li+ diffusion coefficient for temperatures 500 K and above
required a short equilibration time of less than 30 ns. On the
other hand, at lower temperature of 393 K, the extracted Li+

self-diffusion coefficients likely suffer from an additional un-
certainty due to incomplete equilibration.
Diffusion coefficients for Li2EDC in the molten and ordered

states are shown in Figure 9. For the ordered sample, the Li+

diffusion coefficient within the Li+ layers, denoted as D(x,y),
was found to be a factor of 2−3 faster than the average diffusion
in the molten state and at least factor of 4−7 faster than the Li+

Figure 6. Snapshot from the MD simulations of Li2EDC of the ordered and amorphous (molten phase) states at 450 K (Li+ are highlighted as pink
balls). A representative cluster from bulk Li2EDC (ordered) with distances less than 2.4 Å connected by dashed lines is also shown (c).

Figure 7. Radial distribution function (a) and coordination number
(b) for Li2EDC in the molten and ordered states at 450 K. Oc
(carbonyl oxygen), Oe (ether oxygen). Arrows indicate the size of the
first coordination shell: 2.4 Å for Li−O and 4.3 Å for Li−Li.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp4000494 | J. Phys. Chem. C 2013, 117, 7433−74447438



   
32

diffusion coefficient in the direction perpendicular to the Li+

layers at 450 K. As temperature decreases, the Li+ diffusion
coefficient between Li+ layers in the ordered sample decreases
faster than the diffusion coefficient along the layers, indicating
that at low temperature the Li+ diffusion across the layers will
be negligibly small compared to the diffusion within the Li+

layers. The Li+ diffusion in Li2EDC of 8 × 10−12 m2/s predicted
from Tasaki et al.39 at room temperature is significantly higher
than the diffusion coefficient ∼10−16 m2/s extrapolated to
333 K as shown in Figure 9. It is likely that the reason behind
the too high diffusion coefficient reported by Tasaki at et.39 at
room temperature is that he fit the diffusion coefficient to
MSD(t) in the subdiffusive regime. Application of the time−
temperature superposition with the activation energies from
Figure 9 to MSD shown in Figure 8 gives an estimate of the
subdiffusive regime extending to 10−2 s at room temperature
as discussed below. Figure 9 also shows the anion diffusion
coefficient, which is significantly slower than the Li+ diffusion
coefficient and has a high higher activation energy. We estimate
that the anion charge transport will have the following con-
tributions to conductivity: 53% at 700 K, 25−32% at 600 K,
7−9% at 500 K, and negligible contribution at temperatures
below 393 K. Thus, below 393 K, Li2EDC essentially acts as a
single ion conductor.
The isotropic ionic conductivity from MD simulations is

given by the Einstein relation

∫

λ λ= =
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where e is the electron charge; V is the volume of the simula-
tion box; kB is Boltzmann’s constant; T is the temperature; t is
time; zi and zj are the charges over ions i and j in electrons;
Ri(t) is the displacement of the ion i during time t; the

summation is performed over all ions; ⟨ ⟩ denotes the ensemble
average; and N is the number of cations plus anions in the
simulation cell. For the anisotropic system, eq 4 will yield an
average over all directions. Here λapp(t) is the apparent time-
dependent conductivity whose long-time limit corresponds to
the equilibrium DC conductivity. Conductivity can be
decomposed into an “ideal” conductivity that would be realized
if ion motion was uncorrelated, denoted λuncorr(t), and the
degree to which ion motion is in fact uncorrelated, or αd. The
degree of uncorrelated ion motion is given as the ratio of the
collective (total) charge transport (λ) to the charge transport due
to self-diffusion only (λuncorr)
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Here ni is the number of atoms of type i = (Li+ or EDC2−);
above that one uses N instead of n, where n = n+ + n−. We
found that αd is above 0.95, indicating that the anion and Li+

motion is essentially uncorrelated, and the conductivity can be
calculated using eq 5 at 600 K and below. The conductivity
of molten and ordered Li2EDC is shown in Figure 10.

Molten Li2EDC shows a slightly lower conductivity than
ordered Li2EDC, which is in agreement with the behavior of
the Li+ self-diffusion coefficients. The Arrhenius fit to
conductivity for molten Li2EDC yields the activation energy
of 84 kJ/mol, while an Arrhenius fit to only ordered Li2EDC
yields a lower activation energy of 64 kJ/mol. However,
ordered Li2EDC was simulated only at three temperatures, and

Figure 9. Diffusion coefficients from MD simulations using a polarizable
APPLE&P force field and from simulations with the polarization turned
off (a two-body (TB) force field).

Figure 10. Conductivity from MD simulations using a polarizable
APPLE&P force field for melts and ordered Li2EDC materials. Results
from the MD simulations using a previous force field FF06 are also
shown for comparison (crosses). ΔE(melt) = 84 kJ/mol, ΔE(ordered) =
64 kJ/mol.

Figure 8. Li+ mean-squared displacements (a) of Li2EDC melt-1 for 700, 600, and 500 K; melt-2 at 450 K; and melt-3 at 393 K and the effective
diffusion coefficient for melt-2 at 450 K (b).
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the conductivity at 393 K was extracted from the subdiffusive
behavior as discussed above and, therefore, bears the largest
error bar. Extrapolation of the conductivity from these two
Arrhenius fits to room temperature yields a conductivity of
2 × 10−10−10−8 S/cm, which is in good agreement with the
experimentally measured value of 10−9 S/cm. MD simulations
using a previous Li2EDC force field42 predict a conductivity
significantly higher than the MD simulations, employing a
revised force field and experimental data.
It is interesting to compare the activation energy for con-

ductivity from simulations with the published values for the
interfacial impedance extracted from impedance fits at a
number of temperatures. Fits to impedance data at the graphite
anode10,12 yielded an activation energy of ΔE = 64 kJ/mol,
which is noticeably higher than the activation energy for the
LiNi0.80Co0.15Al0.05O2 cathode side (ΔE = 50 kJ/mol). The
Li2EDC activation energy of 64−84 kJ/mol extracted from MD
simulations is similar to the experimentally determined activation
energy for the anode side,10,12 as Li2EDC is expected to be
present in the anode SEI. Interestingly, the activation energy
attributed to the Li+ desolvation from EC:DMC/LiPF6 electro-
lytes also had a similar activation energy, ∼60−70 kJ/mol.7

Recent DFT studies of the Li+ transport in crystalline SEI
model compounds such as Li2CO3 also reported an activation
energy for Li+ diffusion in the range of 70 kJ/mol at low voltage
with the activation energy for the proposed knock-off mechanism
in Li2CO3 in the range of 64−103 kJ/mol.41 Thus, we suggest
that both amorphous and crystalline Li+ carbonates and alkyl
dicarbonates have a similar activation energy of around 60−80
kJ/mol, which is in a reasonable agreement with the estimate of
50 ± 10 kJ/mol from the limited experimental data on Li2EDC
impedance. These data indicate that the portion of the impedance
spectra with the activation energy around 20 kJ/mol that was
assigned7 to the Li+ transport in SEI cannot be attributed to
transport in Li2EDC or Li2CO3. It is important to note that the
proposed mechanism for Li2CO3 conduction by Shi et al.41 was
dependent on the charged defects and, therefore, is voltage
dependent. In our simulations no external electric field but a Li+

hop creates a vacancy in the cage surrounded by negatively charged
anions.
Next, we use time−temperature superposition assumption to

estimate the time scale for the Li+ subdiffusive motion. From
Figure 10, we expect ion transport at room temperature to be
∼105 times slower than at 500 K. Thus, the time it takes for a
Li+ to reach diffusive behavior at 500 K should be multiplied by
105 to obtain an estimate of the time scale of subdiffusive
behavior at room temperature. Therefore, it takes 10−2 s to
reach the Li+ diffusive behavior at room temperature using the
definition that Li+ motion is considered to be subdiffusive if it
diffuses less than 10 Å2. Interestingly, impedance spectroscopy
data shown in Figure 2 also indicate that the plateau for the Li+

resistance is observed at frequencies below 100 Hz. This allows
us to clearly associate resistance at frequencies higher than
100 Hz with the subdiffusive behavior expected at times less
than 10−2 s observed in MD simulations.
Residence Time Analysis. To further understand details of

the Li+ diffusion mechanism in the molten and ordered states,
the Li−Li and Li−O residence times were calculated as integrals
of the residence time autocorrelation function (ACF) P(t − t0).
It gives the probability that the complex existing at time t0 will
still exist at time t. It is formally defined as

=
⟨ ⟩
⟨ ⟩−+P t
H t H

H H
( )

( ) (0)

(0) (0)
ij ij

ij ij
Li X
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where Hij(t) is 1 if a Li+−X complex is formed and zero
otherwise and ⟨ ⟩ denotes average over all time origins and
pairs of Li+−X complexes, where X is O(carbonyl) or Li+. The
Li···O(carbonyl) complex is considered formed if the Li−O
distance is less than 2.4 Å, while the Li+···Li+ complex is formed
if the distance between Li+ cations is less than 4.3 Å, which is
consistent with the analysis of RDFs presented earlier. Figure 11

shows temperature dependence of the Li−O and Li−Li residence
times for both molten and ordered Li2EDC. Interestingly, the
Li−Oc and Li−Li residence times are slightly lower for the
ordered state than for molten Li2EDC, indicating a slightly
faster exchange in the ordered state. The residence times
exhibit an Arrhenius temperature dependence reminiscent of
strong glasses with activation energies of 84 kJ/mol for Li−Oc
and 81 kJ/mol for Li−Li residence times, respectively. The
activation energy for the residence time is similar to the activation
energy extracted for diffusion coefficients, thus the product
of residence time and diffusion coefficient shows only minor
variations as shown in the Supporting Information. Figure 11
also indicates that the extrapolated residence time at room
temperature is around 10−2 s, which is consistent with the Li+

cation motion being subdiffusive, at times shorter than 10−2 s
as discussed earlier. It is instructive to compare the Li−O
residence times in Li2EDC with the Li−solvent and Li−anion
residence times found in common electrolytes such as
EC:DMC/LiPF6.

25 The Li−EC and Li−DMC residence times
were found to be in the range of 0.2−0.7 ns, while the Li−PF6
residence time was in the range 1.6−3 ns at room temperature.25

Thus, the characteristic Li+ hopping time is approximately 7 orders
of magnitude slower in Li2EDC than in liquid electrolytes.

Non-Gaussianity of Lithium Motion. The distribution of
relaxation processes occurring with different rates is often related
to the non-Gaussian effects in ionic liquids52,53 and supercooled
model liquids.54 A connection between α2(t) and the degree of
heterogeneity is often observed and discussed. A high non-
Gaussianity parameter is also associated with the deviation from
the diffusive behavior. The non-Gaussian parameter α2(t) is
given by

α = ⟨ ⟩
⟨ ⟩

t
R t
R t

( )
3 ( )
5 ( )2

2

2 2
(8)

where R(t) is the displacement of Li+ over time t and ⟨ ⟩
denotes average over all time origins and Li+. The non-
Gaussian parameter was calculated for Li2EDC and is shown in
Figure 12(a) as a function of mean-squared displacement R2. In all
cases, α2(t) exhibits a maximum at displacements from 1 to 3 Å2,

Figure 11. Residence time (τ) extracted from MD simulations of
Li2EDC.
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indicating that Li+ motion is the most non-Gaussian and
heterogeneous on this length scale, which is related to the Li+

escape from a cage. The maximum of α2 shifts to smaller
distances with decreasing temperature as the material density
increases and the cage surrounding Li+ becomes tighter. The
absolute value of the α2 peak dramatically increases with
decreasing temperature, which is associated with the Li+ motion
becoming more heterogeneous and non-Gaussian as the tem-
perature decreases. A comparison of α2 for Li2EDC with
observations in ionic liquids indicates that α2(t) in Li2EDC is
significantly higher than values reported for RTILs. For example,
α2 was found to be 0.25−0.35 for [C3mim][Ntf2] RTIL at room
temperature and decreased by a factor of 2.5 upon a temperature
increase from 298 to 460 K,52,53 suggesting that Li+ motion in
Li2EDC is significantly more heterogeneous than observed in
RTILs and that heterogeneity increases more significantly in
Li2EDC than in RTILs with decreasing temperature. The α2
behavior is consistent with the picture of Li+ hops occurring
quite randomly and uniformly at high temperature, but at low
temperature Li+ hops become heterogeneous, leading to the
formation of slow and fast domains or/and increasingly longer
waiting times between hops, which lead to a longer homo-
genization time and space scale.
The distribution of Li+ displacements provides a more

detailed picture of the Li+ motion. It was calculated for time t0,
at which ⟨MSD(t0)⟩ = 2 Å2, which is in the region of the
maximum of non-Gaussianity α2. For the molten Li2EDC, t0 =
180 ns at 393 K, while t0 = 48 ps at 600 K. Figure 12b shows
that the distribution of Li+ displacements is much wider at
393 K than at 600 K with an increased population of the slow
and fast moving Li+ at 393 K. This is consistent with Li+

dynamics being increasingly heterogeneous with decreasing
temperature. At 393 K, two additional peaks were observed in
the distribution of Li+ displacements as indicated by arrows in
the inset to Figure 12b. These peaks are attributed to the Li+

hops to the next cage and the cage beyond it. To provide further
insight into Li+ transport mechanism and spatial distribution of fast
moving Li+, the displacement of the top 10% of the fastest moving
Li+ over 50 ns was visualized in Figure 13. Two colors show the
initial and final position of Li+ during 50 ns simulation segments.
Arrows were drawn to demonstrate displacements of each Li+.
Two types of Li+ motion were evident: (a) a chainlike motion in
which the final position of one Li+ is close to the initial position of
the other Li+ and (b) a looplike motion when two or more Li+

exchanged their positions.

VI. INFLUENCE OF MANY-BODY POLARIZATION OF
LI2EDC MELT STRUCTURE AND TRANSPORT

Many-body polarization was found to be important for accurate
description of ion transport in RTILs, where the removal of

polarization or representation of the many-body polarizable
forces using two-body forces resulted in slower ion dynamics
and a higher activation energy for ion transport.45,55−59 The
influence of the many-body polarization was investigated in
Li2EDC molten salts here and compared to previous observa-
tions for RTILs. Polarization significantly influences the Li+/
MeCO3

− binding energy as removal of polarization reduces the
Li+/MeCO3

− binding energy from −162.4 to −148.8 kcal/mol.
In MD simulations with polarization turned off, the structure of
the Li+ coordination shell changed little, as shown in Figure 14,

indicating that polarization has little influence on the Li+ co-
ordination shell, which is consistent with the relatively minor
influence of polarization observed in RTILs.45,55−59 This is
likely due to the cancellation of the polarization contribution in
the most stable configurations of the melt and crystal.
Unlike the minor influence of polarization on structural properties,

turning off polarization resulted in a significant slowing down
of ion transport, as shown in Figure 9. The Li+ diffusion

Figure 12. Non-Gaussian parameter for molten Li2EDC (a) and probability density for distribution of Li+ squared displacements for time, at which
⟨MSD(t0)⟩ = 2 Å2 (b).

Figure 13. Displacements of the Li+ over 50 ns for ordered Li2EDC at
393 K.

Figure 14. Coordination number for Li2EDC melts at 700 K from the
polarizable force field (APPLE&P) and two-body (TB) equivalent
with polarization turned off.
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coefficient decreased by 4.5 and 13.6 times at 700 and 600 K,
respectively, upon turning off polarization. The observed slowing
down is significantly larger than the slowing down observed in
RTILs, which is typically a factor of 1.5−3 in the temperature
range of 298−393 K. A more pronounced effect on the dynamics
of Li2EDC is consistent with the observation that slower RTILs
with a higher heat of vaporization60 show a more pronounced
effect of polarization on ion transport.55 We also observed an
increased of the activation energy for the diffusion coefficient with
turning off polarization, which is in accord with observations for
RTILs.55 These results demonstrate the complicated relationship
between the many-body polarizable contribution to the binding
energy and ion transport, specifically, how reduction of the
Li+/MeCO3

− binding energy might counterintuitively lead to a
dramatic slowing down in ion transport.

VII. INITIAL SIMULATIONS OF LI2EDC IN
EC:DMC(3:7)/LIPF6

Initial simulations of Li2EDC in EC:DMC(3:7)/LiPF6 were per-
formed to confirm that the revised version of the Li2EDC will
allow stable simulations of Li2EDC doped in EC:DMC(3:7)/
LiPF6 and do not crash, as was observed when the previous
version42 of the Li2EDC force field was combined with the
APPLE&P force field for EC:DMC(3:7)/LiPF6.

25 We also wish
to investigate the initial stages of Li2EDC aggregation and/or
phase separation in a carbonate electrolyte. Li2EDC was dis-
persed in EC:DMC(3:7)/LiPF6 in the beginning of MD
simulations by applying additional repulsive forces between
anions. The Li2EDC cluster size distribution before and after
the 30 ns simulation at 450 K is shown in Figure 15. At the
beginning of this MD run, a broad distribution of cluster sizes
was observed, while at the end of the 30 ns simulation most
clusters formed a percolating network as reflected by the strong
peak of probability distribution for cluster sizes around 300 Li+

for the simulation box that contained the 320 Li+ total. Localization
of the Li2EDC percolating network at the end of simulations
indicated phase separation, which is consistent with the low
solubility of Li2EDC in carbonate electrolytes.39

We also observed that the Li-Oc(EDC) residence time was
∼9 ns during the last 18 ns of the simulations, which is 2 orders
of magnitude lower than the residence time in the melt,
indicating a significantly faster Li+ exchange between anionic
groups in the EC:DMC(3:7)/LiPF6/Li2EDC solution com-
pared to the Li2EDC melt due to electrolyte plasticizing effects.
Electrolyte plasticizing is dramatic despite the fact that a Li+

cation is surrounded on average by 2.8 Oc from EDC2− with
only a small fraction of 0.4 Oc from DMC and 0.17 Oc from
the EC liquid solvent (plasticizer). The Li-Oc(EC) and Li-
Oc(DMC) residence times were ∼0.1 ns, about 2 orders of

magnitude lower than the Li-Oc(EDC) residence time, which is
consistent with previous observations for EC:DMC(3:7)/LiPF6
electrolytes.25

VIII. CONCLUSIONS

The revised quantum chemistry-based force field was derived
for Li2EDC and LiMeCO3 and is consistent with the APPLE&P
force field for electrolytes, ionic liquids, and polymers. Ordered
and disordered Li2EDC was studied in MD simulations as a
function of temperature. The extrapolation of Li2EDC
conductivity to room temperature yielded values in the range
2 × 10−10−10−8 S/cm, which are in good agreement with the
experimentally measured value of 10−9 S/cm. In contrast to this
excellent agreement between MD results and experiments, the
previous force field42 predicted ion transport that was
significantly faster than the revised force field. MD simulations
predicted an activation energy for Li+ diffusion and conductivity
in the range from 64 to 84 kJ/mol, which is similar to the acti-
vation energy for interfacial impedance at the graphite anode of
64 kJ/mol found experimentally10,12 and the activation energy
associated with the ion desolvation step7 of ∼60−70 kJ/mol.
MD simulations also suggest that a 20 kJ/mol activation energy
attributed during analysis of the impedance data to ion tran-
sport in SEI7 is inconsistent with the activation energy for ion
transport in Li2EDC observed in this work. A comparison of
ion transport in ordered and disordered Li2EDC indicated little
influence of ordering on it with Li+ diffusion being only slightly
faster at high temperatures in the ordered material. At room
temperature, the Li+ transport is expected to be subdiffusive on
time scales shorter than ∼10−2 s from analysis of the MD data,
which is in good agreement with the frequency-dependent impedance
spectroscopy data that showed a plateau of resistivity vs freq-
uency occurring at frequencies lower than 102 Hz. Li+ motion
was also significantly more non-Gaussian and heterogeneous in
Li2EDC compared to RTILs with the motion of the fast moving
Li+ being spatially correlated, exhibiting chainlike and looplike
hopping by Li+.
The influence of polarization on the Li2EDC structure and

transport was investigated. Turning off polarization resulted in
a significant slowing down of ion transport and an increase in
the activation energy for ion transport to a much greater extent
than was previously observed for RTILs. Finally, initial simula-
tions of Li2EDC dissolved in EC:DMC(3:7)/LiPF6 indicated a
strong aggregation of Li2EDC that lead to the formation of the
percolating cluster localized in one part of the simulation cell,
which is consistent with a Li2EDC phase separating from the
EC:DMC(3:7)/LiPF6. The Li+ cation exchange between anionic
EDC2− groups was multiple orders of magnitude faster in

Figure 15. Snapshots of EC:DMC(3:7)/LiPF6/Li2EDC at the beginning of the run (a) and the end of the run (b) and Li cluster distribution. In (a)
and (b), the large purple is Li+, and the large pink is C of the OCO2 group from EDC.
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EC:DMC(3:7)/LiPF6/Li2EDC than in the Li2EDC melt due to
the effect of solvent plasticizing Li+ transport in Li2EDC.
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We show that a molecule’s flexibility described by changes to its conformation and orientation during

deformation is vital for the proper representation of dislocation nucleation in molecular crystals. This is

shown for the molecular crystal hexahydro-1,3,5-trinitro-s-triazine (RDX) by comparing direct

atomistic simulations to two alternate forms of a continuum dislocation nucleation model for a crack tip

loaded in pure shear. The atomistic simulations show the emission of partial dislocations. These are

compared to continuum dislocation nucleation models based on generalized stacking fault (GSF)

energy surfaces where the molecules are allowed to be either rigid or flexible. The rigid molecules are

unable to represent the partial dislocations whereas the flexible molecules agree with the direct

atomistic model to within 17% of the stress intensity factor for emission of the first partial dislocation

and to within 1% for the second partial. This agreement first indicates that the molecule flexibility

serves a critical role in the ductile behavior of the molecular crystal and, second, the continuum

dislocation nucleation model represents the correct atomistic behavior, showing two partial dislocations

connected by a stacking fault, when parameterized with GSF energy surfaces that account for the

molecule flexibility.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824711]

Molecular crystals are used in a broad range of technolo-

gies as energetic materials (including the a polymorph of

RDX, the exemplar of the present article), active ingredients

in pharmaceuticals and organic semiconductors in thin film

flexible electronics. However, such applications are often re-

stricted by their tendency to undergo brittle fracture. Plastic

deformation, as opposed to brittle fracture, is generally a

desired mechanical property in their manufacturing and han-

dling. For example, plastic deformation of pharmaceutical

crystals during compaction into tablets greatly enhances their

mechanical strength.1 In some instances, plastic deformation

is regarded as responsible for reducing sensitivity of ener-

getic materials to accidental initiation.2

Plastic deformation occurs through the collective motion

of dislocations in crystalline solids. The theory of disloca-

tions is particularly well developed for simpler metallic crys-

tals such as copper (cf. Hirth and Lothe3 and reference

therein), but remains also applicable to molecular crystals,

albeit with modifications.4–7 As in the case of metallic crys-

tals, the structure of molecular crystals contains a repeating

lattice cell but with several molecules occupying each unit

cell (8 molecules in the case of aRDX, Figure 1(b)).

Molecular crystals commonly exhibit layered structures with

2D networks of strongly bonded molecules.8 The interactions

between layers are considerably weaker and particularly sus-

ceptible to brittle fracture.4,8 So, it is surprising that disloca-

tion activity on those planes has been observed in

nanoindentation experiments of aRDX,9 saccharin,10 and

succinic acid.11 Moreover, our previous work12,13 has shown

the molecule’s flexibility as described by changes to its

conformation and orientation during deformation to dramati-

cally alter the atomistically derived generalized stacking

fault (GSF) surfaces of aRDX. The flexible molecule GSF

surfaces suggested stable partial dislocation structures that

were energetically favorable when compared to crack open-

ing. Thus, these observations could be better understood in

the context of crystal plasticity if it can be shown that (a)

molecule flexibility plays an active role in the ductile

response and (b) the flexible molecule GSF surface correctly

predicts the dislocation structure of partial dislocations

nucleated from a crack tip.

In this Letter, we isolate the role of molecule flexibility

on dislocation nucleation in the molecular crystal aRDX.
This is demonstrated by contrasting atomistic simulations of

dislocation nucleation from a crack tip to a continuum model

parameterized with data for either rigid or flexible mole-

cules. The present focus is on the case of nucleation under

pure mode II loading where the crack plane and slip plane

coincide (cf. Figure 1(c)). Under these conditions, the contin-

uum dislocation nucleation model due to Rice14 adopts a

very simple analytical form amenable to direct comparison

with results of atomistic simulations.

Rice’s dislocation nucleation model is based on solving

the elastic boundary value problem for a traction free crack

tip. In this analysis, the boundary condition on the slip-plane

ahead of the crack tip is provided by an interplanar potential

relating the shear stress to atomic displacement. The inter-

planar potential is represented by means of a GSF energy

surface, a planar potential energy function describing slip of

one crystal half with respect to the other.15 A dislocation is

nucleated when the energy at the crack tip due to an applied

load becomes larger than the energy barrier to slip corre-

sponding to the first maximum on the GSF surface, cus.
Rice’s dislocation nucleation model using atomistically
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b)Current address: Department of Mechanical Engineering, University of
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derived GSF surfaces has been shown to be in general agree-

ment with atomistic simulations for several metallic crystals

under pure mode II and mixed mode loading.16,17 The GSF

energy surface can also capture the effects of molecule flexi-

bility as was shown in our previous work for the molecular

crystal aRDX.12,13 By using the flexible molecule parameter-

ization of the GSF surface, no modifications need to be made

to Rice’s continuum-based model for it to accurately capture

dislocation nucleation in molecular crystals.

We consider dislocation nucleation from a semi-infinite

crack (Figure 1(c)) with a (010) crack face in the bulk crystal

of aRDX. Under plane strain conditions in the [001] direc-

tion, mode II shear loading will cause this crack to emit an

edge dislocation in the (010)[100] slip system. The atomic

configuration of the (010) slip plane is shown in Figure 1(b).

A cross section of the GSF energy surface along the

(010)[100] slip system obtained from our previous results13

is shown in Figure 2 for the rigid and flexible molecule

approximations. The GSF surfaces were determined in our

previous work13 by first rigidly shifting the crystal halves rel-

ative to one another and allowing them to separate, produc-

ing the rigid GSF energy data shown by the blue curve in

Figure 2. Next, the molecules at the interface of the rigid

configurations were allowed to relax through conformation

and orientation changes, producing the flexible GSF energy

data shown by the red curve in Figure 2. The rigid GSF

energy surface produces a single maximum unstable stacking

energy labeled crigid. Alternatively, the presence of molecule

flexibility alters the flexible GSF surface by lowering the

unstable stacking energy, cus, and creating a local energy

minimum, csf . The presence of the local energy minimum,

csf , indicates the likely dissociation of a full dislocation into

two partial dislocations separated by a stacking fault. The

stacking fault region has an excess energy over the perfect

crystal equal to csf .
The anisotropic version of Rice’s model18 using ortho-

tropic elastic constants for aRDX19 and applied to the flexi-

ble aRDX GSF data predicts nucleation of the first partial

dislocation when the available energy at the crack tip due to

an externally applied load (KII) becomes larger than the

energy barrier to slip given by cus ¼ 164mJ=m2 in Figure 2.

Using this value, the mode II stress intensity factor for emis-

sion of the first partial dislocation is Kf lex
II ¼ 0:058MPam1=2.

The first partial dislocation shields the crack tip from the

applied Kf lex
II ¼ 0:058MPam1=2 and the stress intensity fac-

tor at the crack tip for nucleation of the second partial is

reduced to zero. After the first partial has been emitted, the

material at the crack tip is in the stacking fault configuration.

This configuration lowers the dislocation nucleation energy

barrier for the second partial to cus � csf , requiring an addi-

tional Kf lex
II ¼ 0:036MPam1=2. Once both partials have

nucleated, which corresponds to a total intensity factor of

Kf lex
II ¼ 0:094MPam1=2, the material at the crack tip is again

that of the perfect crystal. The separation distance between

the two partials in the bulk crystal from anisotropic elastic-

ity3 may be estimated to be rf lexa ¼ 73 Å. In contrast, under a

rigid molecule assumption, crigid ¼ 247mJ=m2 and a single

dislocation nucleates at Krigid
II ¼ 0:072MPam1=2.

Rice’s dislocation nucleation model can now be contrasted

with direct atomistic simulations. We employ the LAMMPS

Molecular Dynamics Simulator20 where the atomic interactions

are modeled using the Smith and Bharadwaj (SB) potential.21

Atomistic studies have shown the SB potential to accurately

describe RDX material properties,19 its polymorphism,19 and

FIG. 1. (a) Labeled RDX molecule (C3H6N6O6). (b) Eight molecules of the aRDX unit cell with lattice dimensions indicated by the gray box. The dashed line

represents the slip plane studied in this work. The molecule centers of mass are also shown with colors matching those used in Figure 3(a). (c) Simulation cell

showing the mode II loading (gray arrows) of the crack tip. The simulation cell is broken up into colored regions where regions 1 (red) and 2 (orange) do not

interact creating the traction free crack face, region 3 (green) is the perfect crystal where the dislocation (shown by red “?”) will be emitted onto the slip plane

(shown by the dashed line) and the atoms in region 4 (blue) are held fixed during the relaxation simulation.

FIG. 2. aRDX GSF energy curve obtained from our previous work (Refs. 12

and 13) for the (010)[100] slip system for fully flexible molecules (red) and

rigid molecules (blue). The unstable stacking fault energies, cus and crigid ,
and stable stacking fault energy, csf , are shown by the large hollow circles.

The filled dots are computed values.
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dislocations.6,7,22 The SB potential was developed by parame-

terizing a DREIDING23 style potential to quantum chemistry

calculations of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

(HMX),21 a nitroamine similar in structure to RDX.

The atomistic model of aRDX, shown in Figure 1(c), is

composed of 60 unit cells (790 Å) in the [100] direction and

36 unit cells (416 Å) in the [010] direction. The [001] direc-

tion is modeled with 3 unit cells (32 Å) and periodic bound-

ary conditions. Plane strain conditions are applied through

periodic boundary conditions and by holding the unit cell

dimension fixed in [001]. A 30 unit cell crack plane is repre-

sented by disallowing dispersion/repulsion and electrostatic

pairwise interactions between atoms directly above and

below the crack plane within a 12 Å range (regions 1 and 2

in Figure 1(c)). Unfortunately, the long range portion of the

Ewald sum used to compute electrostatic interactions cannot

be removed and leads to 7% error when comparing the

energy of the crack face to that of a free surface. This error

was minimized by choosing a large cut-off radius (12 Å) for

the real space portion of the Ewald sum. All molecules in the

simulation cell are then incrementally displaced according to

the plane strain anisotropic elastic crack tip displacement

field for a prescribed Ksim
II value.24 At each Ksim

II load step,

the molecules in the 3 unit cell thick border (region 4) are

held fixed while the remaining atoms in the system (regions

1–3) are allowed to relax by means of molecular dynamics

with viscous damping. For subsequent Ksim
II load increments,

all molecules are again rigidly displaced from their previous

configuration and relaxed. This process is repeated until two

partial dislocations are emitted from the crack tip.

The relative positions of the centers of mass (COM) of

the molecules are used to identify the dislocations. The par-

tial dislocation and stacking fault causes the first planes of

molecules above and below the slip plane to be in disregis-

try. We define the disregistry given by the relative positions

of the COMs in the [100] direction normalized by the [100]

lattice vector of 13.18 Å as ~u. Figure 3(a) depicts the COMs

in the deformed configuration after the first partial has been

emitted for an applied Ksim
II ¼ 0:07MPam1=2. For the perfect

crystal lattice, ~u � 0 across the slip plane, as is the case for

x> 80 Å in Figure 3. In Figure 3(a), the dislocation appears

as a localized disregistry in the lattice across the slip plane

near x � 60 Å marked by the dashed vertical line. This lat-

tice disregistry translates to an increase in ~u as observed for

the region 55 Å< x< 75 Å marked by the solid vertical lines.

The half width of the dislocation core marked by the solid

vertical lines is defined, somewhat arbitrarily, as the region

where 0:125 < ~u < 0:375 [Ref. 25] giving a half width of

20 Å for the first partial dislocation core or �1.5b, where b is

the magnitude of the full Burgers vector. This is a relatively

smaller core than the �2.2b width calculated from an atom-

istically determined GSF energy curve for partial edge dislo-

cations in Aluminum.25 There is a plateau in ~u � 0:5
between the dislocation core and crack tip indicating a stack-

ing fault or antiphase boundary.

It is also helpful to use a quantity to represent the local

dislocation core density which we define by qðxÞ ¼ d~u=dx
and determined by direct numerical differentiation of ~u. It is
shown as the red line in Figure 3(b). The position of the dis-

location is given by the local maximum of q, which coin-

cides with ~u � 0:25 marked by the dashed vertical line.

The structure on the slip plane, as represented by ~u and

q, is shown in Figure 4 for several values of Ksim
II above and

below the critical value for partial emission. At Ksim
II ¼

0:065MPam1=2; ~u > 0:125 near the crack tip indicating the

incipient formation of a partial dislocation. The partial dislo-

cation becomes trapped due to localized conformation and

orientation changes in the molecules at the crack tip. The

flexible GSF energy curve shown in Figure 2 does not

resolve these shear induced changes, and therefore, this fea-

ture cannot be captured by our parameterization of Rice’s

model. However, as previously shown in Figure 3, the first

partial dislocation becomes fully formed and is emitted at

Ksim
II ¼ 0:07MPam1=2. The comparison of Ksim

II with the pre-

viously given continuum result Kf lex
II ¼ 0:058MPam1=2 for

the emission of the first partial dislocation indicate a

FIG. 3. (a) Molecule COM positions near the crack tip for an applied Ksim
II

load factor of 0.07 MPa m1=2. The crack tip is indicated by the black line

ending at (x,y)¼ (0,0). COMs are colored according to the COMs shown in

Figure 1(b). COMs without a black outline near the left edge are initially

part of the crack face in the unloaded crystal, regions 1 and 2 in Figure 1(c).

(b) Plot of COM displacement discontinuity across the slip plane. The blue

line and axis belong to ~u, the [100] displacement discontinuity. The red line

and axis belong to qðxÞ ¼ d~u=dx, the dislocation core density. The half

width of the dislocation core is the region contained within the solid vertical

lines in (a) and (b) and the dashed line indicates the dislocation center.

FIG. 4. Dislocation core structure as a function of Ksim
II . (a) [100] displace-

ment discontinuity ~u across the (010) slip plane. Partial dislocation half

widths have been indicated by filled in data points and their dimensions la-

beled. (b) q ¼ d~u=dx, dislocation core density. The separation distance

between the two emitted partials at Ksim
II ¼ 0:095MPam1=2 is labeled and

shown as the distance between the two peaks of qðxÞ. Line color indicates

increasing mode II load factor as shown by the legend in (a).
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maximum disparity of 17%. This disparity appears in line

with earlier predictions for FCC crystals.16

After the first partial dislocation is nucleated, the crystal

across the slip plane at the crack tip contains a stacking fault.

Continued loading of this configuration from Ksim
II ¼ 0:070

to 0.090 MPa m1/2 causes the first partial dislocation to con-

tinue moving away from the crack26 tip extending the stack-

ing fault region by �10 Å. Then, at Ksim
II ¼ 0:095MPam1=2,

the second partial dislocation is nucleated and the pair moves

away from the crack tip. This value of Ksim
II is within 1%

error of Kf lex
II from Rice’s model. The separation between the

two partials given as the distance between the two peaks of q
is rsima ¼ 75Å, nearly identical to the value determined from

the anisotropic elastic solution.

The purple line in Figure 4(a) for Ksim
II ¼ 0:095

MPam1=2 depicts three distinct plateaus in ~u ¼ 0, 0.5, and 1.

The first plateau is the defect-free lattice. The next plateau at

~u ¼ 0:5 represents the stacking fault between the leading

and trailing partials. The plateau at ~u ¼ 1 indicates the lattice

across the slip plane has been displaced by one full Burgers

vector, recreating the original lattice at the crack tip. The

core half width for the leading partial ð0:125 < ~u < 0:375Þ
is �20 Å and for the trailing partial ð0:625 < ~u < 0:875Þ is
�25 Å. The relative half widths of the core are consistent

with the lattice restoring forces determined from the gradient

of the GSF energy curve.25 The lattice restoring force on the

trailing partial is smaller leading to a wider core.

The implications of these findings may reach beyond

RDX. This inference comes from the similarities in layered

crystal structures of pharmaceutical molecular crystals such

as acetaminophen and caffeine8 as well as organic semicon-

ductor crystals.27 The present results specifically point to

two observations. First, despite the weak interactions

between layers, which would otherwise favor strain accom-

modation through crack opening, the effect of the molecule’s

flexibility appears to play a critical role in the ductile

response. Due to the long-range, intermolecular nature of the

dispersion and electrostatic interactions, it is tempting to

assume the molecules can be represented as rigid assemblies

of particles whose internal interactions do not contribute sub-

stantially to the lattice material properties. However, such an

assumption would lead to no stable stacking fault and the

nucleation of only full dislocations. This improper represen-

tation of steric interactions will also yield a relatively higher

dislocation nucleation threshold and an unnaturally greater

tendency for the material to appear brittle. The effect of mol-

ecule flexibility on ductility will also likely carry over to the

more general case of mixed mode loading where tensile

loads have been shown to ease dislocation nucleation allow-

ing for blunting of the crack tip.17,26

Second, although the mechanisms involved in plastic de-

formation of molecular crystals are found to be far more

complicated than in metals, through a proper calculation of

the GSF energy curve, it is remarkable that Rice’s disloca-

tion nucleation model is still valid for materials in which

molecule flexibility and long-ranged dispersion and electro-

static interactions are present. The test of the rigid molecule

assumption confirms that the absence of molecule flexibility

results in complete disagreement with direct fully atomistic

simulations of dislocation nucleation whereas the considera-

tion of full flexibility in the molecules is in good agreement.

The GSF energy curve was also used to accurately predict

the separation distance between the partial dislocations and

qualitatively match the fully atomistic dislocation structure.

Thus, GSF energy surfaces that account for the flexibility of

molecules in crystals may also be suited for direct use in

other mesoscopic or macroscopic models such as the phase

field approaches to dislocations5 or the direct calculation of

individual dislocation properties via the Peierls-Nabarro

model.6,7,25

In conclusion, we compared direct atomistic simulations

with alternate parameterizations of a dislocation nucleation

model to identify the critical role of molecular flexibility on

the ductile response of molecular crystals. The molecule’s

flexibility as described by changes to its conformation and

orientation were found to be essential to correctly represent

the energy barrier to dislocation nucleation and the resulting

partial dislocation structure.
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A new short-range pairwise numerical potential for silica is presented. The potential is derived from
a single ab initio molecular dynamics (AIMD) simulation of molten silica using the force-matching
method with the forces being represented numerically by piecewise functions (splines). The AIMD
simulation is performed using the Born-Oppenheimer method with the generalized gradient approx-
imation (BLYP) for the XC energy functional. The new effective potential includes a soft-repulsive
shoulder to describe the interactions of oxygen ions at short separations. The new potential, de-
spite being short-ranged and derived from single-phase data, exhibits a good transferability to silica
crystalline polymorphs and amorphous silica. The importance of the O–O soft-repulsive shoulder
interaction on glass densification under cold and shock compressions is assessed from MD simu-
lations of silica glass under room and shock Hugoniot conditions, respectively. Results from these
simulations indicate that the appearance of oxygen complexes (primarily pairs) interacting through
soft-repulsive shoulder potential occurs at 8–10 GPa, and under cold compression conditions be-
comes notable at 40 GPa, essentially coinciding with the transition to a Si sixfold coordination state.
An analysis of changes in system structure in compressed and shocked states reveals that the O ions
interacting through the soft-repulsive shoulder potential in denser states of silica glass may create a
mechanical multi-stability under elevated pressures and thus to contribute to the observed anomalous
densification. [http://dx.doi.org/10.1063/1.3696865]

I. INTRODUCTION

A fundamental understanding of the atomic-level details
of the structural order and phase transformations in silica
glasses at high pressure and temperature is an important
issue in modern condensed-matter physics. One of the
most puzzling anomalous properties of silica glass is its
irreversible densification under pressures above 10–20 GPa
(at room temperature).1–9 In the widely accepted picture,
pressure-induced structural changes in SiO2 glass are at-
tributed to competing transformations of the intermediate-
and near-range topology of the glass bond network. Under
lower pressures (e.g., 10–20 GPa), structural changes in SiO2

glass are thought to be mostly rebonding-driven topological
reconstructions10 at the intermediate range (second and third
coordination shells) rather than a change in a Si–O coordina-
tion number (near-range order). Under higher pressures, the
experimental and simulation studies univocally suggest
the gradual modification of near-range order: the transition
in the Si–O coordination number from fourfold (tetrahedral
SiO4) to sixfold (octahedral SiO6) begins at about 10–20
GPa,4–8, 11 with the sixfold coordinated structure predom-
inantly observed above 40 GPa (Refs. 6 and 7) (although
some controversy still exists on the exact picture of coor-
dination number transition based on results from different
experimental techniques). The anomalous increase in density
between 10 and 40 GPa cannot be explained by estimated
density-dependent elastic properties.6, 7 This suggests that
SiO2 glass does not behave as a single amorphous polymorph,
but its short-ranged and intermediate structure undergoes
irreversible changes in this pressure range. These changes

lead to what could be a low-density amorphous (lda) to
high-density amorphous (hda) first-order phase transition.12

On the other hand, above ∼40 GPa the estimated bulk
modulus follows well the pressure dependence of the density,
indicating that SiO2 glass behaves as a single amorphous
polymorph6, 7 with no obvious structural phase transition. The
anomalous densification is an important factor controlling
the response of silica to shock loading and largely determines
the anomalous shape of the ρ(P) Hugoniot curve above
16 GPa. A comparison of the ambient temperature and
the Hugoniot ρ(P) curves may reveal the effect of tem-
perature on the lda-hda transition as the Hugoniot states
correspond to significantly higher system temperatures.

Analogous to the densification of amorphous ice,12, 13 it
has been suggested that the pressure-induced lda-hda mechan-
ical instability arises from the disappearance of the transition
barrier on the potential energy landscape separating the in-
herent metastable structural states. This picture has gained
some support from the phenomenological modeling of in-
stabilities in glass based on a double-well potential.14 How-
ever, despite numerous experimental and theoretical studies,
the precise nature of the potential energy landscape of SiO2

glass (denoted g-SiO2 hereafter) that controls the pressure ini-
tiated lda-hda transition is not known. The picture in which
the appearance of the hda state(s) in the potential energy sur-
face (PES) of g-SiO2 is explained by purely topological and
rebonding arguments precludes consideration of the role of
changes in interatomic interactions due to pressure effects on
the electronic structure. In fact, the changes in interatomic
interactions within certain structural units of g-SiO2 may be

0021-9606/2012/136(13)/134508/14/$30.00 136, 134508-1
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the source of structure instability leading to a collapse of the
network into the hda state. Indeed, a similar range of pres-
sures at which the transition of the network to fivefold and
then to sixfold coordination state begins and the lda-hda tran-
sition occurs suggests that the appearance of closely packed
structures of oxygen atoms might be a possible microscopic
pathway facilitating the network topology reorganization at
the intermediate range, eventually leading to the development
of mechanical instabilities.

The attempts to relate the appearance of sixfold coordi-
nation defects to bond network instabilities have been made
in the past. However, the proposed models still consider the
sixfold coordination defect as a special topological complex,
the presence of which merely triggers the network reorgani-
zation. These models do not invoke explicitly the effect of
pressure on the microscopic interactions. For instance, within
the original model by Stolper and Ahrens,15 the coordination
defects are spontaneously formed under pressure through a
special displacement mechanism. Meanwhile, because of the
high polarizability of oxygen ions and their ionicity, the ap-
pearance of closely packed oxygen sublattice units could be
indicative of changes in the oxygen-oxygen effective interac-
tion; this is supported by Raman scattering measurements.2, 8

Such changes in the effective interaction may play a dominant
role in the appearance of additional metastable states in the
PES of g-SiO2, as will be discussed below. Moreover, the lda-
hda barrier might be due solely to the pressure-dependent ef-
fective interactions irrespective of reorganization in the bond-
ing topology across the barrier.

The importance of pressure-related changes in the mi-
croscopic interactions on the formation of dense polymorphs
of g-SiO2 can be conclusively studied only using ab initio
electronic structure methods or molecular simulation methods
with accurate empirical potentials. The ab initio electronic
structure calculation approaches are best suited for such stud-
ies as these methods treat all interactions from first princi-
ples. Although the ab initio methods have provided important
insight into properties of g-SiO2,16, 17 they are limited in ad-
dressing whether the modification of microscopic interactions
under pressure is a cause of topological changes or merely a
result of the latter, in particular, due to the limitations of sys-
tem sizes that can be simulated in this method and the com-
plexity in analyzing a multi-dimensional PES in condensed
phases. Thus, empirical interatomic potentials that can accu-
rately map out the PES of g-SiO2 under different conditions
are probably the only tractable way to address this issue. A
construction of such potentials for SiO2 is a challenge, as ev-
idenced by the great variety of the empirical models that have
been proposed.17–25

Within empirical potential modeling, different types of
the interatomic interactions are usually represented by sepa-
rate terms having preselected functional forms with adjustable
parameters; these terms are optimized to reproduce a selected
set of target macroscopic properties within top-down parame-
terization schemes or to project the microscopic level interac-
tions within bottom-up parameterization approaches. The ana-
lytical pair potentials, especially those of the simplest central
form, are attractive options due to computational efficiency,
and have been used to model silica from the 1980 until the

present. Although it was originally believed that many-body
terms, such as bond-angle three-body and bond-order terms,
or terms describing interactions due to charge redistribution,
are necessary to reproduce the directionality of the covalent
bonding in silica evidenced by the presence of SiO4 units,
bottom-up fixed-charge pairwise potentials of analytical form
by Tsuneyuki et al.26 and by van Beest et al.19 (TTAM and
BKS models, respectively) proved that pair potentials could
effectively capture many-body features of interactions in both
crystalline and amorphous silica. These models adequately
described the ambient and low pressure structures of several
silica polymorphs. Still it is imperative to mention that the
use of predetermined ad hoc analytical forms to construct
pairwise models may significantly limit the ability to repre-
sent many-body features of silica PES. Meanwhile, the im-
portance of different types of interactions for silica has been
heavily debated. A significant deviation of the elastic con-
stants of quartz and other silica crystalline polymorphs from
Cauchy relations27 has been cited as indirect experimental ev-
idence of the importance of many-body interactions in or-
dered phases. The existing pairwise models have also pre-
dicted a lda-hda transition at lower pressures than observed
experimentally;24 this discrepancy suggests the importance
of many-body interactions in amorphous silica. This is fur-
ther supported by the substantial improvement in simulated
structural, vibrational, and elastic properties as well as bet-
ter transferability across thermodynamic states achieved using
pairwise models augmented with bond-angle20, 25 and elec-
tronic polarizability22, 25, 28 terms. Since then, empirical po-
tentials for silica have evolved mostly through design and in-
clusion of new elaborate terms tailored to represent different
types of many-body contributions into PESs of condensed-
phase silica. An exhaustive overview of such developments
would exceed the scope of this work and we limit ourselves
to referring the most representative works pertinent to our
study. The BKS form has been extended to account for bond
stretching and augmented with polarization term to account
dynamically for a modification of oxygen ionicity due to po-
larization effects.22 The valence bonding has been explicitly
modeled using Keating-type models29 and models based on
Stillinger-Weber or Tersoff concepts.20, 30 More recently, the
charge redistribution phenomena beyond polarization effects
have been addressed using bond-order ReaxFF and COMB
force fields.25, 31 However, similar to ab initio representations,
these models do not offer insight into the effect of interaction
modification on the densification phenomenon as the many-
body interactions are explicitly represented by complex terms.
Thus, an analysis of changes in silica PES under pressure re-
mains an essentially multi-dimensional problem.

The first main objective of the present paper is the
development of a simple bottom-up effective pairwise inter-
action model for g-SiO2 that is not constrained to a particular
analytical form, and, therefore, may adequately and clearly
address the role of pressure effects on the microscopic
interactions and their role in the polymorphism of g-SiO2.
Specifically, we present a numerical pairwise central and
nonpolarizable silica potential. The potential is parameterized
solely using information on microscopic forces obtained from
the ab initio MD (AIMD) simulation of a silica melt at high
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temperature. High temperature conditions facilitate sampling
of configurations which are pertinent to denser states of
g-SiO2. The bottom-up methodology used to project the ab
initio ionic forces onto effective pairwise interactions is the
multi-scale coarse-graining (MS-CG) approach,32–37 which
couples the functional-free representation of interactions
with a thermodynamically consistent force-matching param-
eterization scheme. As shown in the past, superior pairwise
models for condensed-matter systems in which many-body
interactions are important can be developed with the MS-CG
method.32, 35, 37–39 To our knowledge it is the first time a
numerical potential for silica is presented. The resulting
oxygen-oxygen potential exhibits a distinct repulsive shoul-
der at short separations suggesting a softer repulsion between
oxygen atoms under extreme conditions than that expected
when assuming the conventional monotonic descriptions of
repulsive interactions such as in BKS-type potentials. This
might be a reason that BKS and similar models perform
unsatisfactorily under high pressures.40 Despite being fitted
to the highly disordered liquid state, the force-matching
(FM) model demonstrates adequate performance for many
crystalline polymorphs of silica. The other major objective of
the paper is to examine the role of the soft-repulsive shoulder
interaction for oxygen pairs on the densification of glass
under ambient and shock compression conditions.

The rest of this paper is organized as follows: in
Sec. II we present details of the FM potential development; in
Sec. III we discuss the obtained potentials; and in Sec. IV
we evaluate the performance of the new models. Finally, in
Sec. V we discuss the application of the new models to study
silica glass under various compression conditions and sum-
marize the results in Sec. VI.

II. POTENTIAL DEVELOPMENT WITH THE
MS-CG METHOD

The MS-CG method is a variational approach for
particle-based coarse-graining which yields the best (in a
least-squares sense) pairwise decomposition

∑
i<j u(rij , �)

of the effective PES Ueff(rN) of a system of N particles with
translational coordinates rN = (ri, i = 1, N) and intraparticle
set of coordinates ρ if the latter are integrated out (or coarse-
grained). Here, for simplicity, we assume that particles are of
same kind. The terms u(rij, �) are functions of interparticle
distance rij and a set of adjustable parameters � used in
the least-squares minimization scheme. The development of
empirical atomistic potentials from ab initio models amounts
to the coarse-graining of the electronic degrees of freedom
(ρ) and, thus, represents a special case of particle-based
coarse-graining. The description of the MS-CG methodology
with emphasis on the parameterization of potentials from
AIMD is given in Ref. 37. Within the MS-CG framework the
pairwise force terms, f(rij, �), which determine the u(rij, �)
potentials as

u(r,�) =
∫ rcut

r

f (r �,�)dr �, (1)

are obtained first through a predetermined FM parameteriza-
tion scheme. The f(r, �) force is represented by a piecewise

cubic spline function defined on a mesh {rk} that extends to
a cutoff distance rkmax

= rcut . With such a choice, the f(r, �)
depends linearly on the spline parameters fk, f��k, which are
values of the f(r, �) and its second derivative at the kth node
rk of the mesh. Therefore, the � = ({fk}, {f��k}) parameter set
is chosen as the parameters to fit. The linear system of FM
equations, which is equivalent to a least-squares minimiza-
tion problem, is solved by a block averaging scheme.32, 37

The piecewise form of f(r, �) combined with an adequate
sampling of system phase space may result in a proper
description of interatomic interactions particularly at short
distances, thus, improving performance in modeling dense
polymorphs of silica.

In the present work, the SiO2 potential has been derived
from a single phase AIMD simulation of molten silica at
T = 5000 K under constant NVT conditions. The AIMD sim-
ulation was carried out using the Born-Oppenheimer MD
scheme within the standard implementation of the plane-
wave-basis density functional theory (DFT) with a gen-
eralized gradient approximation (GGA) to the exchange-
correlation (XC) energy using the BLYP functional41 and
pseudopotentials of the Troullier-Martins form42 within the
Kleinman-Bylander approximation.43 In particular, the oxy-
gen pseudopotential was generated using a cutoff radius of
1.05 a.u. for l = 0, 1, where the l = 1 channel is local. The
system was represented by 64 SiO2 in a cubic box at a density
of 2280.3 kg/m3. The Kohn-Sham orbitals were expanded in
the plane waves up to a cutoff of 100 Ry. The starting con-
figuration was generated from a 500 ps of NVT MD simu-
lation using the empirical potential by Pedone et al.23 and
then re-equilibrated in an AIMD simulation for 5 ps. The
ab initio dynamics was integrated for 30 ps with a timestep
of 10 a.u. (0.24 fs) under constant NVT conditions using the
CPMD code version 3.13.44 Temperature control was imposed
through coupling to a chain of four Nosé-Hoover thermostats.
The configurations and corresponding forces were recorded at
every 20 a.u. in the simulation, producing a total of ∼62 000
configurations for use in the FM. The implementation of the
FM scheme is the same as in Refs. 32, 34, 35, and 37 with the
only difference being that an explicit fit of partial charges was
not performed [cf. Eqs. (11) and (12) in Ref. 37]. The short-
ranged FM force was represented by a spline over a mesh
with a grid of 0.1 a.u.; a cutoff rcut = 13.3 a.u. (0.7038 nm)
was applied. The overdetermined system of FM equations was
solved using a block averaging scheme with a block size of 10
(however, the solution was insensitive to variations in a block
size). An analytical representation of the FM force obtained
through a least-squares fit of the tabulated spline data by pow-
ers of 1/r as

fαβ (r) =
nmax∑
n=2

An
αβ/rn (2)

is summarized in Table I. The force profiles and respective
potentials [Eq. (1)] are displayed in Fig. 1. In the simulations
reported below we used the original numerical representation
of the FM models, which may produce results slightly differ-
ent from those of the polynomial fit due to limited accuracy
of the latter.
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TABLE I. Coefficients An
αβ of the least-squares fit for the BLYP FM SiO2 force field fαβ (r) using the expansion

in Eq. (2) with nmax = 16. Atomic units are used. At small separations r < rcore, the fαβ (r) is extrapolated as

fαβ (r) = f (rαβ
core). The following core radii are used: rSiSi

core = 3.5 a.u., rSiO
core = 2.3 a.u., and rOO

core = 2.4 a.u. The
cutoff of 0.7038 nm must be applied to this expansion. The original numerical forces and potentials are provided
in the supplementary material.66

n An
SiSi An

SiO An
OO

2 8.38569797246 × 103 − 6.93672060032 × 102 − 1.53413111467 × 103

3 − 6.71569564738 × 105 4.75552324617 × 104 1.08746957292 × 105

4 2.39814415405 × 107 − 1.45146806739 × 106 − 3.42727907962 × 106

5 − 5.04157703840 × 108 2.60941072636 × 107 6.35540171618 × 107

6 6.93493814038 × 109 − 3.07784865663 × 108 − 7.73139251048 × 108

7 − 6.55520712182 × 1010 2.50876846644 × 109 6.50715662006 × 109

8 4.34393610920 × 1011 − 1.44825707078 × 1010 − 3.88749344879 × 1010

9 − 2.01460775895 × 1012 5.95616803341 × 1010 1.65947848433 × 1011

10 6.36630631246 × 1012 − 1.72258877705 × 1011 − 4.99937327889 × 1011

11 − 1.27452424588 × 1013 3.35528112036 × 1011 1.01930872147 × 1012

12 1.29603005238 × 1013 − 3.89065597083 × 1011 − 1.25049468617 × 1012

13 7.12201564397 × 1011 1.38817387532 × 1011 5.14911154410 × 1011

14 − 1.16317019524 × 1013 2.73228278176 × 1011 8.57529170524 × 1011

15 − 2.29569192322 × 1012 − 3.95712647692 × 1011 − 1.35814993601 × 1012

16 1.28627766169 × 1013 1.67143495856 × 1011 6.06638707829 × 1011

The importance of many-body effects and, therefore, the
quality of pairwise FM models is reflected in how well the ref-
erence distribution of the total forces is reproduced by the FM
model and can be measured by the relative force deviation �F
as defined in Refs. 37 and 45. The �F represents a fraction
of root-mean-squared difference between the ab initio (ref-
erence) and FM total ionic forces relative to the root-mean-
squared ab initio forces within the instant ab initio ionic con-
figuration and it can defined for all ions (�Ftot) or for ions of
one kind (�FO, Si) in the configuration. Figure 2(a) shows the
time dependence of �F along the AIMD trajectory with the
respective running time averages ��F�t [��F �tmax

= ��F �].
The density probability distributions P(�F) are displayed in
Fig. 2(b). The values of ��F� and standard deviation δ��F�
= [

∫
(�F − ��F�)2P(�F)d�F]1/2 were: 0.304, 0.047 for

oxygen; 0.367, 0.055 for silicon; and 0.336, 0.051 for the cu-
mulative distribution, respectively. Interestingly, the ��FO�,
δ��FO� are close to similar quantities of 0.333, 0.048 for
AIMD (BLYP) simulations of liquid water at T = 300 K re-
ported in Ref. 37 despite a drastic difference in chemical com-
position and thermodynamic conditions. As discussed in the
literature37, 45 the magnitude of departure of the instantaneous
atomistic forces from the effective FM value is not a conclu-
sive measure of the quality of the effective interaction model.
The accuracy of the FM model largely depends on the nature
of the force deviations and, in particular, whether or not they
average to zero on short-time scales.45

III. FORCE-MATCHING MODELS

The force and potential profiles (Fig. 1) clearly show
a soft-repulsive shoulder of the effective O–O interaction
at separations r < 0.195 nm indicating a weakening of the
Coulomb repulsion between oxygen atoms due to a number
of possible factors (e.g., polarizability, charge transfer causing
change in ionicity of oxygens, chemical bond formation, etc.),
that are effectively captured by the FM method. The O–O

force reaches a local minimum at r = 0.159 nm, correspond-
ing to a repulsive potential energy of 416 kJ/mol. In order to
access this repulsive shoulder, an oxygen pair must overcome
an energy barrier of 307 kJ/mol (r = 0.195 nm). Under high
temperature conditions of the reference AIMD simulation, the
kinetic energy of the oxygen atoms is sufficient to access the
O–O repulsive shoulder. As we will discuss, in g-SO2 mod-
eled with the FM potential under ambient conditions the O–O
repulsive shoulder is not accessed, and a stronger repulsion
keeps the oxygen atoms separated by distances well beyond
0.2 nm. However, under elevated pressures the changes in the
g-SO2 local environment may effectively reduce energy re-
quirements for accessing the O–O repulsive shoulder, which,
in turn, might introduce rich complexity in the phase behav-
ior of this system, such as a transition to five- and then six-
coordinated states of Si as well as modification of the shape
of the equation of state (EOS). Past studies of highly ideal-
ized model systems have demonstrated that the extension of
model interactions with the soft shoulder repulsion signifi-
cantly affects the phase behavior of the system and leads to
the appearance of new phases.46, 47 Systems of particles inter-
acting through such pair potentials can possess a rich variety
of phase transitions and thermodynamic anomalies, including
liquid-liquid and liquid-glass phase transitions, and isostruc-
tural transitions in the solid region.47 It is conceivable that
for compressed g-SiO2, islands of oxygen atoms interacting
through the soft-repulsive shoulder could contribute to the ob-
served anomalous densification.

Softening of the O–O FM repulsion occurs at distances
at which the overlap of electronic orbitals is significant and
several mechanisms may contribute to this phenomenon. The
bonding in silica is a mix of ionic and covalent bonds, and ex-
hibits continual rebonding when in the liquid phase (used to
derive the FM models), although a high level of local chemi-
cal order is still maintained. The continual presence of broken
bonds may lead to a high probability of formation of valence
alternation pairs (VAPs),48 which may effectively contribute
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FIG. 1. Effective atom-atom forces [panel (a)] and corresponding potentials
[panel (b)] in liquid SiO2 generated through the FM method as functions
of interatomic separation: O–O (black), Si–O (red), and Si–Si (green). The
dashed line corresponds to the model without the repulsive shoulder (FM-
ns model). In panel (b) the dotted (FM-ws model) and dotted-dotted-dashed
lines indicate the variation of the O–O repulsion in FM with block averaging
along reference trajectories as discussed in the text. In panel (c) a compari-
son of the BKS (solid), Pedone (solid/circles), and FM (dashed) potentials is
given. Due to the aphysical behavior of the BKS exp-6 at small interatomic
separations, we modified the function to generate the BKS curve shown in
this figure as follows: For r < rinfl, where rinfl is the position of the inflection
point [u��(rinfl) = 0] on the repulsive wall of the original BKS exp-6 potential,
the curve is described by an exponential function whose energy and energy
first derivative are the same as the original BKS exp-6 function at rinfl. The
vertical dashed line marks the location of the repulsive shoulder in the O–O
FM potential.

to the ionicity of the oxygen atoms leading to softening of
the O–O FM repulsion. However, such a potential is not ex-
pected to be well transferable to g-SiO2 as the probability of
VAP defects in amorphous silica is low. On the other hand,
the FM potentials are realizations of a pairwise approxima-
tion to the many-body PES in the liquid state. Therefore, the
FM potentials effectively incorporate higher order effects in
the interaction. Consequently, the softer O–O repulsion may
represent a cumulative average effect of changes in the local
environment of oxygen pairs that are not affected by broken
bonds. If such a mechanism significantly contributes to the
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FIG. 2. Panel (a): Errors �F vs. time. Instant values of �F are shown for
oxygen ions (black) and silicon ions (cyan). White lines show corresponding
running time averages ��F�t. Panel (b): Distributions of errors P(�F) for
oxygen (solid/thin), silicon (dashed), and total (solid/thick).

shape of the O–O FM potential, then the FM model may be
transferable to crystalline or amorphous states of silica under
high pressures for which a largely preserved local bond order
is characteristic.

The FM potential does not include explicitly Coulomb
charges, however, it still effectively accounts for the entire
spectrum of electrostatic interactions within the reference
ab initio system. Similar to water,49 the effective electrostat-
ics is expected to decay rapidly in the liquid (and possibly
amorphous) SiO2 states. This conjecture is supported by the
negligible FM forces at distances larger of 0.7 nm [Fig. 1(a)],
leading to use only the short-ranged version of the FM model,
although the FM algorithm allows explicit fitting of the effec-
tive Coulomb charges.32, 37 Crystalline polymorphs may pose
difficulties for the short-ranged FM model due to the impor-
tance of Coulomb interactions in ionic crystals. Furthermore,
it is worth noting that empirical top-down potentials for g-
SiO2 are often poorly transferable to crystalline states and
vice versa.17, 18 The pairwise FM model was parameterized
to a system which is characterized by a much higher level of
disorder than that of the amorphous silica so that transferabil-
ity to glassy systems could be in question. The potential might
be even less transferable to silica crystalline states. However,
in Sec. IV we demonstrate that the FM model performs re-
markably well for an array of silica polymorphs. Since this
bottom-up potential was derived solely from a liquid state en-
semble, an adequate performance for crystalline states gives
confidence that the FM model may still capture the essential
physics for the less ordered g-SiO2 systems.

As seen from Fig. 1(c) the FM O–O potential is signif-
icantly softer as compared to the BKS potential. The BKS
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potential uses an exp-6 function for short-ranged interactions.
The same conclusion holds for the potential by Pedone
et. al.23 (referred to as the Pedone model), which is very sim-
ilar to the BKS model but more repulsive at short separations.
In contrast to the BKS model, which is bottom-up, the Pedone
potential was parameterized in a top-down fashion by fitting
the sum of the Morse-12 and Coulomb terms to structural and
elastic properties of g-SiO2 at ambient conditions.

As one of the major purposes of our study is to assess
the effects of the softer repulsive shoulder of the O–O poten-
tial on glass densification under cold and shock compression
conditions, we compare these results with those using the FM
potential without the repulsive shoulder. The latter potential,
referred to as the FM-ns (no-shoulder) model, was obtained
by simply removing the part of the original O-O FM force
profile fOO(r) at r < rshld = 0.195 nm, and smoothly replac-
ing it with a profile of the fOO(rshld)exp (a(rshld − r)) form
with the parameter a determined from a least-squares fit of
the fOO(r) within the interval rshld < r < rshld + 1.0 a.u. The
FM-ns model is shown in Figs. 1(a) and 1(b) by the dashed
line. We also introduce a FM potential with a “weak shoul-
der,” referred to as the FM-ws potential [dotted line in Fig.
1(b)], to demonstrate the existing uncertainty within the re-
pulsive shoulder potential due to the limited statistics of the
AIMD simulation. Relatively poor sampling of short O–O
separations within the limited length of the AIMD trajecto-

ries causes the repulsive shoulder region of the O–O potential
to fluctuate significantly with the number of configurations
used in the FM. The magnitude of the changes is outlined in
Fig. 1(b) by the strongest and softest O-O shoulder repulsions
observed during the FM block averaging procedure. The FM-
ws model was obtained by using an initial shorter portion of
the AIMD trajectories and corresponds to the softest shoul-
der repulsion as observed in the force-matching. Finally, the
FM and FM-ns (and in some cases the FM-ws) models are
compared with the Pedone model.

The reported simulations were performed using the
DL_POLY 2.20 simulation package.50 Some properties of the
glass were calculated using ISAACS computer program.51

The files with the silica FM, FM-ns, and FM-ws potentials
are provided in the supplementary material;66 these are in a
tabulated form in the format of the DL_POLY 2.20 simulation
package.

IV. TRANSFERABILITY OF THE FM MODEL
TO SILICA POLYMORPHS

The structural and elastic properties of several silica crys-
talline polymorphs and glass by the FM model are com-
pared to DFT-GGA calculations and experimental values in
Table II. The FM properties were calculated at 4.5 K from
MD simulations under isostress-isothermal (NsT) conditions

TABLE II. Structural parameters, a, b, c, β (length in nm and angle in deg), density ρ (kg/m3), cohesive energy
per SiO2 Ec (eV), elastic constants Cij (GPa), and bulk modulus B (GPa), for silica polymorphs.

FM DFT-GGAa Expt.b

α-quartz:
a, c 0.4968,0.5465 0.5027,0.5509 0.4916,0.5405
ρ, Ec, B 2553,−14.65,36.3 2483,−23.83,31.3 2646,−19.23,34-37
C11, C12, C13 86.2,28.7,9.6 87.1,−7.8,6.3 85.9,7.2,10.9
C14, C33, C44 −16.5,80.6,9.6 −17.0,87.1,49.1 −17.7,89.6,57.8

coesite(C2/c):
a, b, c 0.7093,1.2592,0.7311 0.7242,1.2467,0.7233 0.7136,1.2369,0.7174
β 120.01 120.17 120.34
ρ, Ec, B 2828,−14.61,95.6 2828,−23.73,91.2 2915,. . . ,96.0

α-cristobalite:
a, c 0.5062,0.6939 0.5119,0.7168 0.4972,0.6922
ρ, Ec, B 2244,−14.46,10.6 2125,−23.86,9.4 2333,. . . ,11.5

β-cristobalite(Fd3m):
a 0.7483 0.7417 0.7131c

ρ, Ec, B 1830,−14.43,116.6 1956,−23.84,119.5 2201,. . . ,. . .

β-tridymite(P63/mmc):
a, c 0.5360,0.8769 0.5248,0.8568 0.5052,0.8270
ρ, Ec, B 1826,−14.42,126.4 1952,−23.84,130.5 2198,. . . ,. . .

stishovite:
a, c 0.4208,0.2716 0.4239,0.2701 0.4179,0.2666
ρ, Ec, B 4149,−14.23, 371 4113,−23.19,261 4282,. . . ,313

glass (FM-l, FM-h):
ρ, Ec, B 2294,−14.28,23.2 2330,−23.65, 33d 2219–2231,. . . ,38
ρ, Ec, B 2562,−14.36,29.5

aReference 16.
bReferences 63 and 64.
cReference 64 (the I 4̄2d setting).
dReference 54.
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using an anisotropic barostat in which the cell geometry is
allowed to vary.52 For quartz, the elastic matrix was obtained
using the direct finite stress-strain method. The bulk moduli
were calculated from a fit to P−V data using the Murnaghan
equation.53

We have used samples of amorphous silica of different
densities. The first structure denoted as (FM-l) has a lower
density, and was obtained following a protocol similar to that
described in Ref. 23. A system of 1536 SiO2 molecules at
an initial density of 2100 kg/m3 was cooled down from 5000
to 500 K at a constant rate by decreasing the temperature in
500 K increments; the trajectory integration was performed
under constant NVT conditions using the Evans thermostat
for T > 1500 K. At temperatures less than 1500 K, the tra-
jectory integration was performed under constant NsT condi-
tions with the rectangular cell shape being maintained. The
total cooling time was 1.8 ns with a nominal cooling rate of
2.5 × 1012 K/s. The final (298 K) density of the sample
was 2294.4 kg/m3. This quenching algorithm uses sched-
ules similar to those recommended in the literature to
produce samples free of configurational defects.23, 54 The
second structure (FM-h) was obtained using the following
protocol: (1) the same system as in the previous case was
equilibrated at 5000 K in the NVT ensemble using the Nosé-
Hoover thermostat with a small (0.2 ps) relaxation time; (2)
the target temperature was reset to 1000 K and the thermo-
stat relaxation time was increased to 800 ps; (3) the sim-
ulation continued for 1.4 ns until the system temperature
cooled to 1500 K. While the latter protocol has the same
cooling rate as for the (FM-l) structure, the system abruptly
exhibited solid-like behavior (i.e., discontinuous change in
the diffusion coefficient) at about 1460 K. The density of
the (FM-h) sample at 298 K was 2561.7 kg/m3. Simulations
were also performed using the Pedone potential to gener-
ate a sample of glass [referred to as the (P-l) structure]; the
sample was prepared using the same protocol used to gen-
erate the (FM-l) structure. The ambient density of this sam-
ple was 2292.5 kg/m3. Further simulations for this sample
using the FM model resulted in an increase in density to
2331.8 kg/m3. Figure 3 provides structural information of the
three glass samples, including ring statistics [King’s shortest
path criterion55], P(Nring), all-particle radial distribution func-
tion (RDF), g(r), and running integration number, Ncoor

Si−O(r).
Despite significant differences in density, the ring statistics
and RDFs are nearly identical for the (FM-l) and (FM-h) sam-
ples. The Ncoor

Si−O(r) for the two samples exhibit differences at
intermediate (r > 0.3 nm, second and third shells) distances.

Crystal lattice potentials using pairwise and central inter-
actions result in additional symmetry relations for the elas-
tic constants (the Cauchy relations) beyond those imposed
by the crystal symmetry. For example, for a trigonal case,
to which α-quartz belongs, there are six independent elastic
constants C11, C12, C13, C14, C33, and C44, [C66 is given by
(C11 − C12)/2]. The Cauchy relations are: C12 = C66 and C13

= C44. For α-quartz, the experimental Cauchy pressures C12

− C66 and C13 − C44 are nonzero, indicating deviation from a
pairwise description of the crystal lattice interactions. A com-
parison of experimental values with a model having angle-
bending (i.e., three-body) terms suggests that one-half of C12
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FIG. 3. King’s ring size distribution [panel (a)] and all-particle RDF, g(r),
(solid) with corresponding running integration number, Ncoor

Si−O(r), (dashed)
[panel (b)] for the (FM-l) (red), (FM-h) (blue) structures using the FM model
and for the (P-l) structure using the Pedone model (green).

− C66 and one-third of C13 − C44 Cauchy differences origi-
nate from angle-bending forces.56 As seen from Table II for
α-quartz, despite deviations from experiment caused by a zero
Cauchy pressure, the bulk modulus is in good agreement with
the experiment as well as with the DFT-GGA calculations. It
is possible this reflects the fact that the contributions to bulk
elasticity from angle-bending forces are relatively unimpor-
tant for α-quartz.

The absence of many-body terms in the FM models is
manifested in the behavior of α-cristobalite and β-tridymite
structures in NsT simulations in which angles between cell
vectors are allowed to vary. In these simulations, these struc-
tures are unstable; however, if the cell vector angles are kept
fixed (allowing only cell edges to vary independently), the
structures become stable, and satisfactorily reproduce the lat-
tice geometries and bulk moduli. For amorphous silica sys-
tems, regardless of density, the FM potential routinely yields
a bulk modulus that is lower than the experimental value
(38 GPa). The lack of bond-angle interactions is the most
probable reason for the observed discrepancy. On the other
hand, the Pedone model, which is also pairwise, predicts a
bulk modulus of 37 for the (P-l) structure. The better predic-
tion of bulk elasticity of glass given by the Pedone model is
a result of the top-down parameterization scheme in which
elastic properties were included in the training set. This
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results in a more rigid potential at the ambient state [see
Fig. 1(c)], which emulates a rigid glass network due to bond
directionality. As discussed below, the introduction of rigidity
into the potential in this manner improves its performance at
low pressures but the performance deteriorates at higher pres-
sure, a common problem of top-down models.

The cohesive energies for all polymorphs are consis-
tently lower than those calculated using DFT-GGA. The
major source of the differences is the absence of long-ranged
Coulomb interaction in the FM models. Such an underes-
timation of cohesive energy might result in predictions of
melting points for these systems that are too low. However,
despite a lower value of cohesive energy, the FM potential
adequately describes silica melting properties. Determination
of melting for quartz is complicated by the fact that quartz
undergoes phase transitions to β-tridymite and then to
β-cristobalite with increasing temperature, with experiment
reporting melting of the cristobalite at 1983 ± 10 K. It was
also observed experimentally that the silica melt crystallizes
directly into β-tridymite at 1943 ± 10 K at high cooling rates.
We simulated the melting of bulk crystalline β-tridymite and
β-cristobalite using the FM potential within the NsT en-
semble. For β-tridymite the cell shape was fixed to prevent
structural transformation (also as mentioned β-tridymite
is stable only within the fixed cell shape ensemble). The
translational melting temperature T determined using the rate
of diffusion as a criterion was 2010 K for tridymite and 2050
K for cristobalite. The observed values are higher than the
experimental counterparts, however, it is commonly known
that in MD simulations, the bulk crystal structures should
be superheated, sometime significantly, to initiate melting.
On the other hand, in simulations using the FM potential to
generate a glass sample using the second protocol, diffusion
becomes abruptly solid-like at about 1460 K, close to
the experimental value of 1450 K for the glass transition
temperature for vitreous silica.57

V. GLASS UNDER PRESSURE

The simulations have been carried out at pressures 1,
2, 3, 5, 8.118, 10, 15.861, 20, 27, 35, 40, 45, 51, 59, 65,
and 74 GPa for the (FM-l) and (FM-h) samples using the
FM, FM-ns, FM-ws models and for the (P-l) sample us-
ing the Pedone model. The systems were simulated in the
NPT ensemble at each pressure point at 298 K and the
corresponding Hugoniot (Hg) temperature, THg. The latter
condition corresponds to the material subjected to shock
compression. The shock compression drives the material
to a point on the Rankine-Hugoniot curve, Hg(THg, V ) = 0
= E − E0 − (P + P0)(V0 − V )/2, which is the locus of all
final states characterized by the specific volume, internal en-
ergy, and pressure (V = 1/ρ, E, P) that can be accessed from
an initial thermodynamic state (V0 = 1/ρ0, E0, P0) by shock
loading. The Rankine-Hugoniot states were calculated using
the adaptive Erpenbeck58(AE-EOS) procedure as proposed
by Brennan et al.59 in which a succession of NPT simula-
tions converges to the Hugoniot state for a given pressure.
Each simulation consisted of a 400 ps equilibration period
followed by a 200 ps production run. From each pressure
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FIG. 4. Density vs. pressure at T = 298 K (solid lines) and along the Hugo-
niot locus (dashed lines) from simulations of (FM-l) structure using the FM
(cyan), FM-ns (green) [panel (a)], Pedone (blue) [panel (b)], and FM-ws (ma-
genta) [panel (c)] models. Simulations were carried out at the same pressure
points (given in the text) as marked by filled circles on the cyan line. Ex-
perimental EOS obtained by cold compression (black squares) and by shock
compression (red circles) is from Refs. 6 and 65, respectively. Inset to panel
(c) compares the 298 K (solid) and Hugoniot (dashed) EOS from simulations
of the (FM-l) (cyan) and (FM-h) (black) structures using the FM model.

point, a number of structural and thermodynamic properties
were collected. In particular, the X-ray RDF was calculated in
accordance with gX(r) = ∑

α,β cαbαcβbβgαβ(r)/(
∑

α cαbα)2,
where gαβ (r) are particle partial RDFs and cα and bα are con-
centrations and scattering lengths for particles of type α, re-
spectively. For this study, we used bSi, O = 4, 8.

Comparisons of density as a function of P from cold
and shock compressions using different models, ρcold(P),
ρHg(P), respectively, to experimental values are provided in
Figs. 4(a)–4(c). The Hg temperature curves, THg(P), for sev-
eral ρHg(P) are given in Fig. 5. For the FM and FM-ns
models [Fig. 4(a)], two stages of compression under both
cold and shock compression can be clearly identified on a
basis of the slope of the ρ(P). In the low pressure region
(P < 8−10 GPa), the glass is compressed with P at a faster
rate than experiment and the system simulated using the
Pedone model [Fig. 4(b)]. This behavior is consistent with
the lower value of the bulk modulus for amorphous silica
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FIG. 5. Temperature along the Hugoniot locus, THg(P), simulated using the
FM (red), FM-ns (green), and Pedone (blue) models at the same pressure
points as in Fig. 4.

predicted by the FM models (see Table II). At pressures of
about 8−10 GPa, both the ρcold(P) and ρHg(P) curves show a
significant decrease in the compressibility of the system. Also
at these pressures for all models the ρcold(P) and ρHg(P)
start differing from one another. At P < 20 GPa, the FM
ρcold, Hg(P) are excessively compressed compared to the ex-
perimental values. Meanwhile, the Pedone model shows a rel-
atively good agreement with experiment up to 20 GPa. The
shape of the FM ρ(P) at low pressures as well as the devia-
tions from experiment and the Pedone model results are most
likely due to the absence of potential terms describing ef-
fective interactions due to directionality of covalent bonding,
which are at least three-body (e.g., angle-bending terms). As
discussed above for the glass, the Pedone model effectively
accounts for such interactions at conditions close to ambient
due to the explicit fit of the model to the glass ambient elastic-
ity. However, this same feature is probably the source of the
failure of the top-down model in describing glass densifica-
tion at higher pressures.

Importantly, at P < 8−10 GPa, the densification by the
FM model occurs predominantly due to structure deformation
and topological reorganization rather than a weakening of the
O–O repulsion due to the soft-repulsive shoulder of the FM
potential. This is evident in Fig. 6, for cold and shock com-
pressions, in the appearance of O–O pairs in the gX(r) as a first
major peak positioned within r < 0.153 nm, which, as will
be shown later, originates from the gOO(r), and progressively
grows with the pressure. For shock compression, the peak is
well defined for loads up to 40 GPa and then smears out due
to high THg [see Figs. 6(b) and 5]. The FM gX(r) is in reason-
able agreement with the X-ray data by Sato and Funamori.7

The observed disagreement with the experiment at elevated
pressures can be explained by the aforementioned deficiency
of the FM model regarding angle-bending terms. The double-
hump structure of the second peak in the FM gX(r) (centered
at about 0.3 nm), which is due to O–O and Si–Si nearest-
neighbors, is resolved in the experimental gX(r) only at pres-
sures >20 GPa. At P > 10 GPa, the front slope of the first
peak in the experimental gX(r) (presumably due to the Si–O
nearest pairs) extends to 0.125 nm, leaving open the possibil-
ity it also encompasses the high-pressure O–O peak predicted
by the FM model [r < 0.153 nm, Fig. 6(a)].

The pressure dependence of the average O–O coor-
dination number Ncoor

O−O corresponding to the first peak in
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FIG. 6. Pressure dependence of gX(r) at T = 298 K [panel (a)] and along
the Hugoniot locus [panel (b)] for the (FM-l) structure using the FM model.
The inset is a magnification of the region of the first peak. Arrows show the
direction of changes in peak positions with pressure.
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Panel (b): T = 298 K (solid) and shocked (dashed) Si–O coordination num-
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and Pedone (green, empty diamonds) models. Experimental cold compres-
sion data obtained by X-ray adsorption measurements (black, filled squares)
are from Refs. 7 and 9.
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the gOO(r) [or equally gX(r)] is displayed in Fig. 7(a).
The coordination number is defined as Ncoor

α−β

= 4πNβ

∫ r[gmin]
0 gαβ(r)r2dr , where r[gmin] is a position

of the first minimum in gαβ (r) and Nβ is total number of
particles of type β in the system. Below 8–10 GPa, O–O
pairs do not exist under either cold or shock compression,
affirming that the structural changes at these pressures are not
affected by the O–O repulsive shoulder. There is a marked
increase in the number of O–O pairs within the 15–20 GPa
pressure range. Notably, in this pressure range, the slopes
of the FM ρ(P) curves decrease relatively to those at lower
pressures, and the differences in the ρcold(P) and ρHg(P)
become larger with pressure.

Furthermore, the appearance of oxygen pairs correlates
with the creation of fivefold and sixfold coordination de-
fects, the probability of which is quantified by the Ncoor

Si−O
[Fig. 7(b)]. The shape of the FM Ncoor

Si−O(P ) curve resembles
that of the corresponding ρ(P) in Fig. 4(a). At P > 40 GPa,
the cold FM Ncoor

Si−O(P ) indicates a transition to sixfold coordi-
nation [Ncoor

Si−O(40 GPa) = 5.8 and slowly increases to 6 within
40–50 GPa interval] that is in good agreement with the recent
experimental data by Sato and Funamori7 and Benmore et al.9

At lower pressures (P < 10−20 GPa), the FM Ncoor
Si−O(P ) over-

estimates the experimental value as well as the value from the
Pedone model. The origin of this disagreement is the same
as that for the ρ(P) data in Fig. 4(a), namely, the absence of
angle-bending forces in the FM model. However, Fig. 7(b)
shows that at P = 10 GPa, the FM Ncoor

Si−O(P ) is fairly close
to 5 (e.g., 4.8 and 4.95 for the ambient and Hg EOS, respec-

tively) and remains below 5.5 up to ∼30 GPa. This behavior
is consistent with the suggestions made in the literature that
the presence of five-fold coordinated states is responsible for
the minimum glass yield strength experimentally observed at
about 10 GPa.3 Also, the Pedone model severely underesti-
mates Ncoor

Si−O(P ) at the high pressures (P > 20 GPa), similar
to the underestimation of ρ(P) at the same pressures and for
the same reasons. On the other hand, as seen from compari-
son of ρ(P) by the FM and FM-ws models shown in Fig. 4(c),
quantitatively, the high pressure behavior of the FM model is
fairly sensitive to the quality of force-matching of the repul-
sive shoulder.

An examination of the pressure-induced changes in the
gX(r) (Fig. 6) and in the bond-angle probability distributions
for the O–Si–O and Si–O–Si angles (Fig. 8) for the FM model
reveals that both intermediate-range pairwise and three-body
structures exhibit dramatic changes at P < 8.0 GPa, while
at higher pressures the changes are relatively mild. This ob-
servation supports our early conclusion that densification in
the low pressure region is driven mostly by shape and topol-
ogy changes of the network glass as opposite to P > 10 GPa,
at which densification is mostly due to the O–O interactions
through the repulsive shoulder portion of the FM potential. It
is important to note that the Pedone model qualitatively fol-
lows overall evolution of the FM bond-angle probability dis-
tributions [Figs. 8(b) and 8(d)], but the changes are shifted
to higher pressures. For example, the P(� O − Si − O) at
8.118 GPa for the Pedone model is very close to that of the
FM model at 0 GPa, whereas the curve for 40 GPa resem-
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bles that of the FM model at 27 GPa. The P( � Si − O −
Si) from the Pedone model adopts the characteristic double-
hump profile only at 65 GPa, while this feature is already
well pronounced at 8.118 GPa for the FM model. These ob-
servations lend further support to our earlier discussion that
the pairwise interactions of the Pedone model are excessively
rigid emulating the presence of angle-bending forces. These
observations highlight the drawbacks of the top-down pa-
rameterization approaches, which may significantly limit the
model transferability across different thermodynamic condi-
tions due to disproportionate incorporation of many-body ef-
fects into the model interactions in an attempt to match the tar-
get macroscopic properties that rely on such effects. Although
the transferability issues also apply to bottom-up models too,
condensed-phase PESs used to fit bottom-up models are typ-
ically less sensitive to changes in thermodynamic state as
compared to microscopic properties. Accordingly, such mod-
els may perform more evenly across different thermodynamic
conditions compared to top-down models.

At P = 0 GPa the average values of � Si − O − Si and
� O − Si − O angles (standard deviation shown in parenthe-
ses) are, respectively, 141.1◦(14.2◦), 109.0◦(8.1◦) for the FM
model and 150.3◦(12.3◦),109.2◦(6.3◦) for the Pedone model.
For samples prepared using the BKS potential that were ap-
proximately twice as small as that of the FM sample, the DFT-
GGA calculations54 yield � Si − O − Si = 147.8◦(14.3◦) and
� O − Si − O = 109.3◦(7.3◦). However, with an increase of
sample size the average DFT-GGA angles tend to decrease
while the distribution becomes broader.54 The � O − Si −
O Pedone distribution is more narrow, reflecting highly di-
rectional bonds that make up the silicon tetrahedra. Mean-
while, the FM model results and, in particular, the directional-
ity of the Si − O bonds, are in fairly good agreement with the
ab initio calculations, taking into consideration the aforemen-
tioned system size dependence. At P > 8−10 GPa, the P(� O
− Si − O) distribution from the FM model shows a pressure-
induced peak centered at 48◦–49◦. The peak is a manifesta-
tion of the paired oxygen atoms interacting through the soft-
repulsive shoulder, and has the same origin as the first peak in
the gX(r) [or equally gOO(r)] (see Figs. 6(a) and 9).

The aforementioned results correspond to the (FM-l)
structure, however, identical trends are observed for the (FM-
h) structure. As evident in the inset in Fig. 4(c), the only dif-
ference between the ρ(P) for (FM-l) and (FM-h) structures
is observed in the P < 8−10 GPa region. Within this pres-
sure range, the repulsive shoulder of the O–O FM potential
is not accessed, and pressure-induced structural changes be-
tween the (FM-l) and (FM-h) samples are similar to those ob-
served under low pressure. One possible mechanism for com-
pression in the low pressure region (P < 8−10 GPa) is the
increased number of Si–O–Si plane-normal reversals17, 60 that
are not accompanied by rebonding. In such a scenario, the
ring statistics remain unchanged. The statistics of Si–O–Si
plane-normal reversals for the (FM-l) and (FM-h) samples are
likely a source of the pressure-dependent differences in den-
sity, as the ring statistics are only slightly different between
the two structures [see Fig. 3(a)]. Thus, it is possible that the
compression of the FM samples could occur through such a
mechanism at P < 8 GPa.
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FIG. 9. gX(r) (solid) and gOO(r) (dashed) from T = 298 K simulations at P
= 74 GPa for the (FM-l) structure using FM (blue) and FM-ns (red) models.

Comparison of the gX(r) and gOO(r) for samples sim-
ulated with the FM and FM-ns models at 298 K, 74 GPa
(Fig. 9) reveals the effect of the soft-repulsive shoulder in the
O–O FM potential on the intermediate-range order. For in-
stance, the FM-ns gOO(r) has more structure beyond a first co-
ordination shell than the FM model, thus, reflecting a higher
ordering of the oxygen sublattice exhibited in the structure
in the second and third shells of the gX(r) (i.e., intermedi-
ate range) as compared to the RDFs by the FM model. As
seen, the lack of proper treatment of short-ranged O–O inter-
actions in dense states excessively stabilizes the intermediate-
range order; this, in turn, may affect the degree and reversibil-
ity of densification. A similar comparison holds for other
P > 20 GPa.

Comparison of cold and Hg ρ(P) curves from the FM
model to those simulated with the FM-ns and Pedone mod-
els (Fig. 4) shows a remarkable feature: the shocked FM sys-
tem at P > 15 GPa is more compressed than the same system
subjected to cold compression, while both FM-ns and Pedone
models show an opposite trend, i.e., the shocked system is
less compressed. The trend demonstrated by the FM model is
consistent with that of the experimental results, namely, the
experimental ρHg(P) is more compressed versus ρcold(P) in
the pressure range of 20−40 GPa. Because the temperatures
of the shocked system are higher than those corresponding
to cold compression (see Fig. 5), such a behavior suggests
the existence of multiple states separated by activation barri-
ers in the glass PES by the FM model that are not predicted
by the FM-ns and Pedone models. The gradual appearance
of the well-defined peak in the gX(r) at 0.15 nm [Figs. 6(a)
and 9] in the compressed FM system due to paired oxygens
is indicative of the metastable states in the PES. The origin
of such minima could be elucidated by comparing cold and
Hg near-range order within the oxygens subsystem from the
FM model with that of the models without O–O soft-core re-
pulsion (FM-ns and Pedone models). In particular, the cold
and Hg Ncoor

O−O(P ), Ncoor
Si−O(P ) curves differ only for the FM

model [see Fig. 7] pointing to a higher probability of forma-
tion of oxygen complexes interacting through the repulsive
shoulder under higher temperature conditions of shocked sys-
tem. On the other hand, the observed correlation in the value
of pressure at which ρcold(P) and ρHg(P) start deviating and
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paired oxygens appear [see Figs. 4(a) and 7(a)] suggests that
the higher compressibility of the FM system under shock is
likely caused by the oxygen complexation due to the soft-
core repulsion. Therefore, the presence of multiple states in
the glass PES could be associated with the presence of the
soft-repulsive O–O FM shoulder.

Conclusively, we can speculate that for the FM model
the strong repulsion between oxygens (of 416 kJ/mol), which
precedes the weaker shoulder repulsion [see Fig. 1(b)], may
contribute to a buildup of the barrier in the PES between
the metastable (lda and hda) states at low pressures (be-
low 8–10 GPa at room temperatures). The barrier gradu-
ally diminishes within the studied 10–75 GPa pressure in-
terval, thus contributing to anomalous densification. This is
particularly evident from the gradual appearance of the first
O–O peak in the FM gX(r) under compression, which indi-
cates that the corresponding (hda) minima in the FM PES
become more accessible by the glass configurations. Under
cold compression, the hda local minimum continues to ex-
ist in all studied range of compression above 8 GPa up to
74 GPa. Such scenario has been widely discussed in the
literature. In particular, it was speculated that after disap-
pearance of the barrier the system becomes mechanically
unstable leading to spinodal decomposition,12, 13 in which the
lda energy minimum vanishes. Furthermore, the pressure-
induced amorphous-amorphous phase transition has been
established in model mono-component systems with interac-
tions described by a repulsive-step potential that are linked
to particle penetration to the region of short interparticle sep-
arations in which the interaction is due to the soft-repulsive
shoulder of the potential.47 This scenario is fully analo-
gous to the formation of closed packed oxygen structures
in g-SiO2 due to the repulsive shoulder accessed under high
pressures.

On the other hand, the presence of a first-order liquid-
liquid phase transition has been reported for the BKS model
of g-SiO2 (Ref. 61) at temperature Tc higher than the glass
transition temperature Tg. The BKS O–O interaction does not
have a repulsive shoulder [Fig. 1(c)] and the mechanism of
the phase transition was rather related to the tetrahedral liq-
uid structure and believed to be of the same origin as in su-
percooled water. It was then proposed that the polymorphs in
real g-SiO2 are sub-Tg manifestations of a liquid-liquid insta-
bility as for real g-SiO2 Tc < Tg. It is possible that a similar
mechanism could be invoked for the FM model and will be
the subject of our future studies.

Decompression simulation experiments for the (FM-l)
structure are summarized in Fig. 10. In these simulations, the
samples are compressed to the various pressures along the ab-
scissa through cold and shock compression (open circles and
squares, respectively). The samples are then decompressed
by resetting the imposed pressures in the NPT simulations to
zero, and integrating the equations of motion until the results
have converged. For all P ≥ 10 GPa, the residual densifica-
tion of the decompressed samples are similar and about 25%
larger than the ambient value. For both cold and shock com-
pressed structures, decompression with the FM-ns model re-
sults in 2%–5% less dense systems compared to those pro-
duced with the FM model. The shock-compressed structures
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FIG. 10. Compression ρ0/ρ, where ρ0 is ambient density vs. pressure curves
for the (FM-l) structure decompressed using FM (solid) and FM-ns (dashed)
models, which was previously compressed with the FM model under cold
(diamonds, blue) and shock (red, triangles) conditions. Densities in sam-
ples compressed under cold (solid black, empty circles) and shock (solid red,
empty squares) conditions are shown for a comparison.

exhibit a slightly higher (about 3%–4%) magnitude of per-
manent densification versus the ones subjected to cold com-
pression. Figure 11 shows the gX(r) for decompressed struc-
tures resulting from compression at various pressures, and are
compared with the gX(r) of structures at 0 and 74 GPa. As
seen from Fig. 11(a), upon decompression, the intermediate-
range pairwise structure reverts to that seen in the samples
compressed at P = 8−10 GPa. Meanwhile, the gX(r) at 0
and 8.118 GPa differ substantially (see also Fig. 6). Impor-
tantly, in all decompressed structures using the FM models,
the Ncoor

Si−O(P ) is fairly close to 5. The presence of fivefold co-
ordinated states has been observed in silica glasses and crys-
tals quenched from high pressure.62

Interestingly, the decompression simulations show that
irreversible densification events occur at P < 8−10 GPa,
a pressure regime in which oxygen ion complexation due
to the O–O soft-repulsive shoulder potential is virtually
absent, and is entirely due to a change in intermediate-
range order as clearly seen from Fig. 11(a). In this pres-
sure region, the residual density upon decompression is de-
termined solely by a restructuring of the network topol-
ogy. This observation is evidenced by the experiment,6

which also suggests that the g-SiO2 behaves as a single
amorphous polymorph as these pressures. Furthermore, ex-
perimentally the irreversible densification continues at fur-
ther pressure increases up to 45 GPa, but the interpre-
tation of X-ray data6, 7 indicates that irreversible changes
in short-range order start contributing to this process at
P > 25 GPa. The simulations with the FM model reveals a
significant increase of oxygen pairs at distances smaller than
the position of major peak in the gOO(r) at these pressures
that occurs due to penetration of the oxygens into the region
of the soft shoulder interaction. Although in the FM simu-
lations upon decompression the glass nearly completely re-
verses to a decompressed state at 8–10 GPa, in real silica
near-range structural changes as induced by oxygen complex-
ation could be stabilized due to many-body interaction effects.
Such many-body effects may not be fully captured by the FM
model but strongly affect the behavior of the material at high
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pressures. This conjecture gains some support from observed
remnants of oxygen complexation in samples decompressed
at 75 GPa [see Fig. 11(b)].

Conclusively, at higher pressures (20–40 GPa), the mod-
ification of interactions within the O–O sublattice could be
a major channel for anomalous densification. Also, inclu-
sion of more elaborate terms with the explicit semiempiri-
cal treatment of electronic structure to describe more realis-
tically the modification of interactions within oxygen sublat-
tice may lead to further improvements when developing the
FM model.38

VI. CONCLUSIONS

We have created a new numerical potential for silica from
ab initio microscopic interaction data obtained from a high
temperature liquid phase at a single thermodynamic point.
The new potential is of a pairwise central form with cutoff of
about 7 Å and has been parameterized to match the total force
distribution along ab initio trajectories for the system. Within
this parameterization, there is no reliance on macroscopic
data; thus, this effort demonstrates systematic coarse-graining
of ab initio electronic structural information. We have demon-
strated that despite being matched to a highly disordered silica
melt and not including long-ranged electrostatic interactions,
the new potential exhibits good transferability to silica crys-
talline and amorphous polymorphs. The observed deficiencies
in the potential are likely related to the absence of angle-

bending terms needed to treat the directionality of covalent
bonding. The numerical potential between oxygen ions has a
soft-repulsive shoulder at short-separations. This sort of inter-
action is not present in the existing silica models, which are
largely based on predetermined analytical forms. The origin
of the soft-repulsive shoulder is an averaged effect reflecting
changes in the electronic structure of oxygen ion complexes
in various bonding environments encountered in the reference
high temperature melt simulations of silica; these are effec-
tively captured by our force-matching approach. The soft-
repulsive shoulder feature of the O–O interaction potential
affects the glass structure under pressures above 10 GPa in a
fashion different from models that do not have this feature. We
demonstrate that this feature leads to additional complexity,
and in particular the existence of a new metastable high den-
sity state in the potential energy surface of the silica glass that
is not present in the other models we examined. Additionally,
in contrast to existing pairwise potentials lacking this soft-
repulsive shoulder, the new potential is able to predict a higher
compression under shock load above 10–20 GPa as compared
to cold compression in agreement with experiment, therefore,
capturing an activation character of transition to high den-
sity state due to oxygen complexation. Thus, we have pre-
sented evidence that properties of interactions within oxygen
sublattice of silica glass is very important to describe glass
polymorphism.
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A PERFECTLY MATCHED LAYER
FOR PERIDYNAMICS IN TWO DIMENSIONS

RAYMOND A. WILDMAN AND GEORGE A. GAZONAS

A perfectly matched layer (PML) absorbing boundary is formulated for and numerically applied to peri-
dynamics in two dimensions. Peridynamics is a nonlocal method, derived to be insensitive to discontinu-
ities, more easily simulating fracture. A PML is an absorbing boundary layer, which decays impinging
waves exponentially without introducing reflections at the boundary between the computational region
and the absorbing layer. Here, we use state-based peridynamics as PMLs are essentially anisotropic
absorbing materials, therefore requiring arbitrary material parameters. State-based peridynamics is also
more convenient for auxiliary field formulations, facilitating the implementation of the PML. Results
show the efficacy of the approach.

1. Introduction

Originally introduced in [Silling 2000], peridynamics is a nonlocal formulation of elastodynamics, which
can more easily incorporate discontinuities such as cracks and damage. Derivatives of field variables
in the classical continuum model are replaced by integrals over a small neighborhood of microelastic
kernels that replace standard constitutive relations. In its discretized form, an elastic solid is treated as
a collection of particles or nodes, each connected to its neighbors by breakable bonds. Bond breakage
can be defined to occur when a bond is stretched past some predetermined limit. After a bond is broken,
any supported force transfers to the remaining bonds, increasing their supported load, and encouraging
more breakage. Eventually, this process autonomously leads to cracking and failure. The end result is
a method capable of predicting crack growth in brittle elastic materials [Gerstle et al. 2005; Silling and
Askari 2005; Emmrich and Weckner 2006; Demmie and Silling 2007; Kilic et al. 2009; Ha and Bobaru
2010].

Over the last decade, peridynamics has been extended past its original formulation. First, the nu-
merical method originally outlined in [Silling and Askari 2005] has been extended to include adaptive
refinement [Bobaru et al. 2009], replaced with different quadrature rules [Emmrich and Weckner 2007],
and implemented in a parallel, molecular dynamics code [Parks et al. 2008]. In addition, it has been
extended to different material types including viscoplastic [Foster et al. 2010], micropolar [Gerstle et al.
2011], and nanofiber networks [Bobaru 2007]. It has also been applied to different fields such as heat con-
duction [Bobaru and Duangpanya 2010] and electromigration [Gerstle et al. 2008]. Aside from practical
applications, the mathematics behind the approach have been studied: Weckner et al. [2009] derived a
Green’s function for the peridynamic equation and Weckner and Abeyaratne [2005] discussed dispersion
relations for various kernels. Most importantly for this work, state-based peridynamics was introduced,

Keywords: peridynamics, perfectly matched layer, absorbing boundary.
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allowing for more flexible constitutive relations [Silling et al. 2007]. As will become clear later, state-
based peridynamics allows for an auxiliary field formulation, which is necessary for the implementation
of a perfectly matched layer (PML).

While most peridynamics work has focused on simulating problems with free or fixed boundary
conditions, there are applications in which the simulation of an infinite medium may be useful, such
as wave or crack propagation in a half-space. Absorbing boundary conditions are a way of simulating
an infinite medium by absorbing any impinging waves at the computational boundaries so they do not
reflect back into the simulation. A PML is such an absorbing boundary, and was originally introduced
for electromagnetic simulations [Berenger 1994; Chew and Weedon 1994]. PMLs differ from traditional
absorbing boundary conditions in that they are an absorbing layer, placed between the computational
region of interest and the truncation of the grid or mesh. They can also be thought of as an anisotropic
absorbing material, which is why the flexibility of a state-based peridynamics is necessary.

PMLs have two important qualities: First, waves in a PML decay exponentially, and second, in their
analytic form, no waves reflect at the interface of a PML and the computational region. These properties
make them ideal for simulating wave propagation in infinite, unbounded regions. Since their introduction,
PMLs have been extended to many different types of media [Uno et al. 1997; Teixeira and Chew 1998;
Dong et al. 2004], different numerical methods [Pissoort and Olyslager 2003; Pissoort et al. 2005; Alles
and van Dongen 2009], and different fields [Chew and Liu 1996; Liu and Tao 1997; Festa and Nielsen
2003].

This paper implements a peridynamic formulation of elastodynamics in two dimensions and terminates
the boundary with a PML. As is discussed, the use of a PML is facilitated with an auxiliary field formu-
lation, derived from state-based peridynamics, and the peridynamic equation is broken into five coupled
equations. A PML was applied to one-dimensional peridynamics in [Wildman and Gazonas 2011], which
used the results of [Du et al. 2012] to formulate an auxiliary field equation. This approach required a
matrix representation of the auxiliary field, which may be memory prohibitive in higher dimensions.

The remainder of the paper is organized as follows: Section 2 discusses the formulation of peridynam-
ics, PMLs, and their numerical implementation; Section 3 gives some results; and Section 4 summarizes
the report and details future work.

2. Formulation

In this section, a PML is formulated for state-based two-dimensional peridynamics. First, in Section 2A,
a linear elastic, state-based peridynamics formulation will be reviewed. Next, Section 2B reviews the for-
mulation of a PML. Section 2C then applies the PML to state-based peridynamics, and finally Section 2D
discusses a discretization of the formulation using the standard node-based peridynamics method.

2A. Two-dimensional, state-based peridynamics. The continuum equation of motion in an elastic solid
can be stated as

ρ
∂2

∂t2 u = ∇ · σ + b, (2-1)

where (in two dimensions) ρ(x) [kg/m2] is the density, u(x, t) [m] is the displacement, σ (x, t) [N/m] is
the stress tensor, and b(x) [N/m2] is a body force [Malvern 1969]. (Throughout, boldface type denotes
a vector and a boldface variable with an overbar denotes a tensor.) Equation (2-1) is a local formulation
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because the divergence of the stress (and gradient of the displacement implied in its definition) represents
a local operation on a variable. In other words, the action of ∇ · σ only depends on σ at a single spatial
point. In problems involving discontinuities, such as cracks, the divergence at such discontinuities is
not well defined, leading to numerical implementation problems. Peridynamics proposes replacing ∇ · σ

with a nonlocal operation that nonetheless also represents a force

ρ
∂2

∂t2 u =

∫

�x

f (u′
− u, x′

− x)dVx′ + b, (2-2)

where f (x′
− x, u′

− u) [N/m4] represents a micromodulus force function (or kernel) that defines a
force between two points and �x represents a horizon or maximum distance over which two points can
influence each other [Silling 2000]. The micromodulus function becomes the constitutive response in
the formulation, replacing Hooke’s law in the continuum case. In its original form, the micromodulus
function was developed as a simple elastic response following

f (η, ξ) = c
ξ+η

|ξ+η|

|ξ+η|−|η|

|η|
H(δ−|ξ |), (2-3)

where c is some constant, H( · ) is the Heaviside step function, and δ is the radius of the horizon region,
which defines �x [Silling 2000]. Note that in contrast to [Silling 2000], for simplicity there is no history-
dependent failure term in (2-3). Equation (2-3) is isotropic, though not strictly linear in terms of u.
Linearizing (2-3) gives

f (η, ξ) = C(ξ)η, C(ξ) = C(ξ)
ξ ⊗ ξ

|ξ |3
, C(|ξ |) = cH(δ − |ξ |), (2-4)

where ⊗ denotes an outer product [Silling 2000]. The function C(|ξ |) is the kernel function, typically
taken to be a Heaviside function. Here, we will also use a Gaussian kernel function, which tends to give
smoother results with less apparent ringing in the solution. A Gaussian kernel is defined as

CGauss(|ξ |) = ce−(|ξ |/δ)2
. (2-5)

For the Gaussian kernel, the horizon δ does not delineate a strict bond family as the Heaviside function,
but describes the decay of the kernel. To determine the bond family, �x , a small, arbitrary value can be
chosen as a cutoff for the kernel. Note that the cutoff has a large impact on the efficiency of the method:
too small a cutoff and a large number of bonds must be included in each calculation. Throughout, we
set the cutoff to 10−6.

A PML application requires an auxiliary field formulation, as it is essentially an anisotropic absorbing
material, if a nonphysical one. Consequently, a state-based peridynamic formulation [Silling et al. 2007]
is necessary to implement the required constitutive relations in the absorber. State-based peridynamics
uses a family of bonds to determine a given force rather than a single bond independently. This more
general approach allows for inelastic behavior and more general elastic behavior, and is governed by

ρ
∂2

∂t2 u =

∫

�x

(T [x, t]〈x′
− x〉 − T [x′, t]〈x − x′

〉)dVx′ + b, (2-6)

where T [x, t]〈x′
− x〉 is a peridynamic vector state, with the parameters in the square brackets indicating

variables that act as arguments to any functions referenced in the vector state and the variables in the
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angle brackets acting as arguments to the vector state itself. In the state-based formulation of [Foster
et al. 2010], the deformation gradient, given by

F = I + u∇, (2-7)

can be approximated as a vector state as

F[x, t] =

[∫

�x

C(|ξ |)(Y [x, t]〈ξ〉 ⊗ ξ)dVx′

]
K−1, (2-8)

where ξ = x′
− x, K is a shape tensor given by

K [x, t] =

∫

�x

C(|ξ |)(ξ ⊗ ξ)dVx′, (2-9)

and Y is a deformation vector state given by

Y [x, t]〈ξ〉 = η + ξ , (2-10)

with η = u[x′, t] − u[x, t] [Foster et al. 2010].
The deformation gradient can now be substituted into Hooke’s law and strain-displacement relations,

giving a stress term σ in terms of u in plane strain

ρ
∂2

∂t2 u = ∇ · σ = ∇ · (c̄ : ε), (2-11)

where

ε[x, t] =
1
2 (∇u + u∇) =

1
2 (F[x, t] + F[x, t]T

− 2I), (2-12)

c̄ =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 1 − 2ν


 =




λ + 2µ λ 0
λ λ + 2µ 0
0 0 2µ


 , (2-13)

E is the Young’s modulus, ν is the Poisson’s ratio, and λ and µ are the Lamé parameters. Ultimately,
the peridynamic vector state T for plane strain elasticity is given by

T [x, t]〈ξ〉 = C(|ξ |)σ [x, t]K−1ξ . (2-14)

2B. Perfectly matched layer. The first step in formulating a PML is to construct an analytic continuation
to the complex plane

x̂ = x + ig(x), (2-15)

where g(x) is a given function describing the deformation [Johnson 2010]. This mapping has the effect
of transforming traveling waves of the form eikx , where k = ω/c is the wave number, into evanescent
waves of the form eikx e−kg(x), thus attenuating such waves in the PML region.

Substituting x̂ into the above equations would yield a viable method, though one that requires complex
coordinates. A simpler solution is to change variables back to the real part x , which requires a relation
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for the differential quantities, given as

∂ x̂ =

[
1 + i d

dx
g
]
∂x; (2-16)

partial differential quantities are used, as this is used as a substitution for the above equations involving
functions of both x and t [Johnson 2010]. A convenient choice for g(x) is

d
dx

g(x) =
φ(x)

ω
, (2-17)

because the 1/ω factor creates a frequency-independent attenuation rate in dispersionless materials [John-
son 2010]. (Peridynamic formulations are not dispersionless, as discussed in [Weckner and Abeyaratne
2005], though this standard choice is used for simplicity.) Finally, the substitution that must be made for
any spatial derivative can be written

∂

∂x
→

1
1 + iφ(x)/ω

∂

∂x
. (2-18)

Before applying a PML directly to the peridynamic equation, (2-1) will be treated so that the PML ap-
plication to peridynamics will be clear. It is convenient to convert (2-1) to the Laplace domain, assuming
e−st time dependence, giving

ρs2ũ = ∇ · σ̃ , (2-19)

where the Laplace transform of a variable is indicated by �{ f } = f̃ . Next, we express the wave equation
as two coupled first-order partial differential equations, the first in ũ and the second in s ˜

ψ = σ̃ :

ρs ũ = ∇ ·
˜
ψ, s ˜

ψ = c̄ : ε̃. (2-20)

Expanding (2-20) into components gives five coupled equations:

ρsũx =
∂

∂x
ψ̃x +

∂

∂y
ψ̃τ , ρsũ y =

∂

∂x
ψ̃τ +

∂

∂y
ψ̃y,

sψ̃x = (λ+2µ)
∂

∂x
ũx +λ

∂

∂y
ũy, sψ̃y = λ

∂

∂x
ũx +(λ+2µ)

∂

∂y
ũy, sψ̃τ = µ

(
∂

∂y
ũx +

∂

∂x
ũy

)
.

(2-21)

Here, we will make the substitution given in (2-18) for all spatial derivatives, written as

∂

∂x
→

s
s + φ(x)

∂

∂x
(2-22)

in the Laplace domain, and later define φx and φy in the desired absorbing boundary locations. Using
(2-21)1 as an example, we get

ρsũx =
s

s+φx

∂

∂x
ψ̃x +

s
s+φy

∂

∂y
ψ̃τ

=⇒ ρ(s + φx)(s + φy)ũx = (s + φy)
∂

∂x
ψ̃x + (s + φx)

∂

∂y
ψ̃τ . (2-23)

The remaining components of (2-21) can be expanded in a similar way.
Wherever φ > 0, u and σ will exponentially decay. Before discretization, any change in φ will not

result in any reflections, so the region of interest would have φ = 0, and the PML region could have a
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discontinuity in applying φ. In practice, however, numerical reflections can result from discontinuous
material parameters after discretization, so it is better to use a smooth transition for φ. Here, we divide
the PML region into two parts, one in which φ is a constant value, and the other in which φ ramps up
to that constant value following a Gaussian distribution. An example is shown in Figure 1, with the
constant region set to 0.1 m and the Gaussian region 0.2 m. The variance of the distribution is set so that
the minimum value in the Gaussian region is 10−6.

2C. Auxiliary field formulation and PML application. Peridynamics is not typically stated in terms of
Cartesian components as in (2-24), but we can expand the state-based formulation into components and
match terms to (2-24). Following this approach yields a viable method for performing PML substitutions.

First, the state-based peridynamic equations (2-6)–(2-14) can be written explicitly as

ρsũx [x, s]=
∫

�x

C(|ξ |)
[
(ψ̃x [x, s]kinv

xx + ψ̃τ [x, s]kinv
yx )ξx + (ψ̃x [x′, s]k ′ inv

xx + ψ̃τ [x′, s]k ′ inv
yx )ξx

]
dVx′

+

∫

�x

C(|ξ |)
[
(ψ̃x [x, s]kinv

xy + ψ̃τ [x, s]kinv
yy )ξy + (ψ̃x [x′, s]k ′ inv

xy + ψ̃τ [x′, s]k ′ inv
yy )ξy

]
dVx′,

ρsũ y[x, s] =

∫

�x

C(|ξ |)
[
(ψ̃τ [x, s]kinv

xx + ψ̃y[x, s]kinv
yx )ξx + (ψ̃τ [x′, s]k ′ inv

xx + ψ̃y[x′, s]k ′ inv
yx )ξx

]
dVx′

+

∫

�x

C(|ξ |)
[
(ψ̃τ [x, s]kinv

xy + ψ̃y[x, s]kinv
yy )ξy + (ψ̃τ [x′, s]k ′ inv

xy + ψ̃y[x′, s]k ′ inv
yy )ξy

]
dVx′,

sψ̃x [x, s] = (λ + 2µ)

[∫

�x

C(|ξ |)(Ỹx [x, s]ξx kinv
xx + Ỹx [x, s]ξykinv

yx )dVx′ − 1
]

+ λ

[∫

�x

C(|ξ |)(Ỹy[x, s]ξx kinv
xy + Ỹy[x, s]ξykinv

yy )dVx′ − 1
]
,

sψ̃y[x, s] = λ

[∫

�x

C(|ξ |)(Ỹx [x, s]ξx kinv
xx + Ỹx [x, s]ξykinv

yx )dVx′ − 1
]

+ (λ + 2µ)

[∫

�x

C(|ξ |)(Ỹy[x, s]ξx kinv
xy + Ỹy[x, s]ξykinv

yy )dVx′ − 1
]
,

sψ̃τ [x, s] = µ

∫

�x

C(|ξ |)
(
Ỹx [x, s]ξx kinv

xy + Ỹx [x, s]ξykinv
yy

)
dVx′

+ µ

∫

�x

C(|ξ |)
(
Ỹy[x, s]ξx kinv

xx + Ỹy[x, s]ξykinv
yx

)
dVx′, (2-24)

where

K−1
=

[
kinv

xx kinv
xy

kinv
yx kinv

yy

]
. (2-25)

Though no derivatives appear in (2-24), the correspondence of each term to those in (2-21) is apparent —
with partial derivatives following the component of ξ — and the PML substitutions can be made. For
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Figure 1. An example of a PML across one dimension using a Gaussian ramp.

example, the first equation in (2-24) can be rewritten as

ρ(s + φx)(s + φy)ũx = (s + φy)

∫

�x

C(|ξ |)
(
ψ̃x [x, s]kinv

xx + ψ̃xy[x, s]kinv
yx

)
ξx dVx′

+ (s + φy)

∫

�x

C(|ξ |)
(
ψ̃x [x′, s]k ′ inv

xx + ψ̃xy[x′, s]k ′ inv
yx

)
ξx dVx′

+ (s + φx)

∫

�x

C(|ξ |)
(
ψ̃x [x, s]kinv

xy + ψ̃τ [x, s]kinv
yy

)
ξy dVx′

+ (s + φx)

∫

�x

C(|ξ |)
(
ψ̃x [x′, s]k ′ inv

xy + ψ̃τ [x′, s]k ′ inv
yy

)
ξy dVx′, (2-26)

with the remaining equations following similarly.

2D. Discretization. For the temporal discretization, forward Euler will be used to simplify the presen-
tation and implementation. Higher-order temporal discretizations can be used, though they lead to more
terms in what follows. The Laplace domain was used throughout to facilitate the temporal discretization
of the final equations. Because differentiation in the Laplace domain is represented by s, approximations
to s can be directly substituted in terms of the z-transform. This technique is used in the design of digital
filters, where it is known as “filter design by approximation of derivatives” or “the bilinear transforma-
tion” [Proakis and Manolakis 1996], and in integral equation methods where it is known as “convolution
quadrature” [Lubich 1988a; 1988b], or “finite difference delay modeling” [Wang et al. 2008]. A forward
Euler approximation can be stated as the substitution

s →
z−1
�t

, (2-27)

where z is the z-transform1 variable representing a unit advance and �t is the time step size. Substitution

1The z-transform is defined here as X (z) = Z{x[n]} =
∑

∞
n=0 x[n]z−n for causal signals.
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into (2-26) gives

ρ(z−1+�tφx)(z−1+�tφy)Ux = (z−1+�tφy)

∫

�x

C(|ξ |)
(
�x [x, z]kinv

xx +�τ [x, z]kinv
yx

)
ξx dVx′

+(z−1+�tφy)

∫

�x

C(|ξ |)
(
�x [x′, z]k ′ inv

xx +�τ [x′, z]k ′ inv
yx

)
ξx dVx′

+(z−1+�tφx)

∫

�x

C(|ξ |)
(
�x [x, z]kinv

xy +�τ [x, z]kinv
yy

)
ξy dVx′

+(z−1+�tφx)

∫

�x

C(|ξ |)
(
�x [x′, z]k ′ inv

xy +�τ [x′, z]k ′ inv
yy

)
ξy dVx′, (2-28)

where capital letters indicate the z-transform of a variable. Expanding the quadratic term on the left-hand
side gives

(z−1+�tφx)(z−1+�tφy) = �t2φxφy + �tφx z − �tφx + �tφyz + z2
− z − �tφy − z + 1

= z2
+ (�tφx +�tφy −2)z + �t2φxφy − �tφx − �tφy + 1. (2-29)

Multiplying by z−2 and rearranging gives an update equation in terms of z, which can be converted
to a time-stepping method via the inverse z-transform2 (assuming vanishing initial conditions and an
appropriate region of convergence) as

ux [x, l] = −(γx + γy)ux [x, l−1] − γxγyux [x, l−2]

+
�t
ρ

∫

�x

C(|ξ |)
(
ψx [x, l−1]kinv

xx + ψτ [x, l−1]kinv
yx

)
ξx dVx′

+
�t
ρ

∫

�x

C(|ξ |)
(
ψx [x′, l−1]k ′ inv

xx + ψτ [x′, l−1]k ′ inv
yx

)
ξx dVx′

+
�t
ρ

γy

∫

�x

C(|ξ |)
(
ψx [x, l−2]kinv

xx + ψτ [x, l−2]kinv
yx

)
ξx dVx′

+
�t
ρ

γy

∫

�x

C(|ξ |)
(
ψx [x′, l−2]k ′ inv

xx + ψτ [x′, l−2]k ′ inv
yx

)
ξx dVx′

+
�t
ρ

∫

�x

C(|ξ |)
(
ψx [x, l−1]kinv

xy + ψτ [x, l−1]kinv
yy

)
ξy dVx′

+
�t
ρ

∫

�x

C(|ξ |)
(
ψx [x′, l−1]k ′ inv

xy + ψτ [x′, l−1]k ′ inv
yy

)
ξy dVx′

+
�t
ρ

γx

∫

�x

C(|ξ |)
(
ψx [x, l−2]kinv

xy + ψτ [x, l−2]kinv
yy

)
ξy dVx′

+
�t
ρ

γx

∫

�x

C(|ξ |)
(
ψx [x′, l−2]k ′ inv

xy + ψτ [x′, l−2]k ′ inv
yy

)
ξy dVx′, (2-30)

2The only necessary property is the delay: x[n − k] ↔ z−k X (z)
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where l is the time step number, γx = �tφx −1, and γy = �tφy −1. A stress component update equation
becomes, for example,

ψx [x, l] = −(γx + γy)ψx [x, l−1] − γxγyψx [x, l−2]

+ �t (λ + 2µ)

[∫

�x

C(|ξ |)(Yx [x, l−1]ξx kinv
xx + Yx [x, l−1]ξykinv

yx )dVx′ − 1
]

+ �tγy(λ + 2µ)

[∫

�x

C(|ξ |)(Yx [x, l−2]ξx kinv
xx + Yx [x, l−2]ξykinv

yx )dVx′ − 1
]

+ �tλ
[∫

�x

C(|ξ |)(Yy[x, l−1]ξx kinv
xy + Yy[x, l−1]ξykinv

yy )dVx′ − 1
]

+ �tλγx

[∫

�x

C(|ξ |)(Yy[x, l−2]ξx kinv
xy + Yy[x, l−2]ξykinv

yy )dVx′ − 1
]
. (2-31)

Finally, (2-30) can be discretized spatially using a simple one-point integration and point match testing,
giving, for the x-component of displacement,

ux [xi , l] = −(γx + γy)ux [xi , l−1] − γxγyux [xi , l−2]

+
�t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−1]kinv
i,xx + ψτ [xi , l−1]kinv

i,yx)ξx Vj

+
�t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−1]kinv
j,xx + ψτ [xj , l−1]kinv

j,yx)ξx Vj

+
�t
ρ

γy

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−2]kinv
i,xx + ψτ [xi , l−2]kinv

i,yx)ξx Vj

+
�t
ρ

γy

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−2]kinv
j,xx + ψτ [xj , l−2]kinv

j,yx)ξx Vj

+
�t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−1]kinv
i,xy + ψτ [xi , l−1]kinv

i,yy)ξy Vj

+
�t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−1]kinv
j,xy + ψτ [xj , l−1]kinv

j,yy)ξy Vj

+
�t
ρ

γx

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−2]kinv
i,xy + ψτ [xi , l−2]kinv

i,yy)ξy Vj

+
�t
ρ

γx

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−2]kinv
j,xy + ψτ [xj , l−2]kinv

j,yy)ξy Vj , (2-32)

where Vj is the volume of node j , Ni is the number of nodes in the neighborhood of node i , and
ξi j = xj − xi .
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3. Results

The PML was tested on two types of problems, first a wave propagation problem, to demonstrate the
effectiveness of the PML, and second a crack propagation problem.

3A. Wave propagation. The PML was first tested on a wave propagation problem with PML boundary
layers and a Gaussian distribution as an initial condition. Specifically, the x-directed displacement was
set to

ux(x, t = 0) = e−200|x− pmid|
2
, (3-1)

where pmid is the midpoint of the region, which in this example was defined as 0 ≤ x, y ≤ 1 and discretized
with �x = �y = 0.01 m. The Young’s modulus for the region was set to 1 Pa, the Poisson’s ratio was
1
4 , and the density was 1 kg/m3. The PML region was defined as the 0.3 m border around the 1 m × 1 m
region and used a Gaussian ramp with a width of 0.2 m, finally reaching a maximum of 50 s−1 for the
remaining 0.1 m. For the Gaussian kernel, a horizon size of δ = 1.1�x was used, and for the Heaviside
kernel, a horizon of δ = 3.1�x was used. The kernel constant c in (2-4) and (2-5) is set to 1 throughout.

The simulation was run with both the Heaviside and Gaussian kernels, with the total strain energy
shown in Figure 2. The Gaussian kernel (the dotted line) shows the largest drop in energy, reaching a
minimum of 5.6 × 10−7, and the Heaviside kernel (the dashed line) decreases to 1. × 10−4. A bounded
simulation is shown for reference (the solid line), which used a fixed displacement boundary condition
and the Gaussian kernel. Figure 3 shows a waterfall plot of the x-directed displacement along the y =

0.5 line for the Gaussian kernel with the PML function φx shown in gray on the far end of the plot
(corresponding to t = 1 s). Figure 4 shows the absolute value of the x-directed displacement at the edge
of the PML region, in simulations terminated by a PML and with a fixed boundary condition. The wave
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Figure 2. Total strain energy in a simulation terminated by a PML.
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Figure 3. The x-directed displacement at y = 0.5 m, terminated by a PML.
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Figure 4. The x-directed displacement at x = 0.3, y = 0.5 m. The solid line shows
results terminated by a PML, and the dashed line used a fixed boundary condition.

is absorbed at the boundary with minimal reflections: as can be seen, the plots align for a time, and where
they deviate (indicating a reflection from the hard boundary), the PML simulation remains in decay.

For verification, the method was compared with an exact analytical solution. Consider a cylindrically
symmetric wave propagating in an infinite elastic medium with the same constitutive parameters as the
above example, and with an initial condition given by

u0(r) = b
( r

a

)[
1 +

( r
a

)2]−3/2
, (3-2)
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Figure 5. The x-directed displacement at x = 0.5, y = 0 m. The solid line shows the
exact solution and the dashed line results terminated by a PML.

where here we take b = 1 and a = 0.1. The exact solution is given by [Eringen and Suhubi 1975]

u(r, t) =
br

√
2a R6

√
R2 + α(2α − R2), α = 1 +

r2
− c2t2

a2 , R2
=

√
α2 +

4c2t2

a2 , (3-3)

where c is the longitudinal wave speed. This problem was simulated in a two-dimensional region, 2 m ×

2 m and �x = �y = 0.01 m, terminated by a PML with the same dimensions and magnitude as the
above problem. The Gaussian kernel was used with a horizon size of δ = 0.75�x , with an actual cutoff
of 0.028 m. The results are shown in Figure 5, with the exact solution shown as the solid line and the
peridynamic solution shown as the dashed line. The peridynamic solution shows good agreement with
the exact solution and minimal reflections from the PML boundary.

3B. Crack propagation. Crack propagation in a half-space can be useful for modeling physical phenom-
ena such as indentation experiments. As an example, we model such a problem as a body force applied
to a finite region with small precracks in a region terminated on three sides with PMLs. One addition to
the algorithm for this problem was a drag term, used to reduce noise. For crack problems with a sudden
force application, noise and oscillations can cause hot spots and undesirable cracking. To remedy this, a
drag term can be added to smooth oscillations, by adjusting the nodal velocity as

v∗
[xi , l] = (1 − D)v[xi , l] +

D
Nb

Nb∑
j=1

v[xj , l], (3-4)

where D is the drag coefficient and Nb is the remaining number of bonds in the family of node n [Becker
and Lucas 2011].

An absorbing boundary ensures that no reflections from the boundaries interfere with the crack prop-
agation, possibly causing it to deviate. Figure 6 gives a schematic of the problem: the extent of the
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Figure 6. Schematic diagram of the problem for crack propagation in a half-space.

computation region is designated by the solid line, the PML ramp begins at the dashed line, and the PML
plateaus at the dotted line. The computational region was 70 mm wide and 35.25 mm high, the PML
region began at 15 mm from each edge (except the top) and peaked at 5 mm to a value of 5 × 106 s−1.
The node spacing was 0.496 mm and the time step size was 1 ns. For material values, the density was
2235 kg/m3, the Young’s modulus was 65 GPa, the Poisson’s ratio was 0.2, and the fracture criteria used
a fracture energy of 204 J/m2. The failure criteria used in this simulation was bond-based, that is, a bond
failed if it was stretched past a given limit, determined by the fracture energy [Ha and Bobaru 2010].
The maximum relative bond stretch was then 2.971 × 10−3. The load was applied across a 10 mm region,
centered at the top surface, with precracks on each edge with a length of two nodes or 0.993 mm. The
simulation was run for a total of 10 µs, and the cracks were measured manually from the edge of the
precracks to the extent of the damaged area.

Figure 7 shows a result which had an applied load of 250 N, yielding a 2.11 mm crack. Figure 8 shows
a close-up of the damaged area from Figure 7. As can be seen, the crack extends three nodes down and
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0 0.217 0.433

Damage (10000/10000) Y

XZ

Figure 7. Damage map resulting from a 250 N applied load after 10 µs.
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Figure 8. Close-up of damage map from Figure 7.

three nodes across. Finally, the applied load was varied between 140 N and 500 N, with the distance
between the crack tips (the crack separation) versus the applied load shown as the dots in Figure 9.
A curve, shown as the solid line in Figure 9, was fit using the form

d = Aps
+ B, (3-5)
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Figure 9. Crack separation versus applied force for indentation into an elastic half-space.
Dots represent data points from the peridynamic simulation and the solid line is a curve
fit.
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where d is the crack tip separation distance, p is the applied load, and A = 8.49×10−3 mm/Ns , s = 1.16
and B = 8.15 mm were determined using least squares. The norm of the residual for the curve fit was
1.65 × 10−6.

4. Conclusions

A perfectly matched layer (PML) was applied to peridynamics in two dimensions, allowing for the sim-
ulation of infinite regions. State-based peridynamics was used as more flexible constitutive relations are
necessary to implement a perfectly matched layer, essentially an artificial anisotropic absorbing material.
Standard discretization techniques were used: one-point integration and point-matching for the spatial
discretization and forward Euler for the temporal discretization. Results show that the PML absorbs
incoming waves and results in minimal reflections at the boundary between the absorbing layer and the
computational region. A Gaussian function was used as a ramp to avoid these numerical reflections.
Finally, a crack propagation problem was simulated in a half-space, modeling indentation problems.
A three-dimensional implementation of the method would be straightforward, following an identical
procedure for the peridynamics and PML formulation.
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Using quantum mechanics (QM) and classical force-field based molecular dynamics (FF), we
have calculated the principle shock Hugoniot curves for numerous amorphous polymers including
poly[methyl methacrylate] (PMMA), poly[styrene], polycarbonate, as well as both the amorphous
and crystalline forms of poly[ethylene]. In the FF calculations, we considered a non-reactive force
field (i.e., polymer consistent FF). The QM calculations were performed with density functional the-
ory (DFT) using dispersion corrected atom centered pseudopotentials. Overall, results obtained by
DFT show much better agreement with available experimental data than classical force fields. In par-
ticular, DFT calculated Hugoniot curves for PMMA up to 74 GPa are in very good agreement with
experimental data, where a preliminary study of chain fracture and association was also performed.
Structure analysis calculations of the radius of gyration and carbon-carbon radial distribution func-
tion were also carried out to elucidate contraction of the polymer chains with increasing pressure.
[http://dx.doi.org/10.1063/1.4767394]

I. INTRODUCTION

The behavior of polymers under extreme conditions (high
pressure and temperature) is of interest for both civilian and
military applications, such as polymer-bonded explosives,
coatings, adhesives, light-weight armor for both military and
civilian police forces, civilian protective equipment such as
sports equipment, and automobile structural materials. In or-
der to improve the performance of these materials, insight
into the behavior of these materials under high pressure is
necessary. Although the material properties and response at
extreme conditions can be determined through shock exper-
iments, results are not easily obtained with available instru-
mentation because of difficulties in traversing a large range
of pressures (up to hundreds of gigapascals [GPa]) and tem-
peratures (thousands of Kelvin). In addition, non-adiabatic,
non-equilibrium behavior behind a shock front occurs at ex-
tremely short time- and length scales (nanoscale), thus posing
problems in characterizing the material using current exper-
imental capabilities. To further understand shocked systems,
simulation methods such as quantum mechanics (QM) and
force field (FF) based molecular dynamics (MD) can be used
to provide insight into atomic-level phenomena that is not
amenable to experimentation, specifically by calculation of
the shock Hugoniot of the material. The shock Hugoniot is
the locus of thermodynamic states accessible by shock load-
ing from a given thermodynamic initial condition.

FF and QM (using density functional theory (DFT)) cal-
culations of shock Hugoniot curves for polymers in the lit-
erature have highlighted the potential of simulation methods
as a valid way to predict material behavior under extreme
conditions. Mattsson and co-workers1, 2 calculated curves
for two polymeric systems polyethylene (PE) and poly(4-
methyl-1-pentene) using both FF and DFT for pressures

up to 350 and 200 GPa, respectively. For their FF simu-
lations, they considered both reactive (ReaxFF,3 AIREBO4)
and non-reactive (OPLS,5 exp-66, 7) force fields, while they
used the Armiento-Mattsson (AM05)8 functional for their
DFT simulations. Comparing the FF calculations, they found
that both polymers were well described by the exp-6 force
field and ReaxFF, where the former was accurate for weak
shocks and the latter for a larger range of shock. For very
strong shocks up to 80 GPa, only the DFT simulations were
able to capture the correct behavior. Wang et al.9 performed
PW91 DFT simulations using the projector augmented wave
pseudopotential for polystyrene (PS) for pressures between
22 and 790 GPa; where they observed qualitatively good
agreement with experimental data. Grujicic et al.10 used the
condensed-phase optimized molecular potentials for atomic
simulation studies (COMPASS)11 force field in nonequi-
librium MD to study the generation and propagation of
shock waves, where shock Hugoniot relations were deter-
mined for polyurea in reasonable agreement with experiment.
Hooper and co-workers12 calculated the Hugoniot curves for
the following polymer binders: poly(dimethylsiloxane), 1,4-
poly(butadiene), and Estane R© using FF simulations utilizing
a quantum-chemistry-based potential, where they observed
good agreement at relatively high pressures. Even so, these
studies are limited to only a few polymers with most rely-
ing on classical force fields. We intend to expand investiga-
tions using both a DFT approach and a polymer derived force
field in order to further elucidate the high pressure behavior
of polymeric materials.

QM calculations can be performed using DFT where
the electronic structure of a many-body system is deter-
mined through an electronic density instead of a wave func-
tion. Although conventional DFT has been largely success-
ful in modeling strongly interacting systems, it is unable

0021-9606/2012/137(20)/204901/11/$30.00 137, 204901-1
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to fully capture van der Waals (vdW) interactions due to
an inadequate description of dispersion.13, 14 Various meth-
ods exist to remedy this deficiency, including semiem-
pirical C6/R6 corrections,15–19 non-local vdW corrected
functional,20, 21 highly parameterized DFT functional,22 the
symmetry-adapted perturbation theory parameterized disper-
sionless DFT method23, 24 and the dispersion corrected atom
centered pseudopotentials (DCACPs), in which adjustments
are made to the pseudopotential to correct for dispersion.25, 26

In our study, we use DCACPs26 which have been shown to
be applicable to a diverse range of systems and allows for
the treatment of larger periodic systems than those obtainable
by more rigorous wave function calculations.27–31 The atomic
pseudopotentials consist of both a local and a high-order an-
gular momentum dependent nonlocal term that act on differ-
ent length scales, where the nonlocal term is parameterized
using highly accurate wave function based methods.

Although force-field based methods allow for much
larger systems sizes than QM methods, the accuracy of the
results are highly dependent on the potential functions acting
between atoms. Thus, it is important to determine the qual-
ity and applicability of the force field. Therefore, in order to
properly depict the material properties of materials subjected
to the extreme temperatures and pressures corresponding to
shock conditions, force fields must also be accurate for both
the shocked and unshocked states. This will be one of the
main goals of this paper, i.e., to determine the pressures for
which the empirical force fields adequately represent the sys-
tems of interest. In addition, during shock experiments bonds
between atoms in the material may break, and the formation
of new reaction products can occur. This behavior will require
the use of a reactive potential whose parameterization is cur-
rently an area of interest.3, 32 Since we only considered low
to moderate pressures and compressions, we did not consider
a reactive force field in this paper, which are 50-100 times
more expensive than non-reactive force fields.33 However,
preliminary results using a reactive force field can be found in
Ref. 34.

Due to limitations associated with both DFT and FF,
there are distinct advantages and disadvantages that must be
assessed in respect to the Hugoniot calculations. To assess the
validity of both simulation methods for polymers, we have
simulated the shock compression of four different polymers
using DFT and FF: poly[methyl methacrylate] (PMMA), PE,
PS, and polycarbonate (PC). Both amorphous and crystalline
PE were considered. DFT simulations were performed with
the CP2K35 program using the BLYP DFT-GGA potential
with DCACPs. In our FF simulations, we used the large-scale
atomic/molecular massively parallel simulator (LAMMPS)36

program with the non-reactive polymer consistent force field
(PCFF) with COMPASS11 charges.

II. COMPUTATIONAL METHODS

A. Hugoniot calculation using
the Erpenbeck approach

Hugoniot state calculations can be performed through
several types of simulations, including one method that di-
rectly calculates material properties behind the shock discon-

tinuity in a shock wave simulation.37 Another method intro-
duced by Erpenbeck38, 39 involves generating an equation of
state for the subsequent evaluation of Hugoniot conservation
relations. An equilibrium uniaxial Hugoniostat method can
also be employed that uses equations of motion which restrain
the system during the simulation such that the time aver-
aged properties correspond to those on the Hugoniot curve.40

Finally, a technique based on the Navier-Stokes equations
for compressible flow, the multiscale shock-wave molecu-
lar dynamics (MSST) technique, follows a Lagrangian point
through the shock wave to calculate shock properties.41

We evaluated the Hugoniot points through the procedure
developed by Erpenbeck,38 which involves performing sev-
eral constant particle, volume, and temperature (NVT) simu-
lations at multiple temperatures for several compressed struc-
tures. The Hugoniot curve consists of the set of (PVT) points
for which the Hugoniot expression

Hg = E − Eo + 1/2(P + Po)(V − Vo) (1)

is zero. This Hugoniot equation is derived from mass, mo-
mentum, and energy balance equations in addition to the def-
inition of enthalpy, where details of the derivation can be
found in Fickett et al.42 In this equation, E is the specific
internal energy (sum of the kinetic and potential energies),
P is the pressure, and V = 1/ρ is the specific volume (ρ is
the density). The subscript “o” refers to the quantity in the
initial unshocked reference state under ambient conditions.
The Hugoniot points were calculated through several simu-
lations, where a series of NVT simulations were performed
over a range of temperatures at a fixed specific volume after
the system is annealed and relaxed. To obtain systems at dif-
ferent specific volumes, the polymer was compressed isotrop-
ically from ambient to an elevated pressure and allowed
to relax under constant temperature and pressure (NPT) at
298 K. Using the relaxed structure obtained at the desired
pressure, we performed a series of NVT simulations. This was
performed in two different ways. In our DFT calculations,
various NVT simulations were performed in parallel at dif-
ferent temperatures, while in the FF calculations the temper-
ature was incrementally increased after a prescribed simula-
tion time (i.e., temperature scan). After the NVT simulation,
the Hugoniot function (Eq. (1)) was evaluated at each tem-
perature; this produces a series of equation-of-state points as
a function of temperature for each specific volume. A linear
interpolation of these points was used to determine the Hugo-
niot temperature, the point at which the function is zero. Sim-
ilarly, a linear interpolation of the corresponding pressures as
a function of temperature was used to determine the Hugoniot
pressure, the pressure corresponding to the Hugoniot temper-
ature. In these calculations, only the two points which bracket
the Hugoniot temperature and pressure were used to calculate
the linear fit.

Experimentalists often report shock Hugoniot data in
terms of the shock velocity (Ust) and particle or mass velocity
(Upt). To obtain these values from the P and V data points, the
following equations can be used:

Ust =
√

Vo(P − Po)

1 − V/Vo

(2)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
192.12.67.147 On: Sun, 09 Mar 2014 15:47:59



   
96

204901-3 Chantawansri et al. J. Chem. Phys. 137, 204901 (2012)

and

Upt =
√

Vo(P − Po)(1 − V/Vo). (3)

The experimental data can be converted into P-V data by
rearranging Eqs. (2) and (3)

V = Vo(Ust − Upt )

Ust

(4)

and

P = Po + UstUpt

Vo

. (5)

B. Sensitivity of the Hugoniot calculation

The effect of varying simulation time, system size, and
chain size on the Hugoniot curve was extensively tested using
the FF method for a model system of PMMA and are pub-
lished in Refs. 34 and 43. In summary, we determined no
significant difference in the Hugoniot curves obtained for a
system with approximately 5000 or 50 000 atoms, where the
smaller system was composed of shorter (45 vs. 100 repeat
units) and fewer (8 vs. 34) chains.

The Hugoniot curve was also found to be relatively in-
sensitive to the simulation time for the reference state, where
values of the reference state after 10 ns or 100 ps of NPT
simulation do not noticeably change the shape of the curve.
In addition, we also determined if it was necessary to further
relax the reference state and the points around the Hugoniot
states that are used to interpolate the Hugoniot temperature
and pressure. Changes in the Hugoniot curves calculations
were explored by performing an additional 10 ns of NVT sim-
ulations; these showed that additional simulation time does
not lead to statistically significant differences in the Hugoniot
curves.

Similar results with respect to system size and simula-
tion time were also verified for other amorphous polymers.
In addition, calculations were found to be relatively insensi-
tive to the number of repeat units in the chain. Although the
concept of chain connectivity was found to be important since
we observed a clear difference in the curve when PMMA was
modeled as a liquid (1 monomer), only a minimal number
of monomers are needed to represent the polymer chain. For
instance, we observed that a chain of 4 monomers was able
to reproduce the Hugoniot curves calculated using chains of
45 and 100 monomers. Even so, this system composed of 4
monomer chains does not exhibit Gaussian behavior, which
can be checked by calculating �R�2/�Rg�2, where R and Rg are
the polymer’s end-to-end distance and radius of gyration, re-
spectively, and the brackets indicate an average over all chains
in the simulation box.44 A value of 6 indicates Gaussian be-
havior. The reference state for the 4-monomer chain system
had a �R�2/�Rg�2 ∼ 7.5, while the larger 100-monomer chain
reference system exhibited a value of �R�2/�Rg�2 ∼ 6.2. This
finding allows us to use oligomeric chains, which do not ex-
hibit the Gaussian behavior of an ideal chain, to approximate
polymer chains for calculations of the shock Hugoniot. This
observation is especially important for our DFT simulations,
where smaller systems are necessary due to the additional

TABLE I. Polymer density as a function of the kinetic energy cutoff for
BLYP DFT-GGA with DCACPs. Experimental values from PMMA, PS, PC
taken from Ref. 48. Experimental values of PE taken from Ref. 49.

Kinetic energy Density (g/cm3)
cutoff (Ry) PMMA PS PC Amorphous PE Crystalline PE

300 1.076 1.021 1.094 0.819 1.062
600 1.078 1.021 1.087 0.82 1.062
900 1.066 1.024 1.089 0.818 1.061
Experimental 1.18 1.05 1.20 0.853 1.004

computational cost of the method. It is also important to note
that the amorphous cell method45 used to produce the initial
configurations did produce chains configurations that were
near Gaussian, where the larger 100-monomer system exhib-
ited �R�2/�Rg�2 ∼ 6.3, while the smaller 4-monomer system
had a �R�2/�Rg�2 ∼ 6.9. A description of the amorphous cell
method is given in Sec. II C.

C. Simulation details: Density functional theory

QM simulations using DFT were performed using
CP2K.35 The BLYP DFT-GGA46, 47 potential was used to-
gether with the DCACPs.26 The DFT calculations were per-
formed at the � point of the Brillouin zone with Gaussian
double-ζ valence basis sets in addition to an auxiliary plane
wave basis set with kinetic energy cutoff of 300 Ry. This cut-
off was deemed sufficient since increasing the value to 600
and 900 Ry was found to change the density of the polymers
of interest by at most 1.4% as seen in Table I. The CP2K de-
fault convergence criteria were used for calculations of ener-
gies and gradients (i.e., 1E-10).

The three-dimensional periodic simulation cells of the
polymers were initially built using the Materials Studio pro-
gram through the amorphous cell module.50 This program
uses a well established Monte Carlo technique to build an
amorphous structure of the polymer followed by the energy
minimization of the bulk structure. The polymeric chains
are built by using rotational isomeric state theory, which
takes into account non-bonded interactions and neighboring
chains during construction.45 Guided by our previous sensi-
tivity analysis with PMMA, every polymer chain was built to
contain at least 4 monomer units. The simulation cell for crys-
talline PE was acquired by producing a supercell of the unit
cell obtained through the Materials Studio structural database.
This process produces infinite chains of PE. The smallest sim-
ulation cell contains a minimum of about 500 atoms, which
appears to be the smallest cell possible to allow for about 50%
volume reduction and approximate, periodic calculations at
the � point of the Brillouin zone. Information on each simu-
lation cells are listed in Table II.

Extensive tests were performed using a PS model where
the effect of different basis sets, kinetic energy cutoff criteria,
optimization, and DFT MD parameters were tested to opti-
mize density. In addition to the BLYP DFT-GGA potential,
the PBE51, 52 DFT was also tested together with the DCACP
pseudopotential. The basis set was also extended to include
polarization functions on hydrogen atoms. We also tested
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TABLE II. Information for each simulation cell for DFT simulations.

# of atoms # of # of repeat
Polymer in simulation cells chains units per chain

PMMA 496 8 4
PC 1200 6 6
PS 528 8 4
Crystalline PE 1008 24 7
Amorphous PE 500 10 8

the TZVP basis set and a kinetic energy cutoff as large as
1200 Ry. Additionally, simulations were performed using a
time step of 0.1 fs and the effect of varying the time con-
stants of the barostat and thermostat were also studied. Us-
ing our initial selection of parameters, basis sets, and plane
wave cutoff, the calculated density of PS is 1.02 g/cm3 which
is in reasonable agreement with the experimental value of
1.05 g/cm3. Varying the basis set and other parameters
changed the value of the density by at most 1%, indicating
a reasonable choice of parameters. It is also worthwhile to
mention that the BLYP potential without DCACPs resulted
in much smaller density of 0.83 g/cm3, thus illustrating the
critical need for the accurate treatment of van der Waals
forces.

The amorphous cells were initially annealed and relaxed
using the COMPASS force field under the Discover module
of Materials Studio. The simulation cell was then subjected
to two to three cycles of minimizations and annealing un-
der constant pressure and temperature conditions where the
temperature was increased from 298 K to 600 K. The lowest
energy structure was then used in the DFT calculations. The
amorphous simulation cells were again annealed in CP2K us-
ing a simplified protocol consisting of one optimization and
NPT_I procedure (constant temperature and pressure simu-
lation using an isotropic cell). The system was then relaxed
for 4 ps under constant volume and temperature conditions
to produce the reference values for the Hugoniot calculations.
Thermostat and barostat were used with time constants of 50
and 200 fs, respectively, with a time step of 0.5 fs.

Following the Erpenbeck procedure, each optimized
polymer unit cell was subjected to an elevated and isotropic
pressure. Snapshots of these simulations were taken at var-
ious V/Vo values and subsequently used in NVT simula-
tions to predict the Hugoniot points as defined in Eq. (1),
where values of the E, V , and P at the reference state and
at a given T where obtained by averaging the last 0.2 ps.
Multiple NVT simulations for up to 2 ps were performed at
various temperatures that bracket the Hugoniot point. The
Hugoniot pressure and temperature were then interpolated
from points that bracket the Hugoniot point as mentioned in
Sec. I. In the case of very high pressures and temperatures
which may lead to bond breaking, the DFT procedure was ver-
ified by performing calculations using the unrestricted DFT
option of CP2K. The MD step of simulations was also low-
ered to 0.15 fs, however, those changes do not affect the
Hugoniot curves.

D. Simulation details: Force field based

FF simulations were performed using the classical
molecular dynamics code LAMMPS.36 We have interfaced
the amorphous polymer builder with LAMMPS using the
commercial visualization package materials processes and
simulations (MAPS).53 MAPS was used to create an periodic
cell of PMMA, PC, and PS and assign the PCFF force field,
where the COMPASS charges were obtained using Materials
Studio.50 As before, the simulation cell for crystalline PE and
the amorphous polymers were obtained through the supercell
method and the Monte Carlo technique, respectively.

To describe the interactions between atoms, we use PCFF
with COMPASS charges. PCFF is a class 2 force field where
the nonbonded interactions are composed of a 9-6 Lennard-
Jones potential (van der Waals) and a Coulombic pairwise
(electrostatic) interaction. Several of the parameters in PCFF
are derived through a least-squares fit54 of ab initio data,
where many of the nonbonded parameters were taken from
the CFF91 force field. These nonbonded parameters were cal-
culated through fitting to molecular crystal data at the am-
bient state based on energy minimization calculations. Al-
though an improved PCFF force field has been developed for
condensed phase applications called COMPASS,11, 55–58 sev-
eral of the force field parameters are proprietary and are not
readily available for use in LAMMPS. COMPASS is an ex-
tension based on PCFF derived through both ab initio and
empirical methods, where the number of molecular classes
covered were extended and the nonbonded parameters were
re-parameterized. Since a limited number of the COMPASS
parameters are published, we utilized its precursor PCFF
where the improved atomic partial charges were taken from
COMPASS.

In COMPASS, partial charges were derived by least-
squares fitting to ab initio quantum mechanical data calcu-
lated from a training set of model compounds at the Hartree-
Fock level with the 6-31G* basis set (HF/6-31G*). These
calculations were further scaled using generic factors to cor-
rect systematic errors in the HF/6-31G* calculations.11 To
determine if the COMPASS partial charges used in our FF
simulations adequately represent our polymers of interest,
they are compared to charges calculated using density func-
tional theory with the M06 functional and 6-31G* basis set
(M06/6-31G*)22, 59 as implemented in GAUSSIAN 09,60 where
the charges were produced to fit the electrostatic potential
at points selected according to the CHarges from Electronic
Potentials using a Grid based method (CHelpG) scheme.60, 61

Although this is a simple method to compare charges, we ob-
serve good agreement between the COMPASS charges and
the calculated partial charges. In addition, we calculated the
density of an amorphous cell composed of PS trimers using
PCFF with PCFF, COMPASS, and QM charges, where we
observe a difference of at most 2%. Since only a minimal
difference in the particle charges and density was observed,
COMPASS charges were used for our FF calculations.

We used a cutoff of 12 Å for the nonbonded 9-6 Lennard-
Jones potential and Coulombic pairwise interactions. The
particle-particle particle-mesh method was used to correct
for long-range electrostatic interactions with a precision of
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TABLE III. Components of polymer simulation cell for FF simulations.

# of atoms # of # of repeat
Polymer in simulation cells chains units per chain

PMMA 5416 8 45
PC 4970 10 15
PS 6420 10 40
Crystalline PE 4680 60 13
Amorphous PE 5016 33 25

1.0E-6.62 Temperature and pressure were controlled using the
Nose-Hoover thermostat with a 100 fs coupling constant and
an isotropic Nose-Hoover barostat with a 1000 fs coupling
constant, respectively. A time step of 1.0 fs was used for all
simulations.

Due to the sensitivity study discussed above and in
Ref. 43, we only considered systems containing approxi-
mately 5000 atoms for our FF calculations. This system size
was sufficient to ensure that the shortest perpendicular dis-
tance between two faces of the simulation cell was at least
twice the maximum cutoff considered, 12 Å. The components
of the polymer simulation cell are described in Table III.

All simulations were initially relaxed using energy min-
imization and annealed through five cycles of heating and
to 600 K and cooling to 298 K at a rate of 0.67 ps/K and
0.1656 ps/K, respectively, which were sufficient to converge
the potential energy. In addition, values for the reference state
(T = 298 K, P = 101 kPa) were obtained from an average
of the entire 100 ps NVT simulation, which was performed af-
ter the minimization and annealing procedure described above
and 100 ps of NPT simulation. After calculating the reference
state, compressed simulation cells were obtained by perform-
ing 100 ps NPT simulations at elevated pressures. We con-
sidered pressures ranging from 2 to 30 GPa in increments
of 2 GPa, producing 15 compressed configurations. For each
compressed system, a temperature ramp was performed in the
NVT ensemble at a rate of 0.005 μs/K until the Hugoniot point
is bracketed. A slower temperature ramp of 0.015 μs/K was
also considered, but the results were not noticeably different.

III. RESULTS

A. Density of the reference state

The calculated DFT densities for the PMMA, PS, PC,
amorphous PE, and crystalline PE reference states can be
found in Table I and vary 8.8%, 2.8%, 8.8%, 4%, and 5.8%,
respectively, from experimental values. The box lengths for
the PMMA, PS, PC, and amorphous PE reference states are
approximately 17 Å, 18 Å, 24 Å, and 17 Å, respectively.
The calculated lattice parameters for the 3 × 4 × 7 crys-
talline PE supercell are 21.14, 19.14, and 18.23 Å for a, b,
and c, respectively, which vary by at most 4.6% from ex-
perimental values. The orthorhombic nature of the crystal
structure is maintained. In the FF simulations, values of the
ambient density were 1.08 g/cm3, 0.95 g/cm3, 1.14 g/cm3,
0.74 g/cm3, and 0.97 g/cm3, for PMMA, PS, PC, amorphous
PE, and crystalline PE, respectively. The densities for PMMA,

FIG. 1. Hugoniot curves for atactic-PMMA. Experimental data were
obtained from Refs. 63 and 64.

PS, PC, amorphous PE, and crystalline PE vary 8.5%, 9.5%,
5%, 13.2%, and 3.4% from experimental values, respectively.
The box length for the cubic simulation cell of PMMA, PS,
PC, and amorphous PE are 38.25 Å, 41.79 Å, 38.18 Å, and
37.27 Å, respectively. The lattice parameters for the 5 × 6
× 13 supercell of crystalline PE were 37, 29.92, and 33.39 Å
for a, b, and c, respectively, where the orthorhombic shape of
the crystal structure was maintained. The lattice parameters
varied by less than 2% from experimental values. Although
the values of density can vary by as much as 8.8% or 13.2%
in DFT and FF simulations, the compressive behavior of the
material may still be captured.

B. Comparision of computational and experimental
Hugionot curves

DFT and FF simulations were performed to predict the
Hugoniot curve for the four polymers, where results are
presented in Figures 1–7. For polyethylene we considered
the amorphous, crystalline, and a mixture of the two forms.
The Hugoniot results are presented in two different represen-
tations, as pressure versus the ratio of the volume to the ref-
erence volume (V/Vo), and as the shock velocity versus the
particle velocity. The predicted values of Hugoniot pressure
and the specific volume were expressed as shock and particle
velocities using Eqs. (2) and (3).

FIG. 2. Hugoniot curves for PC. Experimental data were obtained from
Ref. 63.
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FIG. 3. Hugoniot curve for PS. Experimental data were obtained from
Ref. 65.

FIG. 4. Hugoniot curve for crystalline PE. Theoretical curves were obtained
from Refs. 65, 69, and 72.

FIG. 5. Hugoniot curve for amorphous PE. Theoretical curve were obtained
from Refs. 65, 69, and 72.

FIG. 6. Hugoniot curve for 29% crystalline PE obtained using DFT and
through a simple mixing rule of the DFT calculated Hugoniot curves for the
pure amorphous and crystalline system.

FIG. 7. Comparison of the experimental Hugoniot63 curve for 46% crys-
talline polyethylene with the curve calculated using the mixing rule and the
DFT Hugoniot curves for the pure amorphous and crystalline system.

1. PMMA, PC, and PS

The simulated Hugoniot curves for PMMA are shown in
Figure 1, where we observe close agreement with experimen-
tal data, which was taken from the LASL shock handbook63

and Isbell et al.64 The FF method was able to capture the
correct mechanical response for shocks up to approximately
25 GPa, though deviations are observed at higher shock.
PCFF appears to be too stiff and underestimates the com-
pression data at high pressures for PMMA, where this devia-
tion can at least in part be contributed to the parameterization
of the PCFF force field which was performed under ambient
conditions. On the other hand, DFT predicts the correct shock
values for our entire pressure range, up to approximately
74 GPa. Bond breaking and formation occur at the higher
end of the pressure range and will be discussed in detail in
Sec. III C.

Hugoniot curves for PC and PS are shown in Figs. 2
and 3, respectively, where we again observe better agreement
between our DFT computational results (vs. FF results) with
available experimental data. For PC, we also observe sim-
ilar agreement to that of PMMA with our FF results, but
deviations from the experimental curve occur at lower pres-
sures than with DFT. Our calculations also indicate that the
Lennard-Jones 9-6 potential in the PCFF force field is too
soft for PS, where it overestimates the compression behavior
even at low pressures. Unlike with PMMA, our DFT simula-
tions show deviations from the experimental curve at approx-
imately 25 and 20 GPa for PC and PS, respectively, where
the experimental data exhibit associated volume changes in-
dicative of phase transitions. Wang et al.9 also used DFT to
calculate the Hugoniot curve for PS, but they only consid-
ered pressures above the phase transition in their calculations.
The nature of this transition has been associated with a ma-
jor reordering on the atomic level, where the high pressure
compresses the system such that breaking and reformation
of covalent bonds can occur. The most prevailing reorgani-
zation would occur in polymers with open ring structures
made up of covalently bonded carbons,65 which are present
in both PC and PS. This ordering was also observed and
well studied computationally for liquids such as benzene.66–68

This reordering could not be captured using our FF and DFT
method for different reasons. PCFF is a non-reactive force
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field, which does not capture the breaking and formation of
covalent bonds. For the DFT simulations, the time scales that
we considered were not long enough to allow any significant
reorganization.

It should be noted that a higher pressure range was con-
sidered for DFT for PMMA than for PC, PS, and PE due to
the excellent agreement of the simulated results with exper-
imental data up to the maximum pressure in those systems
(i.e., approximately 40 GPa). The larger range was used to
assess the applicability of the method to larger levels of com-
pression. This agreement can, in part, be due to the lack of a
significant phase transition, which is observed in PS and PC.

2. PE: Amorphous and crystalline

Since the majority of experimental Hugoniot data for PE
is for systems that contain both crystalline and amorphous
regions, there is a lack of data to compare our simulation
results which are purely amorphous or crystalline. Instead
we will compare our simulated Hugoniot curves with theo-
retical curves derived by Pastine65, 69 for the pure crystalline
and pure amorphous forms of polyethylene. In these calcula-
tions, Pastine assumed that the forces along the polymer back-
bone are approximately an order of magnitude larger than the
forces between adjacent chains. Thus, the initial compress-
ibility of the polymer can be specified using only the inter-
chain forces and geometric rearrangements. In addition, the
dominant repulsive force was assumed to be between non-
bonded nearest-neighbor hydrogen atoms, while the domi-
nant attractive forces are of the London dispersion type. With
these approximations, Pastine calculated theoretical pressure-
volume and particle velocity-shock velocity relations, where
the pressure was computed using a Buckingham potential for
the crystalline, and a slightly modified form of the Bucking-
ham potential for the amorphous form. The theoretical curves
are shown in Figs. 4 and 5 for crystalline and amorphous PE,
respectively, along with our DFT and FF calculations, and are
considered as upper and lower bounds for experimental re-
sults of mixed PE systems.65 Agreement between the theo-
retical and DFT calculations for amorphous PE is excellent,
where our simulated data points overlay the theoretical curve.
For crystalline PE, we observe deviations in behavior from
the Pastine results for both the FF and DFT simulations. This
can be due in part from the isotropic compression that was
used for our Hugoniot calculations in which the x, y, and z
directions of the simulation box contract together during the
simulation, contrary to Pastine’s assumptions that compres-
sion along the fiber axis is small relative to the compression
along the other two axes. Although this discrepancy does not
appear to be significant for non-crystalline PE which lacks
the long range order of the crystalline state, the high order of
the crystalline PE where the fibers orient along one axis may
require a semi-isotropic or anisotropic barostat.

Mattsson et al.2 also considered the crystalline form of
PE, though the initial structure of the polyethylene crystal was
taken as the tetragonal phase which has not been found ex-
perimentally. They observed that for shocks above 50 GPa,
that the DFT-AM05 predictions agreed with experimental

data, while results obtained using classical potentials such
as ReaxFF, OPLS, exp-6, and AIREBO, were quantitatively
more accurate near ambient conditions. A notable difference
between the study of Mattson et al. and ours is the refer-
ence data used to access the quality of the simulated Hugo-
niot curve. The experimental reference data used to access the
quality of the DFT and FF methods in the study of Mattson
et al. crystalline PE were for semi-crystalline PE. Since there
are data only for mixtures, i.e., semi-crystalline PE, we used
a theoretical benchmark.65, 69

DFT was also used to calculate the curve for a mix-
ture of crystalline and amorphous PE to better represent
an experimental system. In this simulation, a layered struc-
ture was built, where amorphous PE was placed perpen-
dicular to the PE fibers in the crystalline region. We also
compared the shock Hugoniot calculated using the mixed
amorphous/crystalline system with the DFT Hugoniot curves
for the individual phases using a simple mixing rule which
places weights based on crystallinity on the particle velocity-
mass velocity linear Hugoniot curve for the pure amorphous
and crystalline systems. For this calculation, the fraction of
the sample that is crystalline (C) in the layered structure was
calculated based on density using the following formula:70

C = ρc(ρ − ρam)

ρ(ρc − ρam)
, (6)

where ρ, ρc, and ρam are the density of the mixed amor-
phous/crystalline, crystalline, and amorphous PE, respec-
tively. To calculate the crystallinity for our DFT system, we
used the density calculated through our DFT simulations for
the reference state for consistency. The calculated values for
ρ, ρc, and ρam are 0.876, 1.066, and 0.818 g/cm3, respectively,
which gives us C = 0.29. The shock velocity-particle velocity
Hugoniot data for the DFT pure systems are fitted to obtain
the individual crystalline and amorphous Hugoniot equations.
This produced the expressions Ust = 1.24 Upt + 5.18 and Ust

= 1.41 Upt + 2.85 for the crystalline and amorphous systems,
respectively. The Hugoniot curve for the mixture can then be
approximated through the simple mixing rule

Ust = C(1.24 Upt + 5.18) + (1 − C)(1.41 Upt + 2.85). (7)

The curve can also be converted to the pressure and V/Vo

reference frame using Eqs. (4) and (5), where the density was
approximated by rearranging Eq. (6) to solve for ρ. A com-
parison of the Hugnoiot curve for the mixed system calcu-
lated through direct DFT simulations and through the curve
generated using the simple mixing rule is shown in Fig. 6.
With this approximation, we observe very good agreement
between both curves. Even so, the layered model for semi-
crystalline PE is rudimentary, where the polymer chains are
either solely amorphous or crystalline. This differs from real-
ity where a single polymer chain can contain both regions and
arrange with other chains to form crystalline and amorphous
domains.

The simple mixing model described in Eq. (7) was
also used to calculate the Hugoniot curve at the same crys-
tallinity as available experimental data.63 The crystallinity of
the experimental system was estimated using Eq. (6), but
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where experimental values49 of ρc = 1.004 g/cm3, and ρam

= 0.853 g/cm3 were used instead of those calculated using
DFT. The reference density of the experimental sample63 (ρ)
is 0.916 g/cm3, which equates to C = 0.46. A comparison of
the experimental data and the curve derived using the mixing
rule is shown in Figure 7, where we observe a clear deviation
between the two curves. The shock velocity derived using the
mixing rule is higher for a given particle velocity than its ex-
perimental counterpart. This could be in part due to the over-
estimation of the shock velocity for the purely crystalline PE
in the DFT simulations as seen in Figure 4. Some DFT calcu-
lated values for the purely crystalline and amorphous samples
also exhibit an inconsistent error in that some quantities may
be overestimated in one, and underestimated in the other. For
instance, the density at ambient conditions is overestimated
for crystalline and underestimated for amorphous PE, which
may affect the overall reference state. In addition, we use a
simple mixing rule which assumes that both phases are inde-
pendent, which is not the case. Instead of using this approxi-
mation, simulations should be performed on a more realistic
model of semi-crystalline PE.71 The effect of this model on
the Hugoniot curve will be discussed in a future publication.

C. Chain dissociation/association

Although the time scales considered in the MD-DFT sim-
ulations (2 ps) were too short for significant reorganization
within the simulation cell, it was found to be ample time to
initialize bond dissociation and formation. In addition to of-
fering insight into the composition of the simulation box af-
ter a shock wave, which will affect the physical properties of
the material, the onset of the chain dissociation/association
is an important measure of the appropriateness of a non-
reactive force field such as PCFF, which was used in our FF
calculations.

To study the effect of compression on chain dissoci-
ation/association we considered PMMA for which we ob-
served the greatest agreement with experimental data and
for which we have considered the highest value of pres-
sure, corresponding to the shock velocities of approximately
11 km/s. In this study, we will consider the number of atoms
in each segment in the simulation cell at a point that brackets
the Hugoniot. When a segment has a total number of atoms
greater than a single PMMA chain we associate this with bond
formation while bond dissociation occurs when the total num-
ber is less than a single chain. A segment is defined as a cluster
of atoms covalently bonded together, where a bond between
two atoms were determined by a distance cutoff. In this study,
we used a cutoff that allows for deviations between 0.6 and
1.15 of the ideal bond length, where the ideal bond length is
calculated as the sum of the covalent radii of the two atoms
involved in the bonding. This monitoring was performed in
Materials Studio27 for a total of 5 snapshots (from the final
1 ps) in the simulation corresponding to the lower bracket of
the Hugoniot point, though similar results were observed for
the upper bracket. Although distance cutoffs would affect the
number of associations/dissociations, its effect was found to
be rather insensitive.2

FIG. 8. Qualitative description of the bond dissociation and formation for
PMMA using DFT. Lines between data points are provided to guide the eye.

A representative plot, taken from a single snapshot, of
the number of segments as function of the number of atoms
is shown in Figure 8 for P = 0 GPa and 74.2 GPa. At near
ambient pressures (i.e., 0 GPa), we observe only 8 segments
corresponding to the initial 8 PMMA chains (62 atoms each)
which remain completely intact (i.e., no dissociation and for-
mation). At approximately 75 GPa, we observe the formation
of a 3D network-like structure within an environment com-
prised of small molecules as seen in Figure 9. Although the
actual composition of the 3D network in the 75 GPa simula-
tion cell differs depending on the specific snapshot, the fea-
tures of this structure are maintained in each of the snapshots.
A more comprehensive study of bond dissociation and forma-
tion will be considered in a future publication.

D. Structural properties

The radial distribution function (RDF, gαβ(r)) measures
the probability of an atom at the origin of type α having an
atom of type β within a spherical shell of infinitesimal thick-
ness dr at the distance r. The RDF can be used to character-
ize the structure of a material such as the short or long range
order of the system. We have calculated the carbon-carbon
RDF (gcc(r)) for both our DFT and FF simulations for various
V/Vo at approximately the Hugoniot pressure and tempera-
ture for our four polymers. For brevity, we will only discuss
the DFT results since both methods yield similar results.

The gcc(r) for our small DFT systems are shown in
Figure 10 for PMMA, PS, PC, and PE. For PE, we considered
both the crystalline and amorphous forms. When analyzing

FIG. 9. Representative structures observed using DFT at (a) P = 0 GPa and
(b) P = 74.2 GPa. Each connected chain is represented by a different color
for convenience to the reader. Free hydrogens are shown in white.
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FIG. 10. Carbon-carbon radial distribution function for (a) PMMA, (b) PC, (c) PS, (d) PE amorphous, (e) PE crystalline at various values of V/Vo calculated
using DFT.

the radial distribution function, it is important to note that the
Hugoniot temperature and pressure increases as the system is
compressed. Thus, as the system is compressed, we observe
that the gcc(r) for all of the systems exhibit both a broaden-
ing and flattening of peaks due to an increase in temperature
which leads to amplified thermal motion. We observe a shift
in the position of the peaks to lower r as the simulation cell is
compressed due to a decrease in the distance between carbon
atoms. Unlike the RDF of the amorphous polymer systems,

the RDF of crystalline PE indicates correlation for distances
of r beyond the range of 4 Å shown in Figure 7 indicating
long range order.

The size of a polymer, regardless of architecture, can be
characterized using the radius of gyration (Rg). The square
of this quantity is calculated by taking the average square
distance between monomers in a given conformation and
the polymer’s center of mass. To calculate Rg, an additional
200 ps of NVT simulation were performed after the
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FIG. 11. Average radius of gyration obtained from FF simulations at approx-
imately the Hugoniot temperature and pressures for various V/Vo.

temperature scan at the Hugoniot temperature. Snapshots of
the trajectory were taken every 1 ps, where the average Rg

was calculated from the last 1000 snapshots. The average ra-
dius of gyration for our amorphous polymers calculated in our
FF simulations is shown in Fig. 11, where we omit crystalline
PE since we considered semi-infinite chains in our simula-
tions. This calculation was only performed for our FF simula-
tions, since the chains in the DFT simulation only consist of
between 4 and 8 monomers. In Fig. 9, a slow decrease in the
average Rg is observed as the system transverses the Hugoniot
curve to larger compression. This is due to the compression of
the chains as the box is compacted.

IV. CONCLUSIONS

Classical FF and DFT were used to calculate the prin-
ciple shock Hugoniot curves for poly[methyl methacrylate],
poly[ethylene], poly[styrene], and polycarbonate, where both
crystalline and amorphous forms of poly[ethylene] were stud-
ied. In the FF calculations, we considered the non-reactive
polymer-consistent force field, where calculations were per-
formed in LAMMPS. Density functional theory at the
GGA–BLYP level using dispersion corrected atom centered
pseudopotentials as implemented in CP2K was used for our
quantum simulations. Overall, the Hugoniot curves obtained
using DFT agree with available experimental data at higher
pressures than classical force fields. Even so, phase transi-
tions such as those observed in our ring containing polymers
are difficult to capture through DFT due to the long time
scales associated with significant reorganization. For PMMA,
for which the greatest agreement between experimental and
DFT derived data is observed (i.e., pressures up to 74.2 GPa),
further structural analysis at P = 74.2 GPa was performed to
quantify the formation and dissociation of bonds. Further re-
search is needed to extend the applicability of the DFT meth-
ods to higher pressures and may involve the use of other sim-
ulation methods and techniques to account for fracture and
phase rearrangement of polymer chains. In addition, we will
also consider the effect of classical reactive force fields34

in conjunction with the MSST,41 which is a highly efficient

computational method for studying systems under dynamical
shock conditions.
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a b s t r a c t

Poly(urethane urea) elastomers are versatile and can be tailored to exhibit a broad range of mechanical
response under high strain rate deformation. In this work, we utilize coarse-grained molecular dynamics
simulations to elucidate the molecular mechanisms, particularly the effects of hard segment content,
intermolecular interaction, and rigidity of the interface between the hard and soft segments on local
morphology and rate-dependent stress-strain behavior in the ballistic regime. Simulation results qual-
itatively agree with available experimental data, where analysis of hard segment orientation during
tensile and compression deformation and dynamic strain rate sensitivity was also performed. Further
study of the intermolecular interaction on the stress-strain behavior reveals that it has a strong effect on
strain hardening, particularly for a rigid interface, once the hard segment content reaches the percolation
threshold. Simulation results also show that interface intermolecular interaction could become more
dominant over interface rigidity in the initial stress-strain response, particularly below percolation.

Published by Elsevier Ltd.

1. Introduction

High performance elastomers have received enormous attention
for a broad variety of applications including blast mitigation and
impact-resistant coatings for metallic substrates, structure adhe-
sives, foams for composite structures, and films for structural retrofit
[1e4]. In particular, segmented poly(urethane urea) (PUU), like
polyurethanes and polyureas, exhibit versatile physical and
mechanical properties. This class of materials can be tailored to
transition from the rubbery-like into the leathery-like regime or
even into the glassy regime with increasing strain rate, where stress
levels may be greatly enhanced and large energy dissipation mech-
anisms can be realized [2]. Other potential mechanisms including
shock impedance mismatch, shock-wave dispersion and strain
delocalization have also been proposed for the improvement in the
blast-wave mitigation and projectile impact energy absorption [5].

The cohesive strength of the bidentate hydrogen bonding
interaction in urea is much stronger than the monodentate inter-
action in urethane, thus favoringmechanical stiffening in polyureas
and PUUs over polyurethanes. Extensive hydrogen bonding can
occur in PUU, where various types of hydrogen bonds can be
formed between the two proton donors (urethane NeH and urea
NeH groups) and the three proton acceptors (urethane C¼O, urea

C¼O, and CeOeC groups). The type of hydrogen bonds can be
classified as either monodentate or bidentate, where binding
occurs at one or two sites, respectively, and where, in PUU, the
latter is associated with hydrogen bonding between the urea
segments. The association of the hard segments is facilitated by
their ability to form a hydrogen bonded network, which serve as
physical cross-link sites due to the inter-chain joining that reinforce
the soft matrix [6e10].

PUUs also exhibit more versatility than the commercially
available polyureas, and have also attained renewal interests and
shown potential for property optimization for various applications
including, but not limited to, chem/bio protection, adhesives in
composite laminates, and matrix for fiber reinforced composites.
The challenges for the rational design of hierarchical elastomeric
materials to achieve a simultaneous improvement in dynamic
mechanical strengthening and chemical hardening critical for the
next generation protective materials applications reside on the
realization of the key physical events that occur on various
temporal and spatial scales.

There have been several studies on the in-situ microstructure of
polyurethane and PUU elastomers upon mechanical deformation
using synchrotron radiation with in-situ small-angle X-ray scat-
tering (SAXS), wide-angle X-ray diffraction and time-resolved
Fourier transform infrared spectroscopy [11e13]. It has been
noted that disruption of the domain morphology and reorganiza-
tion of hard segments could be induced in response to stress at slow
or moderate strain rates, and as a result the SAXS scattering pattern
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was found distinctly anisotropic [11e13]. However, recent work by
Pathak et al. indicated that at higher strain rates this behavior was
not apparent in polyurea, as the morphology response of the hard
segments was too slow and an isotropic scattering pattern was
observed in SAXS [13].

Bogoslow et al. [2] demonstrated that impact testing of
polybutadiene-based polyurea, backed by steel plates showed
a transition to the glassy state causing a brittle failure mode and
increasing the energy dissipation in comparison to the bulk poly-
butadiene rubber, which remained rubbery during impact. This
discrepancy in dynamic strain rate hardening characteristics was
attributed to a difference in segmental dynamics, determined
through dielectric spectroscopic measurements, which is almost
three orders of magnitude faster in the polybutadiene rubber than
those for polybutadiene-based polyurea [2]. Hence the poly-
butadiene rubber chains were able to accommodate the impact and
respond in a rubbery mode since the frequency of segmental
relaxation required to transition them to a glassy state under
ambient conditions of temperature and pressure was more than
three orders of magnitude greater than the strain rate of impact
(w105 s�1). On the other hand, similar impact caused a transition to
a glassy state in the polybutadiene-based polyurea due to its much
slower local segmental dynamics, subsequently resulting in greater
energy dissipation through large-scale fragmentation but a brittle
mode of failure [2]. Roland and co-workers in their recent study on
a series of polyurea with varying stoichiometry further quantified
the segmental dynamics and its pressure dependence [14]. The
variations in polyurea stoichiometry corresponding to a difference
of less than 3 wt.% in hard segment content resulted in large
differences in modulus, tensile strength and failure strain.
However, the segmental relaxation times measured by dielectric
spectroscopy and the calorimetric glass transition temperature (Tg)
by differential scanning calorimetry at ambient pressure were not
affected by stoichiometry. They also noted similar ballistic perfor-
mance in the polyurea coated steel plates against the impact of
a 0.50-caliber fragment simulating projectile, which was attributed
to the equivalent segmental dynamics that governed the high strain
rate mechanical response of the select polyureas. Nevertheless
extensive intermolecular hydrogen bonding of polyurea was
regarded as an important attribute for high mechanical toughness,
and it has also been suggested that better performance for poly-
ureas requires more substantial changes in the structure and
morphology than an approach based simply on stoichiometry
variations. Roland and co-workers also pointed out that to best
utilize the advanced elastomers for blast and impact protection the
calorimetric Tg should be relatively high but lower than the service
temperature [2] (with the optimal calorimetric Tg value depending
on the deformation strain rate of interest) [5].

Results from recent studies of select model 4,40-dicyclohexyl-
methane diisocyanate (HMDI)�poly(tetramethylene oxide)
(PTMO) based transparent PUUmaterials further demonstrated the
key role of a tunable microstructure in varying Tg as well as in
enabling the design of high performance elastomers with desired
dynamic mechanical strengthening and chemical hardening capa-
bilities. Altering the molecular weight of the soft segment (SS)
PTMO from 2000 (2K) to 1000 (1K) g/mol, these PUU 1K materials
exhibited aw17 �C shift of the SS Tg toward higher temperature and
a broadening of the SS relaxation based on dynamic mechanical
analysis (DMA) data. The latter was attributed to relaxation asso-
ciated with the amorphous phase which consists of predominantly
random fibrillars as a result of phase mixing between hard and soft
segments, presumably facilitated by intermolecular hydrogen
bonding, which gave rise to a prominent second peak relaxation
closer to room temperature [15e17]. As a result, the PUU 1K
materials, in the vicinity of room temperature, exhibited a greater

modulus change with temperature and a greater rate sensitivity.
The fibrillar-like microstructure clearly identified via atomic force
microscopy (AFM) [18] is in contrast to the self-assembly of
lamellar hard segments into other microstructure features
including rod-like hard domains as well as supramolecular
spherulite-like hard domains [19]. Additionally, a drastic
improvement in permeation resistance against chloroethyl ethyl
sulfide, including significantly longer breakthrough time and
slower steady-state flux, was observed in the PUU 1K materials
than in the corresponding PUU 2K materials of similar hard
segment contents [16,17]. This property enhancement was also
attributed to the presence of a fibrillar-like microstructure domi-
nant amorphous phase.

There have been a number of ballistic evaluation and continuum
modeling studies of polyureas in composite structures [5];
however, very little work has focused specifically on the investi-
gation of molecular influence on high strain rate deformation. In
this work, we exploit a coarse-grained (CG) particle-based model
that is solely based on polymer physics and not atomistic detail to
determine microstructure characteristics as well as the corre-
sponding mechanical properties of select model PUUs. Through CG
simulations, our goal is to elucidate the molecular mechanisms,
particularly the effects of hard segment content, the role of inter-
molecular hydrogen bonding as well as the rigidity and interaction
at the interphase on local morphology and stress-strain behavior of
PUUs in the ballistic regime. Results will also be compared to our
experimental PUU data when available.

2. Model PUU

Select model PUU materials were synthesized with varying
molar ratio of poly(tetramethylene oxide) (PTMO � PolyTHF, BASF
Corporation), 4,40-dicyclohexylmethane diisocyanate(HMDI �
Desmodur W, Bayer MaterialScience) and diethyltoluenediamine
(DETA � Ethacure� 100-LC, Albemarle Corporation, Baton Rouge,
Louisiana), where themolecular weight (MW) of PTMOwas fixed at
2000 g/mol. The repeat unit is shown in Fig. 1a. These PUUs were
prepared using a two-step, pre-polymer synthesis method, and
details of the materials synthesis can be found elsewhere [15].
Typically, PTMO, the soft segment, was first reacted with HMDI to
form a pre-polymer with a urethane linkage, and was also end-
capped with diisocyanate groups. The pre-polymer was then
reactedwith the chain extender, DETA, to complete polymerization.
The reaction of HMDI with the DETA diamine resulted in hard
segments with urea linkages, which could self-assemble to form
domains and thus leading to microphase separation.

In this work, we consider three model systems of PUU, where
the molecular weight of the PTMO is fixed at 2000 g/mol and the
molar ratio of diisocyanate (HMDI): diamine (DETA) chain
extender: PTMO is varied to increase the hard segment content.
Specifically, we consider ratios of 2:1:1, 3:2:1, and 4:3:1, which we
label system 1, 2, and 3, respectively. This nomenclature corre-
sponds to the molar ratio of [HMDI-DETA]:[HMDI-PTMO], or more
concisely, the molar ratio of DETA:PTMO in the PUU chain. In
addition, the nomenclature is also consistent with the parameter n
is the repeat unit shown in Fig. 1a. The index m in Fig. 1a is fixed to
28 for all three systems. These three systems are specifically studied
to elucidate available experimental data published [15e17].

The motivation for using HMDI includes its ultra-violet (UV)
radiation stability characteristic desired for long-term outdoor
durability performance [20], and additionally to explore potential
energy dissipation as a result of the deformation of the boat- and
chair-conformations associated with the cyclohexane rings in
HMDI [21]. To study the effect of the rigidity of diisocyanate, we
considered two definitions of the hard segment:

T.L. Chantawansri et al. / Polymer 53 (2012) 4512e4524 4513
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%HSRigid ¼ 100ððR� 1ÞMda þ ðRÞMdiÞ�
Mg þ ðRÞMdi þ ðR� 1ÞMda

� (1)

%HSFlex ¼ 100ððR� 1ÞMda þ ðR� 2ÞMdiÞ�
Mg þ ðRÞMdi þ ðR� 1ÞMda

� (2)

where R is themolar ratio of the diisocyanate to PTMO, andMdi,Mda

and Mg are the number average molecular weights of the HMDI,
DETA and PTMO, respectively. The difference between HSRigid and
HSFlex is that the diisocyanate group at the interface between PTMO
and the diamine is considered as part of the hard segment in the
former, but not in the latter. Thus in HSFlex the interface is consid-
ered to be flexible. For the remainder of the manuscript, references
to the interface would refer to the diisocyanate group between
PTMO and diamine (see Fig. 1). This is shown schematically in
Fig. 1b for our three model systems, where Table 1 lists numerical
values of the molar ratio and wt.% of hard segment defined through
Eqs. (1) and (2) for each system. It is also important to note that
HSRigid corresponds to the hard segment content, HS, as defined in
reference [15], which is an experimental study of PUU for our three
model systems.

To simulate our model PUU systems, we use a particle-based
mesoscale simulation method, where atoms are grouped into
larger entities called particles. The total number of coarse-grained
particles in the simulation cell (Ntot), in a single repeat unit (Nrep),
and in a single chain (Nc), along with the box size of the cubic
periodic simulation cell (Lx, Ly, Lz) are given in Table 2. In calculating
the number of these coarse-grained particles, which are of constant
volume, we have assumed that the experimental density of each
component of PUU is approximately 1 g/cm3. In each PUU repeat
unit, 32 beads in Nrep represents PTMO of molecular weight 2000 g/
mol. Four beads were used to represent each diisocyantate group at

the interface between PTMO and the diamine resulting in a total of 8
beads per repeat unit for the interface. These beads will be modeled
as either being rigid or flexible depending on if the hard segment is
defined as HSRigid or HSFlex, respectively. If the hard segment is
defined by the former, the beads used to represent the interface are
considered to be part of the hard segment. The remainder of the
beads in the repeat unit was used to represent the remainder of the
hard segment in HSRigid or the hard segment in HSFlex.

To model the effect of interaction and rigidity of the interface on
the mechanical response of our model PUU systems, we will
consider a total of four computational models. The rigidity of the
interface produces two different models, where the effective hard
segment is defined either byHSRigid orHSFlex. These twomodels will
be identified simply by the tag, Rigid or Flex, respectively (See
Fig. 2). We will also consider a weak interaction and a strong
interaction models to study the effect of the hydrogen bonding
interaction strength on morphology and mechanical properties. To
model the weak interaction, the self and binary interactions
between the hard segment and interface are kept the same,
while in the strong interaction model they are differentiated such
that the magnitude of the attractive interaction follows
the following trend: hard segment-hard segment > hard
segmenteinterface > interfaceeinterface. Combining both
keywords will describe our computational model; for instance

Table 1
Composition including the molar ratio, wt.% of hard segment, HSRigid and HSFlex,
defined in Eqs. (1) and (2), respectively for select model PUUs.

Model PUU Molar ratio of HMDI:DETA:PTMO %HSRigid %HSFlex

1 2:1:1 26 6
2 3:2:1 36 19
3 4:3:1 44 29

Fig. 1. a) Repeat unit for PUU. b) Schematic of the two definitions of the hard segment (HSRigid and HSFlex) for our three model PUU systems.
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Flex-weak would represent a model where the hard segment is
defined by HSFlex (interface is flexible) and the hard segments
interact through the weak interaction model. A summary of the
four models considered and the parameters with corresponding
strength is given in Table 3.

The Rigid-strong model most closely resembles the experi-
mental PUU system, where the interaction model mimics the
monodentate hydrogen bonding that can occur between the
urethane groups at the interface and the bidentate bonding that
can occur between the ureaeurea and urea-urethane groups. The
magnitude of the attractive interaction reflects the stronger bond
energy associated with bidentate ureaeurea hydrogen bond (cor-
responding to the interaction strength III) compared to the mono-
dentate urethaneeurethane bonding (interaction strength I),
where Yilgor et al. found that the bond energies are 21.8 kJ/mol and
18.4 kJ/mol, respectively, using quantum mechanics [22]. Our
quantum calculations also support this finding [23]. Experimental
data of morphology andmechanical properties will be compared to
the Rigid-strong model when available.

In addition to the Rigid-strong model, we also considered the
effect of changing the magnitude of the attractive interactions
strength and the rigidity at the interface. This was done to study the
effect of these polymeric relevant parameters on the morphology
and mechanical properties. For instance, by comparing the Rigid-
weak and Rigid-strong models we can elucidate the effect of
monodentate hydrogen bonding versus bidentate bonding at the
interface. Thus, these models, as well as the other two models,
(Flex-strong, Flex-weak) will be used to explore design spacewhere
the effects of flexibility at the interface and the hydrogen bonding
interaction are investigated.

3. Computational model & method

To obtain the local morphology and stress-strain behavior of our
model systems under mechanical deformation including
compression and tension, we utilized the following scheme:

1. Generation of initial configurations
2. Dissipative Particle Dynamics (DPD) to equilibrate the system
3. Fast push-off method to remove overlap
4. Equilibration through Kremer-Grest (K-G) model
5. Temperature quench using K-G model
6. Constant pressure simulation using K-G model
7. Deformation simulations using K-G model

This equilibration protocol [24] utilizes a soft potential which is
standard in DPD [25] simulations to facilitate the quick equilibra-
tion of the system before transition to the K-G [26] model. Equili-
bration through DPD and K-G were monitored to ensure that the
run time was sufficient for convergence of pressure within 1%. For
each model PUU system, three different initial conformations were
generated, and then subjected to the same equilibration and
deformation scheme.

In this section, we will describe the procedure and parameters
used in each step. In the simulation, the model PUU systems are
represented with a coarse-grained bead-spring model, where the
rigidity in polymer chains, which is observed in the hard segment,
is enforced using a harmonic angular potential Ua(r) ¼ K(q�q0)2.
The parameter q is the angle between triplets of connected beads,
where parameters values of K ¼ 150U0 and q0 ¼ p were used. We
also considered the effect of using larger values of K (200 and
300U0), which resulted in only marginal changes in our results. All
quantities are expressed in terms of the inter-monomer binding
energy U0, monomer diameter a, particle massm, and characteristic

time sLJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=U0

p
. All simulations were executed using

LAMMPS [27,28] which is a molecular dynamics program from
Sandia National Laboratories.

3.1. Generation and initial equilibration of model PUU systems

Initial configurations of our model PUU systems were first
generated as a non-reversal-random-walk. Short simulations using
a soft-repulsion potential, that is commonly used in DPD and allows

for chain crossing, UDPDðrÞ ¼ aDPD
2

rc

�
1� r

rc

�2

were then used to

speed-up the polymer dynamics involved in phase separation,
followed by a push-off procedure that was used to introduce
excluded volume before transition to the KGmodel. This procedure,
which includes polymer building, equilibration, and push-off, is
called the DPD-push-off algorithmwhich wewill describe briefly. A
detailed description of the method can be found elsewhere [24].

Since the brute force equilibration of entangled polymers is
nontrivial, even for a case of coarse-grained chains because of the
slow diffusive dynamics [29], equilibration was done by tempo-
rarily turning off the excluded volume interactions thus allowing
the chains to pass through each other. This speed-up comes from
the removal of the hard core from the interaction potential, which
leads to a caging effect where an atom undergoes many collisions

Fig. 2. Representative CG chains of PUU for the Flex and Rigid models. Beads that
represent the soft segment, hard segment, and interface are shown in red, blue, and
gray, respectively. For the Rigid models, the hard segment as defined by HSRigid
includes the interface. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
A summary of parameters with corresponding strength for the four models
considered (HS and I denote hard segments and interface, respectively. The
numerals I, II, and III are used to represent the relative magnitude of the attractive
interaction strength between the particles, where the magnitude increases from
I to III.

Interface Relative magnitude of attractive
interaction strength

HSeHS HSeI IeI

Rigid-strong Rigid III II I
Rigid-weak Rigid I I I
Flex-strong Flexible III II I
Flex-weak Flexible I I I

Table 2
Number of coarse-grained particles in the simulation cell (Ntot), in a single repeat
unit (Nrep), and in a single chain (Nc), and the dimensions of the periodic simulation
cell (Lx, Ly, Lz).

Model PUU Ntot Nrep Nc Lx, Ly, Lz (a)

1 260064 43 344 67.38
2 260050 50 350 67.38
3 259920 57 342 67.37
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before it is actually transported. Thus before utilizing the K-G
model, DPD [25] was first used to quickly equilibrate the phase-
separating system. In a DPD simulation of polymers, particles
interact with each other via a pairwise, two-body, short ranged
force, F, that is written as the sum of a conservative force, FC,
dissipative force, FD, and random force, FR, as follows:

Fi ¼
X
jsi

FCij þ
X
jsi

FDij þ
X
jsi

FRij (3)

The conservative force, FC, accounts for the pairwise interaction
between dissipative particles and also includes a contribution from
bonded particles. The remaining two forces, FD and FR, provide the
thermostat in the DPD method, where the dissipative force slows
down theparticles by decreasing kinetic energy,which is balanced by
the random force due to thermal fluctuations. A detailed description
of DPDmethod and thermostat can be found elsewhere [30,31].

The repulsive parameter aij is used to parameterize the repul-
sion between unlike particle such as those that represent PTMO
with those that represent the hard segments and interface, while aii
is the repulsive parameter for like-particles. The repulsive param-
eters for unlike-particles aij is related to the Flory-Huggins
parameter [25]. Initially, the DPD simulation was performed with
Da ¼ aij�aii ¼ 0 kBT, to remove artificial strain in the system after
the building process for 75sDPDwith a time step of 0.0075sDPD. After
this, Da between the beads that represent PTMO and the beads that
represent the hard segment or interfaces was increased to 100kBT
for the weak interaction model, and to 100kBT between PTMO and
hard segment, 50kBT between PTMO and the interface, and 10kBT
between the hard segment and interface for the strong interaction
model. The simulation was then performed for 15,000sDPD with
a time step of 0.0075sDPD to obtain phase separation. A rc¼ 1.0awas
used for both DPD runs, where rc represents the cutoff distance.

After this initial equilibration, a standard “push-off” procedure
was performed to remove overlap and to introduce excluded
volume. This fast push-off from the DPD soft potential to the full
Lennard-Jones potential has been shown to not significantlymodify
the structural properties of the polymer. In this procedure, Da was
maintained at the values specified above in the second DPD
simulation, but the values of aij and aii are gradually increased to
remove overlap that occurs between the beads due to the use of the
DPD method before transition into the K-G model.

3.2. Kremer-Grest model

After equilibration using the DPD-push-off algorithm, the pair
interaction between topologically non-connected particles was
switched from DPD to the Kremer-Grest [26] standard truncated
Lennard-Jones. The standard truncated Lennard-Jones pair poten-
tial is given by:

ULJðrÞ ¼ 4U*
0

��a
r

�12
�
�a
r

�6
�
�
a
rc

�12
þ
�
a
rc

�6�
; (4)

where U*
0 is the depth of the potential well and a is the distance

where the inter-particle force is zero. A rc ¼ 21=6a was chosen for
interactions involving the coarse-grained beads of PTMO, which
yields the so-called Weeks-Chandler-Andersen excluded volume
potential, UWCA. In order to drive phase separation, we require an
attractive interaction energy between pairs of particles that
constitute the hard segment and interface, where for attractive
interactions we choose rc ¼ 2.5a. This attraction was chosen to
model the association of the hard segments and interfaces which is
driven, in part, by their ability to hydrogen bond. For the weak
interaction model, U*

0 values of 1.0U0 were used between all non-

connected pairs of beads, regardless of type. In the strong inter-
action model, U*

0 values of 1.0U0 was used in interactions involving
PTMO beads, 1.5U0 for interactions between the interface and the
hard segment, 1.0U0 for interaction between interface beads, and
2.0U0 for interaction between hard segment beads.

Topologically bound monomers interact according to the stan-
dard FENE/Lennard-Jones bonded potential, UFENE/LJ, where
UFENE=LJðrÞ ¼ UFENEðrÞ þ UWCAðrÞ and UFENE is a finite extensible
non-linear elastic potential defined as

UFENEðrÞ ¼ �aFENE
2

R20ln
�
1�

�
r
R0

�2�
(5)

Standard parameter values of R0 ¼ 1.5a and aFENE ¼ 30U0=a2

were used.
Using the Kremer-Grest model while maintaining the DPD

thermostat, we equilibrated the system for 75,000sLJ (time step
0.0075sLJ) with T ¼ const ¼ 1:0 U0=kB. After equilibration, we
performed a temperature quench to T ¼ 0:3 U0=kB with a cooling
rate of _T ¼ 7,10�5 U0=kBsLJ, followed by an constant pressure and
temperature (NPT) simulation for 1 � 104sLJ (time step 0.01sLJ),
where both were performed with a Langevin thermostat [32]. The
temperature was quenched to T ¼ 0:3 U0=kB to mimic experi-
mental conditions where the operating temperature is above Tg for
the rubbery PTMO block and below Tg for the hard segment. Based
purely on the potentials used in our model, the PTMO coarse-
grained particles, which are described by a repulsive potential,
have a Tg that is below 0:2 U0=kB [33], while the remaining parti-
cles that are described by an attractive potential (interface and hard
segment) have a Tg above0.4 U0/kB [34]. Introducing rigidity into
the interface and hard segment will further increase this value of
Tg [35].

3.3. Deformation

After the NPT simulation, uni-axial-stress tensile or compression
deformations were imposed on the simulation cell in the z direc-
tion. A constant true strain rate of _e ¼ 10�6, 10�5, 10�4s�1

LJ was
applied to the simulation box for the tensile deformations, which
expands the simulation box in the positive and negative directions.
Negative values of the true strain rates were also used to simulate
compression. During the simulation the box dimension, Lz changes
with time as LzðtÞ ¼ L0expð _eDtÞ where L0 is the initial box size in
the z dimension.

Stress-strain calculations were performed under the assump-
tion of constant pressure. Thus extension/compression in z is
accompanied by lateral compression/extension (in x and y), such
that pressure in x and y are constant. The deformation simulation is
performed with the Langevin thermostat with a damping time
1.0sLJ to maintain temperature and the Nose-Hoover barostat with
damping time 100sLJ to maintain constant pressure along the
transverse directions. Simulation runs have been done for contin-
uous uniform strain (every time step) using a time step
Dt ¼ 0.0075sLJ. At every time step Dt, the positions of the particles
are rescaled by the factor x=L _LDt, where xi is the component of the
position vector in the direction of deformation, and _L is the defor-
mation velocity. The elongational stress, s in the system is then
calculated from the normal pressure differences:

�s ¼ Pzz �
1
2
�
Pxx þ Pyy

�
: (6)

4. Analysis

Belowwe briefly review the analysis methods that we employed
to analyze our computational results.
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4.1. Radial distribution function

The microstructure of our model PUU systems can be studied
computationally through the radial distribution function (RDF)
which measures both intra- and inter-chain correlation, and has
been used to characterize micelle ordering in numerous
computational studies [36e39]. The RDF between particles that
represent the hard segment will be used to discern qualities of
the average structure, where short range peaks are due to
correlations within the clusters formed by the rods. The long
range peak corresponds to the average distance between clusters
of rods, where the area under the peak can gives us an
indication of the ordering. The Fourier transform of the RDF are
directly related to scatter intensities that can be obtained
experimentally through techniques such as neutron scattering
and SAXS.

4.2. Calculation of the rod orientation

The morphology details as identified by AFM for select model
PUUs appear to be complex. To characterize the orientation of the
rods in our model PUU systems, we can calculate the orientation
angle of the hard segments relative to the x, y, and z axis. This
orientation is characterized by the polar (q) and azimuthal (f)
angles defined in Eqs. (7) and (8), respectively.

q ¼ cos�1
�
ðz2 � z1Þ

r

�
(7)

f ¼ tan�1
�
ðy2 � y1Þ
ðx2 � x1Þ

�
(8)

In these equations, (x1, y1, z1) and (x2, y2, z2) denote the coor-
dinates at either end of the hard segment as seen in Fig. 3a, where r
is defined as the radial distance of the rod defined as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2

q
.

Since the ends associated with (x1, y1, z1) and (x2, y2, z2) can be
interchanged, the vector describing the hard segment is unique
only within a half space. In this study, the half space is defined by
0 � f � p and 0 � q � p.

4.3. Order parameter

To characterize the order of rods relative to the positive z-axis,
we define an order parameter S ¼ h2cos2 q� 1i, where q is the

angle between the long axis of a particle and the positive z-axis, and
the brackets denote an average overall observations. The order
parameter ranges from �1 and þ1, where large absolute values
represent higher order (See Fig. 3b). The sign of S indicates the
orientation of the rod, where positive or negatives value indicates
that the rod aligns parallel or perpendicular to the z-axis,
respectively.

5. Results

CG simulations of local morphology can account for various
possible scenarios with respect to the self-assembly of hard
segments such as isolated hard segments domains within the
continuous soft segments matrix, or interconnected disordered
hard segments. Through the procedure described in the computa-
tional model & methods section, we are able to study the local
morphology and stress-strain behavior of segmented PUUs
composed of alternating hard and soft segments. Computational
results presented in this section were obtained by averaging three
replicas unless otherwise indicated. Data for the stress-strain
curves was sampled every 0.75sLJ, where each data point in the
stress-strain curves is a box average of 10,000 points. In the
following, we highlight the key material characteristics derived
from modeling for comparison with experimental observations, to
enable a better understanding of the role of molecular influence on
both tunable microstructure and dynamic mechanical
strengthening.

5.1. Local morphology: after equilibration scheme

The morphology observed in the select model PUUs is complex
and can affect the mechanical deformation, which can range from
rubbery to leathery-like response under quasi-static loading
conditions. The evolution of tunablemicrostructure can depend not
only on the hard segment content, but also greatly on themolecular
moieties including the rigidity of the interface and intermolecular
interaction. Using our CG model, we can study the effect of these
parameters on the local morphology for our PUU model systems.
Although finite size effects and time constrains would prevent us
from obtaining a well-equilibrated morphology, the model is able
to capture important morphological features. That being said, for
the time scales we are able to access, the properties of interest did
not noticeably change with further simulation time.

A snapshot of the morphology for Rigid-strong and Flex-strong
are shown in Figs. 4 and 5, respectively. For the Rigid models,
clusters composed of aligned hard segments are observed for
system 1, while increasing the hard segment content as in systems
2 and 3 disrupts this ordering. In the Rigid models, the clusters

Fig. 3. a) Definition of the azimuthal (f) and polar angle (q). b) Definition of the order parameter.
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observed in system 1 are formed of groupings of hard segments
(which include the interface) which tend to align in the same
direction as seen in Fig. 6.

These clusters are not necessarily isolated, but can be con-
nected to other clusters through bridges composed of the hard
segments. At higher hard segment content we observe less
alignment of the hard segments and greater percolation, i.e. long
range connectivity, of disordered hard segments through the
simulation cell. Similar morphology was also observed in the
Rigid-weak model. For the Flex-strong computational model, we
observe the predominance of hard segments in the form of
elongated micellar structures as shown in Figs. 5a and 7b for
system 1, in comparison to mostly isolated clusters seen for Rigid-
strong as highlighted in Fig. 7a. As the hard segment content
increases, significantly greater clustering of the rods is observed
for the Flex-strong model for systems 2 and 3 (Fig. 5), partly as
a result of the tangible association of flexible interface beads onto
the hard segments in addition to the increasing propensity for
percolation. However, as seen in Fig. 8, this clustering is less
ordered than in the Rigid-strong model for system 1, where
increasing percolation with increasing hard segment in part
accounts for this disordering. In the Flexmodels, the interface, due
to its flexibility, also has a tendency to coil around the hard

segment (see Fig. 9), which hinders the organization of the hard
segments.

This coiling of interface is more prevalent in the weak interac-
tionmodel than in the strong interactionmodel, which is due to the
intermolecular interaction. In the former, the attraction between
the beads that represent the hard segment and the interface are the
same as the hard segment-hard segment and interfaceeinterface
self interactions, while in the strong interaction model, the
attractions between the beads that represent the rods is stronger
than the other interaction. Because of this stronger interaction
between the rods in the Flex-strong model, the interface has
a lower tendency to coil around the rods resulting in more of the
interface beads residing at the boundary between the domains
composed mostly of the soft segments and the hard segments. An
indication of this is illustrated in Table 4, which lists the number of
beads representing the rigid segments that are at the cutoff
distance of 21/6a away from beads that represent the soft segment.
This shows that the number of hard segments beads that are in
contact with the soft segment is less for Flex-strong than for Flex-
weak for all of our model PUU systems.

Additional information on morphology can be extracted by
considering the RDF between the particles that represent the hard
segments. The RDF data for our four computational models are

Fig. 4. Representative morphology for Rigid-strong after equilibration procedure for model (a,d) 1, (b,e) 2, and (c,f) 3. (top row) Only the hard segments defined by Eq. (1) are
shown. (bottom row) Only the hard segments not including the interface are shown for clarity. Beads that represent the interface are shown in gray while the remaining hard
segment is shown in blue. Simulation box sizes are listed in Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Representative morphology for Flex-strong after equilibration procedure for model (a) 1, (b) 2, and (c) 3. Only the hard segments (blue) defined by Eq. (2) are shown for
clarity. Simulation box sizes are listed in Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown in Fig. 10 for our three model PUUs. Instead of focusing on
the short range peaks, which are due to intra-cluster order, these
RDF data highlight the subsequent peaks that are primarily asso-
ciated with inter-cluster correlations. The RDFs in Fig. 10 were ob-
tained by averaging the RDFs obtained from the three replicas,
which were evaluated from the final conformation in the constant
pressure simulation prior to deformation. The RDF indicates
significant long range cluster ordering of the rods for systems 1 and
2 for all four computational models, though little cluster ordering
for system 3 is observed for the Rigid models. Within the Flex
model, greater ordering of the rods into clusters for system 3 is
observed for Flex-strong compared to Flex-weak, presumably due
to difference in intermolecular interactions, which in the former
model reduces the tendency of the interface to coil around the hard
segments. The calculated values of average separation for these
clusters obtained based on the position of the secondary peak are
also given in Table 5.

Due to the poor ordering for system 3 in the Rigid model, the
location of the secondary peak is less well-defined so the values for
the average separation were not calculated. The magnitude of the
short range peak in the RDF, ordered from largest to smallest is
system 1 (Rigidw13, Flexw37), system 2 (Rigidw6, Flexw9), and
system 3(Rigidw4, Flexw6) for both the Rigid and Flex models

indicating that the clusters formed from the hard segment aremore
ordered and compact in system 1, and become less compact as the
hard segment content is increased to system 3. In the case of Flex
models the smaller hard segment content results in a slightly
higher percolation threshold, where cluster like morphologies are
easier to distinguish for systems 2 and 3 compared to the corre-
sponding Rigid models. This is also manifested in the short range
peaks which are larger in the Flex models.

The isolated hard domains in Rigid-strong for system 1 from
simulation (Figs. 5a and 7a) clearly resemble the microphase-
separated morphology observed through atomic force microscopy
(AFM) phase images [18] (Fig. 11), where a mixture of fine grains
with particle size in the range of 30, 60, and 120 nmwere observed.
These spherical fine grains are composed of the hard segments, and
reside in a matrix composed of the soft segments PTMO. In addi-
tion, both AFM images [40] and SAXS results [15] do suggest greater
phase mixing between the soft and hard segments for systems 2
and 3, which agree with the disordering observed in the
morphology obtained using the Rigid models. This indicates that
our model is capable of capturing important features in the
morphology. This is vital since the phase behavior of the hard and
soft segments are known to be responsible for the mechanical
behavior of this class of material [41,42].

5.2. Uni-axial tension and compression

In this study, we use the microstructure derived from our
coarse-grained model to calculate the stress-strain behavior at

Fig. 6. Representative cluster formed by the hard segments (which include interface)
observed in model 1 for the Rigid models.

Fig. 7. Representative morphology for model 1 for a) Rigid-strong b) Flex-strong after
equilibration procedure. Interface beads shown in gray and hard segment as defined by
HSFlex are shown in blue. PTMO segments are shown as red points. Note: For Rigid-
strong, the interface beads are part of the hard segment as defined by HSRigid in Eq.
(1). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Representative cluster formed by the hard segments observed in system 3 for
the Flex models..

Fig. 9. Representative image of the interface wrapping around the hard segment in the
Flex models.
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strain rates of _e ¼ �10�6;�10�5;�10�4 s�1
LJ , where the positive

and negative values correspond to uni-axial tension and
compression, respectively.

In this section, we will first compare our stress-strain results
with experimental data. In addition, we will characterize the
orientation of the rods during the simulation. The effects of rigidity
at the interface and intermolecular interaction on the deformation
behavior will also be investigated through our model systems.

5.2.1. Comparison with experimental system
The composition dependence of the stress-strain behavior for

PUUsunder uni-axial tension and compression is displayed in Fig.12
for _e ¼ �10�6 s�1

LJ , which is the slowest rate that we consider, for
the Rigid-strong model which most closely models our PUU
experimental system. Computational results for Rigid-strong agree
qualitatively well with published experimental results shown in
Fig. 13 [15], which was obtained under uni-axial compression,
where the unit of computational unit of stress, a3/U0, roughly
corresponds to 50 MPa [43,44]. The experimental data were ob-
tained through the split Hopkinson bar impact measurements
typically at strain rates on the order of 104 s�1, while our lowest

computational strain rates of _e ¼ �10�6 s�1
LJ roughly correspond to

strain rates of order 105 s�1. This conversionwas calculated fromour
simulation time scale sLJw3 ps, which was derived for a hydro-
carbon polymer chain [45,46]. It is difficult to compare results at the
same strain rate due to restrictions in our computational simula-
tions which become more computationally expensive with
decreasing strain rates.

By comparing Figs. 12 and 13, we observe the same trend in the
stress-strain behavior under high strain rate uni-axial compression
between the simulated and experimental systems. For instance, the
modulus increases with increasing hard segment content (from
system 1e3). Even so, one noted difference is that the simulated
modulus for system 1 and 2 are much lower than those observed
in experiments. This difference occurs since our simulations
cannot reach the large time and length scales accessible though
experiments, which leads to differences in morphology (i.e. size
of agglomerate, extent of ordering), that subsequently affects the
modulus. No experimental data exists for comparison of tensile
stress-strain behavior under high strain rates.

Table 4
Number of beads representing the rigid segments that are 21/6a away from beads
that represent the soft segments.

1 2 3

Flex-weak 1009 � 20 10440 � 145 16496 � 93
Flex-strong 434 � 5 6825 � 64 10637 � 405

Fig. 10. Radial distribution functions (zoomed to long range peaks) for a) Rigid-weak, b) Flex-weak, c) Rigid-strong d) Flex-strong.

Table 5
The calculated values of average distance between clusters from four models.

Average distance between clusters (a)

1 2 3

Rigid-strong 15.63 � 0.16 21.85 � 0.16 e

Rigid-weak 15.65 � 0.32 22.83 � 0.29 e

Flex-strong 16.79 � 0.42 17.49 � 0.22 22.59 � 0.40
Flex-weak 17.11 � 0.36 16.77 � 0.16 20.15 � 0.34
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To qualify the orientation of the hard segment during the
simulation, we first calculated the azimuthal and polar angle as
defined in Section 4.2 before deformation and at various strains for
our lowest strain rate of _e ¼ �10�6 s�1

LJ . During the simulation, we
do not observe a statistically significant change in the azimuthal
angle which measures the angle in the xey plane from the x axis,
though we do observe variation in the polar angle which measures
that angle from the positive z-axis (see Fig. 3a). This is due to the
uni-directional nature of the deformation which was performed
along the z direction. In general, we observe that the hard segments
begin to orient parallel in the z direction during tension, while in
compression they orient perpendicular to the z-axis. In the Rigid-
strong model, this reorganization is more significant in system 3.
Among these PUUs, increasing hard segment content gives rise to
increased rod interaction and percolation which facilitates more
efficient chain orientation in system 3, and as a result greater strain
hardening in the stress-strain data. This same trend is also observed
for Rigid-weak model, though in the Flex model there is no clear
distinction when accounting for the amounts of reorganization
between PUUs, suggesting that the rod size and the rigidity of
interface are factors that can affect the rods reorientation during
deformation.

To compactly characterize the rods organization, an order
parameter, S, was defined which quantifies the deviation in the
orientation of the hard segment away from the z-axis. The defini-
tion of this order parameter can be found in Section 4.3. Variation in
S as a function of strain for the Rigid-strong computational model is
highlighted in Fig. 14 for the three model PUU systems at a strain
rate of _e ¼ �10�6 s�1

LJ . From this plot we can study the behavior of
the rod orientation as a function of strain. In the Rigid models the
behavior is non-linear, where we observe a sharp increase in
orientation for system 1 and system 2, whereas an almost linear
change is noted for system 3 presumably due to the dominance of
rods interaction and percolation. This is consistent with the trend
observed in the RDF data (Fig. 10). In addition, this behavior in the
order parameter does not statistically change when the strain rate
is increased to _e ¼ �10�5;�10�4 s�1

LJ , presumably due to the high

Fig. 11. Experimental AFM for Model 1.

Fig. 12. Stress-strain curve under a) tension and b) compression calculated from Rigid-
strong at strain rate 10�6s�1

LJ .

Fig. 13. Experimental stress-strain curve under uni-axial compression for PUUs at
strain rate of 4500 s�1 (color online) Experimental data from Ref. [15] reproduced with
permission from Polymer Elsevier.

Fig. 14. Order parameter for a) tension and b) compression for the Rigid-strong model
at strain rate of 10�6s�1

LJ .
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strain rates used in simulation, which is consistent to the obser-
vation by Pathak et al. [13].

The flow stress, which is typically used to denote the stress at
a particular strain beyond the yield point, increases with increasing
HSRigid content in PUUs, regardless of the loading conditions either
under tension or compression, as seen in Fig. 15 for a strain of 0.3,
though greater strain hardening is evident when PUUs are under
tension than under compression (Fig. 12). At the higher strain rates
of _e ¼ �10�5;�10�4 s�1

LJ , we observe similar stress-strain curves
as at _e ¼ �10�6 s�1

LJ (Fig. 12) though the magnitude of stress
increases with strain rate, indicative of viscoelastic characteristic.
Furthermore, greater dynamic strain rate sensitivity is noted for
systems 2 and 3 in comparison to system 1, as shown in Fig. 15 for
PUUs.

These observations are consistent with experimental stress-
strain data extrapolated to strain rates comparable to those used
in simulation. These results clearly indicate that greater phase
mixing of the hard and soft segments as a result of disordering with
increasing hard segment content gives rise to dynamic strain
hardening in our PUU model systems. This phase mixing can also
induce changes in segmental dynamics, which has been linked to
greater shock mitigation in polyurea [47], is currently under study.

5.2.2. Taking into account of rigidity and interaction at the interface
The optimal calorimetric Tg value with respect to the attendant

dynamic deformation strain rate as mentioned above is key to
substantial energy absorption and dissipation. We also observed in
DMA [15] that increasing the hard segment content gave rise to
multiple relaxation peaks in addition to the relaxation associated
with the PTMO-rich region, suggesting greater phase mixing
between soft and hard segments in systems 2 and 3, which is
validated by the disordering from the Rigid models seen in Fig. 4b
and c. Here we examine the intermolecular interaction and the
flexibility associated with the interface and highlight their influ-
ence on the stress-strain behavior.

By varying the intermolecular interaction, we can observe
variation in the stress-strain behavior. This is illustrated in Fig. 16,
where the stress-strain curves under tension at _e ¼ 10�6 s�1

LJ are
plotted for the Rigid-weak and Rigid-strong for all three PUUmodel
systems. Under tension, greater strain hardening is evident in
Rigid-strong as a result of the stronger intermolecular interaction
which loosely resembles bidentate hydrogen bonding, while the
weak interaction model resembles monodentate hydrogen
bonding. Additionally, the extent of strain hardening becomesmore

significant in Rigid-strong vs. Rigid-weak once it is near the
percolation threshold, where a change from dispersed microphase-
separated domains at lower hard segment content (system 1) to
interconnected disordered hard segments occurs as hard segment
content increases.

5.2.3. Consideration of the phase-mixed regions
From the simulation results above, we can see that the Flex

model more closely resembles a flexible interphase, which could
represent a phase-mixed region in contrast to the rigid interface in
microphase-separated domains simulated in the Rigid model. To
further examine the effect of this phase-mixed region, we compare
the Flex-strong and Rigid-strong models.

During the initial stress-strain response (<w0.15e0.2 strain),
which is well below the incipient point of strain hardening, both
Flex-strong and Rigid-strong exhibit similar mechanical defor-
mation, regardless of tension or compression, despite a much
lower hard segment content in Flex-strong. In the Flex model as
shown in Fig. 9, a flexible interface tends to coil around the hard
segment, suggesting a propensity to facilitating phase mixing.
These phase-mixed domains are shown to give rise to similar
mechanical response as the more microphase-separated domains
observed in the Rigid-strong model, predominantly for system 1
as shown in Fig. 17. This indicates that intermolecular
hydrogen bonds, which were modeled by an attractive potential,
dominates over the stiffness or the size of the hard segment. This
intermolecular interaction may also facilitate the formation of
elongated hard segments for Flex-strong as seen in Fig. 7b as
compared to mostly isolated hard segment clusters for Rigid-
strong. Once reaching or above the percolation threshold
Rigid-strong, as expected, becomes more dominated in the
stress-strain behavior under both tensile and compression.
These observations imply that increasing intermolecular
interaction via molecular mechanisms can be the key to local
morphology and robust mechanical strengthening, particularly
well below the percolation threshold. Thus it is an important

Fig. 15. Flow stress obtained at a true strain of 0.3 for Rigid-strong model under a)
tension and b) compression.

Fig. 16. Comparison of stress-strain behavior for the Rigid-weak and Rigid-strong for
all three PUUs under tension at _e ¼ 10�6s�1

LJ .
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parameter for use in the design of high performance elastomeric
materials.

6. Conclusion

Through coarse-grained modeling, we have identified material
characteristics including the rigidity of the interface, the intermo-
lecular interaction, and the hard segment content as well as their
influences on the morphology and mechanical deformation
behavior in three model PUU systems. Our results indicate that the
hard segment content and interface rigidity both play a large role
on the morphology, where lower hard segment contents corre-
spond tomore orderedmicrostructures, while higher hard segment
content gives rise to increasingly disordered microstructures that
exhibit long range connectivity of the hard segment. The flexibility
of the interface was also shown to affect the overall morphology
including promoting the formation of elongatedmicellar structures
at low hard segment content along with a slightly higher percola-
tion threshold. Additionally the propensity of the interface to coil
around the hard segment favors disordering that could lead to
phase mixing. Simulation results based on the Rigid-strong model
qualitatively agree with available experimental data in terms of
both morphology and the trend in the stress-strain behavior with
respect to the PUU composition. The effect of intermolecular
interaction was found significant once the hard segment content
reaches the percolation threshold particularly for a rigid interface,
where a stronger attraction leads to greater strain hardening upon
tensile loading. On the other hand, simulation results also revealed
that for a flexible interface, the intermolecular interactions could
even dominate over interface rigidity in the initial stress-strain
response, particularly when below percolation. Analysis of the
hard segment orientation during both tensile and compression
deformation was also performed and results indicate that it was
dominated by percolation. Furthermore, greater dynamic strain
rate sensitivity was evidenced with increasing hard segment
content, corroborated well with the extrapolation of available

experimental data, which as expected is partly of viscoelastic
characteristic, and additionally a result of disordering leading to
phasemixing.We are currently exploiting coarse-grainedmodeling
to further study the influence of tunable microstructure on local
segmental dynamics during high strain rate deformation for our
PUU model systems which as reported can have a profound effect
on ballistic impact protection and blast mitigation. In addition, the
effects of varying the size of the PTMO segment would also be
studied and results will be reported in a future publication.
Furthermore, in the current manuscript the values of the potential
well depth in the standard truncated Lennard-Jones pair potential
were qualitatively chosen to approximate monodentate and
bidentate hydrogen bonding. To quantify these values, Quantum
mechanics may be used in the future.

These simulation results clearly demonstrate the coarse-grained
modeling capability and additionally highlight the versatility of
a three-component PUU system over commercially available two-
part elastomers, wherein tunable microstructure and interface
strength can be optimized. Both, along with the glass transition
temperature, are necessary for the development of a phase diagram
which is pertinent for use in the design of next generation high
performance elastomers.
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Fig. 17. Stress-strain curves at _e ¼ �10�6s�1
LJ for the Rigid-strong and Flex-strong models under tension (top row) and compression (bottom row) for model (a,d) 1, (b,e)

2, and (c,f) 3.
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We develop an alternative polymer model to capture entanglements within the dissipative particle
dynamics (DPD) framework by using simplified bond-bond repulsive interactions to prevent bond
crossings. We show that structural and thermodynamic properties can be improved by applying a
segmental repulsive potential (SRP) that is a function of the distance between the midpoints of the
segments, rather than the minimum distance between segments. The alternative approach, termed the
modified segmental repulsive potential (mSRP), is shown to produce chain structures and thermody-
namic properties that are similar to the softly repulsive, flexible chains of standard DPD. Parameters
for the mSRP are determined from topological, structural, and thermodynamic considerations. The
effectiveness of the mSRP in capturing entanglements is demonstrated by calculating the diffusion
and mechanical properties of an entangled polymer melt. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3698476]

I. INTRODUCTION

Mechanical properties of polymers with molecular
weights ranging from 20 000 to 200 000 are dominated by
topological constraints or entanglements. Atomistic or high-
resolution coarse-grain models are often computationally im-
practical because of the slow reptation dynamics exhibited by
high molecular weight chains. The presence of fast collision
and vibrational timescales are problematic for long, entangled
chains where theory predicts that center-of-mass diffusivity D
scales with monomer number N as D ∼ N−2.0 or slower for
flexible chains.1, 2 In atomistic models, hard core interaction
potentials are used to maintain excluded volume, which con-
sequently requires timesteps on the order of one femtosec-
ond. The conventional coarse-grain models, such as those
built using structure matching with Boltzmann inversion or
force matching, Kremer-Grest,3 and the standard bead-spring
model used in dissipative particle dynamics (DPD),4 recog-
nize that an atomistically detailed description is often not re-
quired because modeling the overall structure of the poly-
mer chain is sufficient for capturing dynamics and mechanical
properties.

In the DPD model, the loss of atomic degrees of freedom
causes beads to follow trajectories with fewer collisions,5 and
allows a larger timestep to be used in the equations of motion.
The DPD soft-repulsive potential represents a large number
of monomers as a single coarse-grained particle, and allows
structural and dynamic relaxation to occur with less computa-
tional effort than a fully atomistic simulation. The decrease in
relaxation time may be quantified by the ratio of viscosity to

a)Electronic mail: john.k.brennan.civ@mail.mil.
b)Electronic mail: jan.w.andzelm.civ@mail.mil.

diffusion coefficient, the Schmidt number Sc. For example, a
reduction in Sc of three orders of magnitude is noted for lipids
modeled with DPD relative to molecular dynamics.6

However, the use of coarse-grain models with soft-
repulsive potentials allows unphysical crossing of the poly-
mer chains (topology violations), making the simulation of
dynamical and mechanical properties inaccurate for entan-
gled chains. Use of the standard DPD soft potential results in
long chains effectively behaving as if they are short, unentan-
gled chains that follow the Rouse model of diffusivity where
D ∼ N−1.0.7 Preserving the chain’s topological structure is
particularly critical in modeling rheological properties, since
entanglements resist relative motion between chains during
strain. For bead-spring models using soft potentials, sev-
eral possible techniques to address chain crossing have be-
come available, such as uncrossability constraints,8 segmental
repulsive potential,9–12 modified DPD parameters,13 and
adaptive timestepping.14 Of these, the segmental repulsive po-
tential (SRP) is especially interesting because of its compu-
tational efficiency and ease of implementation. In this work,
we will introduce a modified SRP (mSRP) that maintains
these attributes, but yields chain structures and thermody-
namic properties similar to the near-ideal structures and ther-
modynamic properties of softly repulsive DPD chains.

This paper is organized as the following: we first review
the standard DPD polymer model for bead-spring chains, then
provide a description of our modified segmental repulsive po-
tential. Next, we develop parameters for the modified poten-
tial and characterize the resulting chain structure. A diffusion
study is then performed to evaluate the Rouse and reptation
behavior for a range of chain lengths. Finally, we demon-
strate the basic mechanical characteristics of the new chain
model.

0021-9606/2012/136(13)/134903/11/$30.00 © 2012 American Institute of Physics136, 134903-1
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II. DPD POLYMER MODELS

In the usual model for DPD polymers, the force acting
between beads i and j is computed as the sum of a non-bonded
conservative force FC , a dissipative force FD , a random force
FR , and a bond force FB .

Fij = FC
ij + FD

ij + FR
ij + FB

ij . (1)

The non-bonded conservative force can be given by

FC
ij = aij

(
1 − rij

rc

)
r̂ij , (2)

where aij, rij, r̂ij , and rc are the force constant, bead separa-
tion, bead separation unit vector and force cutoff, respectively.
The dissipative force is often taken as

FD
ij = −γ

(
1 − rij

rc

)2

(r̂ij · vij )r̂ij , (3)

where γ is a dissipative scaling factor and vij is the relative
velocity. A corresponding random force4 is taken as

FR
ij = σθij√

δt

(
1 − rij

rc

)
r̂ij , (4)

where σ , θ ij, and δt are the noise level, random number, and
timestep, respectively. Additionally, polymers are often mod-
eled within the DPD framework using a Fraenkel spring15 be-
tween bonded beads i and j,

FB
ij = −KB(rij − R0)r̂ij , (5)

where KB and R0 are the bond force constant and equilibrium
bond length, respectively. Espanõl and Warren16 have shown
that the DPD method will sample the canonical ensemble if
the random and dissipative forces are related by

γ = σ 2

2kBTset

, (6)

where Tset is the temperature and kB is the Boltzmann con-
stant. The instantaneous temperature is computed from the
kinetic energy KE and number of beads Nb as KE = 3

2NbkT .

III. SEGMENTAL REPULSIVE POTENTIAL

The segmental repulsive potential (SRP) removes un-
physical chain crossings by applying a pairwise force between
non-neighboring bonds if the bond-bond distance is within a
specified cutoff. The SRP was first introduced by Kumar and
Larson9 as a method of repelling springs in Brownian dynam-
ics using a bead-spring model. The Lennard-Jones potential
function originally used by Kumar and Larson was steeply
repulsive and required small timesteps, which is undesirable
in simulations of coarse-grain models. Pan and Manke11 later
implemented a SRP with the same functional form as the DPD
conservative potential,

FSRP
kl = b

(
1 − dkl

dc

)
d̂kl, (7)

where FSRP
kl is a force acting between bonds k and l separated

by distance dkl; b and dc are the force constant and bond-bond
cutoff distance, respectively.

FIG. 1. The minimum and midpoint distance between two bonds. (Left) The
minimum distance vector dkl is found by adding midpoint vectors (Pk, Pl)
with two vectors of unknown length (tkRk,tlRl), then minimizing the magni-
tude of dkl. The position of the vector head and tail along the bond (tk, tl)
is used along with the minimum distance to apply weighted forces to each
bead. (Right) The midpoint-to-midpoint distance of two bonds is found by
subtracting Pk and Pl.

The distance between two bonds can be calculated in
at least two ways. The current SRP methods define the
bond-bond separation as the minimum distance between two
bonds.9–11, 14, 17 The minimum distance vector dkl is often
evaluated9–11, 17, 18 as a vector sum of each bond’s midpoint
vector (Pk , Pl) and a fragment of each bond’s vector (tkRk ,
tlRl), where tk and tl are the distances from the center of
a bond, normalized by the bond length. The vector sum,
dkl = Pk + tkRk − Pl − tlRl , is shown in Fig. 1 (left). As de-
scribed by Kumar and Larson,9 a solution for tk and tl can
found by assuming each bond is a line, then minimizing the
length of dkl between the two lines:

tk = (Pk − Pl) · (
R2

l Rk − R2
klRl

)

R2
kl − R2

kR
2
l

, (8)

tl = (Pl − Pk) · (
R2

kRl − R2
klRk

)

R2
lk − R2

kR
2
l

, (9)

where R2
kl = Rk · Rl and R2

k = Rk · Rk . A bond position of t
= 0 corresponds to the center of the bond, where the bond
spans from t = −0.5 to t = 0.5. If either of the t positions falls
outside the bond (i.e., t > 0.5 or t < −0.5), then t is reset to
the nearest bond end (i.e., either t = −0.5 or t = 0.5). Using
this approach, the calculated distance only corresponds to the
minimum distance when the head and tail of dkl occur along
the interior of the two bonds (i.e., |tk| < 0.5 and |tl| < 0.5).
Otherwise, the calculated distance is too large.

Alternatively, the midpoint-to-midpoint distance vector
between the bonds can simply be computed as dkl = Pk–Pl , as
shown in Fig. 1 (right). Computing the midpoint-to-midpoint
distance implicitly takes tk and tl as zero, and yields an unam-
biguous distance.

The force acting on a bond given by Eq. (7) is decom-
posed into bead forces according to the lever rule. For beads i
and j in bond k,

Fi = FSRP
kl · L, (10)

Fj = FSRP
kl · (1 − L), (11)
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FIG. 2. Example of a topology violation (bond crossing). In this example,
the minimum distance vector changes orientation between t − δt and t by
180◦.

where L determines the weighting of the force on each bead
and is taken as L = tk + 0.5. In the special case that the
minimum distance occurs between the ends of the bonds (|tl|
= 0.5, |tk| = 0.5), forces are applied only to the two closest
atoms. If the midpoint-to-midpoint distance is used, the force
is taken as equally divided between beads since t = 0 and L
= 0.5. Adjacent bonds are excluded from all segmental repul-
sion interactions.

The addition of segmental repulsion with reasonable
parameter values greatly reduces topology violations (TV),
nonetheless a small number will always occur. The number of
topology violations can be minimized by systematically vary-
ing dc and b and counting their occurrence. Here, we define
a topology violation as a change in direction of dkl by 90◦ or
more over a single timestep.10 Figure 2 provides an example
of a topology violation. The angle φ is computed as the dot
product of the d̂kl unit vector on the previous (t − δt) and
current timestep (t),

cosφ = d̂kl,t−δt · d̂kl,t . (12)

SRP has been used in the study of fundamental poly-
mer physics and for applications such as entangled polymer
brushes.10 Goujon et al.10 have developed parameters for the
functional form given in Eq. (7) that are reasonably effective
in preventing topology violations. For this discussion, we de-
fine “standard DPD” as the DPD method with Goujon et al.
parameters for a, rc, and γ but without segmental repulsion. If
standard DPD is supplemented by segmental repulsion given
by Eq. (7) where dkl is the minimum bond-bond distance, the
term “SRP” is used. Finally, if standard DPD is supplemented
by Eq. (7) where dkl is the midpoint-to-midpoint distance, the
term “mSRP” is used.

A. Impact of using SRP

The SRP forms a cylindrical volume around the length of
the bond and hemispherical “caps” as illustrated in Fig. 3. The
large volume within the potential’s cutoff distance causes it to
participate in more interactions than a standard potential with

FIG. 3. Non-bonded cutoffs for a chain segment. A single bead has a cutoff
of rc. Two bonded beads are encompassed by the SRP potential with cutoff
dc (shaded).

a radial cutoff, and consequently the thermodynamics of the
system are changed compared to standard DPD. For a given
temperature, the use of segmental repulsion typically requires
an increase of the DPD thermostat parameter σ and a cor-
responding increase in the dissipative parameter γ according
to the fluctuation-dissipation relation (Eq. (6)). In the work
presented here with SRP, σ = 10.0 (γ = 50.0) is required
to maintain the system’s temperature,19 while standard DPD
and mSRP use σ = 3.0 (γ = 4.5). The need for an elevated
σ value in SRP cannot be eliminated by simply adjusting the
non-bonded parameters in Eq. (7), since reducing b or dc will
increase topology violations.10

Moreover, SRP influences the DPD simulation in other
aspects. The interaction of DPD beads effectively becomes
more repulsive, and therefore introduces excluded volume.17

For each repulsive force between beads i and j contributed
by the conservative DPD potential (Eq. (2)), there is likely
to be another repulsive force contributed from the conser-
vative bond repulsion (Eq. (7)) that also involves beads i
and j. Less repulsive or “soft” beads that easily overlap are
needed for aggressive coarse-graining. It is also necessary to
greatly increase the bond force constant KB relative to stan-
dard DPD.20 SRP has the effect of compressing the bond
length, possibly due to the SRP force being weighted heav-
ily to one bead of the bond by Eq. (10). DPD polymers
with SRP require a large KB and a predetermined equilib-
rium distance in lieu of balancing the repulsive and harmonic
forces.4

However, large values of KB restrict intra-chain distances
on small length scales, and may ultimately contribute to
chain stiffness. In contrast to the SRP model, softer bead-
bead interactions are introduced in the manner proposed here
for the mSRP model. mSRP effectively reduces bond cross-
ings, contributes less potential energy than the current SRP
definitions, and maintains the non-bonded structure of
standard DPD. With the premise that interactions occur-
ring along the interior of the bond (and not the end-
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TABLE I. Details of the systems used in diffusion (Diff.), stress-strain
(S.S.), parameterization (Para.). Each system is a cubic box with a cell length
of L containing M chains and N beads per chain.

N M Total L Model Purpose Time

8 192 1536 8.0 SRP/mSRP Diff. 10 000 τ

10 300 3000 10.0 SRP/mSRP Diff. 10 000 τ

20 1200 24 000 20.0 SRP/mSRP Diff. 10 000 τ

30 2700 81 000 30.0 SRP/mSRP Diff. 100 000 τ

40 4800 192 000 40.0 SRP/mSRP Diff. 100 000 τ

60 3200 192 000 40.0 SRP/mSRP Diff. 150 000 τ

70 2743 192 010 40.0 mSRP Diff. 300 000 τ

80 2400 192 000 40.0 mSRP Diff. 300 000 τ

90 2134 192 060 40.0 mSRP Diff. 300 000 τ

100 1920 192 000 40.0 DPD/SRP/mSRP Diff. 300 000 τ

40 4800 192 000 40.0 DPD/SRP/mSRP S.S. Varies
5 38 400 192 000 40.0 DPD/SRP/mSRP S.S. Varies
30 78 2340 9.2a DPD/SRP/mSRP Para. 20 000 τ

aParameterization with a box of L = 20 yielded similar TV values for dc = 0.8, b = 100.

points) are most important in preventing bond crossings,
we show that mSRP has physical advantages over SRP. In
Secs. V–VIII, we determine mSRP parameters by topological,
thermodynamic, and structural considerations, then demon-
strate the ability of the new mSRP model with these param-
eters to capture entanglements in a diffusion and stress-strain
study.

IV. SIMULATION DETAILS

The SRP and mSRP were implemented into the LAMMPS

molecular dynamics software21 to carry out the simulations
described here. For convenience, the DPD reduced units of
length, energy, time, and mass are adopted as rc, kBTset,
τ = rc

√
m/kBT , and m, respectively.

Polymer melts were created with a reduced density of 3.0
by generating M chains with N beads per chain in a cubic box
with cell length L, where periodic boundary conditions are ap-
plied in all directions. Three sets of systems were considered.
(1) For parameterization of the mSRP, a system with M = 78
chains and N = 30 beads per chain in a simulation box of L
= 9.2. (2) Diffusion calculations vary N and M, while using
the smaller of L = N or L = 40. (3) Stress-strain calculations
vary N and M with N · M = 192 000 and L = 40. See Table I
for details.

The DPD non-bonded parameters of a = 60 and rc = 1.0
were used for each simulation at a temperature of kBTset = 1.0.
For SRP, KB = 225.0, R0 = 0.85, and σ R = σ (δt)−1/2 = 100
(corresponding to Goujon et al.10). Standard DPD and mSRP
used these same parameters, except for σ R = 30 (γ = 4.5) for
the reasons mentioned previously. All simulations used the
velocity-Verlet integrator with a timestep of δt = 0.01 τ .

Each polymer chain less than N = 60 was created as a
freely joined chain, where beads were generated with a ran-
dom walk of N − 1 steps separated by a distance R0.1 In sub-
sequent runs, knowledge of the Flory ratio C∞ of standard
DPD was used to create chains with a predetermined end-to-
end distance R according to the relationship R2(n) = nl2C∞,

where n and l are the number of segments and average seg-
ment length, respectively.22

Each system used for the parameterization of the mSRP
was equilibrated for 0.5 × 104 τ , prior to a production run of
1.5 × 104 τ . The equilibration time for the diffusion studies
depended on the convergence of the monomer and polymer
chain center-of-mass (COM) diffusion, and stress-strain sim-
ulations used equilibrated systems from the previous diffusion
studies.

V. PARAMETERIZATION

A. Topology violations

Pan et al.11 observed reptation behavior with a SRP sys-
tem for N = 30, thus we chose this chain length to determine
the non-bonded parameters of the mSRP potential. A series of
simulations was performed at N = 30 (see Table I) using the
mSRP with various cutoff distances and force constants. The
cutoff distance dc and force constant b were varied in incre-
ments of 0.1 and 10, respectively. To gauge the effectiveness
of each parameter set for mSRP, the number of topology vio-
lations TV was measured using Eq. (12) for all three models
(DPD, SRP, mSRP). The standard DPD model provides an
upper bound for TV. Figure 4 shows TV observed per 100 τ .
As evident from Fig. 4, TV can be reduced by either increas-
ing dc or b. Increasing dc is very effective up to dc = 0.9,
but a further increase does not necessarily prevent topology
violations, e.g., the parameters dc = 1.0, b > 70 allow more
topology violations than dc = 0.9, b > 70. As the values of
mSRP parameters (Eq. (7): b, dc) approach the non-bonded
DPD parameters (Eq. (2): a = 60, rc = 1.0), the segmental
repulsion interactions influence the chain dynamics and num-
ber of TV differently than for dc < rc. We did not study this
effect since, as explained below, these mSRP parameters lead
to poor thermodynamic properties. In general, dc > 0.8 and
b > 80 allow less than one TV per 100 τ , and are satisfacto-
rily effective at preventing topology violations. As expected,
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FIG. 4. Topology violations (TV) of mSRP per 100 τ as a function of cut-
off distance dc and force constant b. Lines of constant dc are shown for 30
< b < 120. SRP and standard DPD (S. DPD) are shown for a single set of
parameters (Ref. 10).
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FIG. 5. Potential energy (U) as a function of mSRP force constant b and
cutoff distance dc. Lines of constant dc are shown. The solid and dash lines
correspond to standard DPD (S. DPD) and SRP, respectively.

small values of dc or b converge to the case of standard DPD.
Also evident from Fig. 4 is that SRP is very effective, and
mSRP parameter sets with dc = 0.9 and b > 100 are needed
to achieve a similar number of topology violations.

A practical choice of parameters must not only prevent
most topology violations, but also lead to reasonable thermo-
dynamic and structural properties. To satisfy the first of these
criteria, any parameter set yielding a number of topology vi-
olations on the same order of magnitude as SRP is deemed
acceptable at this stage of the parameterization, since these
values of dc and b allow very few topology violations. Other
upper limits for TV could be defined, but we constrain our
parameters to yield low TV values with the goal of capturing
entanglements. From Fig. 4, we therefore only consider pa-
rameter sets with less than one topology violation per 100 τ .

B. Thermodynamic properties

The effect of each parameter set on the potential energy
(U) and pressure (P) was examined, and is shown in Figs. 5
and 6, respectively. Note that we compute the pressure by con-
sidering both the kinetic and virial terms of the pressure ten-
sor, but disregard contributions from random and dissipative
forces as suggested by Groot and Warren.4

The DPD non-bonded potential acting between beads
(Eq. (2)) represents the repulsion of nearby monomers, and
may be modified in DPD models based on the chemical char-
acteristics of each system. We therefore want the majority of
the potential energy to be contributed by the DPD bead-bead
potential, and the energetic contribution of mSRP to be min-
imized. The case of standard DPD provides a lower limit for
U and P, while SRP serves as a benchmark from which we
strive to improve the thermodynamic properties.

From Fig. 5, the potential energy of SRP is ∼30%
higher than standard DPD. For mSRP, U and P increase with
increasing dc and to a lesser extent, b. Parameters b = 100
and dc = 0.9 lead to nearly the same number of topology
violations as SRP (see Fig. 4), but have U only ∼12% greater
than standard DPD. A compromise can be made to further
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FIG. 6. Pressure (P) as a function of mSRP force constant b and cutoff dis-
tance dc. Lines of constant dc are shown. The solid and dash lines correspond
to standard DPD (S. DPD) and SRP, respectively.

reduce the energetic contribution of mSRP at the expense
of slightly increasing the frequency of topology violations.
We chose the smallest acceptable cutoff distance that re-
sulted in TV < 1.0, i.e., dc = 0.8 and a force constant of b
= 100, leading to a very reasonable ∼4% increase in potential
energy relative to standard DPD. A similar conclusion can be
made from the pressure, shown in Fig. 6, where mSRP with
dc = 0.8, b = 100 leads to a ∼21% increase over standard
DPD, compared with a ∼75% increase observed using SRP.

Typical timesteps for DPD simulations of polymers with
and without SRP are δt = 0.01 and δt = 0.04, respectively.4, 10

We tested five timesteps with mSRP ranging from δt = 0.005
to δt = 0.04. The combination of the velocity-Verlet integra-
tor and mSRP produced small differences in energy and tem-
perature for all timesteps, but topology violations increased
quickly for δt > 0.01. Therefore, we use δt = 0.01 τ through-
out this work, except for stress-strain simulations where
δt = 0.0075 τ is used. Figure 7 shows the number of topology
violations for dc = 0.8 and b = 100 as a function of timestep.
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FIG. 7. Topology violations (TV) of mSRP per 100 τ at several timesteps,
for dc = 0.8 and b = 100.
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FIG. 8. The radial distribution function for standard DPD (S. DPD), mSRP,
and SRP at short distances. Standard DPD and mSRP are overlapping and
nearly identical for all distances (inset).

C. Structural properties

The two defining characteristics of the DPD polymer
model are soft beads bound into a flexible chain. These char-
acteristics are necessary for high-level coarse-graining5 and
should be preserved as much as possible to achieve simula-
tions of mesoscopic length scales. In particular, the excluded
volume near each bead should be as similar as possible to the
softly repulsive beads of standard DPD. The radial distribu-
tion functions (RDFs) for standard DPD, SRP, and mSRP are
shown in Fig. 8.

The overall agreement between mSRP and standard DPD
is excellent, which indicates that mSRP has little influence
on the inter-chain structure. The RDF for distances near the
bead (less than 0.5) reveals that the non-bonded structure us-
ing mSRP is very similar to standard DPD, while the more
repulsive SRP model creates excluded volume around beads.
The peaks of the RDF for SRP are higher and shifted toward
a lower r-value with respect to standard DPD and mSRP. The
taller and narrower peaks suggest a more ordered inter-chain
structure with less thermal motion. The first peak of the RDF
for SRP occurs within the cutoff distance of the segmental
repulsion potential (dc = 0.8). SRP measures the minimum
distance between bonds, meaning that two non-bonded beads
separated by less than dc = 0.8 will experience a force from
segmental repulsion. The r-value of the first peak of SRP sug-
gests that segmental repulsion will occur often and contribute
significant energy. For mSRP, the first peak is broader and at
a greater r-value. Further, mSRP measures the midpoint-to-
midpoint distance between bonds and does not always con-
tribute energy when two beads approach closer than dc = 0.8.
This is consistent with the elevated energies of SRP relative
to mSRP.

The characteristic ratio of a polymer, Cn, is an important
measure of the conformation and rigidity of individual chains.
Cn is determined from

Cn(n) = �R(n)2�
n�l�2

. (13)

FIG. 9. Example structure of an mSRP chain without an angle potential
(N = 50, b = 100, dc = 0.9).

The characteristic ratio saturates at large n, so that
C∞ = lim

n→∞ Cn(n).22

A visual inspection of the chain conformation for SRP
and mSRP suggested that neighboring bonds formed a sharp,
acute angle as shown in Fig. 9. This structural defect can be
observed as a minimum in Cn(n), shown in Fig. 10 for SRP
and mSRP. The value of Cn(2) < 1.0 indicates that the first
and second neighboring bonds form an unphysical angle of
less than 90◦, i.e., the first and third beads in any angle of the
chain are too close. This defect ultimately causes all of the
bead-bead distances to be reduced, and is reflected by the re-
duced values of Cn for SRP and mSRP relative to standard
DPD. The structure could possibly be improved by allowing
neighboring bonds to interact with a repulsive potential, how-
ever, we have chosen to add an angle potential since this al-
lows the chain structure to be tuned independently from pa-
rameters that directly influence topology violations. The angle
bending potential is taken as

Ubend = Kθ (1 + cos θ ), (14)

where Kθ is a force constant and θ is the angle formed by
three consecutive beads in a chain. A small value of Kθ will
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SRP
mSRP, Kθ=0.0
mSRP, Kθ=2.0
Flory ratio, S. DPD
Flory ratio, mSRP

FIG. 10. Characteristic ratio of standard DPD, SRP, and mSRP. Solid
and dashed lines represent an asymptotic value determined by fitting
C∞ = A

n
− Cn.23
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TABLE II. Structural properties of mSRP polymer systems. The values of
mean-squared end-to-end distance �R2� and mean-squared radius of gyration
�R2

g� are averaged over all chains in a single frame, then over 10 frames.

N Cn R2/R2
g R2

g R2

5 1.229 5.405 0.718 3.882
8 1.258 5.577 1.218 6.793
10 1.271 5.593 1.542 8.625
15 1.287 5.725 2.345 13.422
20 1.292 5.728 3.085 17.674
30 1.304 5.765 4.619 26.627
40 1.310 5.836 6.169 36.006
60 1.318 5.908 9.291 54.887
70 1.317 5.906 10.850 64.075
80 1.319 5.920 12.399 73.403
90 1.316 5.953 13.887 82.667
100 1.303 5.941 15.594 92.640

result in the collapse of neighboring bonds, while a high value
of Kθ creates a rigid, rod-like chain. In this work, Kθ was var-
ied from Kθ = 0 to Kθ = 5.0 with increments of 0.2. In the
limit of large n, Kθ = 2.0 was estimated to yield a Flory ratio
of Cn(∞) = 1.31, which was similar to the standard DPD es-
timate of Cn(∞) = 1.27, and did not demonstrate a minimum
in the characteristic ratio at n = 1. Figure 10 shows Cn(n)
for standard DPD, SRP, mSRP with Kθ = 0.0, and mSRP
with Kθ = 2.0. Although the Flory ratio for Kθ = 2.0 is ele-
vated about 0.04 compared with standard DPD, the ratio of the
mean-squared end-to-end distance to the mean-squared radius
of gyration becomes approximately the same as an ideal chain
as n increases, i.e., R(n)2/Rg(n)2 ∼= 6 (see Table II). Another
useful measure of chain structure is the mean-squared inter-
nal distance (MSID) described by Auhl et al.,22 which repre-
sents �R2� between any two beads within a chain. For short
chain lengths, mSRP has greater MSID than standard DPD,
but the two models converge for n > 20 (see Fig. 11). SRP
and mSRPKθ =0 experience “folding” of neighboring bonds,
which reduces the MSID for all n values. SRP and, to a lesser
extent, mSRP have mean-square bond lengths (corresponding
to n = 1) that are less than standard DPD, suggesting that
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FIG. 11. Mean-squared internal distances for standard DPD, SRP, and
mSRP.

bond lengths are reduced due to segmental repulsion, even
with a bond force constant of KB = 225.

Finally, we re-evaluated the number of topology viola-
tions with the additional angle potential and found an increase
from TV = 0.9 to TV = 1.8 per 100 τ , which is still very in-
frequent. As a reference, Tzoumanekas et al.18 observed 1.25
× 10−7 topology violations per bead per timestep, which cor-
responds to TV = 2.9 in Fig. 4. The increase in TV may be
due to angular restrictions on bond movement that limit the
ability of a given bond to move away from an approaching
bond. The non-bonded RDF of mSRP remained essentially
the same as standard DPD with or without the angle poten-
tial (not shown). To summarize, we recommend the following
parameters for the mSRP model: b = 100, dc = 0.8, and Kθ

= 2.0. Our parameterization considered the energy and pres-
sure independently from the angle potential. At the expense
of additional computation, the parameterization could be en-
hanced by reproducing Figs. 4–6 for several values of Kθ , then
choosing b and dc as previously described.

VI. DIFFUSION BEHAVIOR

Diffusion is a useful means of identifying the entangle-
ment length of polymer chains. The mean-squared displace-
ment for the inner monomers (g1), monomers around the cen-
ter of mass (g2), and the center of mass (g3) were computed
by

g1(t) = �[ri(t0 + t) − ri(t0)]2�, (15)

g2(t) = �[(ri(t0 + t) − rCOM (t0 + t))−(ri(t0)−rCOM (t0))]2�,
(16)

g3(t) = �[rCOM (t0 + t) − rCOM (t0)]2�, (17)

where ri and rCOM are the position of bead i and the COM
position of the chain, respectively.

Figure 12 shows the time evolution of g1, g2, and g3

for N = 40. To compute the diffusion coefficient D, the
system is allowed to equilibrate until the chain COM and
monomers diffuse at the same rate, i.e., the values of g1

and g3 essentially converge. The convergence of g1 and g3

is detected by d
dt

log(g3) achieving ∼= 90% of d
dt

log(g1). This
test approximately corresponds to the longest relaxation time
of the system, and is more rigorous than waiting for the
chains to move one radius of gyration (approximately the in-
tersection of g2 and g3). Once equilibrated, the COM self-
diffusion coefficients are calculated with the Einstein relation,

D = lim
t→∞

g3(t)

6t
on the remaining steps of the simulation (at

least 30 000 τ ).
Figure 13 shows the diffusion coefficients for chain

lengths N = 8 to N = 100 and the predicted scaling. To better
illustrate the Rouse and reptation features, we express diffu-
sion as the product of the diffusion coefficient and number
of segments per chain. For mSRP, Dn ∼= const for n < 14,
and Dn ∼ n−1.04 ± 0.06 for n > 69. Chains lengths of 14 < n
< 69 define a transitional length scale, where entanglements
increasingly influence the dynamics. The crossover from
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FIG. 12. Relaxation of linear polymer chains with N = 40. The MSD of
inner monomers (g1) and chain COM (g3) asymptotically converge. The
g2–g3 intersection indicates the time required for a chain to diffuse a distance
on the order of its own radius of gyration.

Rouse to reptation dynamics approximately corresponds to
twice the entanglement length of the polymer,3 and can be
estimated by finding the intersection of the two lines repre-
senting n0.0 and n−1.04. By this definition, the entanglement
length of mSRP is n = 28/2 = 14 segments. Diffusion us-
ing SRP scales similar to mSRP for short chains, but the first
deviations from Rouse dynamics are visible in Fig. 13 at n
= 19 and diffusion coefficients are generally higher than
mSRP for n > 19. mSRP requires shorter chains than SRP to
capture reptation behavior in the systems we considered, al-
though the difference cannot be directly measured since SRP
does not reach reptation scaling for n = 99. Any reduction
in the entanglement length is computationally useful in de-
creasing the number of beads in large polymeric systems that
require a given number of entanglements in the architecture.

The Rouse regime scaling can be strongly affected by the
addition of an angle potential to the chain model. Increas-
ing the angle bending stiffness of the Kremer-Grest model

7 9 14 19 29 39 59 99

n

0.008

D
n

mSRP
SRP
LMSRP

LSRP

Dn~n
0.0

Dn~n
-1.04

FIG. 13. Diffusion as a function of chain length for mSRP and SRP. Rouse
(dash) and reptation (dash-dot) scaling limits intersect at approximately n =
28 for mSRP. The initial deviation from Rouse diffusion scaling for mSRP
and SRP occurs at n = 14 (solid) and n = 19 (small dash), respectively.

has been shown by Bulacu et al.24 to reduce the slope of
Dn(n) for all n, thereby introducing differences from Dn
= const in the Rouse regime. For mSRP, a close inspection of
Fig. 13 shows our choice of Kθ is sufficiently small to produce
only minor deviations from Dn = const in the Rouse regime
(n < 14), and therefore we consider only structure, not diffu-
sion, in the parameterization of the angle potential.

VII. MECHANICAL PROPERTIES

To demonstrate the utility of mSRP in capturing mechan-
ical behavior, stress-strain curves were generated for standard
DPD and mSRP polymer melts. For each model, we consider
short, unentangled chains (N = 5 beads) and chains suffi-
ciently long to have at least one entanglement (N = 40 beads).
The simulation box of length L is axially deformed at a con-
stant true strain rate of �̇ = 10−4 under constant-volume con-
ditions. The extension along the direction of deformation is
performed according to

L(t) = L0e
�̇dt , (18)

where beads undergo an affine deformation in which positions
are scaled with L. The stress tensor was computed every 1000
timesteps as

P = 1

V

N ·M∑
i

[mivi ⊗ vi + ri ⊗ fi], (19)

where f, m, and r are the force, mass, and position of bead i
in a system of volume V with N · M beads. The elongation
stress σ e is calculated from the difference in normal stresses
as σe = −Pzz + 1

2 (Pxx + Pyy).
Figure 14 shows the elongation stress as a function of

strain for chains with N = 5 and N = 40, each modeled with
mSRP and standard DPD. Chains of length N = 5 are too short
to support entanglements, while chains of N = 40 are greater
than the entanglement length suggested by diffusion scaling,
and therefore capable of having one or more entanglements
per chain. Short chains with mSRP produced small values of
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FIG. 14. Stress-strain curves using mSRP and standard DPD for N = 5 and
N = 40 at �̇ = 10−4. Each point is a block average of σ e over �� ∼= 0.015
for a single replica of 192 000 beads. The scatter in stress data is likely due
to limited sampling.
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FIG. 15. Stress-strain curves for mSRP and standard DPD for N = 40 as a
function of strain rate.

σ e, suggesting a nearly uninhibited flow as strain is applied,
while the longer, entangled chains showed the expected fea-
tures of σ e–� for an entangled polymer melt. Standard DPD
is not capable of capturing entanglements, therefore both the
long and short chains of DPD have little stress under the con-
ditions described here. Chains of length N = 5 with mSRP
have slightly more stress than standard DPD, suggesting that
the dynamics of all chains are affected by segmental repul-
sion, even those much less than the entanglement length. Lah-
mar et al.17 have also reported differences from DPD when
segmental repulsion is applied to short chains.

In general, entanglements greatly increase the time re-
quired for chains to relax. To demonstrate the relaxation of
stress and the strain-rate dependence of our model, we ap-
plied three strain rates to chains of N = 40 and monitored
the elongation stress. Figure 15 shows stress-strain curves for
mSRP at �̇ = 2.5 × 10−5, 5.0 × 10−5, 10.0 × 10−5 and stan-
dard DPD at the highest rate, �̇ = 10.0 × 10−5. For mSRP at
the highest rate, a pronounced stress response is observed with
a steep initial increase in stress followed by a more gradual in-
crease. These nonlinear stress-strain features are predicted for
entangled polymer chains which form transient networks.25

As the rate is decreased (�̇ = 5.0 × 10−5), features of the
mSRP stress-strain curves are reduced until the stress is nearly
independent of strain (�̇ = 2.5 × 10−5). Expectedly, standard
DPD did not exhibit a strong rate dependence, and produced
small stress values even for the highest strain rate. It is en-
couraging that our model qualitatively reproduces the strain-
rate dependence observed in computational and experimental
studies26 at high strain rates and the strain-rate independent
behavior expected for low strain rates.

The chains’ relaxation under strain can be expressed with
the Weissenberg number (We), a nondimensional product of
the strain rate and longest relaxation time.27 For We < 1, a
chain is able to continuously relax into an equilibrium config-
uration as the strain is applied; for We > 1, the chain’s con-
figuration deforms along the direction of strain. The mSRP
chains considered here have We ranging from 7.5 (N = 5,
�̇ = 10−4) to 350 (N = 40, �̇ = 10−4), thus some degree of
deformation is expected to occur, even for unentangled mSRP
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FIG. 16. Components of the gyration tensor (λ2) during a z-direction strain
using mSRP.

chains. For We � 1, the distribution of chain monomers about
the COM can be expected to have a measurable dependence
on the strain direction. The gyration tensor is useful in inter-
preting the anisotropic chain conformation.28 The moments
of the gyration tensor are calculated as

λ2
dd = 1

N

N∑
i=0

(rid − rCOM )(rid − rCOM ). (20)

The diagonal principle moments (λ2
xx , λ2

yy , λ2
zz) may be

summed to determine the radius-of-gyration or, as seen in
Fig. 16, considered individually to understand a chain’s con-
figuration around the COM. At equilibrium, monomers have
no preference for their orientation about the COM, and each
chain approximately occupies a spherical space. When strain
is rapidly applied (�̇ = 10.0 × 10−5), the chains extend in the
direction of the deformation and cannot relax back to an equi-
librium configuration. From Fig. 16, monomers in each chain
are initially observed to occupy a spherical space centered on
the chain COM (λ2

xx
∼= λ2

yy
∼= λ2

zz) at � = 0, then quickly elon-
gate along the direction of deformation into an ellipsoid at
� = 0.25.

The asphericity B is a convenient measurement of the de-
viation from an equilibrium chain structure28 and can be de-
termined from

B = λ2
zz − 1

2

(
λ2

xx + λ2
yy

)
, (21)

where λ2
zz ≥ λ2

xx ≥ λ2
yy . Figure 17 shows the asphericity for

chains with N = 40 as a function of strain rate. At the highest
strain rate, the deformation is significant with B ∼= 0.5 for �

= 0.5. As the strain rate decreases, the chain’s structure ap-
proaches an equilibrium state with a spherical configuration
(B approaches zero). The form of the asphericity-strain curve
is similar to the stress-strain curve shown in Fig. 15, suggest-
ing that chains resist deforming from their initial, spherical
configuration. The standard DPD model does not form entan-
glements, and therefore does not develop significant aspheric-
ity even at the highest strain rate.
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FIG. 17. Asphericity of mSRP and standard DPD for several strain rates.

VIII. CONCLUSION

A long-standing advantage of the standard DPD model of
polymer chains has been that microscale systems can reach an
equilibrated structure within a reasonable simulation time.29

However, since chains are able to artificially cross through
each other, the dynamic path that such a simulation takes does
not necessarily correspond to the true path. As such, the stan-
dard DPD model can reproduce equilibrium thermodynamic
and structural properties of entangled polymer systems, but
not rheological behavior such as stress-strain curves or dy-
namic response to external stimuli. The mSRP model pre-
sented here helps to overcome this deficiency by reproducing
the equilibrium properties of the standard DPD model, while
also providing a means to reproduce the non-equilibrium be-
havior of an entangled system. In contrast, other SRP models
that capture entanglement do not have a correspondence to a
standard DPD model. Therefore, the utility of mSRP lies in
that the dynamic behavior of entanglements can be activated
when simulating non-equilibrium properties based on nearly
the same standard DPD model.

As a means of modeling entangled DPD chains, we de-
velop parameters for a modified segmental repulsion poten-
tial that redefines the bond-bond separation distance such that
“softer” interactions occur between the beads compared with
current SRP methods. The soft interactions are accomplished
by repelling only the center of bonds, rather than surround-
ing each bond with a repulsive potential. The mSRP model
effectively reduces bond crossings while contributing less po-
tential energy and pressure than would occur if the bond-bond
separation is taken as the minimum distance. mSRP only in-
teracts with the center of bonds, makes a small contribution to
thermodynamic properties, and allows a smaller value of the
dissipative parameter (γ ) than the SRP model studied here.
When mSRP is combined with an angle potential, the chain
structure is similar to standard DPD, but slightly stiffer on
short length scales as reflected by the mean-squared internal
distances and marginally higher characteristic ratio.

The diffusion of linear melts using mSRP indicate unen-
tangled, Rouse behavior for chains less than 15 beads. As the
chain length increases beyond N = 15, entanglements become
significant and the diffusion approaches the predictions of the

reptation model. mSRP appears to be well-suited for large,
computationally demanding systems since the entanglement
length is comparable with or less than other models, but each
evaluation of mSRP requires less numerical operations.

We have shown that mSRP can capture entanglements
in the mechanical behavior of polymers, where linear chains
modeled with mSRP create length-dependent and strain-rate-
dependent stress as the material is deformed. Unentangled
mSRP chains relaxed quickly and showed similar stress-strain
behavior to standard DPD. Entangled mSRP chains were
shown to produce more stress than standard DPD chains at
a high rates, but converge to a similar stress for a low strain
rate.

Overall, mSRP is an efficient bond-bond potential for
entangled polymers that can preserve topological integrity
without greatly affecting thermodynamic properties. Differ-
ent parameter sets for mSRP may be needed if the simulation
conditions or forcefield change significantly, but the concept
of maintaining soft beads and reducing the impact of the
segmental repulsion is independent of the system studied.

A brief comment regarding the computational efficiency
of mSRP is worthwhile. If the minimum distance vector
between two bonds is computed in a unoptimized fashion,
there are 102 multiplications or additions (mult-adds), 2 di-
visions, and 2 “if” statements required, while 27 mult-adds
are required to find the midpoint-to-midpoint vector (includ-
ing checks for periodicity). To find the minimum distance vec-
tor and midpoint-to-midpoint vector, our programming imple-
mentation requires about 58 and 18 mult-adds, respectively.
Implementing mSRP could result in substantially improved
computational performance relative to SRP when bonds are
densely packed, such as in a polymer melt. Further, mSRP
offers a model that may be competitive with established
coarse-graining models for selected systems. For example,
phase-separated co-block polymers are often represented by
a Lennard-Jones potential having a long, attractive tail which
requires many pairwise interactions relative to the purely re-
pulsive DPD potential. A comparison of mSRP with other
coarse-grain models is the subject of current work by our
group.
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 Biological systems have evolved the exquisite ability to spatially 
combine many weak, non-covalent chemical interactions to 
direct the molecular recognition and self-assembly of incredibly 
complex materials. The ability to control assembly at the molec-
ular level has led to an interest in harnessing nature's building 
blocks (e.g., polypeptides, DNA, etc.) to bind inorganic or syn-
thetic compounds for multi-scale fabrication (nano- to macro) 
of advanced materials. The utility of this approach is evidenced 
by the large and growing body of research reports highlighting 
peptides generated through biopanning of surface display pep-
tide libraries. [  1–5  ]  Examples include a wide range of peptide 
binders to pure metals, [  6–10  ]  metal oxides, [  11–13  ]  metal alloys, [  14  ]  
metal salts, [  15  ]  and semiconductors, [  16–18  ]  as well as hydroxyapa-
tite—the inorganic component of teeth and bone. [  19  ]  Inorganic 
binding peptides, no matter the source, are widely recognized 
for their specifi city and design control, and present a remark-
able opportunity for advanced materials development. [  20  ]  How-
ever, the rules governing this type of peptide binding are not 
fully understood. [  18  ,  20  ,  21  ]  A variety of factors have been impli-
cated in playing a role in peptide-inorganic surface interactions, 
including conformational effects, [  22–25  ]  electrostatic effects, [  26  ,  27  ]  
relative residue placement in the sequence, [  28  ,  29  ]  acid-base 
chemistry, [  30  ]  and hydrogen bond formation. [  14  ,  21  ]  

 Discovery of genetically engineered peptides for inorganics 
(GEPI) through biopanning surface display peptides is most 
commonly accomplished using phage display technology. [  4  ]  
The mainstream use of phage display is due in large part to 
the commercial availability of M13 bacteriophage display 
libraries, the diversity of the libraries, and the robustness of 
the viral host to shear-forces encountered in some biopanning 
methods. Despite the lack of current commercial availability, 
bacterial systems, including a number of different  Escherichia 
coli  ( E. coli ) display technologies (e.g., FliTrx bacterial fl agellar 

display) have been utilized for the discovery of GEPI including 
inorganic metal-binding peptides. [  31  ]  One key advantage of 
a bacterial system is that the cells and corresponding genetic 
material of  E. coli  are relatively easy to manipulate, allowing 
customized libraries to be generated and transformed at very 
high effi ciencies.  E. coli  also has a very rapid growth rate and 
is easy to culture, which makes biodiscovery of novel peptides 
a relatively simple process. In contrast to phage-display, the 
peptide sequences are directly encoded in the bacterial DNA, 
resulting in a self-sustaining and replicating population that 
can easily be propagated without requiring elution from the 
target, thereby minimizing loss of the peptides possessing the 
greatest interaction. 

 Recently, an  E. coli  peptide display library has been devel-
oped that offers the greatest estimated diversity (3  ×  10 10  dis-
creet random peptides) to date and is comparable to phage 
display peptide diversity estimates. [  32  ,  33  ]  A unique feature of 
this library is the display of unconstrained peptides (15mers) 
on an engineered outer membrane protein scaffold, eCPX. 
The unconstrained nature of the peptide is of particular impor-
tance because the utility of other bacterial peptide libraries has 
been limited due to poor accessibility to the cell surface, low 
sequence diversity, and host cell toxicity effects. [  34  ]  The eCPX 
peptide library has shown great potential recently in biopan-
ning for affi nity peptide binders for protein targets in a rapid 
(less than one week), semi-automated biopanning method. [  35  ,  36  ]  

 In this report, we demonstrate for the fi rst time the devel-
opment of a methodology for  E. coli  peptide discovery to bulk, 
inorganic targets using an unconstrained bacterial display 
peptide library. Using this method, a new series of peptides 
were identifi ed and their binding interactions characterized. 
We chose to investigate a readily available aluminum alloy as 
the initial target and demonstrate the versatility of this dis-
play scaffold by incorporating programmed peptides, including 
aluminum binding peptides produced by phage display. [  14  ]  
Computational simulation and analysis of peptide conforma-
tional fl uctuations were used to increase our understanding of 
sequence-dependent, structure-function relationships. Further-
more, we are the fi rst to show that these relationships contribute 
to high affi nity peptide interactions with this aluminum system. 

 In order to develop bulk aluminum binding peptides from 
an  E. coli  eCPX peptide display library, a new biopanning 
methodology was fi rst developed ( Figure    1  A). Biopanning is 
an affi nity-based selection technique in which high affi nity 
peptide binders are enriched from a peptide library containing 
millions to billions of individual, genetically encoded cells each 
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displaying a unique peptide sequence. Isolation and amplifi ca-
tion of the peptide isolates with the highest affi nity is accom-
plished through several steps: (1) binding (to immobilize the 
peptide materials with the greatest affi nity to the target mate-
rial), (2) washing with a series of stringency pressures put on 
the system (to remove unbound or weekly bound peptides), and 
(3) enrichment though regrowth of the remaining library mem-
bers (to build up the population of peptides with the desired 
properties). The process is repeated several times (typically 
3-5 rounds), to enrich the target population with the desired 
binding properties, and the stringency conditions employed are 
critical to a successful enrichment process. Negative selections 
can also be used against materials with similar properties to 

improve target specifi city. Due to the fact that the combinato-
rial display library is genetically encoded, identifi cation of the 
fi nal population is easily accomplished through standard DNA 
sequencing techniques.  

 In order to monitor the enrichment, an indirect binding 
assay was developed to recover the population from the alu-
minum surface after each round, and these results are shown 
in Figure  1 B. Although the indirect assay is not quantitative, 
a substantial increase in the relative number of bound cells 
from each successive round was observed, with an overall 
40-fold increase from the fourth (and fi nal) round relative to 
the fi rst. The negative control was identical to any other cell in 
the library except for the lack of the unique 15mer peptide. It 
is important to note that few to no cells were recovered from 
the negative control samples, indicating that the appropriate 
stringency was employed during the biopanning process. Also, 
negligible binding by the negative control demonstrates that 
binding was most likely facilitated by the displayed peptides, 
and that neither general bacterial cell adhesion elements nor 
the display scaffold itself had a signifi cant contribution to alu-
minum surface binding. 

 Analysis through DNA sequencing of isolated round 4 
colonies revealed 17 unique sequences ( Table    1  ). All but one 
sequence exhibited the full length (15mer) peptide, with the 
exception of DBAD10 (12mer). This truncation was not due to a 
stop codon or frameshift, and similarly, truncated peptides have 
been previously isolated from the parent library in other studies 
with protein target systems. [  35  ]  It is important to note that while 
the peptide is truncated in DBAD10, a full length eCPX scaf-
fold was verifi ed via sequence analysis and expression levels 
were monitored during FACS analysis. The peptide isolate des-
ignated DBAD5 was present once in the population sampled 
and exhibited the greatest number of hydroxyl and sulfoxyl con-
taining residues. However, the isolated peptide sequence desig-
nated DBAD1 was the only sequence present more than once 
(identifi ed 49 times), and possessed seven hydroxyl and sulfoxyl 
containing residues. To investigate this further, the 17 isolated 
colonies (i.e., isolated peptide binders) were assessed individu-
ally for their relative affi nity to the aluminum alloy ( Figure    2  A) 
using the indirect binding assay. Overall, the relative affi nity 
to the aluminum target varied signifi cantly, spanning a 2-log 
variation. All isolates exhibited a greater interaction with the 
aluminum target, compared to the negative control, and the 
peptide isolate DBAD1 had a marked increase in interaction, 
relative to all other peptides. Specifi cally, DBAD1 exhibited a 
360-fold higher target binding relative to the lowest isolated 
binder (DBAD14), and signifi cantly higher than the next best 
isolate (DBAD24). It is important to note that the number and 
composition of isolates were not infl uenced by a competitive 
growth advantage. A comparison of planktonic growth (dou-
bling time) of DBAD1 expressing cells to other isolates under 
the growth and induction conditions utilized during biopan-
ning discovery is provided in Supplemental Figure  1 .   

 To further verify binding interaction from the peptide iso-
lates, scanning electron microscopy (SEM) was used to directly 
visualize DBAD1 binding to bulk aluminum (a representative 
fi gure shown in the Figure  2 B inset). Supplemental Figure  2  
provides a side-by-side comparison of DBAD1 to the negative 
control after 24 h of incubation followed by stringent removal 

     Figure  1 .     A) Schematic diagram of the biopanning process developed 
for discovery of metal binding peptides to bulk aluminum using an 
unconstrained bacterial peptide display library. B) Experimental results 
showing enrichment of aluminum isolates through progressive rounds 
of biopanning.  
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hydrophobic, non-polar, polar, basic, and acidic. The experi-
mental frequency of each residue is displayed in the bar graph, 
along with the corresponding 95% confi dence interval. The 
theoretical residue frequency in a given sequence can be esti-
mated from the 20 possible naturally occurring amino acids. 
However, the DNA codons used to encode the amino acids 
displayed causes some residues to be present at a higher fre-
quency (i.e., degeneracy) than others. Accordingly, the red lines 
in Figure  2 B represent the theoretical expected residue occur-
rences, assuming the library was fully randomized. As expected, 
polar residues, the prime candidate for surface interactions, 
were enriched. While basic residues were under-represented, 
the charged acidic residues (glutamic and aspartic acid) were 

of unbound cells. Overall, from these data it can be concluded 
that (1) the biopanning method was successful against a bulk 
aluminum material, (2) the displayed peptide strongly facili-
tates the interaction of the isolates with the aluminum target, 
and (3) the DBAD1 isolate exhibited signifi cantly better binding 
performance, warranting further investigation. 

 Although peptide-metal and peptide-metal oxide interac-
tions (e.g., Cu 2 O, ZnO, GaAs crystals, TiO 2,  etc.) are not fully 
understood, the consensus of research in this area indicates 
that the peptide isolates are categorized by a predominance of 
polar, hydroxyl-containing residues with little to no positional 
consensus across the isolated population. [  7  ,  14  ,  16  ,  26  ,  37  ]  The exact 
mechanism of the interaction of hydroxyl-containing residues 
with the aluminum oxide (alumina) surface remains open 
to debate. [  14  ]  However, it is feasible that some measure of 
hydrogen bonding similar to that found in solvent/oxide sur-
face interactions [  38–40  ]  and peptide/oxide interactions [  27  ]  may 
exist. When considering the peptide isolates reported herein 
(Table  1 ), it is noteworthy that the hydroxyl containing resi-
dues are distributed throughout the length of the majority of 
these peptides—a fact we will investigate in detail. However, 
it should also be noted that two of the sequences contain only 
a single hydroxyl-containing residue, implying that multiple 
mechanisms for surface binding must exist. A more thorough 
analysis of the exact mechanism of these interactions is left to 
future work. 

 The combined residues from the 17 isolates in Table  1  
(weighted by frequency) were examined further for trends 
(enrichment or depletion) in amino acid character using a 
similar analysis to that employed by Thai et al. [  26  ]  Figure  2 B 
summarizes these calculated results into general categories of 

   Table  1.     Aluminum peptide sequences isolated from round 4 biopan-
ning population with notation of frequency of occurrence and number 
of hydroxyl or sulfoxyl groups in each peptide. Hydroxyl and sulfoxyl resi-
dues are underlined. 

Name Peptide Sequence Number Hydroxyl or Sulfoxyl 
Groups

DBAD1  S   T  E A R A  T   T  L  T  A  C  D A  Y 7

DBAD5 L F H R  S   C  P  S   Y  D  T   Y   S   C  L 8

DBAD4 H I G P  S  R  Y   S   S  A F H  C  L  S 6

DBAD10  S   S   C   C   S  I H H R D  C  F 6

DBAD7 G  S  M F I L  T  G F  T  G  T  V  S  H 5

DBAD19 D H  C  F R I P N L P  T   Y  R  S   C 5

DBAD8 Q V H P R G  S   Y  H R A P  S  I  C 4

DBAD11 A  S  R  T  A L R  C  V Q H R V R  T 4

DBAD14 N G A  T  I  C  K A H P  S  A L V  T 4

DBAD16 K  Y  R P  C   Y  P R L K P F I H  T 4

DBAD6  S  N I A P I P R N H F I H  T   S 3

DBAD12 P Q A L N  S   Y   S  A I F A A I N 3

DBAD15 V N V  S   Y  A W F V H G  S  R R M 3

DBAD18  S   T  V Q A F G P G  C  V A Q H L 3

DBAD20  S  G H H  C  D K E I G A R L L H 2

DBAD21 V  S  P P G P H L R G A L P I G 1

DBAD24 L P R I P G N L F  T  I L Q P M 1

     Figure  2 .     Analysis of aluminum binding peptides. A) Comparison all 17 
peptide isolates using an indirect binding assay with aluminum. Inset 
shows a representative scanning electron microscopy (SEM) image of the 
DBAD1 isolate bound to the bulk aluminum alloy. B) Statistical analysis 
allowing comparison of observed and expected frequency of amino acid 
residues across all 17 peptide isolates. Gray bars indicate the observed 
residue occurrences in each peptide and corresponding 95% confi dence 
interval. Red lines indicate the theoretical expected residue occurrences, 
assuming the library was fully randomized.  
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cell surface display scaffold, and directly compare the relative 
performance with an aluminum binding peptide developed 
by phage, we genetically engineered the system to allow pro-
grammed display of peptide sequences, including Al-S1. Due to 
the unconstrained peptide display scaffold of eCPX, peptides of 
dissimilar length from different scaffold origins can be readily 
incorporated. Comparison of Al-S1 to DBAD1 using the indi-
rect binding assay performed in Figure  2 A indicated successful 
binding by Al-S1 displayed on the eCPX scaffold to the bulk 
aluminum alloy with signifi cantly greater recovery of DBAD1 
(Supplemental Figure  3 ). Although the indirect assay and anal-
ysis is not quantitative, the versatility of the eCPX scaffold with 
the ability to compare and translate peptides derived from dif-
ferent sources to a biofi lm producing system is demonstrated.  

 The prominence of helix-forming alanine residues in DBAD1 
and helix-breaking proline residues in Al-S1 led us to perform 
molecular dynamics simulations to study structural character-
istics that may facilitate surface binding.  Figures    3  A and  3 C 
shows an overlay of each peptide backbone structure during the 
course of a 40 ns simulation trajectory for peptides DBAD1 and 
Al-S1, respectively. Al-S1 rapidly lost the initial helical struc-
ture and maintained mostly turn and random coil secondary 
structure (helicity 0.4%). By contrast, DBAD1 maintained the 

elevated in a moderate but statistically relevant fashion. Pre-
vious analysis of poly-L-glutamic acid on an aluminum oxide 
surface has demonstrated the dependence of the interaction on 
pH and salt concentration, positing the direct role of the car-
boxylate group in binding. [  41  ]  Through computational mode-
ling, Dringen et al. demonstrated the adsorption of glutathione 
disulfi de (GSSG, g-GluCysGly disulfi de) on alumina nanopar-
ticles and also indicated direct involvement of the carboxylate 
groups. [  30  ]  The statistically large increase in alanine, however, 
is unexpected. As the side chain of alanine is a simple methyl 
group, it is unlikely that this enrichment is due to a direct 
chemical interaction. It is more likely that structural considera-
tions govern these interactions, since alanine is noteworthy as a 
helix-forming residue. 

 Similar to our studies, Zuo et al. [  14  ]  developed peptides with 
affi nity to aluminum and steel alloys. Their work also suggested 
that aluminum binding peptides have an expected bias toward 
hydroxyl-containing amino acids. The DBAD1 peptide isolate 
has seven hydroxyl containing residues distributed over a pep-
tide length of 15 residues. In comparison Al-S1, the highest 
affi nity peptide in the work by Zuo, has fi ve hydroxyl containing 
residues distributed over a peptide length of 12 residues. It is 
diffi cult to directly compare binding affi nities of peptides of 
varying length, developed and displayed on different scaffolds. [  1  ]  

     Figure  3 .     Molecular dynamics study of DBAD1 and A1-S1. (A) and (C) show an overlay of peptide backbone during simulation trajectory for the DBAD1 
and Al-S1 peptides, respectively. (B) and (D) show the behavior of improper dihedrals marking relative orientation of hydroxyl groups during the course 
of simulation for the DBAD1 and Al-S1 peptides, respectively.  
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computationally-driven methods employed, allow for a greater 
understanding of potential structure-function relationships and 
offer a new standard for GEPI analysis extending to other dis-
covery systems (e.g., phage, yeast, etc.). We believe due to the 
demonstrated simplicity and versatility, our general methods 
will broadly extend current capabilities of GEPI discovery 
towards bulk, inorganic and more complex materials. Further-
more, our work is likely to have signifi cant impact to the design 
and development of benefi cial biofi lms, including living paint 
for common metals (including aluminum) subject to corrosion. 
Future studies will continue to explore the use of this biological 
tool for advanced material development and improved under-
standing of hybrid material interactions.  

 Experimental Section  
 Bacterial Strains, Culture Conditions, and Materials : In all biopanning 

experiments, a previously developed  E. coli  unconstrained peptide 
display library constructed from an eCPX display scaffold was 
utilized. [  32  ,  33  ,  43  ]  These materials were obtained from the laboratory of 
Dr. Patrick Daugherty (University of California Santa Barbara) and cells 
were cultivated and maintained as previously described. [  35  ]  Phage derived 
aluminum binding peptide [  14  ]  Al-S1 (VPSSGPQDTRTT) was synthesized 
(BioBasics) for cloning into a eCPX vector using standard molecular 
biology methods. Primers used to amplify the peptide insert for cloning 
were as follows: Forward 5 ′ -TTCCGTAGCTTGTACATGTGGCCAG-3 ′  and 
Reverse  ′ -CACCGCTGCCACCGCT-3 ′ . The 83 bp insert was ligated into 
the empty display vector, pBad33-nl3, which was constructed with BsrGI 
and XhoI digestion sites for peptide sequence cloning. The resulting 
plasmid, named pBad33-AB1, was then transformed into chemically 
competent MC1061 cells and insertion of the programmed peptide 
sequence verifi ed by sequencing (Genewiz). 

 Samples of aluminum sheet (product 5052-H32 Aluminum Sheet, 
onlinemetals.com) were received as 0.16 cm thick, and 5 cm  ×  10 cm 
in size. Prior to use, the aluminum was cut into a size (1 cm  ×  5 cm) 
compatible with standard culture tubes and samples were autoclaved 
using standard sterilization cycle. All molecular and microbiology 
support materials (e.g., primers, buffers, enzymes, media, Tween20, 
antibiotics, etc.) were obtained from standard, commercial suppliers 
(Fisher Scientifi c, Sigma Aldrich, Invitrogen, NEB, etc.) and used 
according to standard techniques.  

 Biopanning Method : Prior to biopanning against the target, the 
eCPX bacterial display library was prepared as previously described, 
with arabinose (0.04%) induction occurring at an OD 600  0.50–0.55 
for 35–45 min. [  35  ]  After induction, the cells were chilled on ice for 
15–30 min. Sterilized aluminum samples were added to the induced 
library and placed on a shaker at 4  ° C for 15 min. The aluminum 
samples were briefl y rinsed in sterile phosphate buffered saline (PBS) 
and transferred to PBS supplemented with Tween20 (1%) (PBST). 
The samples were washed for 5 min and stringency of isolation wash 
adjusted through additional wash steps with each successive round of 
biopanning to remove loosely bound cells. After washing, bound cells 
were recovered by removing the aluminum samples to LB + Cm/Glu and 
growing at 37  ° C with shaking overnight. This overnight culture was 
then used in the subsequent round, for a total of 4 rounds. Ninety-six 
randomly selected colonies from round 4 were sequenced using the 
pBAD Forward universal primer (Genewiz) and the peptides identifi ed 
from the generated sequences using the InsertMultiSeek analysis tool 
(www.sequencetools.com).  

 Indirect Binding Assay : The aluminum binding propensity of each 
sorting round, a population consisting of a single isolate or the empty 
display vector (negative control) were compared by quantifying the 
number of cells recovered from the aluminum surface. This assay 
was carried out by initially diluting overnight cultures 1:100 into fresh 
LB + Cm (5 mL), followed by eCPX expression induction with arabinose 

initial helical core structure very well (helicity 83%). This agrees 
with previous studies, which have noted the stability of helices 
in short (16 residue) alanine-based peptides. [  42  ]  Therefore, 
while both DBAD1 and Al-S1 had a relatively high number of 
hydroxyl and sulfoxyl groups to present to the aluminum sur-
face, the manner in which these groups were presented to the 
surface differed. 

 This can be demonstrated through an analysis of the relative 
orientation of successive hydroxyl- (or sulfoxyl-) containing side 
chains along the length of each peptide. To quantify this rela-
tive orientation, we measured an improper dihedral angle ( Φ  ij ), 
defi ned by the hydroxyl oxygens (or sulfoxyl sulfur) and back-
bone carbons of two (not necessarily adjacent) residues, i and 
j. A visual representation of this moiety is shown in Supple-
mental Figure 4. A  Φ  ij  value in the range of  ±  90 °  implies rough 
alignment along the same face of the peptide, and denotes the 
possibility for multiple, simultaneous binding sites as the pep-
tide approaches the surface. A measure of this is shown in Fig-
ures  3 B and  3 D, where the improper dihedral angle ( Φ  ij ) has 
been tabulated for various pairs of hydroxyl-containing resi-
dues along the peptide length during the course of the simu-
lation for DBAD1 and Al-S1, respectively. A marked contrast 
in the behavior for these two peptides is very evident. DBAD1 
maintained a helical character and presented multiple aligned 
binding groups all along the peptide length. This alignment is 
shown for residue pairs Ser 1-Thr2, Thr8-Thr10, and Thr10-
Cys12, representing a range of locations and lengths scales 
within the peptide. While some scatter outside the range of  ±  
90 °  is seen, the residue alignment overwhelmingly fl uctuates 
quite tightly about 0. In contrast, Al-S1 lacked an overarching 
structure and any potential binding groups were scattered over 
the perimeter of the peptide (shown for residue pairs Ser3-Ser4, 
Ser3-Thr12, and Thr11-Thr12). It is obvious from this analysis 
that pairs of hydroxyl groups in the Al-S1 peptide had little to 
no alignment with each other. This means that in the absence 
of an overriding helical structure, the availability of an indi-
vidual residue for binding as the peptide approaches the sur-
face is largely a matter of chance. Both peptides will bind, but 
we suggest that this structural behavior strongly contributes 
to the improved binding affi nity of DBAD1 relative to Al-S1. 
Further analysis is currently underway on additional peptides, 
specifi cally looking for alternative conformational and binding 
group alignment modes to enable us to draw more general 
conclusions on features that contribute to successful binding 
interactions. 

 To conclude, we demonstrated for the fi rst time a novel and 
general approach to GEPI discovery using an unconstrained  E. 
coli  peptide library. Using this approach, we have discovered a 
unique DBAD1 peptide isolate that we believe to have superior 
binding performance with the aluminum (alumina) alloy, and 
attribute the increased interaction to a propensity to sustain an 
overarching helical structure with preferential presentation of 
hydroxyl- and sulfoxyl- containing residues to the metal sur-
face. Compared to conventional techniques, our methodology 
enables direct propagation of the isolated material throughout 
the GEPI discovery process. This allows for the selection of 
the best affi nity isolates, which are often lost in competing 
methodologies requiring elution at extreme pH conditions 
from the bulk material during the biopanning process. The 

Adv. Mater. 2013, 25, 4585–4591



   
137

4590

www.advmat.de
www.MaterialsViews.com

wileyonlinelibrary.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

C
O

M
M

U
N

IC
A
TI

O
N  Supporting Information 

 Supporting Information is available from Wiley Online Library or from 
the author.  

   Acknowledgements  
 This project is supported in part by appointments to the  U.S. Army 
Research Laboratory Postdoctoral Fellowship Program  administered by the 
 Oak Ridge Associated Universities  through a contract with the  U.S. Army 
Research Laboratory . Graphical artwork featured in the table of contents 
image and cover art feature were created by Mr. Eric Proctor at the 
 U.S. Army Research Laboratory . The peptide sequence analysis webtool, 
InsertMultiSeek (www.sequencetools.com), used for batch sequence 
analysis was custom developed for this project by Mr. Richard Jones at 
 Integration Dynamics, Inc . The authors also wish to thank Dr. Patrick 
Daugherty (UCSB) for providing the initial eCPX bacterial display library 
materials used in these studies and Dr. Jennifer Getz (Daugherty Lab) 
for useful discssions on the modifcation of the eCPX system. Additional 
laboratory technical support was provided by Ms. Mia Hunt at  U.S. Army 
Research Laboratory .   

 Received: April 12, 2013  
  Revised: May 20, 2013  

Published online: July 19, 2013 

as described previously. The induced cells were then chilled on ice for 
15-30 min before addition of sterile aluminum samples for 15 min at 
37  ° C with shaking. The aluminum samples were briefl y rinsed in sterile 
PBS and transferred to PBST (30 mL) and shaken at 150 rpm at room 
temperature for 30 min, a simpler washing regime that was found 
to yield the same results as the most stringent regime used during 
biopanning (data not shown). The aluminum samples were removed to 
LB + Cm/Glu (6 mL) and incubated at 37  ° C with shaking for 1 hour. This 
incubation step allowed bound cells to be replicated off the aluminum 
surface. Furthermore, the addition of glucose prevented the expression 
of the eCPX display scaffold and thus, the cells remained planktonic and 
could then be enumerated. This was performed by serial dilutions on 
LB + Cm agar plates and the number of cells mL  − 1  recovered from the 
aluminum surface tabulated. All samples were prepared as duplicate 
independent samples, the results averaged, and the standard error of 
the means calculated.  

 Planktonic Growth Study : The isometric growth of the isolates were 
measured by constructing growth curves of the negative control (i.e., 
empty display vector) and cells displaying peptides Al-S1, DABD1, 
DBAD24, DBAD8, and DBAD14 in either LB + Cm, LB + Cm with an 
arabinose induction described previously, or in LB + Cm/Glu. Additionally, 
a growth curve was also constructed in the LB + Cm/Glu recovery 
condition for these strains following a typical arabinose induction 
and 45 min incubation as described previously using a 1:100 dilution. 
All samples were prepared as duplicate independent samples and the 
doubling time and 95% confi dence intervals were calculated using the 
nonlinear fi t exponential growth equation (Prism 5, GraphPad Software).  

 Scanning Electron Microscopy : Cell binding to an aluminum alloy 
surface was directly visualized microscopically. An overnight culture 
of MC1061 cells harboring either the pBad33-DBAD1 or pBad33-nl3 
plasmids were diluted 1:100 in fresh LB + Cm (50 mL) and induced 
with arabinose, as described previously. After induction, aluminum 
SEM stubs were added directly to the culture and incubated at 37  ° C 
for 24 hours before transfer to dI H 2 O (30 mL) and shaken at 150 rpm 
at room temperature for 15 min. Samples were then removed and 
allowed to air dry prior to imaging using a FEI Quanta 200FEG ESEM 
(FEI) scanning electron microscope. A comparison of cell binding to 
the aluminum SEM stubs and the bulk aluminum alloy used in binder 
development were found to be similar (data not shown) and use of the 
stubs did not require additional sample preparation, as the use of the 
bulk aluminum did, and yielded better quality, uncoated images.  

 Statistical Analysis of Critical Amino Acids : Statistical analysis was used 
to compare the observed number of occurrences of each amino acid 
found to expected number of occurrences of each amino acid based on 
codon degeneracy. Although there was a 17 unique peptide sequences 
found, a total of 65 individual sequences were analyzed because 
sequence DBAD1 was identifi ed 49 times. Statistical signifi cance of 
differences between the observed and expected values were determined 
by calculating the 95% confi dence intervals for each residue, as described 
by Thai et al., [  26  ]  using the MAPLE software. [  44  ]  Briefl y, the probability of 
any residue's occurrence is governed by binomial distribution. By using 
the cumulative binomial probability function (described in detail in 
reference [  26  ] ), which accounts for the number of sequences isolated and 
the peptide length, the upper and lower 95% confi dence limit can be 
calculated. The values are displayed as error bars in Figure  2 B and are 
asymmetric due to the use of a binomial distribution.  

 Molecular Dynamics and Helicity Simulations : Individual molecular 
dynamics simulations were performed for each peptide of interest. 
Peptide structures were built within VMD [  45  ]  from sequence information, 
solvated with water, and suffi cient ions added to neutralize the system. 
The system was then minimized for 5000 steps, heated to 300 K, and 
NPT dynamics performed for approximately 40 ns. The simulations were 
performed using the CHARMm forcefi eld with a timestep of 2 fs and 
pressure of 1 atm with the NAMD software of Schulten et al. [  46  ]  The 
propensity for alpha helix formation of peptides were calculated utilizing 
the scale of Pace and Schultz. [  47  ]  STRIDE analysis [  48  ]  of the DBAD1 and 
Al-S1 secondary structure show an average percent helicity of 83% and 
0.4%, respectively over a 40 ns simulation.   
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Abstract
The effects of stoichiometry on the atomic structure and the related mechanical properties of
boron carbide (B4C) have been studied using density functional theory and quantum
molecular dynamics simulations. Computational cells of boron carbide containing up to 960
atoms and spanning compositions ranging from 6.7% to 26.7% carbon were used to determine
the effects of stoichiometry on the atomic structure, elastic properties, and stress–strain
response as a function of hydrostatic, uniaxial, and shear loading paths. It was found that
different stoichiometries, as well as variable atomic arrangements within a fixed stoichiometry,
can have a significant impact on the yield stress of boron carbide when compressed uniaxially
(by as much as 70% in some cases); the significantly reduced strength of boron carbide under
shear loading is also demonstrated.

(Some figures may appear in colour only in the online journal)

1. Introduction

Boron carbide (BC), due to its extreme hardness, low density,
and demonstrated performance, has been used as an armor
ceramic for many years [1]. With nominal stoichiometry
B4C, the crystal structure consists of 12-atom icosahedra
cross-linked by 3-atom chains as shown in figure 1. Within
the structure, there is a high degree of compositional variation
with configurations consisting of B12 or B11C icosahedra
(among others) linked by a variety of 3-atom chains such
as C–C–C and C–B–C. BC is generally regarded to have
R3m symmetry [2], however this can only be true for a
subset of the available atomic arrangements since placement
of even a single carbon atom within an icosahedron causes
a monoclinic distortion of the rhombohedral lattice thereby
reducing the crystalline symmetry [3]. Configurations of
different stoichiometry from ideal B4C (e.g. B2.75C or B5.6C)
are referred to as ‘polytypoids’ and atomic configurations with
ideal B4C stoichiometry, but different arrangement of atoms

3 Author to whom any correspondence should be addressed.

within the icosahedra (or chains), are termed ‘polytypes’.
Within each icosahedron, there exist two crystallographically
unique sites termed ‘polar’ and ‘equatorial’ as shown in
figure 2 and hereafter, any atom that specifically occupies a
polar or equatorial site within an icosahedron will be labeled
with a subscript ‘p’ or ‘e’ respectively.

Experimentally, BC can be produced by several methods
such as reaction of boric oxide and carbon in an electric arc
furnace [4] or carbothermal reduction of a boric acid–citric
acid gel [5]. The powders can consist of a range of boron
to carbon ratios resulting in a complex phase diagram [6],
an example of which is shown in figure 3. Other phase
diagrams have also been constructed [7–9]. A new phase
equilibrium diagram has just recently been submitted for
publication [10] which suggests that stoichiometric B4C is a
line compound with a monoclinic structure that is stable to
600 K. In addition, it is also suggested that a rhombohedral
B13C2 solid solution phase is the stable phase above 600 K
from about 10 to 20 atomic %C. The issue of a B13C2 phase
has been debated for some time after first being identified by
Samsonov et al in 1956 [11]. In a recent review article [8]

10953-8984/12/505402+11$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Icosahedral structure of boron (blue) carbide linked by a
3-atom carbon (red) chain. For clarity of representation, only a
single chain is included in the image.

Figure 2. Icosahedron with polar (yellow) and equatorial (blue)
positions.

it has been suggested that x-ray diffraction analysis of a
series of boron-rich materials indicates a distinct change in
the c lattice parameters at about 13 atomic %C, the B13C2
composition. Further, in that work, a single crystal of BC
was chemically analyzed by Raman spectroscopy and it is
clear that even ‘single crystals’ of BC can have significant
stoichiometric variation. McCuistion et al [12] compiled
chemical compositions of a variety of BC powders also
indicating B/C ratios from 3.58 to 4.0. The exact chemical
composition of BC grains in two commercial bulk materials
was determined by Chen et al [13] using Electron Energy Loss
Spectroscopy (EELS) with the following results: B/C ratios of

Figure 3. Boron carbide phase diagram. Reproduced with
permission from [6]. Copyright 1983 Elsevier.

Table 1. Experimental bulk and shear moduli (GPa) of boron
carbide as a function of composition.

Stoichiometry % Carbon Bulk modulus Shear modulus

B4C 20.0 235 197
B4.5C 18.2 237 197
B5.6C 15.2 236 197
B6.5C 13.3 231 189
B7.7C 11.5 178 150

3.81 ± 0.15 and 3.90 ± 0.07. These variations in composition
have an effect on the observed mechanical properties, as
shown in table 1, where the experimentally measured bulk
and shear moduli for samples ranging from B4C (20% carbon)
to B7.7C (11.5% carbon) are presented [8]. The general trend
evidenced by the experimental data is a reduction in stiffness
as the boron concentration increases. There has been much
work on determination of the structure and properties of BC
samples of varying composition. Conde et al [14] determined
the hexagonal lattice parameters of B4C samples ranging from
10% to 20% C using glancing incidence x-ray diffraction
and similar experimental studies of structure as a function
of stoichiometry were conducted by Konovalikhin and
Ponomarev [15] and Kwei and Morosin [16]. The application
of solid state density functional theory (DFT) [17] by Saal
et al [18] and Vast et al [19] provided theoretically determined
structures and energies for a range of stoichiometries.

Although the structure and formation enthalpy of BC as
a function of stoichiometry has been well documented [18],
knowledge of the origins of the deformation and damage
mechanisms, and their relation to the macro-mechanical
properties, is critical. The discovery of shock-induced
localized nanoscale amorphization [20] in hot pressed bulk
BC and its relationship to performance is unclear. In addition,
the origin of the dramatic loss in shear strength [21, 22] of
B4C in plate impact experiments has not been elucidated.
The elastic moduli of 3 BC polytypes, all with 20%

2
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carbon composition, were predicted using DFT by Taylor
et al [23] and Aryal et al [24] under hydrostatic and uniaxial
load. Taylor et al showed that among the B12(C–C–C),
B11Cp(C–B–C), and B11Ce(C–B–C) polytypes, there was a
reduction in the bulk modulus from 234 to 222 GPa when
going from a C–B–C to a C–C–C chain at fixed 20% C
composition and polytypism was shown to affect the pressure
evolution of the elastic moduli as well. Aryal et al [24]
presented similar results for the elastic moduli under uniaxial
load and also presented stress–strain curves for two BC
polytypes, both containing 20% carbon and showed that there
was a slight difference in the stress–strain response between
the two polytypes studied in that work.

Since BC powders are most likely a mixture of BC
stoichiometries [8], and given the experimentally observed
effect of such compositional variation on the mechanical
response of BC, it is important that the mechanical properties
of a diversity of compositions be well characterized. This
information can play a role in identification of ‘soft’
configurations that may initiate failure in the BC structure
when impacted with high velocity projectiles. In this paper, we
present a comprehensive survey, using DFT, of the mechanical
properties of 15 BC structures with stoichiometries ranging
from B2.75C to B14C as shown in table 2. The B2.75C
stoichiometry (26% C) represents a carbon-rich example
and, as indicated by the phase diagram in figure 3, would
precipitate carbon in the form of graphite at high processing
temperatures. However, it was included in the current analysis
purely as an example of an extremely carbon rich limit in
order to further elucidate the effects of stoichiometry on
the mechanical properties of the icosahedral structures under
consideration. For each stable configuration, the structure,
elastic moduli, and stress–strain response under several
loading paths using quantum molecular dynamics (MD)
simulations have been determined. We include an analysis
of the stress–strain response of each structure under shear,
in addition to hydrostatic and uniaxial loading, since shear
has been postulated to be a contributing factor to the
pressure-induced amorphization [25] phenomenon that has
been observed experimentally in BC. The computational
approach adopted in this work is described in section 2,
followed by presentation of the results and discussion in
sections 3 and 4 respectively.

2. Computational approach

2.1. Crystal structure optimization algorithm

A crystal structure optimization program was written, based
on the L-BFGS [26] optimization algorithm, where any
stress state (hydrostatic, uniaxial, shear) can be imposed.
Several software packages (such as CP2K [27]) already offer
such implementations, however, many of those programs
rotate the input coordinates to a different computational
orientation making interpretation of the stress along a specific
crystallographic direction, a key component of this work,
more difficult to monitor and interpret. To circumvent this
difficulty, a program that does not perform a rotation of the
input orientation was written and used in this study. At each

Table 2. Boron carbide stoichiometries used in this study. The
subscript e and p labels denote equatorial and polar carbons,
respectively.

Structure Stoichiometry % C

B11Ce(CCC) B2.75C 26.66
B11Cp(CCC) B2.75C 26.66
B12(CCC) B4C 20.00
B11Ce(CCB) B4C 20.00
B11Cp(CCB) B4C 20.00
B11Ce(CBC) B4C 20.00
B11Cp(CBC) B4C 20.00
B12(CCB) B6.5C 13.33
B12(CBC) B6.5C 13.33
B11Ce(BCB) B6.5C 13.33
B11Cp(BCB) B6.5C 13.33
B11Ce(BBC) B6.5C 13.33
B11Cp(BBC) B6.5C 13.33
B12(BBC) B14C 6.66
B12(BCB) B14C 6.66

optimization step, the energy, forces, and stress tensor were
evaluated using the Perdew–Burke–Ernzerhof [28] (PBE)
functional in a double zeta valence plus polarization basis
set with a plane wave cutoff of 800 Ryd provided by the
CP2K [27] program. It should be noted that no symmetry
restrictions were imposed, i.e., no constraints were applied
to enforce linearity of the 3-atom chain. For each system, a
2 × 2 × 2 computational supercell containing 120 atoms was
used in order to minimize size effects introduced when using
smaller computational cells. At each optimization step, the
stress tensor returned by CP2K was converted to cell vector
derivatives, required by the L-BFGS algorithm to update
the lattice vectors, using the transformation from stress to
cell vector gradients given by Doll [29]. Optimization was
considered converged when the gradient norm of the cell
vector derivatives was below 0.0001 atomic units.

2.2. Elastic constants

Elastic constants are related to the second derivative of the
total energy with respect to strain, εi, via

Cij =
1
V

∂2E

∂εi∂εj

∣∣∣∣
0

(1)

where V is the unit cell volume and i, j = 1 · · · 6 using
the compact Voigt notation (1 = xx, 2 = yy, 3 = zz, 4 =

yz, 5 = xz, 6 = xy). For this work, a program was written
that evaluates the second derivatives in equation (1) via a
finite difference of analytic first derivatives of the energy with
respect to strain (stress tensor) provided by the CP2K code.
We have monitored the change in the elastic constants as a
function of hydrostatic and uniaxial load and the required
stress corrections for elastic constants, Cijkl, under non-zero
load were included using:

Bijkl = Cijkl +
1
2 (δikσjl + δjkσil + δilσjk + δjlσik

− 2δklσij) (2)

with σij being an element of the stress tensor and Bijkl
representing the stress corrected effective elastic constant (or
‘Birch coefficient’) [30, 31].
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Table 3. Computed unit cell parameters using 0 K geometry optimization and MD simulation (values in parentheses) at 298 K. The shaded
gray area indicates that no stable configuration containing a linear 3-atom chain was found. (Lengths in Angstroms, angles in degrees,
volume in cubic Angstroms).

Structure Formula % C a b c α β γ Volume

Experiment37 B5.6C 15.2 5.19 5.19 5.19 65.18 65.18 65.18 110.02
B11Ce(CCC) B2.75C 26.66 5.14(5.15) 5.21(5.22) 5.21(5.22) 64.31(64.28) 65.19(65.22) 65.19(65.22) 109.28(109.93)
B11Cp(CCC) B2.75C 26.66 5.05(5.06) 5.21(5.22) 5.21(5.22) 64.86(64.82) 66.05(66.07) 66.05(66.07) 108.93(109.66)
B12(CCC) B4C 20.00 5.19(5.21) 5.19(5.21) 5.19(5.21) 66.01(66.01) 66.01(66.01) 66.01(66.01) 112.09(112.81)
B11Ce(CCB) B4C 20.00 5.16(5.17) 5.22(5.23) 5.22(5.23) 66.18(66.18) 66.16(66.16) 66.16(66.16) 112.72(113.38)
B11Cp(CCB) B4C 20.00 5.05(5.06) 5.23(5.24) 5.23(5.24) 66.17(66.14) 67.33(67.35) 67.33(67.35) 112.27(112.90)
B11Ce(CBC) B4C 20.00 5.18(5.18) 5.22(5.22) 5.22(5.22) 64.86(64.84) 64.97(64.97) 64.97(64.97) 110.16(110.77)
B11Cp(CBC) B4C 20.00 5.07(5.08) 5.22(5.22) 5.22(5.22) 65.24(65.22) 66.07(66.08) 66.07(66.08) 109.75(110.43)
B12(CCB) B6.5C 13.33 5.16(5.17) 5.22(5.22) 5.22(5.22) 66.79(66.81) 67.89(67.83) 67.89(67.83) 115.29(115.95)
B12(CBC) B6.5C 13.33 5.20(5.21) 5.20(5.21) 5.20(5.21) 65.83(65.83) 65.83(65.83) 65.83(65.83) 112.10(112.76)
B11Ce(BCB) B6.5C 13.33
B11Cp(BCB) B6.5C 13.33
B11Ce(BBC) B6.5C 13.33
B11Cp(BBC) B6.5C 13.33
B12(BBC) B14C 6.66
B12(BCB) B14C 6.66

2.3. Quantum molecular dynamics simulations

Quantum molecular dynamics simulations of several of
the structures were conducted under hydrostatic, uniaxial,
and shear loading paths. For the MD simulations, the
computational cell size was increased to a 4 × 4 × 4
supercell (960 atoms) in order to minimize size effects. This is
particularly important since large simulation cells are required
to properly accommodate large stresses and strains. For each
simulation, the atomic coordinates were integrated using
the leap-frog algorithm [32] with temperature and pressure
controlled using algorithms due to Berendsen [33]. For each
MD trajectory, atomic forces and stresses were computed by
CP2K using the PBE functional and basis set as described
above. Each simulation was run for 5000 time steps (1 time
step = 1 fs), resulting in a total simulation time of 5 ps for
each system. In order to determine the stress–strain curves for
uniaxial and shear loading, small strains were applied in the
desired direction at time step t = 0, and all strains orthogonal
to the initially applied strain were allowed to relax during the
remainder of the simulation. The time averaged value of the
constrained stress tensor element was used to generate the
stress–strain curves.

3. Results

3.1. Structures at zero stress

The lattice parameters for each structure resulting from
optimization at 0 K and MD simulation at 298 K are presented
in table 3. In terms of the structure at zero load, thermal effects
are minimal, with slight expansion in the vector lengths and
minor variations in the vector angles, resulting from inclusion
of temperature effects. The distortion of the structure from
purely rhombohedral symmetry is clearly evident in many
of the systems and within each carbon concentration, the a
lattice vector shows a larger contraction when the carbon atom

resides in the polar site. It is noteworthy that many of the low
carbon content stoichiometries produced structures that were
either unstable elastically (negative eigenvalue in the elastic
constant tensor) or converged to a minimum energy structure
with a non-linear 3-atom chain. This seems to contradict
some of the findings reported in earlier papers [18], however
it is not clear from those publications if symmetry was
enforced in their calculations in order to maintain linearity
of the 3-atom chain. The bending of the 3-atom chain for
these configurations was verified using a plane wave basis
as implemented in the solid state DFT software package
VASP [34] in place of the mixed Gaussian/plane wave basis
approach in CP2K. Further, the bending of the 3-atom chain
occurred in both the 2 × 2 × 2 and 4 × 4 × 4 supercells
(indicating that the bending is not an artifact of the size of
the computational cell used in this work) and was also found
to occur when using the local density approximation in place
of the PBE functional. It is known experimentally that at an
approximately 8% carbon content, boron begins to precipitate
from the lattice yielding mixtures of boron carbide and pure
boron [35]. The instability of the linear 3-atom chain structure
for the many of the boron-rich compositions found in this
work supports this finding.

In the double zeta basis set used in this work, the
polar icosahedral position is energetically favored over the
equatorial site with the polar configurations being 33.9,
53.0, and 35.7 meV/atom lower in energy than their
equatorial counterparts for the B11C(CCC), B11C(CCB),
and B11C(CBC) structures respectively when using the 0 K
optimized configurations. For the B13C2 polytypoids, both
containing 13.33% carbon, the CBC arrangement is clearly
favorable over the CCB arrangement, which is 163 meV/atom
higher in energy.

3.2. Elastic constants

The zero stress elastic constants (with respect to rhombo-
hedral axes), bulk modulus, shear modulus, and Young’s
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Table 4. Computed zero pressure elastic moduli. All values in GPa. The three values for Young’s modulus correspond to the values along
the x, y, and z stress axes where the z-axis is coincident with the rhombohedrally oriented [111] direction.

Structure Formula % C C11 C12 C13 C14 C33 C44 Bulka Shear Young’s

Experiment37 B5.6C 15.2 542.8 130.6 63.5 — 534.5 164.8 236.8 195.6 460.1
B11Ce(CCC) B2.75C 26.66 501.7 120.0 65.8 26.7 547.7 190.7 235.4 195.4 467/513/528
B11Cp(CCC) B2.75C 26.66 517.9 133.1 58.7 49.1 544.4 173.4 237.4 189.9 464/498/531
B12(CCC) B4C 20.00 486.9 188.8 64.9 14.7 518.1 133.6 221.1 173.2 451/451/504
B11Ce(CCB) B4C 20.00 457.8 119.8 61.5 36.3 536.1 111.6 221.8 162.4 409/438/520
B11Cp(CCB) B4C 20.00 470.3 124.6 53.6 44.6 505.7 132.5 217.8 170.9 417/441/492
B11Ce(CBC) B4C 20.00 518.3 116.8 65.9 30.6 522.5 159.6 234.1 196.5 481/522/507
B11Cp(CBC) B4C 20.00 534.2 120.2 58.1 38.0 525.7 168.4 233.6 199.7 494/519/514
B12(CCB) B6.5C 13.33 395.7 139.4 82.8 61.7 393.7 96.6 202.3 135.6 291/381/373
B12(CBC) B6.5C 13.33 531.3 105.3 54.2 −7.95 528.5 167.1 224.4 201.4 506/506/519

a Computed using Voigt–Reuss–Hill average.

modulus for each structure are presented in table 4. In
determining the elastic constants, the minimum energy
structures found using 0 K optimization (see table 3) were
used and temperature effects were not included. This was done
to ensure that optimized structures with maximal symmetry
were used in computation of the elastic constant tensor in
order to allow application of the Born stability criterion [36]
for the 3m point group (discussed below) to identify structural
instability under load. Inclusion of temperature, in the context
of MD, introduces asymmetry via the random velocities
used to initiate the MD trajectories. It should be noted
that only the B12(CCC) and B12(CBC) structures strictly
adhere to R3m symmetry and the small distortions present
in the other structures introduce additional non-zero, albeit
small, elements in the elastic constant tensor. As a result,
for ease of comparison across the range of structures, only
the six non-zero Cij’s that are present for R3m symmetry
are presented. The elastic constants are similar in magnitude
for all structures, however B12(CCB) shows a considerable
reduction in stiffness compared to the other systems. The
experimental values in table 4 were measured by McClellan
et al using a sample with stoichiometry B5.6C (15.2% C) [37].
However, in their work, the value of the C14 modulus was
indeterminate due to the hexagonal symmetry assumed in
determination of the elastic moduli. The theoretical C14
moduli are comparatively small and that for the B12(CBC)

structure is negative compared to the positive values obtained
for the rest of the structures. The negative C14 value for
B12(CBC) is consistent with the result reported by Shirai [38].
The relationship of the values reported here to the so-called
global minimum Young’s modulus reported by McClellan
et al [37] is not clear. In addition, past research on the
boron-rich compositions has been inconclusive on the nature
of B13C2. Early work by Samsonov [11] suggested that it was
a separate phase however this is still an open question in our
opinion.

The evolution of the elastic constants under hydrostatic
and uniaxial load for a B11C4 polytypoid, two B4C polytypes,
and a B13C2 polytypoid are shown in figures 4–11. For
the uniaxial study, compression was applied along an axis
coincident with the 3-atom chain ([111] direction), which
is the stiffest elastic direction in the structure. All of the
elastic constants, which include the stress corrections given in

Figure 4. Stress dependent elastic constants for B11Cp(CCC) (26%
C) under hydrostatic load.

equation (2), become gradually stiffer with pressure; however,
the C44 modulus decreases with load in all cases except
that for uniaxial compression of the extremely carbon rich
B11Cp(CCC) (figure 8) where it remains essentially constant.
This softening of C44 has been observed experimentally [39]
and theoretically [40] in alpha quartz, which is known
to undergo pressure-induced amorphization similar to that
observed in BC. This softening of the C44 shear modulus with
load may play a role in the sudden drop in shear strength of
shock loaded boron carbide [21, 22].

3.3. Born stability analysis

We have applied the Born stability criterion to identify stresses
at which stoichiometries within the BC structure may show
an elastic instability. Born showed that an expansion of the
internal energy of a crystal in a power series in the strain,
along with the imposition of positivity of the energy, leads to
restrictions on the relative magnitudes of the elastic constants
of a stable crystal [36, 41]. Each of the elastic constants
varies independently with stress, and at some critical load,
the system may reach a structural instability. BC is highly
anisotropic elastically, belonging to the crystallographic space
group R3m with 6 independent elastic constants {Cij} and
imposition of the Born stability criterion leads to the following
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Figure 5. Stress dependent elastic constants for B11Cp(CBC) (20%
C) under hydrostatic load.

Figure 6. Stress dependent elastic constants for B12(CCC) (20% C)
under hydrostatic load.

Figure 7. Stress dependent elastic constants for B12(CBC) (13% C)
under hydrostatic load.

Figure 8. Stress dependent elastic constants for B11Cp(CCC) (26%
C) under uniaxial load.

Figure 9. Stress dependent elastic constants for B11Cp(CBC) (20%
C) under uniaxial load.

Figure 10. Stress dependent elastic constants for B12(CCC) (20%
C) under uniaxial load.
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Figure 11. Stress dependent elastic constants for B12(CBC)
(13% C) under uniaxial load.

restrictions on the elastic constants for the BC structure (under
hydrostatic load):

B11 − |B12| > 0 (3)

(B11 + B12)B33 − 2B13 ∗ B13 > 0 (4)

(B11 − B12)B44 − 2B14 ∗ B14 > 0 (5)

where we have used the stress corrected coefficients B
obtained from equation (2) for elastic moduli at non-zero
load, as explained in [31]. The general procedure is to
compute the 6 elastic constants as a function of load with
evaluation of equations (3)–(5) at each point to determine the
onset of the instability. Once the initial instability has been
located, evaluation of the ‘soft modes’ of deformation (atomic
displacements corresponding to the instability) can also be
determined.

For most of the structures (see table 3) there is a
monoclinic distortion at zero load, consistent with conclusions
reached by Huhn and Widom [10]. However, for B12(CCC)

and B12(CBC), there is no reduction in symmetry and the
stability criteria presented above are strictly applicable in
these cases. In both cases, the first two relations defined
in equations (3) and (4) remained positive over the applied
hydrostatic and uniaxial compression ranges, however the
condition given in equation (5), as shown in figure 12, reaches
a zero value at ≈67 GPa for the B12(CCC) polytype after
hydrostatic compression and ≈62 GPa for B12(CBC) when
compressed uniaxially along the 3-atom chain. Equation (5)
is violated before the others due to the decreasing magnitude
of the C44 elastic constant in each structure as the load is
increased. Interestingly, B12(CBC), which shows an elastic
instability under uniaxial load, does not show a critical point
over the applied range under hydrostatic load. However, the
hydrostatic curve for this structure, as shown in figure 12,
is trending toward zero and extrapolation of the curve
suggests an instability will be reached at ≈160 GPa. Similarly,
for the B12(CCC) uniaxial curve, extrapolation suggests an
elastic instability will occur at ≈141 GPa. The variation in
mechanical response to each particular loading pattern is

Figure 12. Born stability condition (see equation (5)) for
B12(CCC) and B12(CBC).

exemplary of the changes that can be induced by variation in
the local bonding within the crystal.

Although B12(CCC) and B12(CBC) show an elastic
instability as the stress is increased, continual loading
along the same path, beyond the instability point, results
in no discernible collapse of the structure. Specifically,
the structure of the unit cell, for stresses beyond the
instability, contains linear 3-atom chains and symmetric
icosahedra although the Born criterion indicates that there is
a lower energy configuration accessible beyond the critical
stress under hydrostatic or uniaxial load. This suggests, at
least qualitatively, that other pathways, possibly involving
shear, are necessary in order to access these lower energy,
lower symmetry, configurations. In the current and previous
work [24, 42] the computed stresses accommodated by
boron carbide without structural failure have been much
higher than those suggested experimentally, however, as
suggested previously [24], the conditions of the experiments
may be drastically different from the idealized models used
computationally. Large shear stresses, which can significantly
lower phase transformation pressures [43] may be present
experimentally and result in much lower critical stresses
than those observed computationally along purely hydrostatic
or uniaxial paths. The effect of shear on the mechanical
properties of BC will be discussed below.

3.4. Equations of state

The hydrostatic compression data for B11Cp(CCC),
B12(CCC), B11Cp(CBC), and B12(CBC) resulting from
quantum MD simulations at 298 K, are shown in figure 13.
The pressure response in the absence of shear is essentially
equivalent for each structure. The resulting pressure–volume
data was fitted to the third order Birch–Murnaghan equation
of state [44] and the bulk modulus and pressure derivative for
each structure are presented in table 5.

Experimentally, there is a reduction in the bulk modulus
as the carbon concentration decreases (see table 1) and this
trend is also observed in the computed bulk moduli.
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Figure 13. Pressure–volume curves for structures within each
stoichiometry.

Table 5. Birch–Murnaghan equation of state for structures within
each carbon content.

Structure Formula % C
Bulk modulus
(GPa)

Pressure
derivative

B11C(CCC) B2.75C 26.66 245.5 1.7
B12(CCC) B4C 20.0 225.5 3.3
B11Cp(CBC) B4C 20.0 226.7 3.9
B12(CBC) B6.5C 13.3 223.9 2.7

3.5. Stress–strain curves

Stress–strain curves for each structure were computed using
MD simulations at 298 K. A primary concern in analysis of
the simulation results is the relatively short simulation time
of 5 ps (5000 time steps) used to integrate the trajectories.
Representative time traces of the constrained stress tensor
element, for uniaxial and shear strain, in B12(CCC) are
shown in figure 14. The constrained tensor element (all
others are elements are relaxed to zero stress) has reached an
equilibrium value in all cases in less than 1000 time steps
and remains constant for the remainder of the simulation.
Therefore the simulation time of 5 ps is sufficiently long to
provide converged stress–strain curves for the systems treated
in this work.

Stress–strain curves for uniaxial compression along the
3-atom chain axis for B11Ce(CCC), B11Cp(CCC), three
B4C polytypes, and B12(CBC) are shown in figure 15. The
maximum stress obtained is ≈140 GPa in B11Cp(CBC),
followed by B12(CBC). The carbon-rich stoichiometries with
26% carbon have curves that closely follow the others in the
elastic region, however they reach a failure stress at much
lower loads, ≈40 GPa, which is about 3.5 times less than that
of some of the other structures. Although such carbon-rich
compositions are not relevant according to the phase diagram,
this still represents a dramatic demonstration of the effect
of atomic structure and stoichiometry on the mechanical
properties. For each material, the 3-atom chain remains linear
up to the maximum stress and then an abrupt bending of
the chain occurs resulting in a loss of strength. Snapshots

Figure 14. Time trace of the non-zero stress tensor element for
simulations of B12(CCC) with uniaxial compressions ε3 = 0.08,
0.180 and shear strain ε4 = 0.02.

Figure 15. Stress–strain curves for uniaxial compression along axis
of 3-atom chain.

of configurations, extracted from the MD trajectory for the
B11Cp(CCC) structure before and at the critical stress are
shown in figure 16. The bending of the 3-atom chain at the
failure point is clearly evident in the structure.

In addition to uniaxial compression, we have also
simulated the strength of the structures under shear loading.
Experimentally, shear loading has been identified as a critical
mechanism resulting in amorphization of boron carbide [20]
and the shear strength of boron carbide has been shown to
be significantly reduced at stresses above the Hugoniot elastic
limit [21, 22]. Stress–strain curves under shear, for several
structures, are shown in figures 17–19. For each system,
an ε4 shear strain was applied incrementally, until failure,
and this was done using initial configurations with uniaxial
compression, σ3, of 0, 10, 20 and 30 GPa along the 3-atom
chain axis. In this way, the shear strength of the material
can be simulated as a function of the uniaxial load on the
system. For each material, the shear strength is substantially
less than the uniaxial compressive strength and as the uniaxial
load is increased there is a reduction in the shear strength,
consistent with experimental observation. The reduction in
shear strength is not as marked as what is seen in shock
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Figure 16. Snapshots of molecular dynamics simulation of B11Cp(CCC) under uniaxial compression at 20 GPa (left) and at the failure
stress, 40 GPa. Failure is associated with bending of the 3-atom chain (boron = blue, carbon = red).

Figure 17. B12(CCC) stress–strain curves resulting from shear
strain, ε4, at several values of uniaxial stress, σ3, along the 3-atom
chain axis. The uniaxial curve (also presented in figure 15), in the
absence of shear, is included for reference.

Figure 18. B11Cp(CCB) stress–strain curves resulting from shear
strain, ε4, at several values of uniaxial stress, σ3, along the 3-atom
chain axis. The uniaxial curve (also presented in figure 15), in the
absence of shear, is included for reference.

experiments. Shock loading is a much more rapid process than
the essentially static loading simulations done here, however
the reduction in shear strength trend is still evident in the
simulated data.

Figure 19. B12(CBC) stress–strain curves resulting from shear
strain, ε4, at several values of uniaxial stress, σ3, along the 3-atom
chain axis. The uniaxial curve (also presented in figure 15), in the
absence of shear, is included for reference.

In the work of Yan et al [25] the effect of nonhydrostatic
stress on the elastic stability of BC at high pressures was
examined experimentally. In that work, there was no evidence
of amorphization as the pressure was increased. However,
as the pressure was gradually decreased, evidence of an
amorphous phase was observed, occurring at a pressure
≈20 GPa. As shown in the shear strain curves presented in
figures 17 and 18, the yield strength under shear load for
each structure is ≈20 GPa. Although a correlation between
the experiment and the computed value can be inferred, the
implication of this finding is currently not clear and will be
the subject of future work.

4. Discussion and conclusion

In conclusion, atomic structure and stoichiometry have a
marked effect on the calculated mechanical response of
boron carbide. As shown in table 3, placement of even
a single carbon atom within an icosahedron results in a
monoclinic distortion of the structure which reduces the
crystal symmetry via contraction of the a cell vector and
elongation of the other cell axes. The B12(CCB) structure
shows a considerable reduction in stiffness, as evidenced by
its C11, C33, and C44 elastic moduli, that are considerably
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smaller than those of the other structures and the C14 modulus
of the B12(CBC) structure is negative (unlike the remaining
structures) with a value of −7.95 GPa. For all structures,
regardless of stoichiometry, the C44 elastic constant displays
a negative slope in response to hydrostatic load and as a
result of this C44 pressure softening, an elastic instability
exists at values of 67 GPa and 62 GPa for the B12(CCC)

and B12(CBC) structures respectively. The maximum yield
strength under uniaxial compression is ≈140 GPa, obtained
for the B11Cp(CBC) structure (20% C), followed by the
B12(CBC) structure (13% C) that accommodated uniaxial
loads up to ≈120 GPa before failure. Within all structures, the
collapse of the unit cell is associated with an abrupt bending
of the 3-atom chain axis (see figure 16). Also notable is
that all of the materials, regardless of stoichiometry, exhibit
pressure softening of the C44 modulus, in contrast to all
the other moduli that increase with pressure. The consistent
softening of the C44 modulus, regardless of stoichiometry,
indicates that this is a feature of the icosahedral/3-atom chain
structural framework of the BC atomic structure which is
common among all of the materials. The softening of the shear
moduli, and the inclusion of shear strain which lowers the
yield stress considerably, suggests possible atomic structure
mechanisms for the experimentally observed reduction in
shear strength during shock loading experiments and the
formation of nano-structured amorphous regions observed in
ballistic impact experiments at pressures of about 20–25 GPa.
In addition, as seen in figures 17–19, the yield strength of
B12(CBC) under a shear strain (30–40 GPa) is about twice
that of the other structures (10–20 GPa) suggesting that it may
be the most stable under shear loading. The softening of the
shear moduli is associated with the formation of new bonds
between the unsaturated central atom in the 3-atom chain
with equatorial atoms in neighboring icosahedra. Uniaxial and
hydrostatic loading decreases the spacing between the central
chain and equatorial atoms and the formation of these new
bonds results in an energetically more favorable configuration.
Elastic constants are related to the change in configuration
energy as a function of displacement and the reduction in the
C44 modulus is driven by the formation of these new bonds
between the chain and icosahedra.

Computational results have suggested structural stability
under much higher loads than what is observed experimen-
tally. It has been suggested [24] that complex strain patterns,
principally involving shear, are necessary to access the lower
energy, lower symmetry, configurations. Exploration of these
complex shear loading paths is possible using quantum
mechanical potentials, as done in this work, however the
exploration of the six dimensional strain space using different
combinations of strain is computationally prohibitive. This
calls for the development of a classical potential applicable
to icosahedral boron carbide. The Reax [45] forcefield may
serve as a good functional form as it can accommodate the
charge variation that occurs as a function of geometry and,
through the use of bond orders, can properly model carbon
atoms which exist in different hybridization states depending
on their presence in chains or icosahedra. The large amount
of data generated for the structures and elastic properties

contained in this work can serve as a parameterization set for
the development of such a classical model. Using a classical
model, much larger simulations of boron carbide can be
performed and studies of the structural response of boron
carbide under shock loading can be performed and correlated
with the available experimental shock loading data.

Acknowledgments

Financial support of this work was granted as a part of
the Director’s Research Initiative program at the Army
Research Laboratory. All calculations were conducted using
computational resources maintained by the Department of
Defense High Performance Computing and Modernization
Program (Challenge Project No. ARLAPC5L). The authors
would also like thank Dr K T Ramesh of the Johns Hopkins
University (Baltimore, MD) for many useful discussions.

References
[1] Telle R 1994 Structure and Properties of Ceramics ed M

V Swain (New York: Wiley)
[2] Clark H K and Hoard J L 1943 J. Am. Ceram. Soc. 65 2115
[3] Lazzari R, Vast N, Besson J M, Baroni S and Dal

Corso A 1999 Phys. Rev. Lett. 83 3230
[4] Wilson W S and Guichelaar P J 1997 Carbide, Nitride, and

Boride Materials Synthesis and Processing
ed A W Weimer (London: Chapman and Hall)

[5] Khanra A K 2007 Bull. Mater. Sci. 30 93
[6] Beauvy M 1983 J. Less-Common Met. 90 169
[7] Lipp A 1965 TR Elektroschmelzwerk Kempten reprinted from

Technische Rundschau nos. 14, 28 and 33
Lipp A 1966 TR Elektroschmelzwerk Kempten reprinted from

Technische Rundschau no. 7
[8] Domnich V, Reynaud S, Haber R A and Chhowalla M 2011

J. Am. Ceram. Soc. 94 3605 and references therein
[9] Widom M and Huhn W P 2012 Solid State Sci. submitted

[10] Huhn W P and Widom M 2012 J. Stat. Phys. submitted
[11] Samsonov G V, Zhuravlev N N and Amnuel I G 1956 Fiz.

Met. Metalloved. 3 309
[12] McCuiston R, LaSalvia J, McCauley J and Mayo W 2009

Proceedings of the 32nd International Conference and
Exposition on Advanced Ceramics and Composites p 153

[13] Chen M W, McCauley J W, LaSalvia J C and
Hemker K J 2005 J. Am. Ceram. Soc. 88 1935

[14] Conde O, Silvestre A J and Oliveira J C 2000 Surf. Coat.
Technol. 125 1

[15] Konovalikhin S V and Ponomarev V I 2009 Russ. J. Inorg.
Chem. 54 197

[16] Kwei G H and Morosin B 1996 J. Phys. Chem. 100 8031
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 1133
[18] Saal J E, Shang S and Liu Z 2007 Appl. Phys. Lett. 91 231915
[19] Vast N, Sjakste J and Betranhandy E 2009 J. Phys.: Conf. Ser.

176 012002
[20] Chen M, McCauley J W and Hemker K J 2003 Science

299 1563
[21] Vogler T J, Reinhart W and Chhabildas L C 2004 J. Appl.

Phys. 95 4173
[22] Dandekar D P 2001 Army Research Laboratory Technical

Report ARL-TR-2456
[23] Taylor D E, Wright T W and McCauley J W 2011 Army

Research Laboratory Memorandum Report ARL-MR-0770
[24] Aryal S, Rulis R and Ching W Y 2011 Phys. Rev. B 84 184112
[25] Yan X Q, Zhang T L, Guo J J, Jin C Q, Zhang Y, Goto T,

McCauley J W and Chen M W 2009 Phys. Rev. Lett.
102 075505

[26] Liu D C and Nocedal J 1989 Math. Program. 45 503
[27] CP2K is freely available from: http://cp2k.berlios.de/

10



   
150

J. Phys.: Condens. Matter 24 (2012) 505402 D E Taylor et al

[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.
77 3865

[29] Doll K 2009 Mol. Phys. 108 223
[30] Wang J and Yip S 1993 Phys. Rev. Lett. 71 4182
[31] Kimizuka H, Ogata S, Li J and Shibutani Y 2007 Phys. Rev. B

75 054109
[32] Allen M P and Tildesley D J 1989 Computer Simulation of

Liquid (Oxford: Clarendon)
[33] Berendsen H J C, Postma J P M, van Gunsteren W F,

DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[34] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[35] Bouchacourt M and Thevenot F 1981 J. Less-Common Met.

82 219
[36] Born M and Huang K 1954 Dynamical Theory of Crystal

Lattices (Oxford: Oxford University Press)

[37] McClellan K J, Chu F, Roper J M and Shindo I 2001 J. Mater.
Sci. 36 3403

[38] Shirai K 1997 Phys. Rev. B 55 12235
[39] Gregoryanz E, Hemley R J, Mao H and Gillet P 2000 Phys.

Rev. Lett. 84 3117
[40] Binggeli N and Chelikowsky J R 1992 Phys. Rev. Lett.

69 2220
[41] Grimvall G, Magyari-Köpe B, Vidvuds O and Persson K 2012

Rev. Mod. Phys. 84 945
[42] Dekura H, Shirai K and Yanase A 2010 J. Phys.: Conf. Ser.

215 012117
[43] Levitas V I and Shvedov L K 2002 Phys. Rev. B 65 104
[44] Birch F 1947 Phys. Rev. 71 809
[45] Chenowith K, van Duin A and Goddard W A 2008 J. Phys.

Chem. A 112 1040

11



Research@

   
151

Density Functional Theory and Evolution 
Algorithm Calculations of Elastic  

Properties of AlON

Iskander G. Batyrev, DeCarlos E. Taylor, George A. Gazonas,  
and James W. McCauley  

Journal Of Applied Physics 115, (2014) 



   
152

Density functional theory and evolution algorithm calculations of elastic
properties of AlON

I. G. Batyrev, D. E. Taylor, G. A. Gazonas, and J. W. McCauley
U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA

(Received 18 September 2013; accepted 6 December 2013; published online 8 January 2014)

Different models for aluminum oxynitride (AlON) were calculated using density functional theory

and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional

theory (DFT) calculations starting from several models of AlON with different Al or O vacancy

locations and different positions for the N atoms relative to the vacancy were carried out. The

results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223
(2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy

configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray

diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and

440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant

predictions were found to approach the experimentally determined AlON single crystal elastic

constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic

constants found from simulated stress-strain relations were in overall agreement with experimental

measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman

spectra are compared with available experimental data.

[http://dx.doi.org/10.1063/1.4859435]

I. INTRODUCTION

Aluminum oxynitride (AlON) is a transparent polycrys-

talline spinel structure material that has an ideal composition

of Al23O27N5, but has a solid solution ranging from about 27

to 40mol. % AlN in the Al2O3-AlN system. It has been

termed a non-stoichiometric spinel since an ideal spinel stoi-

chiometry would be Al24O24N8, or 50mol. % AlN and 50%

Al2O3.
1 It has a variety of important properties including

transparency from the UV to near IR resulting from its band

gap at room temperature of 6.5 eV, high hardness and

mechanical strength, high temperature stability, and a very low

loss dielectric. It has demonstrated many applications including

transparent armor and EM domes and windows, among others.

Over the years there have been both experimental and

theoretical investigations trying to determine the best crystal

and chemical models that accurately describe the atomic

structure of Al oxynitride. The models can be divided into

two groups with O or Al vacancies in cubic spinel structure.

McCauley2 examined both types of models and concluded

that a model with an Al vacancy (constant anion model) was

the best model for this material. Few N atoms are randomly

distributed over O sites of cubic spinel. There are different

ways to describe random crystalline structures. Robust

Green’s function method is a kind of effective medium

theory allowing one to include all details of disordered struc-

ture into analytical structure of complex self-energies.3

Another approach, popular at times when unit cells for band

structure calculations were limited to 8–64 atoms, is a gener-

ation of special quasirandom structures having radial distri-

bution functions close to a perfectly random structure.4

Here we apply an evolutionary approach based on density

functional theory (DFT) calculations of total energy as a fit-

ness function.5 Using the ideas of evolutionary search for

minimum energy configurations, we developed a suite of

shell scripts to control and manipulate the input/output of

DFT files using genetic operators. The suite uses the experi-

mentally observed cubic spinel structure and might be con-

sidered as a simplified version of a powerful evolutionary

algorithm developed in5,6 for prediction of unknown crystal-

lographic structures.

The model with an Al vacancy in the octahedral sites of

a spinel structure suggested in Ref. 2 is found to have the

lowest total energy and is therefore the most acceptable

model of the system.7 The energy preference for the model

with Al vacancy made in Ref. 7 was based on quantum

mechanical calculations of a single configuration for vacancy

on Al or O and for Al vacancy at tetrahedral/octahedral sites.

The main difference of the present work from previous pub-

lications is that DFT calculations were carried using an evo-

lutionary algorithm with permutation, mutation, and heredity

operations not for few as in Refs. 7 and 8, but for 100–200

configurations for each case of Al or O vacancy location.

The large number of configurations and statistics is found to

be important for the search of local minimum corresponding

to lowest energy distribution of N atoms over O sites with Al

or O vacancies in spinel structure. The importance of size

effects on the results have also been examined using two

larger computational cells containing 220 and 440 atoms.

II. CALCULATION METHODS

For this work, we used three different density functional

implementations: VASP (for optimization of the 55 atom

structures), CASTEP (for analysis of atomic charge and

vibrational properties), and CP2K (for the larger cells

with 220 and 440 atoms). VASP and CASTEP are plane

wave implementations where the energy cutoff was 600 eV

0021-8979/2014/115(2)/023505/6/$30.00 115, 023505-1
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(ultrasoft projector augmented waves (PAW) using

generalized gradient approximation (GGA)) for VASP and

600 eV norm-conserving pseudopotentials using PBE approxi-

mation for the CASTEP calculations. For the Gaussian/

plane wave CP2K implementation, the GTH-BLYP functional

in a double zeta valence polarization basis for O and N and in

a single zeta valence polarization for Al with a kinetic energy

cutoff of 800 eV was utilized for plane waves.

Using an evolutionary optimization algorithm, with a

population size containing �200 configurations, low energy

structures were identified by random variation of the N and O

atoms location in cubic spinel structure relative to the anion

or cation vacancy within the 55 atom cell using permutation,

mutation, and heredity operations and DFT optimization of

each configuration. To do the calculations based on VASP

PAWs and cubic spinel structure, we developed a suite of

shell scripts to manipulate and control input/output VASP

files to run 10–20 generations in one job. Experimentally

established cubic spinel structure of AlON was a significant

simplification for evolutionary simulations. Initial structures

of AlON were chosen to have a random distribution of N

atoms in cubic spinel structure with Al or O vacancy and

65% distribution of lattice vectors relative experimental

determined ones. A random rule for selecting parents for the

next generation was applied where individuals mainly in the

upper and middle parts of the parents (ranked according total

energies) were selected with a small fraction (typically 5%)

of parents from the bottom part of the list. Parents chosen by

this procedure were subject to permutation, mutation, and he-

redity operators. The operators could be defined differently in

various versions of a genetic method. We followed definitions

of the operators from Ref. 5. Most common operators in our

simulations were (i) permutations (45%) (switching identities

of two atoms in a structure) and (ii) mutation (45%) (a ran-

dom change of the cell vectors and/or atomic positions). Only

10% of the transformations were made by most aggressive

operator (iii) heredity (new structures are produced by match-

ing slices (chosen in random directions and with random

positions) of the parent structures).

For each optimized structure in the search, the total

energy was evaluated using VASP. Lowering of the total

energy occurred not with every step, but after certain number

of generations, so statistics played important role for the

minimum structures search for each of the models with Al or

O vacancy. 200 configurations were enough to isolate a local

minimum corresponding to the lowest energy structure.

The lowest energy structures identified by the evolution-

ary search were then subjected to additional analysis includ-

ing elastic constants calculations and vibrational analysis.

Elastic properties were calculated using the usual strain-

energy9 and strain-stress10,11 relations.

III. STRUCTURAL MODELS

Several spinel-like models of AlON have been sug-

gested in the literature.1 The model with Al vacancy at octa-

hedral site (constant anion model) is shown in Fig. 1. It

corresponds to the formula Al(64þx)/3�(8þx)O32-xNx, where

x¼ 5 and symbol � is corresponding to Al vacancy. The

structure matches up with an AlON composition of 64.3mol.

% Al2O3 and 35.7mol. % of AlN. Another possible structure

is related with O vacancy (constant cation model) and may

be derived from the formula Al(24)/3�(72-3x)/2O(72-3x)/2Nx.

Nitrogen atoms may be randomly distributed along the O

sites. The character of the distribution of the N atoms may

affect the relative energies of the two models. We performed

evolutionary algorithm calculations for several N concentra-

tions implementing ideas of evolution in ab-initio calcula-

tions for finding lowest energy configurations applying 45%

mutation, 45% permutation, and 10% heredity variation

operators. For each model from Table I, we calculated �200

different distributions of N atoms. The calculated total ener-

gies of the model with Al vacancy on octahedral site in com-

parison with that Al vacancy at tetrahedral site (constant

cation models) and three different models with O vacancy

(constant cation models) were compared with total energies

of aluminum nitride EAlN
¼ 14.99 eV/mol and alumina

EAl2O3
¼ 37.72 eV/mol according to the formula,

D ¼ E Alð2mþnÞO3mNn

� �
� mEAl2O3

þ nEAlN½ �: (1)

One may see from the results presented in Table I that the

model with Al vacancy at octahedral site (constant anion

model) has the lowest energy compared with various molar

concentrations of Al2O3 and AlN.

Each of the total energies used for calculation of D in

Table I are the result of calculations of �200 structures

(members of evolution) of the various concentrations of

Al2O3 and AlN. The Al vacancy at a tetrahedral site has a

significantly higher energy (1.57 eV) than at an octahedral

site. A random distribution of N atoms has �0.9–1.2 eV

lower energy than that for a cluster distribution which is

dependent on the location of N atoms. N atoms migrate

away from the Al vacancy neighborhood as a result of DFT

evolution of the system driven by lower energy. The total

energy as a function of number of members or structures

FIG. 1. The 55 atom model with Al vacancy at octahedral site showing the

Brillouin zone directions of k-points, and the negative local potential around

the Al vacancy. Also illustrated are the oxygen atoms (red), aluminum atoms

(pink), and nitrogen atoms (blue).
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(8 in each generation) for two models from Table I is shown

in Fig. 2. One may see that model with Al vacancy has

smoother and faster convergence than the constant cation

model. Note also that convergence of the total energy with

number of members is not variational and occurs abruptly

after a certain number of generations, which might be con-

sidered indicative of the importance of accumulated statistics

for the minimum energy configuration search. 200 members

are found to be enough to get quite close to experimental

x-ray diffraction pattern.

The calculated powder X-ray diffraction (XRD) of the

lowest energy 55 atom configuration with a random distribution

of N atoms not neighboring an Al vacancy at an octahedral site

is shown in Fig. 3. Experimental XRD peaks are shown for

comparison.12 The overall excellent agreement between the

computed and experimental XRD data indicates the correctness

of the model with Al vacancy at octahedral site, conjectured by

McCauley,1 after proper optimization of the N atom locations.

X-ray scattering does not distinguish between N and O

atoms and cannot determine the type of distribution of N

atoms. Neutron scattering also did not find clear answer about

details of N atoms distribution,13 but clearly indicates that Al

vacancies are situated at octahedral sites in agreement with

our calculations. The minimum energy model identified

above was used for calculation of elastic properties.

IV. ELASTIC CONSTANTS AND THEIR PRESSURE
DERIVATIVES

Theoretical elastic constant calculations on AlON were

first carried out by Okeke and Lowther8 in 2008. However,

these calculations assumed an ideal spinel composition of

Al3O3N, which has not been confirmed experimentally.

Using the local density approximation (GGA) based tech-

nique calculated values were as follows: c11¼ 344 (310),

c12¼ 179 (160), and c44¼ 184 (175).8 In the current work,

elastic constant calculations were first performed on a

55-atom unit cell to understand the effect of N atom distri-

bution on the elastic constants. For the calculations, we used

the stress-strain method,10 numerical evaluation of the sec-

ond order elastic constants11 and the conventional stress–-

energy method.9 The random versus cluster distribution of

N atoms, which substitute O atoms, may be characterized by

an average distance Rav between N atoms. For the cluster

distribution of N atoms used for the calculation of elastic

constants in Table II Rav¼ 2.86A, while for the random dis-

tribution Rav¼ 4.61 A.

It is seen that a cluster distribution of N atoms predicts

elastic constants which are of smaller magnitude than for a

random N atom distribution using both stress-strain and

strain-energy methods of calculation. Our evolutionary algo-

rithm driven DFT calculations show that a cluster distribu-

tion is less energetically favorable, becomes unstable, and

does not survive evolutionary selection after 5 generations.

The minimum Rav cluster configuration has �1 eV higher

energy than that of a random distribution of N atoms. Local

deviation from an energetically driven distribution of N

atoms may occur in AlON, and this may cause different local

elastic constants within ALON single crystals as observed

for B4C single crystals.14 Evolution of the system that con-

sists of a cluster distribution of N atoms changes the distribu-

tion to a random distribution and N atoms that migrate away

TABLE I. Comparison of different structures corresponding to the different molar concentrations of Al2O3 and AlN.

Models

m¼ 9, n¼ 5 Al vacancy

(octahedral) 35.7% AlN

m¼ 9, n¼ 5 Al vacancy

(tetrahedral) 35.7%AlN

m¼ 10, n¼ 4

O vacancy 28.6%AlN

m¼ 8, n¼ 9

O vacancy 50% AlN

m¼ 9, n¼ 6

O vacancy 40% AlN

D, eV 1.68 3.25 2.57 3.06 2.94

FIG. 2. Total energy convergence of constant anion model with Al vacancy at the octahedral site (35.7% AlN) (thin line, a) and with 28.6mol. % AlN (thick

line, b) corresponding to first and third rows in Table I, respectively.

023505-3 Batyrev et al. J. Appl. Phys. 115, 023505 (2014)
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from Al vacancy following evolution selection of lower

energy configuration.

The pressure dependence of the elastic constants was

calculated using the stress-strain method for the minimum

energy random N atom distribution structure optimized at

pressures from 0 to 40GPa (Fig. 4). Since the simultaneous

relaxation of atomic position and unit cell volume is not pos-

sible in VASP 5.2.11, while maintaining a specific Bravais

lattice, we performed 5–7 cubic cell optimization simula-

tions relaxing the atoms for the optimized cell.

Our calculation results in estimates for elastic constants

derivatives dC11/dP� 4–6.2 and dC44/dP� 0.8–1.5. These

numbers are in reasonable agreement with experimental

measurements of polycrystalline AlON (Ref. 15) dC11/dP

� 5.4–5.7 and dC44/dP� 0.85–0.95 which are pressure

derivatives for elastic constants for polycrystals and portray

averaged crystal anisotropy.

The lowest energy structure for the 55 atom cell was

replicated to generate 2 � 2 � 1 (220 atoms) and 2� 2� 2

(440 atoms) supercell models. The larger unit cell configura-

tions consisting of regular arrangements of aluminum vacan-

cies had the lowest energy among all other Al vacancy

arrangements; this is, what one may expect for an ordered

system. The larger unit cell systems were used for calcula-

tions of the elastic constants by numerical evaluation of

the second order elastic constants using a finite difference

approximation.11 This method was implemented for

Gaussian basis set of the CP2K code and used for calculation

of elastic properties of B4C.14 Experimental measurements

were made using a resonance ultrasound spectroscopy (RUS)

system on single crystals of AlON.16 Results of the calcula-

tions and of the measurements are presented in Table III.

Improved agreement was obtained between theory and

experiment using multiple unit cells in the calculations and

experimental measurements on single crystals. Overall agree-

ment of the calculations with biggest unit cell and measure-

ments on large single crystal for three constants is �15%.

V. VIBRATION SPECTRA

In an insulating crystal, the frequency and the intensity

of the Raman peaks are determined by the zone-center

phonon frequencies and by the Raman tensor. The phonon

frequencies are determined by the dynamical matrix, dielec-

tric constant, and Born effective charges. The Born effective

charge tensor of an ion is the partial derivative of the macro-

scopic polarization with respect to a periodic displacement

of all the periodic images of that ion at zero macroscopic

electric field. Calculations were carried out with the

CASTEP code17 using norm-conserving pseudo potentials

and plane waves with a 600 eV cutoff. For validation of our

FIG. 3. Theoretically calculated at 1.54 Å wavelength X-ray diffraction

powder pattern data based on the lowest energy configuration of the model

with Al vacancy at octahedral site in comparison with experimental data

(arrows with numbers indicating experimental peak position).

TABLE II. DFT predicted elastic constants determined from stress-strain

(r� e), and strain-energy (e� E) methods for a random and cluster distribu-

tion of N atoms over O sites compared with experimental data based on

RUS of polycrystalline and single crystal AlON.

random Cluster

(r� e) (e� E) (r� e) (e� E) Experiment15 Experiment16

C11 (GPa) 296.4 306.16 283.81 283.23 369–393 364.0–386.1

C12 (GPa) 150.9 157.75 137.65 148.99 123–132 107.0–120.0

C44 (GPa) 164.4 183.33 158.97 157.97 122–128 128.0–132.9

Latt.

Const (Å)

8.029 8.029 8.103 8.103 7.956 7.950

FIG. 4. The pressure dependence of elastic constants for (a) random, and (b) cluster types of N distribution over O sites.

023505-4 Batyrev et al. J. Appl. Phys. 115, 023505 (2014)
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model, we use experimental measurements on aluminum

oxynitride amorphous films18 described by the parameter

R¼N/(OþN) were used; the cubic spinel AlON structure

corresponds to R¼ 0.18. The closest structure from Figure

5(a) is the upper solid curve (after anneal), which clearly

shows formation of 3 IR peaks presumably related to the for-

mation of crystalline phases around 900, 700, and 500 cm�1

(Figure 5(a)). IR peaks around 435 cm�1 may be attributed

to tetrahedral coordination of Al, peaks around 900 cm�1

with six fold coordinated Al forming at low N concentra-

tion.19 Calculated IR spectra show peak structures in all

these three regions but have more fine peaks because they

correspond to single cubic spinel structures. The main peaks

according our analysis corresponding to O atoms next to Al

vacancy and Al atoms in an octahedral site in the vicinity of

the vacancy (green arrows scaled proportionally to IR inten-

sities in Figure 5(c)).

Non-resonant Raman (Figure 6(a)) activities were com-

puted using a hybrid method combining density functional

perturbation theory with the finite displacement method. The

Raman activity tensor of a mode is given by the derivative of

the dielectric polarizability tensor with respect to the mode

amplitude. This is evaluated using a numerical central differ-

ence approximation between polarizability tensors computed

at geometries displaced from equilibrium by small positive

and negative amplitudes according to the mode eigenvec-

tor.17 Figure 6(b) depicts the experimental Raman spectra of

AlON.20 The Raman spectrum of cubic AlON is composed

of a number of phonon modes at 304, 397, 626, 747, and

915 cm�1 related with 3T2g, Eg, and A1g modes of spinel.

The modes can be seen in simulations of Raman activities

(Figure 6(a)).

VI. SUMMARY

The main conclusion from the genetic algorithm driven

DFT simulations that predict the structure and elastic proper-

ties AlON are as follows: (1) lowest energy configurations

were found for each of several concentrations of Al2O3 and

AlN compositions in the Al2O3-AlN system both for the

�200 structural models with Al or O vacancy each (the sim-

ulation results corroborated a constant anion model with the

Al vacancy in an octahedral site2 over all considered concen-

trations and models); (2) the DFT genetic algorithm simula-

tions showed that N atoms migrate away from the Al

vacancies at octahedral sites forming a random N

TABLE III. DFT calculated elastic constants of different size unit cell in

comparison with experimental results (1) 6.92mm � 5.82mm � 2.70mm;

(2)1.00mm � 1.01mm � 1.63mm; (3) 0.87 � 1.49 � 1.74mm.

C11 (GPa) C12 (GPa) C44 (GPa)

55 atom 303.51 120.25 164.43

220 atom 304.11 123.01 165.58

440 atom 308.45 119.61 163.94

Experiment 1 386.1 120.0 132.9

Experiment 2 364.0 109.0 127.0

Experiment 3 364.0 107.0 128.0

FIG. 5. (a) FTIR spectrum. Reprinted with permission from Yoshida et al., ECS Trans. 16(21), 1-10 (2009). Copyright 2009 The Electrochemical Society.18

(b) Calculated IR intensity with 10 cm�1 smearing and (c) atomic structure with arrows representing scaled amplitudes of vibrations of oxygen atoms (red),

aluminum atoms (pink), and nitrogen atoms (blue). Notations are the same as in Fig. 1.
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distribution; (3) AlON cubic elastic constants have system-

atically smaller values for a cluster distribution rather than

for a random distribution of N atoms; (4) the calculated val-

ues of the pressure dependence of AlON elastic constants are

in a reasonable agreement with experimental measurements

for polycrystalline AlON; (5) the simulated cubic elastic

constants approached experimental measurements of AlON

single crystals as the number of models atoms increased

from 55 to 440, (6) IR intensity and Raman activity was

calculated using density functional perturbation theory and

compared with available experimental data. The main peaks

of calculated IR intensity corresponded to O atoms next to

vacancy and Al atoms in octahedral sites in the vicinity of

the vacancy.
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a b s t r a c t

Dynamic deformation and failure mechanisms in polycrystalline ceramics are investigated through con-
stitutive modeling and numerical simulation. Two ceramics are studied: silicon carbide (SiC, hexagonal
crystal structure) and aluminum oxynitride (AlON, cubic crystal structure). Three dimensional finite ele-
ment simulations incorporate nonlinear anisotropic elasticity for behavior of single crystals within poly-
crystalline aggregates, cohesive zone models for intergranular fracture, and contact interactions among
fractured interfaces. Boundary conditions considered include uniaxial strain compression, uniaxial stress
compression, and shear with varying confinement, all at high loading rates. Results for both materials
demonstrate shear-induced dilatation and increasing shear strength with increasing confining pressure.
Failure statistics for unconfined loading exhibit a smaller Weibull modulus (corresponding to greater
scatter in peak failure strength) in AlON than in SiC, likely a result of lower prescribed cohesive fracture
strength and greater elastic anisotropy in the former. In both materials, the predicted Weibull modulus
tends to decrease with an increasing number of grains contained in the simulated microstructure.

Published by Elsevier Ltd.

1. Introduction

Ceramic materials typically exhibit high hardness, high elastic
stiffness, and low ductility relative to other engineering materials
such as metals. Of interest in the present paper is the behavior of
polycrystalline ceramics at conditions pertinent to ballistic impact:
high loading rates (e.g., strain rates on the order of 105/s) and high
pressures (e.g., up to several to tens of GPa). The mechanical
response of a polycrystalline ceramic under such conditions is
dictated by bulk properties of its crystal constituents (e.g., density
and elastic coefficients) as well as fracture behavior. Depending on
the particular ceramic and loading regime, fracture can be trans-
granular and/or intergranular. Interactions among fractured and
fragmented grains are thought to strongly affect shear strength
behavior of damaged ceramics (Shockey et al., 1990; Curran
et al., 1993; Gailly and Espinosa, 2002). Under severe loading, com-
plete pulverization may occur; the comminuted ceramic may exhi-
bit behavior approaching that of its powder form (Shih et al., 1998).

A general consensus on correlation between mechanical prop-
erties of ceramics and dynamic performance in high rate applica-
tions (e.g., resistance to failure, penetration, or perforation)
apparently does not exist; relative importance of various proper-
ties may depend on the particular application. However, experi-
ments do suggest that certain properties can strongly affect

dynamic performance. These properties include hardness, elastic
stiffness, fracture toughness, unconfined compressive strength, dy-
namic shear strength, and failure probabilities (e.g., Weibull
parameters) (Sternberg, 1989; Shockey et al., 1990; Curran et al.,
1993; Gailly and Espinosa, 2002; Ray et al., 2007; Leavy et al.,
2010). Experiments indicate that ceramics exhibit an increase in
shear strength with increasing compressive pressure or confine-
ment (Heard and Cline, 1980; Chen and Ravichandran, 2000). After
fractures occur, dilatation accompanies sliding of mismatched or
misaligned crack faces relative to one another. Increasing pressure
resists this dilatation, increasing the amount of shear stress re-
quired to enable deviatoric deformation (Curran et al., 1993). This
phenomena, which also occurs in rocks and minerals, can be inter-
preted in the context of Mohr–Coulomb or frictional sliding models
(Chen and Ravichandran, 2000; Clayton, 2010a).

Efforts towards computational modeling of macroscopic behav-
ior of polycrystalline ceramics under high strain rates and pres-
sures representative of ballistic events have been underway for
over three decades (Wilkins, 1978; Curran et al., 1993). More re-
cently, mesoscale models, in which the behavior of each grain
within a polycrystal is addressed explicitly, have provided insight
into effects of microstructural properties – e.g., grain sizes and
shapes, anisotropic elasticity and/or plasticity, local fracture prop-
erties, and distributions of second phases – on deformation and
failure behavior of polycrystalline solids (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b, 2006a,b;
Vogler and Clayton, 2008; Foulk and Vogler, 2010; Kraft and
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Molinari, 2008; Kraft et al., 2008; Zhang et al., 2005b,a; Kraft et al.,
2010; Gazonas et al., 2010). Much earlier work focused on two-
dimensional simulations; however, recent advances in computa-
tional hardware (e.g., processor speed and numbers of parallel pro-
cessors), finite element software (Jung, 2010), and microstructure
rendering and meshing technologies (Rollett and Manohar, 2004;
Rollett et al., 2007) now enable fully resolved simulations of
three-dimensional polycrystalline microstructures incorporating
nonlinear material behavior, interfacial fracture, and multi-body
contact (Kraft et al., 2010; Gazonas et al., 2010).

Three-dimensional simulations of polycrystalline microstruc-
tures are presented in this paper. Specific ceramics under consider-
ation include silicon carbide (6H polytype as most prevalent in SiC-
N, hexagonal structure) and AlON (spinel, cubic structure). Detailed
descriptions and continuum models of behavior of single crystals
of each material with supporting references are given elsewhere
(Clayton, 2010c, 2011a). Notably, polycrystalline AlON of adequate
quality is transparent, while polycrystalline SiC is opaque. How-
ever, SiC typically exhibits a higher elastic stiffness, higher fracture
strength, and higher fracture toughness than AlON. Two synthetic
microstructures are considered: one consisting of 50 grains, the
other consisting of 126 grains. As discussed in more detail later,
these microstructures are idealized in the sense that they do not
correspond to reconstructions of actual specimens of the ceramics
under present consideration; rather, they are synthesized from
numerical algorithms incorporating grain growth or Voronoi meth-
ods. Synthetic microstuctures of this sort are typically used when
digital reconstructions of actual microstructures are not available
(Zhang et al., 2005b; Clayton, 2009b; Foulk and Vogler, 2010).
Properties of SiC or AlON are assigned to each microstructure in
different simulations, and results of various simulations enable
comparison between materials holding grain morphology fixed.
Nonlinear anisotropic elasticity represents single crystals within
each polycrystal. Intergranular fracture is addressed via a multi-
body contact algorithm (Jung, 2010), whereby each grain is treated
as a distinct solid body. The contact algorithm incorporates a cohe-
sive law enabling tensile and shear fracture and accounting for
fracture strength and surface energy of separation. Various initial
lattice orientation distributions enable a study of effects of elastic
anisotropy, while various loading directions (e.g., shear or com-
pression along different axes) provide insight into effects of grain
morphology and enable quantification of anisotropy of failure
behavior.

Simulations consider the following boundary conditions: uniax-
ial strain compression, uniaxial stress compression, and shear with
varying magnitudes of superimposed compressive pressure. All
simulations are conducted at high loading rates (105/s). Uniform
strain rates are assigned throughout each microstructure as an ini-
tial condition. Results from uniaxial strain and stress simulations
are compared with available experimental data. However, the
present simulations enable a study of specimens of sizes smaller
(in terms of number of grains) than those accessible by standard
high-rate experiments (e.g., traditional plate impact and Kolsky
bar tests). Shear boundary conditions considered here do not cor-
respond to known dynamic experiments on the materials of pres-
ent interest and hence provide new insight into dynamic shear
strength behavior, with and without pressure. Of particular inter-
est in the present study are the following physical phenomena:
dependence of dynamic shear strength on pressure, sensitivity of
peak strength to grain morphology and elastic anisotropy, and
dependence of statistical variations in peak strength on specimen
size (i.e., number of grains) and local material properties. Pres-
sure-dependent strength statistics from mesoscale simulations
can be used to provide parameters entering macroscopic constitu-
tive models for ceramic material behavior incorporating statistical

failure criteria (Brannon et al., 2007, 2009; Leavy et al., 2010; Gra-
ham-Brady, 2010).

This paper is structured as follows. Models for elastic behavior
of single crystals, fracture of interfaces, and requisite material
properties are described in Section 2. Microstructural representa-
tions (e.g., finite element meshes) are described in Section 3.
Numerical simulations, important results, and limitations of the
modeling approach are described in Section 4. Conclusions follow
in Section 5.

Notation of continuum mechanics is used, primarily following
index notation for vectors and higher-order tensors which is con-
venient in the context of anisotropic elasticity. Background on
the subject of nonlinear anisotropic elasticity of crystals can be
found in several books/monographs (Wallace, 1972; Thurston,
1974; Clayton, 2011b). For simplicity of presentation, all compo-
nents of vectors and tensors are referred to a fixed set of Cartesian
indices in both reference and spatial configurations of the body.
Indices corresponding to the reference configuration are written
in capitals, while those corresponding to the spatial configuration
are written in lower case. Einstein’s summation applies for re-
peated indices, e.g., aAbA ¼ a1b1 þ a2b2 þ a3b3.

2. Theory and constitutive models

Governing equations for elastic behavior of single crystals com-
prising polycrystalline aggregates are provided. Models for inter-
granular fracture are described. Properties for bulk single crystals
and interfaces are tabulated for SiC and AlON ceramics.

2.1. Nonlinear anisotropic elasticity

The behavior of intact single crystals is governed by traditional
balance laws of nonlinear continuum mechanics (Thurston, 1974;
Clayton, 2011b). Letting t denote time, spatial ðxaÞ and material
ðXAÞ coordinates are related by the smooth, invertible, and one-
to-one (at any given time) functions

xa ¼ xaðXA; tÞ; XA ¼ XAðxa; tÞ: ð1Þ

The deformation gradient and its inverse are

FaA ¼ @xa=@XA ¼ @Axa; F�1
Aa ¼ @XA=@xa ¼ @aXA; ð2Þ

where partial coordinate differentiation (t fixed) obeys

@Að�Þ ¼ @ð�Þ=@XA ¼ ½@ð�Þ=@xa�½@xa=@XA� ¼ @að�ÞFaA: ð3Þ

Volume element dV in the spatial configuration is related to its
counterpart dV0 in the reference configuration by the Jacobian
determinant J:

J ¼ dV=dV0 ¼ detðFaAÞ ¼
1
6
�abc�ABCFaAFbBFcC ð4Þ

with inverse

J�1 ¼ 1=J ¼ detðF�1
Aa Þ ¼

1
6
�abc�ABCF

�1
Aa F

�1
Bb F

�1
Cc : ð5Þ

Permutation symbols are �abc and �ABC . The following identities ap-
ply (Clayton, 2011b):

@J=@FaA ¼ JF�1
Aa ; @AðJF�1

Aa Þ ¼ 0;

@J�1=@F�1
Aa ¼ J�1FaA; @aðJ�1FaAÞ ¼ 0:

ð6Þ

Let the following notations denote the material time derivative:

dð�Þ=dt ¼ ð�Þ
�
¼ ½@ð�Þ=@t�jXA

¼ ½@ð�Þ=@t�jxa þ va@að�Þ: ð7Þ

Particle velocity and acceleration, respectively, are

va ¼ _xa; aa ¼ _va ¼ €xa: ð8Þ
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The spatial velocity gradient and its trace obey

@bva ¼ _FaAF
�1
Ab ; @ava ¼ _JJ�1: ð9Þ

Cauchy stress rab, first Piola–Kirchhoff stress PaA, and second Piola–
Kirchhoff stress SAB are related by

rab ¼ J�1PaBFbB ¼ J�1FaASABFbB: ð10Þ

Conservation laws for mass, linear momentum (with no body
forces), and angular momentum are

q0 ¼ qJ; @APaA ¼ q0aa; PaBFbB ¼ PbBFaB; ð11Þ

where q0 and q are referential and spatial mass densities. Using (6),
(9), and (10),

_q ¼ �q@ava; @brab ¼ qaa; rab ¼ rba: ð12Þ

Assuming adiabatic conditions, the balance of energy and entropy
inequality are

_U ¼ PaA
_FaA; _g P 0; ð13Þ

where U and g are entropy and internal energy per unit reference
volume.

A hyperelastic material response is assumed:

U ¼ UðFaA;gÞ; @U=@FaA ¼ PaA; @U=@g ¼ h; ð14Þ

with h the temperature. From the chain rule and (14),

_U ¼ PaA
_FaA þ h _g; ð15Þ

which is compatible with adiabatic assumption (13) at finite tem-
perature only when _g ¼ 0; i.e., assumptions of adiabatic conditions
and hyperelastic response correspond to isentropic conditions.
Thus, dependence of internal energy on entropy is dropped hence-
forward, and thermomechanical quantities are assumed to be mea-
sured at fixed entropy (e.g., the usual ‘‘adiabatic’’ elastic coefficients
measured ultrasonically).

Define symmetric Lagrangian elastic strain EAB and deformation
CAB as

EAB ¼ 1
2
ðCAB � dABÞ; CAB ¼ FaAFaB; detðCABÞ ¼ J2; ð16Þ

with dAB Kronecker’s delta. The internal energy at fixed entropy is, to
within an arbitrary constant and to third order in strain (Thurston,
1974; Clayton, 2011b),

U ¼ 1
2!

@2U
@EAB@ECD

�����
EIJ¼0

EABECD þ 1
3!

@3U
@EAB@ECD@EEF

�����
EIJ¼0

EABECDEEF

¼ 1
2
CABCDEABECD þ 1

6
CABCDEFEABECDEEF : ð17Þ

Second- and third-order elastic constants at the unstressed refer-
ence state are CABCD and CABCDEF . In Voigt’s notation (Thurston,
1974; Clayton, 2011b), where Greek indices run from 1 to 6,
CABCD $ Cab and CABCDEF $ Cabv. Noting from (10) and the symmetry
of EAB and SAB that

PaA ¼ @U=@FaA ¼ð@U=@EBCÞð@EBC=@FaAÞ¼ ð@U=@EBAÞFaB ¼ FaBSBA; ð18Þ

it follows that the second Piola–Kirchhoff stress

SAB ¼ CABCDECD þ 1
2
CABCDEFECDEEF : ð19Þ

Properties for SiC and AlON single crystals are listed in Table 1.
Third-order elastic constants are tedious to measure and have been
reported for relatively few substances. For many single crystals,
including those of interest here, full sets of third-order elastic
constants have not been reported in the literature. However,
third-order elastic constants can be estimated as follows (Clayton,
2010c, 2011a), presuming pressure derivatives of elastic coefficients
at the reference state are available. First, note the following identity
(Clayton, 2011b):

@J=@EAB ¼ 2@J=@CAB ¼ J�1@ðJ2Þ=@CAB ¼ J�1@ detðCABÞ=@CAB

¼ J�1 detðCABÞC�1
BA ¼ JC�1

AB : ð20Þ

Now, assume that the tangent elastic coefficients (denoted with a
superposed ^) depend only on volume change (via J) and not on
deviatoric deformation:

bCABCDðJÞ ¼ @2U=@EAB@ECD: ð21Þ

Using (20), and letting bK ¼ �Vðdp=dVÞ ¼ �Jðdp=dJÞ denote the tan-
gent bulk modulus with p ¼ �raa=3 the Cauchy pressure,

@bCABCD=@EEF ¼ ðdbCABCD=dJÞð@J=@EEFÞ

¼ ðdbCABCD=dpÞðdp=dJÞð@J=@EEFÞ

¼ �ðdbCABCD=dpÞðbK=JÞðJC�1
EF Þ

¼ �bK ðdbCABCD=dpÞC�1
EF : ð22Þ

Table 1
Properties for SiC and AlON single crystals.

Property Value (SiC) Reference Value (AlON) Reference

Structure 6H polytype Spinel
Phase a c
Crystal system Hexagonal Cubic
Mass density q0 3227 kg=m3 Leavy et al. (2010) 3714 kg=m3 Graham et al. (1988)
Elastic constant C11 501 GPa Kamitani et al. (1997) 301 GPa Gazonas et al. (2010)
Elastic constant C12 112 GPa 155 GPa
Elastic constant C44 161 GPa 174 GPa
Elastic constant C13 52 GPa (¼ C12)
Elastic constant C33 549 GPa (¼ C11)
Pressure derivative dC11=dp 3.8 Davydov (2004) 5.1 Batyrev et al. (2011)
Pressure derivative dC12=dp 4.0 2.7
Pressure derivative dC44=dp �0.2 1.2
Pressure derivative dC13=dp 4.0 (¼ dC12=dp)
Pressure derivative dC33=dp 3.8 (¼ dC11=dp)
No. independent Cabv 10 6
Bulk modulus K 222 GPa Clayton (2010c) 204 GPa ðC11 þ 2C12Þ=3
Shear modulus G 194 GPa 134 GPa (Voigt average)
Poisson’s ratio m 0.16 0.23
Shear wave speed

ffiffiffiffiffiffiffiffiffiffiffiffi
G=q0

p
7.75 km/s 6.01 km/s

Zener anisotropy 2C44=ðC11 � C12Þ 0.83 2.38
Typical grain size 5 lm Leavy et al. (2010) 200 lm McCauley et al. (2009)
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Repeating (22) over alternating pairs of indices (AB;CD; EF), evaluat-
ing at the reference state where C�1

AB ¼ dAB;dbCABCD=dJ ¼ dCABCD=dJ,bK ¼ K (i.e., dropping the ^ notation at the reference state) and
averaging the result provides the following estimate of third-order
elastic constants with requisite major and minor symmetries:

CABCDEF � �ðK=3Þ½ðdCABCD=dpÞdEF þ ðdCCDEF=dpÞdAB
þ ðdCEFAB=dpÞdCD�: ð23Þ

Application of (23) to single crystals of alumina (Al2O3), a material
for which @Cab=@p and Cabv are known (Hankey and Schuele, 1970;
Clayton, 2009a, 2010b) provides a coarse yet reasonable estimate of
11 of its 14 third-order elastic constants. Application of (23) to sin-
gle crystals of SiC provides an accurate depiciton of the hydrostat
(Clayton, 2010c). As demonstrated in previous modeling efforts
for SiC (Clayton, 2010c) and AlON (Clayton, 2011a), third-order
elastic constants enable description of the increase in tangent elas-
tic stiffness that accompanies decreasing volume. The exact rela-
tionship (Thurston et al., 1966) @CABCD=@p ¼ �SEFGGCABCDEF , with
SABCD the compliance, provides an insufficient number of equations
for determination of all third-order constants.

2.2. Fracture

A cohesive zone approach is used to model intergranular frac-
ture. Let tna and tta denote traction vector components normal and
tangential to a potential fracture site with unit outward normal
components na:

tna ¼ ðrbcnbncÞna; tta ¼ rabnb � ðrbcnbncÞna;

jtna j ¼
ffiffiffiffiffiffiffiffi
tnat

n
a

q
; jttaj ¼

ffiffiffiffiffiffiffiffi
ttat

t
a

q
:

ð24Þ

Many cohesive laws have been investigated in previous works on
heterogeneous polycrystalline solids (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b; Kraft
and Molinari, 2008; Kraft et al., 2008; Vogler and Clayton, 2008;
Foulk and Vogler, 2010; Kraft et al., 2010). A simple irreversible
cohesive law is prescribed in the present work, with the same func-
tional form and parameters for normal and tangential separations
dn and dt . Specifically, separation is possible after a critical initiation
traction of magnitude tc is attained. The interface then maintains a
constant cohesive strength until critical separation distance dc is
reached. Mathematically,

dn ¼0$jtna j< tc; 0< dn=dc <1$jtna j ¼ tc; dn=dc P1$jtna j ¼0;

dt ¼0$jttaj< tc; 0< dt=dc <1$jttaj ¼ tc; dt=dc P1$jttaj ¼0:

ð25Þ

Normal separation only occurs for tensile normal stress, i.e., for
tnana > 0; interpenetration of matter is prohibited. After complete
separation, interactions between interfaces are addressed via a mul-
ti-body contact algorithm (Jung, 2010) enabling sliding between
faces but no interpenetration. Atomic bonds are considered irre-
versibly broken when either dn or dt exceeds dc; i.e., once complete
fracture occurs in any direction at a given referential location, cohe-
sive strength is lost in all directions at that location. The advantage
of cohesive law (25) is its simplicity: only two parameters, which
can be estimated from macroscopic fracture measurements, are
needed. Coupling does not exist between normal and tangential
contributions to fracture energy in later Eq. (26): surface energy C
is the same for pure normal or pure tangential fracture, but the total
surface energy associated with an interface undergoing mixed
mode fracture may exceed C. As discussed later in Section 4, (25)
produces an adequate representation of macroscopic stress–strain
and failure behaviors of ceramic polycrystals under present
consideration. More complex cohesive laws incorporating

piecewise-linear traction-separation relationships with various
slopes were investigated; alternative formulations did not offer
any apparent advantages with regards to numerical stability or rep-
resentation of macroscopic fracture strength but often would re-
quire specification of experimentally unknown parameters.

Differently frommany previous studies (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b; Vogler
and Clayton, 2008; Foulk and Vogler, 2010), distinct cohesive finite
elements are not used in the present numerical framework. In
other words, finite element meshes are not seeded a priori with
interfacial elements. Rather, the cohesive constitutive law (25) is
incorporated directly into the contact algorithm (Jung, 2010), and
each individual grain within a polycrystalline aggregate is treated
as a distinct solid body from the outset of a given numerical
simulation. Prior to attainment of the critical normal or tangential
traction, interfaces are rigidly tied, and hence artificial increases
in compliance prior to fracture initiation are avoided. Once the
critical traction is attained and separation commences, forces
resulting from the cohesive traction-separation law are effectively
applied to appropriate nodes by the contact algorithm that com-
putes node-face interactions (Jung, 2010, Ch. 7, pp. 377–448).

Properties are listed for SiC and AlON in Table 2, with critical
strength and separation distance computed using experimental
(macroscopic) values of flexure strength and static fracture tough-
ness. In the context of linear elastic fracture mechanics, fracture
toughness j, surface energy C, critical strength tc , critical separa-
tion dc , and cohesive zone length lc are related by (Espinosa and
Zavattieri, 2003b; Clayton, 2005b; Kraft et al., 2010)

j2ð1� m2Þ=E ¼ 2C ¼ tcdc; lc � pEC=½ðtcÞ2ð1� m2Þ�: ð26Þ

Young’s modulus E ¼ 9KG=ð3K þ GÞ and Poisson’s ratio
m ¼ ð3K � 2GÞ=ð6K þ 2GÞ. Also shown for purposes of comparison
in Table 2 are experimentally measured spall strengths. Spall
strengths are comparable to flexure strengths, though the former
may vary considerably with impact pressure (Dandekar and
Bartowski, 2001; Cazamias et al., 2001) and may also vary from
sample to sample tested at similar impact pressures due to brittle-
ness and possible flaws in the material.

The present study incorporates uniform grain boundary
strength and frictionless post-fracture sliding between grain
boundary facets. It is understood that real ceramic microstructures
should exhibit variation among fracture behaviors (e.g., in func-
tional forms of cohesive laws as well as in fracture strengths and
energies) at interfaces depending on grain misorientation, grain
boundary curvature, impurities, and pre-existing defects. Thus,
the assumption of uniform grain boundary behavior is an idealiza-
tion, albeit one that has been used frequently in other numerical
studies of heterogeneous polycrystalline solids (Clayton and
McDowell, 2004; Vogler and Clayton, 2008; Foulk and Vogler,
2010; Kraft et al., 2010). Variable grain boundary properties can
strongly influence overall behavior of ceramics (Espinosa and
Zavattieri, 2003b; Kraft and Molinari, 2008; Kraft et al., 2008);
however, assignment of variable properties as an initial condition
is problematic since experimental measurements of mesoscopic
grain boundary strength distributions are scarce if not nonexistent.
A distribution of strengths at the mesoscale could be assigned so
that homogenized model results over many simulations would
match macroscopic failure statistics (e.g., a Weibull modulus).
However, such an approach would reduce model calculations of
failure statistics to parameter fits rather than predictive results.
On the other hand, assignment of uniform grain boundary proper-
ties enables simulation results to provide insight of other sources
of variability, such as grain morphology, loading conditions, and
elastic anisotropy, on predicted failure statistics.
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The assumption of local frictionless contact enables smooth
faces to slide freely past one another. However, as will be demon-
strated later in Section 4, because grain boundaries are interlock-
ing, grains cannot slide indefinitely without expansion normal to
the direction of motion and generation of free volume, i.e., dilata-
tion (Curran et al., 1993; Clayton, 2010a). This phenomenon, due
simply to grain geometry, leads to an increase in macroscopic or
average shear stress with confinement or compressive pressure,
in what may be interpreted as sliding ‘‘friction’’ in the sense of
macroscopic Mohr–Coulomb models (Chen and Ravichandran,
2000), even though microscopically contact is treated as friction-
less. Locally frictionless contact was also assumed in a previous
computational study of shock compression and spall of SiC (Foulk
and Vogler, 2010). However, this approach represents a limiting
case since local microscopic friction could be non-negligible. Previ-
ous two dimensional simulations (Kraft et al., 2008) demonstrated
that as the sliding friction coefficient between failed grain bound-
aries increases, compressive peak strength and its sensitivity to
confining stress also increase. As noted later in Section 4.4, omis-
sion of friction may contribute to under-prediction of shear
strength in the present simulations of the high pressure response
under uniaxial strain loading, wherein contributions of frictional
forces proportional to normal pressures at interfaces could become
important.

As assumed in previous fracture simulations of ceramic poly-
crystals including Al2O3 (Espinosa and Zavattieri, 2003a; Espinosa
and Zavattieri, 2003b), SiC (Foulk and Vogler, 2010), and AlON
(Gazonas et al., 2010), transgranular (i.e., cleavage) fracture is not
addressed. This is a reasonable assumption for certain varieties of
SiC (e.g., SiC-N) that contain additives that segregate at grain
boundaries, leading to a tendency for grain boundary fracture over
cleavage and corresponding to increased toughness (Faber and
Evans, 1983; Shih et al., 1998; Lee et al., 2005; Vargas-Gonzalez
et al., 2010). On the other hand, this assumption may be less phys-
ically reasonable for AlON, in which cleavage fractures have been
observed (McCauley et al., 2009).

3. Microstructure modeling

Synthetic microstructures representative of generic polycrystals
with equi-axed grains are considered in the present work, in the
absence of serial section and/or electron back-scatter diffraction
(EBSD) data that could be used to recreate true microstructures
from material specimens (Brahme et al., 2006; Rollett et al.,
2007). Efforts are presently underway towards reconstruction of
microstructures from actual ceramic specimens. In the present ap-
proach, volume meshes (tetrahedral elements) are created from
stereolithographic (STL) files of surface representations of grains
comprising a given microstructure. Surface meshes are generated
for three-dimensional microstructures produced using a Monte
Carlo grain growth algorithm (Rollett and Manohar, 2004). A con-
formal triangular surface mesh covers each crystal volume, with an
interpolation method used where a triangle separates two materi-
als (Kraft et al., 2010). A three dimensional volume mesh of tetra-

hedral continuum finite elements is then created to fill the surface
mesh of every crystal.

Two microstructures are considered: microstructure I, with 50
grains; and microstructure II, with 126 grains. Each aggregate is
a cube of dimensions L� L� L, where L ¼ 1 mm. Absolute dimen-
sions of each aggregate are prescribed to be equal to enable reason-
able comparison of dynamic finite element results between
microstructures in which traction-free boundary conditions are
prescribed on some external surfaces. If, on the other hand, differ-
ent sized specimens were to be compared, differences in deforma-
tion and failure behavior could, in many scenarios, be attributed to
differences in dimensions of external boundaries of the aggregate.
For example, a planar crack originating at one edge of the aggre-
gate would propagate (at constant speed) in a shorter time across
a smaller specimen than a larger specimen, leading to earlier fail-
ure in the former case. Times for elastic release waves to traverse
different-sized specimens would also differ in dynamic simula-
tions. By using the same absolute size L for each aggregate, any
such issues associated with external boundaries are the same in
each simulation, so that results obtained from different micro-
structures can be meaningfully compared. As discussed later in
Section 4.3, periodic boundary conditions might be expected to
provide more realistic depiction of behavior of grain aggregates
embedded inside a much larger sample of material, as considered
elsewhere in two-dimensional studies of ceramic microstructures
(Espinosa and Zavattieri, 2003a,b).

Microstructures are shown in Fig. 1. Average grain sizes for each
microstructure can be estimated as L=501=3 � 270 lm (microstruc-
ture I) and L=1261=3 � 200 lm (microstructure II), which are repre-
sentative of AlON (McCauley et al., 2009) but are much larger than
standard SiC-N (Lee et al., 2005; Leavy et al., 2010). However, other
varieties of polcrystalline SiC with large grains can exhibit grain
sizes of this order of magnitude (Rice et al., 1994). As mentioned
in Section 1, the same microstructures are used to represent both
SiC and AlON polycrystals in subsequent dynamic finite element
simulations. Use of the same meshes for each material enables
quantification of differences in deformation and failure behavior
by varying material properties (i.e., mass density, elasticity, cohe-
sive strength, and cohesive energy) while holding the microstruc-
ture fixed. Differences resulting from grain morphology are
studied by compressing and/or shearing each microstructure in
different (e.g., orthogonal and forward/reverse) directions. Finite
element meshes contain between 1� 106 and 2� 106 tetrahedral
elements. Mesh refinement is sufficient to resolve grain boundary
surface morphology and cohesive zone lengths (Table 2) and is
comparable to that considered in previous polycrystal fracture
simulations in two and three dimensions (Clayton, 2005a,b; Kraft
and Molinari, 2008; Kraft et al., 2008, 2010; Gazonas et al.,
2010). Cumulative grain size distributions for each microstructure
are shown in Fig. 2. Let Vg denote the volume V of a particular
grain, and define that grain’s size as V1=3

g . The cumulative number
fraction (ordinate of Fig. 2) is defined as the number of grains with
V1=3

g 6 V1=3 divided by the total number of grains in the microstruc-
ture. The abscissa of Fig. 2 is V1=3 normalized by the average grain
size in the microstructure. Grain sizes are somewhat more uniform

Table 2
Properties for SiC and AlON interfaces.

Property Value (SiC) Reference Value (AlON) Reference

Fracture (flexure) strength tc 0.570 GPa Leavy et al. (2010), LaSalvia et al. (2010) 0.306 GPa Corbin (1989)
Fracture toughness j 5.1 MPa m1=2 2.5 MPa m1=2

Surface energy C 28.1 J/m2 Eq. (26) 9.0 J/m2 Eq. (26)

Critical separation dc 0.10 lm 0.06 lm
Cohesive length lc 126 lm 105 lm
Spall strength 0.54–1.3 GPa Dandekar and Bartowski (2001) 0.14–1.7 GPa Cazamias et al. (2001)
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in microstructure I, while microstructure II exhibits greater vari-
ability (i.e., a wider distribution) of grain sizes. Normalized distri-
butions are qualitatively similar to those observed for Hexoloy
SiC and SiC-N (Vargas-Gonzalez et al., 2010).

In all simulations discussed in Section 4, random initial lattice
orientations are used for grains comprising each microstructure.
Different sets of random initial orientations are investigated in
some simulations. Lattice orientation affects model results through
the dependence of anisotropic elastic coefficients (CABCD;CABCDEF) on
crystallographic orientation in the reference configuration.

4. Mesoscale simulations

Dynamic simulations for different boundary and initial condi-
tions are described in what follows: uniaxial strain compression
(Section 4.1), uniaxial stress compression (Section 4.2), and shear
(Section 4.3) with and without superimposed compressive stress.
Results are then summarized in Section 4.4, with limitations of
the current approach and areas for further research identified.

Data from numerous mesoscale simulations are collected and
analyzed, approximately 180 simulations in total. The SIERRA

(Jung, 2010) Lagrangian finite element code with explicit dynamics
is used. Each simulation is executed in parallel mode on 32 proces-
sors for 24 h wall-clock time, for a total number of cpu-hours con-
sumed of 180� 32� 24 � 1:4� 105.

4.1. Uniaxial strain

Results for dynamic uniaxial strain loading are reported first.
Let X denote the referential direction of loading, with Y and Z
denoting orthogonal directions, and with a corner of the cubic
specimen located initially at the origin ðX;Y ; ZÞ ¼ ð0;0;0Þ. Velocity
boundary conditions and nonzero initial conditions for uniaxial
straining in the X-direction are, respectively,

vx ¼ � _�X along X ¼ L;

vy ¼ 0 along Y ¼ 0; L;
vz ¼ 0 along Z ¼ 0; L;
vx ¼ vy ¼ vz ¼ 0 along X ¼ 0;

ð27Þ

vxðt ¼ 0Þ ¼ � _�X $ @xvxðt ¼ 0Þ ¼ � _�: ð28Þ

The imposed uniaxial strain rate is _� ¼ 105/s. Initial conditions (28)
impose a uniform initial velocity gradient throughout the domain; a
shock wave would arise, on the other hand, if velocity boundary
conditions (27) were to be applied to a body initially at rest. Uniax-
ial strain simulations were also performed via loading in orthogonal
Y and Z directions, with analogous boundary and initial conditions.
Under these loading conditions, volume V of the aggregate is related
to its initial volume V0 via V ¼ ð1� _�tÞV0.

Because the material is unstrained at t ¼ 0, stress is zero every-
where initially. The strain rate (symmetric part of the velocity gra-
dient @bva) is initially nonzero and constant throughout the
microstructure. If these conditions were to be applied to a homoge-
neous linear elastic material, stresses would increase linearly with
time. In the present simulations, stresses may emerge heteroge-
neously and nonlinearly with t > 0 as a result of elastic anisotropy
and elastic nonlinearity, fracture, contact, and stress wave interac-
tions. The authors are unaware of any experimental configuration
that exactly replicates these uniform initial and boundary condi-
tions. Similar comments apply for other initial and boundary con-
ditions considered later in Section 4.2 and Section 4.3.

Fig. 3 shows axial stress contours (r ¼ �rxx, positive in com-
pression) in SiC (Fig. 3(a)) and AlON (Fig. 3(b)). In each case shown,
a 50-grain microstructure is deformed to 5% reduction in volume,
i.e., V=V0 ¼ 0:95 via compression along the X-direction. Stresses
are significantly higher in SiC than AlON as a result of the larger
elastic stiffness and higher fracture strength and toughness in the
former (Tables 1 and 2). In each microstructure, cracks associated
with axial splitting appear, typical behavior for brittle materials

Fig. 1. Finite element representations of polycrystalline aggregates: (a) micro-
structure I (50 grains) (b) microstructure II (126 grains).

Fig. 2. Normalized cumulative grain size distributions.

J.D. Clayton et al. / International Journal of Solids and Structures 49 (2012) 2686–2702 2691



   
166

with low Poisson’s ratio (Chen and Ravichandran, 2000). Stress
concentrations are visible along certain grain boundaries and triple
junctions in both materials.

Average axial stress R is defined as the surface integral

R ¼ ð1=AÞ
Z
A
t̂ndA; ð29Þ

where t̂n is the magnitude of the component of traction normal to
loaded surface A. For example, for uniaxial strain along the X-direc-
tion, t̂n ¼ jrxxnxj ¼ jrxxj along the surface defined by X ¼ L with area
A ¼ L2. Averageaxial stresses are shown in Fig. 4(a) and (b) for respec-
tive microstructures of SiC and AlON loaded along the X-direction.
Results are compared for specimens in which fracture is prohibited
(i.e., permanently tied contact at grain boundary interfaces), for spec-
imenswith different random grain orientation distributions (labeled
orientation 1 and orientation 2), and for nonlinear and linear elastic
constitutive models. Nonlinear elastic models incorporating both
second- and third-order elastic constants are used unless simulation
cases are labeled as ‘‘linear’’. For linear models, only anisotropic sec-
ond-order elastic constants are implemented, and all third-order

elastic constants are set to zero. For eachmaterial, simulations with-
out fracture exhibit the largest stiffness. Average stresses from simu-
lations incorporating nonlinear elasticity with different lattice
orientations are nearly indistinguishable in each of Fig. 4(a) and (b).
Also in eachmaterial, differences between nonlinear and linear elas-
tic models become apparent at larger compressions (e.g., at
V=V0 K0:97). For the same material, lattice orientation, and grain
geometry, nonlinear elasticity provides for a higher compressive
stress than linear elasticity because of the increasing elastic stiff-
ness with increasing compressive pressure reflected by the third-
order elastic constants.

Average axial stresses for SiC and AlON microstructures with
various lattice orientations strained uniaxially along different
directions are compared to experimental shock compression data
in Fig. 5(a) and (b). Note that uniaxial strain compression at a rate
of _� ¼ 105/s is typically deemed representative of plate impact
experiments (Grady, 1998; Clayton, 2011a), though the stress state
is not uniform in shock compression tests. A uniaxial strain condi-
tion with a constant strain rate of _� ¼ 105/s was used elsewhere
(Holmquist and Johnson, 2002) to calibrate a macroscopic ceramic
strength model to plate impact data. Constitutive models used in
the present work for nonlinear elasticity, cohesive fracture, and
contact include no intrinsic rate dependence. Rate effects arise only
from time scales associated with inertia (i.e., elastic wave speeds in
anisotropic grains) and crack propagation velocities. Experimental
data shown in Fig. 5 correspond to shock compression, wherein the
strain rate and stress state exhibit effective jump discontinuities
across the shock front. On the other hand, model results are ob-
tained for the more homogeneous uniaxial strain loading path dic-
tated by (27) and (28). Differences between model predictions and
experimental data would be expected due to the path dependent
nature of the fracture process, e.g., local fractures induced by prop-
agation of a shock front are omitted in the simulations.

Predicted average stresses for SiC shown in Fig. 5(a) are very
similar for all orientations and all loading directions. Except for
the first experimental data point shown (which corresponds to
the elastic regime), predicted stresses are lower than experimental
plate impact data (Feng et al., 1998; Yuan et al., 2001). Possible rea-
sons for discrepancies are discussed further in Section 4.4. Pre-
dicted average stresses for AlON shown in Fig. 5(b) are also very
similar for all orientations and all loading directions. Furthermore,
predictions for AlON closely follow the experimental plate impact
data (Cazamias et al., 2001; Vaughan et al., 2001; Dandekar et al.,
2007).

Tables 3 and 4 report average shear stresses for SiC and AlON,
respectively. Simulation cases are tabulated in Table 5. Average
shear stress s and average pressure P follow the usual definitions
from shock compression science (Feng et al., 1998; Grady, 1998;
Dandekar et al., 2007; Clayton, 2011a,b):

s ¼ 1
2
ðR1 � R3Þ; P ¼ �1

3
ðR1 þ R2 þ R3Þ; ð30Þ

where R1;R2, and R3 are maximum, intermediate, and minimum
principal stresses for the polycrystalline aggregate computed anal-
ogously to (29). Shear stress increases monotonically with compres-
sive strain in all simulations. In experiments on SiC (Feng et al.,
1998), shear strength increases with increasing compressive strain
for V=V0 P 0:95, while in experiments on AlON (Dandekar et al.,
2007), shear strength decreases for compressive strain
V=V0 6 0:98. Agreement between model and experiment is closer
at larger compressions. Missing entries in Tables 3 and 4 indicate
either unreported experimental data or simulations that were ter-
minated due to numerical instabilities prior to attainment of corre-
sponding applied strains. Slight variations in shear strength among
simulations of the same material loaded in different directions or
with different lattice orientations are evident, generally on the

Fig. 3. Axial stress r (positive in compression) for 50-grain microstructures
subjected to uniaxial strain at volume V=V0 ¼ 0:95: (a) SiC (b) AlON.
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Fig. 4. Average axial stress R for the same microstructures subjected to uniaxial strain along X-direction: (a) SiC (b) AlON.

Fig. 5. Average axial stress R for the same grain structures subjected to uniaxial strain along different directions, and experimental shock compression data: (a) SiC (b) AlON.

Table 3
Predicted and experimental shear stress for SiC in uniaxial strain compression.

Simulation or experiment s [GPa]

V
V0

¼ 0:99 V
V0

¼ 0:98 V
V0

¼ 0:97 V
V0

¼ 0:96 V
V0

¼ 0:95 V
V0

¼ 0:94

Simulation 1 1.49 2.70 3.87 4.97 6.00 6.97
Simulation 2 1.46 2.65 3.77 4.86 5.86 –
Simulation 3 1.48 2.68 3.83 4.92 5.94 –
Simulation 4 1.51 2.78 4.04 5.15 6.31 7.29
Simulation 5 1.49 2.74 3.97 5.09 – –
Simulation 6 1.53 2.84 4.17 – – –
Simulation 7 1.54 2.85 – – – –
Experiment Feng et al. (1998) – 4.18 5.80 6.85 6.95 6.90

Table 4
Predicted and experimental shear stress for AlON in uniaxial strain compression.

Simulation or experiment s [GPa]

V
V0

¼ 0:99 V
V0

¼ 0:98 V
V0

¼ 0:97 V
V0

¼ 0:96 V
V0

¼ 0:95

Simulation 1 0.95 1.74 2.52 3.24 –
Simulation 2 0.93 1.73 2.48 3.19 3.85
Simulation 3 1.05 1.82 2.56 3.26 3.84
Simulation 4 0.91 1.70 2.45 3.20 –
Simulation 5 0.89 1.69 2.42 – –
Simulation 6 0.92 1.77 2.60 3.44 –
Simulation 7 0.98 1.79 2.61 3.35 –
Experiment (Dandekar et al., 2007) 2.0 3.8 – 3.4 3.0
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order of several percent. Linear elastic models do not always
provide an increase in shear stress relative to complementary non-
linear elastic models, in contrast to axial stresses and pressures
which are larger when nonlinear theory is used. Shear stresses
from representative simulations are compared graphically with
experimental data in Fig. 6.

4.2. Unconfined compression

Results for dynamic uniaxial stress loading are reported next.
Let X denote the referential direction of loading, with Y and Z
denoting orthogonal directions, and with a corner of the cubic
specimen located initially at the origin ðX;Y; ZÞ ¼ ð0;0; 0Þ. Bound-
ary conditions and nonzero initial conditions for unconfined com-
pression in the X-direction are, respectively,

vx ¼ � _�X along X ¼ L;

vx ¼ 0 along X ¼ 0; ð31Þ
rabnb ¼ 0 along Y; Z ¼ 0; L;

vxðt ¼ 0Þ ¼ � _�X $ @xvxðt ¼ 0Þ ¼ � _�: ð32Þ

The imposed strain rate is _� ¼ 105/s. Initial conditions (32) impose a
uniform initial velocity gradient throughout the domain. Uniaxial
stress simulations were also performed via loading in orthogonal
Y and Z directions, with analogous boundary and initial conditions.
Under these loading conditions, the average axial strain of the
aggregate is DL=L0 ¼ _�t, positive in compression. Fully free, as op-
posed to periodic, boundary conditions are applied to lateral faces
of the microstructure.

Fig. 7 shows representative axial stress contours (r ¼ �rxx, po-
sitive in compression) in SiC (Fig. 7(a)) and AlON (Fig. 7(b)). In each
case shown, a 50-grain microstructure is deformed to 2% strain, i.e.,
DL=L0 ¼ 0:02 via compression along the X-direction. Stresses are
somewhat higher in SiC than AlON as a result of the larger elastic

stiffness and higher fracture strength and toughness in the former
(Tables 1 and 2). In each microstructure, cracks associated with ax-
ial splitting appear, as do sliding cracks associated with dilatation
(i.e., expansion) in directions orthogonal to the loading direction.
Fractures are more profuse, and stresses are significantly lower,
than those observed in uniaxial strain compression (Section 4.1,
Fig. 3).

Tables 6 and 7 show peak axial stress and corresponding failure
strain data for SiC and AlON microstructures. Nonlinear elasticity
has been used in obtaining allmodel results shown. Peak axial stress
Rf is defined as themaximumvalue of average compressive stressR
attained over the duration of an experiment/simulation prior to
strain softening associated with damage/fracture, and
peak strain �f is the corresponding average compressive strain,
i.e., @R=@ðDL=L0Þ � 0 at DL=L0 ¼ �f . Also shown for purposes of com-
parison are peak stress data from Kolsky bar experiments at strain
rates on the order of 103/s (Pickup and Barker, 1997; Wang and
Ramesh, 2004; Paliwal et al., 2008). Predicted failure stresses for
SiC are smaller than experimental values (Pickup and Barker,
1997; Wang and Ramesh, 2004); furthermore, strain rates consid-
ered in the simulations are significantly higher (105/s), and brittle
materials can exhibit an increase in peak compressive strengthwith
increasing strain rate (Grady, 1998; Chen and Ravichandran, 2000).
Predicted strengths for AlONare comparable to experimental values

Table 5
Simulations reported in Tables 3 and 4.

Simulation Load direction Orientation Elasticity

1 X 1 Nonlinear
2 X 2 Nonlinear
3 X 1 Linear
4 Y 1 Nonlinear
5 Y 2 Nonlinear
6 Y 1 Linear
7 Z 1 Nonlinear

Fig. 6. Shear stress: present simulations (nonlinear elasticity and fracture) and
experiments.

Fig. 7. Axial stress r (positive in compression) for 50-grain microstructures
subjected to unconfined axial strain of DL=L0 ¼ 0:02: (a) SiC (b) AlON.
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(Paliwal et al., 2008). Comparing the rightmost columns of Tables 6
and 7, it is clear that predicted unconfined compressive strengths
are not directly proportional to prescribed cohesive strength tc since
the ratioRf =tc is significantly higher in AlON than in SiC for each re-
ported simulation. Variations in predicted peak strength resulting
from differences in lattice orientation (i.e., orientations 1 and 2) ap-
pear smaller than variations from differences in loading direction
(i.e., X; Y , or Z).

4.3. Shear

Lastly, results for dynamic shear loading with and without
superimposed compressive stress are reported. Let X denote the
referential direction of loading, with Y and Z denoting orthogonal
directions, and with a corner of the cubic specimen located initially
at the origin ðX;Y ; ZÞ ¼ ð0;0;0Þ. Three kinds of boundary and initial
conditions are considered: unconfined shear, confined shear, and
shear+compression. Boundary conditions and nonzero initial con-
ditions for unconfined shear in the X direction on the Y plane are,
respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;
ryyny ¼ 0 along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;

ð33Þ

vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c: ð34Þ

The imposed shear strain rate is _c ¼ 105/s; note that this is equal to
twice the imposed deformation rate 1

2 ð@bva þ @avbÞ. Initial condi-
tions (34) impose a uniform initial velocity gradient throughout
the domain. Numerous shear simulations were also performed via
loading in forward and reverse directions on orthogonal Y and Z
planes, providing up to twelve unconfined shear simulations (six
off-diagonal components of @bva � two directions (positive and
negative)) for each set of {microstructure, material, lattice orienta-
tion}. Under these loading conditions, the magnitude of average
shear strain of the aggregate is c ¼ _ct.

Boundary conditions and nonzero initial conditions for confined
shear in the X direction on the Y plane are, respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;
vy ¼ 0 along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;

ð35Þ

vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c: ð36Þ

Conditions (35) differ from those for unconfined compression (33)
in only one respect: in the former, the plane on which shearing
velocities are applied is prohibited from moving in a direction nor-
mal to the shearing direction. This results in an increase in com-
pressive stress in the confined case, since the fixed upper
boundary resists dilatation accompanying shear-induced fracture
within the aggregate. Initial conditions are the same in either case.
Again, particular loading planes and directions are varied among
many simulations.

Boundary conditions and nonzero initial conditions for
shear+compression in the X direction on the Y plane are,
respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;
vy ¼ � _cY along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;

ð37Þ

vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c;
vyðt ¼ 0Þ ¼ � _cY $ @yvyðt ¼ 0Þ ¼ � _c:

ð38Þ

Conditions (37) specify simultaneous shear and compression defor-
mation, both at an imposed rate of _c ¼ 105/s. Initial conditions (38)
provide for a corresponding uniform initial velocity gradient. Again,
loading planes and directions are varied among many simulations.
In all three cases listed above (unconfined shear, confined shear,
and shear+compression), fully free, as opposed to periodic, bound-
ary conditions are applied to lateral faces of the microstructure.

Shown in Fig. 8 are shear stress contours r ¼ rab, where @bva is
the corresponding component of the applied velocity gradient. The
applied shear strain is c ¼ 0:03, and material properties are those
of AlON. Results in Fig. 8(a) and (b) correspond to unconfined shear
(33) and confined shear (35), respectively, of microstructure II. No-
tice that local stresses are larger in magnitude in the latter case,
since the microstructure is unable to expand in the vertical direc-
tion to relieve pressure induced by dilatation. The higher pressure
leads to an increase in shear stress for the confined condition. Re-
sults shown in Fig. 8(c) and (d) correspond to microstructure I
(AlON) subjected to shear+compression loading via (37). Results
in Fig. 8(d), wherein approximately half of the grains are removed
from the image, show stresses in the interior of the microstructure
whose exterior is shown in Fig. 8(c). Shear stress magnitudes are
significantly greater for simultaneous shear and compression than
for shear loading alone.

In all boundary and initial conditions considered in (33)–(38),
the microstructure is free to expand or deform in lateral (as op-
posed to vertical) directions, as is clear from Fig. 8. Effects of
restricting motion of the lateral faces are considered in Fig. 9,
which shows average shear stress �s for the same aggregate de-
formed according to confined shear conditions with and without
restricting motion of lateral faces. Precisely, average shear stress
�s for the present loading conditions is computed analogously to
(29):

�s ¼ ð1=AÞ
Z
A
t̂tdA; ð39Þ

where t̂t is the component of traction acting in the direction of
shear, on sheared surface (plane) with area A. The three curves in
Fig. 9 all correspond to the same microstructure, loading plane
and direction, and lattice orientation distribution, with nonlinear
elastic properties for SiC. Fracture is suppressed (i.e., contact be-
tween all grains is rigid) for the stiffest case shown in Fig. 9, which
has a slope of 191 GPa, very close to the Voigt-average shear mod-
ulus G listed in Table 1. This case corresponds to simple shear of an
elastic polycrystalline aggregate. When internal fractures are per-
mitted within the microstructure, but lateral boundaries are moved

Table 6
Peak axial stress and failure strain for unconfined compression, SiC.

Model/experiment Load
direction

Orientation �f

[%]
Rf

[GPa]
Rf =tc

Model X 1 2.43 4.19 7.35
Model Y 1 2.79 4.85 8.51
Model Y 2 2.89 4.82 8.46
Model Z 2 2.80 4.92 8.63
Experiment (Pickup and

Barker, 1997)
– – – 6.72–

8.17
Experiment (Wang and

Ramesh, 2004)
– – – 5.0–

7.5

Table 7
Peak axial stress and failure strain for unconfined compression, AlON.

Model/experiment Load
direction

Orientation �f

[%]
Rf

[GPa]
Rf =tc

Model X 1 3.03 3.24 10.59
Model X 2 3.00 3.13 10.22
Model Y 1 2.89 3.59 11.73
Model Z 1 3.42 3.76 12.28
Experiment (Paliwal

et al., 2008)
– – – 3.0–

4.0
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rigidly (i.e., in simple shear) and are prohibited from expanding to
accommodate dilatation, the intermediate curve in Fig. 9 results.
Note that the average shear stress for this case is lower than that
for the case with no fracture at applied shear strain cJ0:5%, since
fracture and crack opening/sliding within the aggregate tends to re-
duce the overall stiffness of the aggregate. The lowest average shear
stresses are exhibited by the unconfined case (i.e., free lateral faces).

Behavior of a polycrystalline aggregate embedded within a
much larger sample of material would be expected to exhibit aver-
age shear stress behavior falling in between the two lower curves
in Fig. 9, which represent Dirichlet and Neummann boundary con-
ditions, respectively, on lateral faces. Periodic boundary conditions
(Espinosa and Zavattieri, 2003a,b) would be expected to produce
strength falling between these two curves, leading to a more real-
istic depiction of shearing behavior of a representative volume ele-
ment of material embedded within a larger sample. However,
uniaxial strain conditions for lateral confinement considered in
Section 4.1 are deemed representative of plate impact experi-
ments, as has been assumed in previous studies (Clayton, 2005b;
Foulk and Vogler, 2010). And free boundary conditions considered

Fig. 8. Shear stress r for AlON microstructures subjected to shear deformation c ¼ 0:03: (a) microstructure II, unconfined shear, nonzero @xvy (b) microstructure II, confined
shear, nonzero @xvy (c) microstructure I, shear+compression, nonzero @zvx þ @zvz (d) microstructure I, shear+compression, some grains removed for viewing of specimen
interior.

Fig. 9. Average shear stress versus applied shear strain for SiC microstructure I
subjected to various lateral boundary conditions.
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for unconfined compression in Section 4.2 are deemedmore appro-
priate than periodic boundary conditions for modeling miniature
dynamic compression experiments (Paliwal et al., 2008) wherein
the actual size of the experimental sample is comparable to that
of the simulated polycrystalline aggregate.

Weibull distributions are often used to characterize failure
behavior of brittle solids, including polycrystalline ceramics
(Warner et al., 2005; Brannon et al., 2007; Foulk and Vogler,
2010; Graham-Brady, 2010; Leavy et al., 2010). Let sP 0 denote
an independent variable. A two-parameter Weibull distribution
(Hayter, 1996) has a probability density function

f̂ ðsÞ ¼ mr�m
0 sm�1 exp½�ðs=r0Þm�; ð40Þ

and cumulative distribution function

f ðsÞ ¼
Z s

0
f̂ ðxÞdx ¼ 1� exp½�ðs=r0Þm�; ð41Þ

where m is the Weibull modulus and r0 is a parameter with the
same physical dimensions as s. Analyzed in what follows next are
statistics of failure for numerous simulations involving unconfined
shear boundary conditions (33). The shear stress at failure (i.e., the
shear strength) s for a given simulation is defined as the peak stress
at which @�s=@c ¼ 0. For simulation results analyzed here, the prob-
ability f of failure at or below a given shear stress s is found by order-
ing the results of many simulations from lowest to highest shear
strength and assigning the jth result in a series of n simulations a
failure probability fj ¼ 1

n ðj� 1
2Þ (Warner et al., 2005; Furnish et al.,

2007). A plot of lnfln½1=ð1� f Þ�g versus ln s exhibits slope m (the
Weibull modulus). A ‘‘nominal strength’’ (Warner et al., 2005) for a
series of simulations is calculated as r0 ¼ expð�b=mÞ, where b is
the vertical intercept of the linear fit to this plot, noting that
f ðr0Þ ¼ 1� expð�1Þ � 0:632. Recall that the higher the value of
Weibull modulusm, the lower the variability or scatter in variable s.

Weibull fits to unconfined strength data collected from many
simulations of unconfined dynamic shear are shown in Fig. 10(a)
for SiC and Fig. 10(b) for AlON. Data from several dozen simula-
tions are considered in each case, incorporating various micro-
structures, random lattice orientation distributions, and loading
directions. Fits to the data are constructed by considering results
of each of microstructures I (50 grains) and II (126 grains) individ-
ually, as well as data from results of simulations on both micro-
structures taken together. For each material, microstructure I
exhibits a higher Weibull modulus than microstructure II, corre-
sponding to more uniform shear failure statistics. A reduction in

Weibull modulus with increasing sample size has been noted else-
where from static flexure and indentation experiments on SiC
(Wereszczak et al., 2010). However, diametral compression data
for SiC (Leavy et al., 2010) demonstrate an increasingWeibull mod-
ulus and decreasing median strength with increasing sample size.
Comparing Fig. 10(a) and (b), predicted Weibull moduli for AlON
microstructures are significantly lower that those for SiC.

Table 8 compares Weibull parameters from the present work
with those obtained from other modeling (Foulk and Vogler,
2010) and experimental (Klein and Miller, 2001; Warner et al.,
2005; Patel et al., 2006; Ray et al., 2007; Furnish et al., 2007; Were-
szczak et al., 2010) studies. For the present modeling results, nom-
inal strength r0 is substantially greater in SiC (0.52 GPa) than in
AlON (0.35 GPa), as would be expected from the prescribed inter-
facial strengths in Table 2: tcSiC=t

c
AlON � 1:9 > 0:52=0:35 � 1:5. Nom-

inal strength r0 does not vary appreciably between results for
microstructures I and II, in contrast to Weibull modulusm. Weibull
moduli computed for SiC in the present work are significantly lar-
ger than those observed in experiments (Ray et al., 2007; Furnish
et al., 2007; Wereszczak et al., 2010). Note however that loading
conditions considered elsewhere (shock loading, static bending,
or static indentation) differ from those considered in the present
simulations (dynamic unconfined shear). Furthermore, sample
sizes considered in the present work are significantly smaller in
terms of number of grains than specimens tested experimentally.
Weibull moduli computed in the present work for AlON are closer
to, but still generally larger than, those measured experimentally
(Klein and Miller, 2001; Warner et al., 2005; Patel et al., 2006). It
is emphasized that experimental data for Weibull parameters for
both materials (SiC and AlON) vary significantly from study to
study as a result of differences in material samples (e.g., different
processing routes leading to variable defect content), experimental
loading techniques, and specimen sizes. However, a general trend
of lower nominal strength and lower Weibull modulus in AlON
than in SiC is evident in the experimental values listed in Table
8; furthermore, this trend is qualitatively reflected by the present
model predictions.

Table 9 shows peak shear strengths for various simulations
involving different materials, microstructures, loading directions,
and initial lattice orientation distributions. Unconfined boundary
conditions correspond to (33); confined boundary conditions cor-
respond to (35). Directions refer to shearing in positive (+) and
negative (-) directions on the same plane of loading. The rightmost
column of Table 9 lists the percentage difference in peak strength

Fig. 10. Weibull fits to all relevant simulation results (multiple microstructures, grain orientations, and loading directions) for peak average unconfined shear strength: (a)
SiC (b) AlON.
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for the two lattice orientation sets considered on a given row,
quantifying effects of elastic anisotropy. Specifically, this difference
is computed as 2ðs1 � s2Þ=ðs1 þ s2Þ � 100%, where subscripts refer
to orientation sets 1 and 2. Comparing results for SiC and AlON, it
appears that anisotropy has a greater effect on shear strength in
AlON than in SiC, especially for unconfined boundary conditions.
Recall from Table 2 that the Zener anisotropy factor deviates more
from unity for AlON (2.38) than SiC (0.83). However, SiC is hexag-
onal, and additional anisotropy results from C13 – C12 and
C33 – C11. Increased variability due to anisotropy would contribute
to a lower predicted Weibull modulus in AlON compared to that of
SiC. Differences in peak strength due to differences in loading
direction (+ versus -) are also generally larger in AlON than in
SiC. Because of its lower prescribed cohesive strength and fracture
energy, AlON may be more sensitive than SiC to local variations in
microstructure geometry (e.g., grain boundary facets oriented
favorably for fracture or stress concentrations at triple points) that
would lead to fracture intitiation and subsequent failure. Variabli-
tity due to loading direction (i.e., grain morphology) tends to ex-
ceed that due to elastic anisotropy. When the material is loaded
in forward and reverse directions, different fracture sites can acti-
vate. In all simulations, confinement leads to an increase in shear
strength relative to the corresponding unconfined case. Normal
stress R on the confined surface does contribute to computed aver-
age shear strength:

s ¼
ffiffiffiffi
J2

p
¼ ½ð3�s2 þ R2Þ=3�1=2; ð42Þ

where J2 is the second invariant of the average deviatoric shear
stress. For unconfined shear, R ¼ 0 and s ¼ �s.

4.4. Summary and discussion

Considered collectively, results presented in Sections 4.1, 4.2
and 4.3 demonstrate increasing shear strength with increasing
average pressure for both SiC and AlON polycrystals. Relationships
between shear strength s ¼

ffiffiffiffi
J2

p
and average pressure P are shown

in Fig. 11(a) for SiC and (b) for AlON. Strength corresponds to the
peak value of average shear stress defined in (42) for unconfined
compression (i.e., s ¼ R=

ffiffiffi
3

p
for uniaxial stress compression), or

for shear loading with or without confinement or superimposed
compression. For uniaxial strain loading, following previousmodels
(Lee et al., 2005; Brannon et al., 2007; Leavy et al., 2010), the shear
strength from (30), multiplied by 2=

ffiffiffi
3

p
to be consistent with

ffiffiffiffi
J2

p
,

taken at the compressive strain (i.e., current volume) corresponding
to the Hugoniot elastic limit (HEL) is used: V=V0 ¼ 0:975 for SiC
(Clayton, 2010c; Feng et al., 1998) and V=V0 ¼ 0:970 for AlON (Clay-
ton, 2011a; Dandekar et al., 2007). Average pressure is always com-
puted via the second of (30) and vanishes for unconfined shear
loading. The horizontal intercept at null shear strength (i.e., the
hydrostatic tensile strength) follows directly from the prescribed
cohesive strength of each material (Table 1) as �tc=3.

Also shown in Fig. 11 are analytical fits (solid lines) to the pres-
ent model results (SiC and AlON) and fits to experimental data (Lee
et al., 2005) (SiC only). Comprehensive shear strength versus pres-
sure data (experimental or numerical) for AlON have not been pub-
lished elsewhere, to the authors’ knowledge. Two functional forms
are shown. The first, which has been used elsewhere for SiC (Lee
et al., 2005), follows from a cap plasticity model formulated in
the context of geomechanics (Sandler and Rubin, 1979):

Table 8
Weibull parameters for SiC and AlON.

Model/experiment Material Microstructure Strength r0 [GPa] m

Model (present) SiC I and II Unconfined shear 0.517 45.2
Model (present) SiC I Unconfined shear 0.516 59.0
Model (present) SiC II Unconfined shear 0.518 34.5
Model (Foulk and Vogler, 2010) SiC – Spall 11.6–12.3 12–18
Experiment (Ray et al., 2007) SiC – Flexure 0.367–0.617 4.9–26.6
Experiment (Furnish et al., 2007) SiC – HEL 10.23–10.33 14.4–29.7
Experiment (Wereszczak et al., 2010) SiC – Indentation 0.876–2.652 13.9–20.1
Experiment (Wereszczak et al., 2010) SiC – Flexure 0.268–0.776 6.6–12.2
Model (present) AlON I and II Unconfined shear 0.345 14.9
Model (present) AlON I Unconfined shear 0.340 21.5
Model (present) AlON II Unconfined shear 0.353 9.9
Experiment (Klein and Miller, 2001) AlON – Flexure 0.315 4.45
Experiment (Warner et al., 2005) AlON – Flexure 0.288–0.812 2.9–26.3
Experiment (Patel et al., 2006) AlON – Indentation 0.228 8.7

Table 9
Representative peak shear strengths for SiC and AlON: various microstructures, loading directions, and lattice orientation distributions.

Material Micro- Boundary Condition Loading Direction s [GPa] Orientation 1 s [GPa] Orientation 2 Difference [%]

SiC I Unconfined þ 0.521 0.525 0.8
SiC I Unconfined � 0.514 0.516 0.4
SiC I Confined þ 0.715 0.713 0.3
SiC I Confined � 0.696 0.704 1.1
SiC II Unconfined þ 0.506 0.500 1.2
SiC II Unconfined � 0.496 0.493 0.6
SiC II Confined þ 0.643 0.630 2.0
SiC II Confined � 0.636 0.631 0.8
AlON I Unconfined þ 0.314 0.333 5.9
AlON I Unconfined � 0.352 0.302 15.3
AlON I Confined þ 0.432 0.416 3.8
AlON I Confined � 0.472 0.475 0.6
AlON II Unconfined þ 0.325 0.395 19.4
AlON II Confined þ 0.402 0.407 1.2
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s ¼ a1 � a2 expð�a3PÞ þ a4P; ð43Þ

where a1; a2; a3, and a4 are constants. Notice that the constants are
labeled slightly differently here than in Lee et al. (2005); all con-
stants in (43) are positive in sign and P is positive in compression.
The second follows from a continuum damage mechanics model
used for ceramics under impact loading (Leavy et al., 2010):

s ¼ b1f1� exp½�ðb2=b1Þðb3 þ PÞ�g; ð44Þ

where b1; b2, and b3 are constants. Parameters for each fit are listed
in Table 10.

First consider numerical data from the present simulations. In
each material, the increase in shear strength with compressive
pressure or confinement is evident. Previous models (Brannon
et al., 2007, 2009; Leavy et al., 2010) have assumed that variability
in strength decreases with an increase in pressure. This phenome-
non is not apparent from the present results. Percentage-wise, dif-
ferences in strength from simulation to simulation are of the same
order of magnitude for unconfined and confined loading, as is evi-
dent from Tables 3, 4, and 9. Overall, the shear stiffness of SiC is
greater than that of AlON because of the greater prescribed elastic
stiffness (e.g., second-order elastic constants), fracture strength,
and fracture energy in the former. The analytical fit to experimen-
tal results for SiC (Lee et al., 2005) exhibits higher strength than the
present model results at high pressures and lower strength than
the present results at low pressures; however, the fit to experi-
mental results is valid only for the pressure regime shown and
does not extrapolate correctly to lower compressive pressures or
the tensile regime. Also shown in Fig. 11(a) is a ‘‘best fit’’ to com-
bined experimental and numerical data deemed most appropriate
for dynamic behavior of SiC over the entire pressure regime shown.

Table 11 summarizes pressure-strength behavior for SiC ob-
tained from various models and experiments. At higher pressures,
mesoscale simulation data fit to (44) provides a lower strength
than other models and plate impact experiments. The ‘‘best fit’’
to (44) matches strength data reported by (Lee et al., 2005, p. 25)
at P ¼ 10 GPa but gives a lower shear strength than that reported
in Feng et al. (1998). The ‘‘JH-1’’ model (Holmquist and Johnson,
2002) provides stiffer shear strength versus pressure behavior than
the present model fits when the ceramic is considered intact, but
much lower strength when the ceramic has ‘‘failed’’ due to plastic
strain accumulation.

Parameters listed in Tables 8 and 10 can be used directly in
macroscopic models of inelasticity and failure of ceramic materials
incorporating Weibull statistics and pressure-dependent shear
strength (Brannon et al., 2007, 2009; Leavy et al., 2010). The pres-
ent results may be particularly valuable for AlON, for which exper-
imental data (statistical and pressure-strength) are not as readily
available. The present modeling effort considers sample sizes
(1 mm3, �100 grains) commensurate with finite element sizes
used in macroscopic applications (Brannon et al., 2007; Leavy
et al., 2010). Furthermore, strain rates considered are applied uni-
formly to the microstructure through appropriate boundary condi-
tions and initial conditions on the velocity gradient, and are of

Fig. 11. Average shear strength versus average pressure for all relevant simulation results (multiple microstructures, grain orientation distributions, loading directions, and
confinement conditions): (a) SiC (b) AlON.

Table 10
Parameters for pressure-dependent strength models of SiC and AlON.

Parameter SiC
(simulation)

SiC (Lee et al.,
2005)

SiC (best
fit)

AlON
(simulation)

a1 [GPa] 3.0 3.5 – 2.3
a2 [GPa] 2.5 6.3 – 1.9
a3 [1/GPa] 1.0 1.1 – 1.7
a4 0.15 0.21 – 0.1
b1 [GPa] 4.0 – 5.5 3.0
b2 2.5 – 2.0 3.0
b3 [GPa] 0.19 – 0.19 0.10

Table 11
Strength (s ¼

ffiffiffiffi
J2

p
) versus pressure (P or mean stress) for SiC.

Model or experiment Loading P
[GPa]

s
[GPa]

Mesoscale simulation (Eq. (44)) Uniaxial strain

105/s

1.0 2.1

5.0 3.8
10.0 4.0

Best fit (Eq. (44)) Various 1.0 2.0
5.0 4.7
10.0 5.4

JH-1 intact (Holmquist and Johnson,
2002)

Uniaxial strain

105/s

1.0 2.4

5.0 5.6
10.0 7.8

JH-1 failed (Holmquist and Johnson,
2002)

Uniaxial strain

105/s

P 3:3 0.8

Experiment (Feng et al., 1998) Plate impact 4.6 4.8
5.5 5.2
9.7 7.9

Experiment (Lee et al., 2005) Plate impact 10.0 5.4
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magnitude pertinent to ballistic events (105/s). This is in contrast
to static data (Lee et al., 2005), extrapolated to the dynamic regime,
often used to parameterize such models at lower confining pres-
sures in the absence of very high-rate data (Brannon et al., 2007,
2009; Leavy et al., 2010). Simulation results may also be used to in-
form macroscopic models explicitly considering crack opening dis-
placements in the context of large deformation kinematics
(Clayton and McDowell, 2003, 2004; Clayton, 2005a, 2010a); such
an effort may be pursued in future work. The present results sug-
gest two features of current macroscopic ceramic models that war-
rant further consideration and possible refinement: (i) possible
size dependence of the Weibull modulus and (ii) statistical vari-
ability in shear strength at various pressures and loading rates.
Existing models (Brannon et al., 2007, 2009; Leavy et al., 2010)
consider a constant Weibull modulus for hydrostatic tensile
strength and assume reduced variability in strength at high pres-
sures (e.g., in the regime of plate impact or uniaxial strain
experiments).

Predictions of the present work follow from a number of mod-
eling assumptions. Possible limitations of the present modeling ef-
fort are enumerated below:

1. Grain structures considered are synthetic, with random initial
lattice orientation distributions used to specify anisotropic elas-
tic constants. Greater physical realism would be attained from
finite element meshes of microstructures obtained from sec-
tioned material samples, with intial lattice orientation distribu-
tions obtained from EBSD measurements, for example (Brahme
et al., 2006; Rollett et al., 2007). In particular, SiC-N can often
exhibit relatively elongated grains (Lee et al., 2005; Ray et al.,
2007; Vargas-Gonzalez et al., 2010), whereas AlON often exhib-
its relatively equiaxed grains (Corbin, 1989; McCauley et al.,
2009; Guo et al., 2011).

2. Dislocation-mediated plasticity and twinning are not consid-
ered. When confining pressures and shear stresses are large,
fracture may be suppressed and dislocation motion may occur
in ceramics. In hexagonal polytypes of SiC, partial dislocation
motion on basal planes and associated stacking fault propaga-
tion are thought to be the prominent mode of plastic deforma-
tion (Zhang et al., 2005b,a; Clayton, 2010c). In AlON, dislocation
slip and twinning on octahedral planes has been observed in
experiments (Paliwal et al., 2008; McCauley et al., 2009) and
modeled with crystal plasticity theory (Gazonas et al., 2010;
Clayton, 2011a).

3. Significant uncertainty exists for some elastic properties. Com-
plete second-order elastic constants have been measured for
SiC (Kamitani et al., 1997). The remaining elastic properties
listed in Table 1 are theoretical predictions. Pressure dependen-
cies of second-order elastic coefficients of SiC follow from
atomic modeling (Davydov, 2004). Anisotropic second-order
elastic constants for AlON have been computed using first prin-
ciples (Gazonas et al., 2010), as have pressure dependencies of
second-order elastic coefficients (Batyrev et al., 2011). Recent
indentation experiments suggest that AlON may be highly elas-
tically anisotropic (Guo et al., 2011), in qualitative agreement
with anisotropic constants used in the present work but con-
tradicting previous work wherein nearly isotropic elastic con-
stants were used (Clayton, 2011a).

4. Uniform cohesive properties (i.e., fracture strength and fracture
energy) are assigned to all grain boundaries in a given micro-
structure. In real ceramic polycrystals, variability in fracture
properties may arise from voids, inclusions, and secondary
phases, though in some cases secondary phases may be incor-
porated deliberately to improve fracture toughness (Faber and
Evans, 1983; Shih et al., 1998; Vargas-Gonzalez et al., 2010).
Grain boundary misorientation may also influence local fracture

properties. Highly non-uniform grain boundary properties
would be expected to result in greater variability in predicted
failure statistics, e.g., lower Weibull moduli. In principle, grain
boundary strengths could be seeded to enable simulation
results to match experimental failure statistics. However, for
statistics obtained from numerical simulations to be labeled
as truly predictive, input parameters for mesoscale models
should be obtained from independent experiments that mea-
sure local property distributions, or from atomic theory (Kohy-
ama, 1999), rather than calibrated to match macroscopic failure
data.

5. Contact is assumed frictionless between grain boundary facets.
Some sliding friction might be expected between failed sur-
faces, as has been considered in previous models (Kraft and
Molinari, 2008; Kraft et al., 2008). Incorporation of frictional
sliding would presumably increase predicted shear strengths
of polycrystalline aggregates, especially at higher confining
pressures. In particular, omission of contact friction may, at
least partially, explain the lower compressive and shear stresses
predicted for SiC microstructures in the present simulations rel-
ative to corresponding experimental data.

6. Porosity is not considered. Polycrystalline ceramics are not fully
dense, with measured porosities in SiC and AlON on the order of
one to several percent (Graham et al., 1988; Lee et al., 2005;
Dandekar et al., 2007). Pore collapse can influence the high
pressure response of ceramics and geologic solids, e.g., resulting
in increased compressibility relative to a fully dense material
(Clayton, 2008, 2011a).

7. Transgranular failures, i.e., cleavage fractures, are not addressed.
Failure in SiC-N is predominantly intergranular (Faber and
Evans, 1983; Shih et al., 1998; Lee et al., 2005), although trans-
granular fractures are observed to a lesser extent (Ray et al.,
2007). Transgranular fracture has been observed in AlON
deformed at high rates (Paliwal et al., 2008; McCauley et al.,
2009) and in static indentation experiments (Guo et al., 2011).

8. Adiabatic conditions are assumed, with isentropic elastic
behavior used for single crystals within each microstructure.
In real materials, plastic deformation, twinning, pore collapse,
and frictional sliding at fractured interfaces could all contribute
to dissipation (i.e., entropy production) and temperature rise at
high rates of loading. If such effects are significant, consider-
ation of thermal expansion, temperature dependent elastic
coefficients, and temperature dependent cohesive properties
(Clayton, 2005b) may be warranted.

9. Boundary and initial conditions used in simulationsmay deviate
from those encountered in experiments to which some results
have been compared. Specifically, the present uniaxial strain
simulations assign homogeneous compression, omitting the
shock process that occurs in plate impact tests. The present
shear and shear+compression simulations assign free conditions
on lateral faces; periodic boundary conditions might be
expected to offer amore realistic representation of bulkmaterial
behavior and provide somewhat greater strength and stiffness.

In the context of the above limitations, the present results pro-
vide a basis for comparison with future work in which more phys-
ical details can be incorporated, e.g., reconstructed actual
microstructures, dislocations, twins, initial defect distributions,
and transgranular fracture.

5. Conclusions

Numerous three-dimensional finite element simulations of dy-
namic deformation and fracture of polcrystalline ceramic micro-
structures have been conducted. Uniaxial strain compression,
unconfined compression, and shear loading (with and without
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confinement) have been considered. Single crystal deformations
have been modeled using nonlinear anisotropic hyperelasticity.
Intergranular fractures have been modeled using cohesive zone
theory with fracture strength and fracture energy obtained from
macroscopic flexure data. Properties are representative of SiC and
AlON. Various microstructures, lattice orientation distributions,
and loading directions have been considered. Failure statistics have
been analyzed.

Results obtained provide new insight into dynamic behavior of
ceramic polycrystals for small specimen sizes and loading condi-
tions (e.g., uniform velocity gradient boundary and initial condi-
tions at very high strain rates) not accessible through traditional
experiments such as plate impact-driven shock compression or
Kolsky bar compression. Key findings are summarized as follows:

� Shear strength of polycrystalline aggregates increases with con-
fining pressure in both materials, in qualitative agreement with
experimentally observed trends for brittle solids. Confinement
inhibits dilatation associated with interfacial sliding among
misaligned grains, leading to an increase in shear stress neces-
sary for mode II crack propagation. Analytical fits to pressure-
strength data have been developed for use in macroscopic mod-
els of inelasticity in SiC and AlON ceramics.

� For uniaxial strain compression, predicted average axial stresses
agree favorably with experimental plate impact data on larger
specimens of AlON, but are lower than experimental values
for SiC by up to 10–20%. Predicted average shear stresses in
both materials are in close agreement with experimental values
at higher pressures (e.g., at 5% volumetric compression), but are
lower than experimental values at lower pressures.

� In both materials, the predicted Weibull modulus for average
unconfined shear strength tends to decrease with an increase
in number of grains contained in the microstructure, in qualita-
tive agreement with some experimental observations of
decreasing Weibull modulus with increasing sample size.

� Predicted Weibull parameters for shear strength are smaller for
AlON than SiC, reflecting lower mean strength and greater var-
iability in the former, in qualitative agreement with experi-
ments. It is suspected that the lower prescribed cohesive
strength and toughness for AlON contribute to an increased sen-
sitivity to fracture initiation at interfaces or triple junctions
most favorably oriented for fracture.

� Shear failure behavior of AlON appears more sensitive to initial
lattice orientation than corresponding behavior of SiC micro-
structures with the same grain morphology, suggesting a
greater sensitivity to elastic anisotropy in the former.

The above conclusions follow from analysis of numerical simu-
lations incorporating idealized microstructures and idealized frac-
ture behavior, without consideration of defects such as pre-
existing flaws, voids, inclusions, dislocations, or deformation twins.
Thus, the present work should be viewed as a reference against
which future studies incorporating such defects can be compared.
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Effect of electric field on the band structures of graphene/boron nitride (BN) and BN/BN bilayers

is investigated within the framework of density functional theory. The calculated bandgap of the

graphene/BN bilayer increases, although by small amount, with applied electric field. In the case of

BN/BN bilayer, the bandgap decreases with the applied field in agreement with earlier studies. The

modulation of bandgap in graphene/BN bilayers is dominated by the features of graphene and

appears to be related to the modification in molecular orbitals as revealed by the calculated

projected density of states.VC 2012 American Institute of Physics. [doi:10.1063/1.3679174]

Periodic systems in two-dimensional arrangements have

received a great deal of attention due to their electronic, elec-

trical, and mechanical properties.1–4 For example, graphene,

a planar structure of hexagonal carbon rings shows extraordi-

nary electrical properties in its pristine form and has been

the subject of numerous recent studies.5 Its band structure

shows zero gap at the Dirac point, which can be opened by

external perturbations such as the application of strain, elec-

tric field, and chemical modification.6,7 The bandgaps of

both bilayer (BLG) and trilayer (TLG) configurations of gra-

phene are tunable with an applied electric field8 and are de-

pendent on the symmetry. For example, in the case of TLG

even though inversion symmetry is broken by applied elec-

tric field, hexagonal stacking has no bandgap, Bernal stack-

ing has a tiny gap, and only the rhombohedral stacking has

sizeable gap. Structurally similar to graphene, hexagonal bo-

ron nitride (h-BN), has also received considerable attention

as a potential material for nano-scale electronics applica-

tions9 due to its enhanced chemical, thermal, and mechanical

stabilities.

In the case of bilayer graphene, recent studies10,11 have

shown that bandgap increases from 0 to 230 meV at 3 V/nm.

Such a possibility opens the door for bilayer graphene in

switchable electronic devices. Since BN is chemically more

stable and already has a sizeable bandgap, it is of interest to

investigate the effect of electric field on the graphene/BN

and BN/BN bandgaps, both for advancing fundamental

understanding of the electronic structures of these important

nano-scale materials and also for their potential applications

in switchable devices. In this letter, we report the results of

our study of the effect of electric field on the band structures

of graphene/BN and BN/BN bilayers investigated by first-

principles density functional theory (DFT) approach. Our

results suggest both graphene/BN and BN/BN layers to

exhibit modulation of the band structure by electric field.

However, significant qualitative and quantitative differences

are noted. The effect on electric field on BN/BN system has

been characterized in earlier studies12 and the band structure

modulation described at the DFT level of theory, so our

focus will be on graphene/BN bilayer system. Our calcula-

tions on BN/BN system agree with earlier results and will be

compared against the graphene/BN system to gain further

insight into the modulation of band structure with the applied

electric field.

Calculations were performed using the full-potential lin-

earized augmented plane wave (FLAPW) method within the

framework of local density approximation (LDA)-(DFT). In

the FLAPW method, the crystal region is split between non-

overlapping muffin-tin spheres around nuclei and interstitial

regions. The plane wave basis set is used to describe the in-

terstitial region and radial functions in the muffin-tins to

account for the sharply changing potential near the nuclei.

The linearized augmented plane wave-based methods are

known to give accurate electronic structure description of

solids.13 The LDA-DFT has been previously used to obtain

reliable results for graphitic and h-BN band structures.14–16

Two dimensional slab geometries were used for the sys-

tems studied; the interlayer spacing in the AB (Boron) stack-

ing for graphene/BN and BN/BN equilibrium configurations

(Fig. 1) taken from the previous work of Zhong et al.9 are

3.022 Å and 3.071 Å, respectively. The calculated equilib-

rium configurations associated with the graphene/BN and

BN bilayers were fully relaxed, with residual forces smaller

than 0.01 eV/Å. The AB stacking for graphene/BN systems

was chosen as it is the energetically favored configuration

FIG. 1. (Color online) A schematic diagram of graphene/BN (a) and BN/

BN (b) bilayers. The cyan, green, and blue represent carbon, boron, and

nitrogen atoms, respectively.

a)Authors to whom correspondence should be addressed. Electronic

addresses: rad.balu@us.army.mil and shashi.karna@us.army.mil.
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over AA stacking at the LDA-DFT (Ref. 9) level of theory.

The electric field was applied in the direction perpendicular

to the planes of the bilayer by setting up two plates of oppo-

site charges on either side of the bilayer systems as imple-

mented in FLEUR (Ref. 17) electronic structure code.

Fig. 2 shows the band structures of graphene/BN and

BN/BN bilayer systems. As expected, the graphene/BN and

BN/BN bilayer band structures exhibit sharp distinctions

from each other. The zero-field band structure for the gra-

phene/BN bilayer is dominated by the bands associated with

the carbon atoms near the Fermi level, with a very small gap

of �104 meV at the Dirac point. The bands near the Fermi

level exhibit linear dispersion characteristic of graphene with

their slopes less steep than bilayer graphene due to the pres-

ence of BN layer. The presence of non-zero gap implies lift-

ing of degeneracy of the bands at the K point. In contrast, the

BN/BN bilayer exhibits a nearly two-orders of higher direct

gap of �4.6 eV at the Dirac point. This is in accordance with

earlier calculations9 on BN/BN bilayer system.

The change in the bandgaps of graphene/BN and BN/BN

bilayers due to externally applied electric field is depicted in

Table I. It is clear from this figure that both bilayer systems

exhibit modulation of their bandgaps by the external field.

While the graphene/BN bilayer bandgap shows an increase

with increasing external field, opposite is the case with the

BN/BN bilayer. Further, the relative change in the graphene/

BN bandgap appears to be larger than that in the BN/BN

bilayer, although the magnitude of the change in the latter is

much higher than the former. The decrease in the gap with

increase in the electric field in the BN/BN bilayer is consist-

ent with the previously reported results on BN bilayers.12

An examination of the band structure reveals that the

conduction bands are affected more strongly than the valence

bands (Table I) by the external electric field, E, for both the

graphene/BN and BN/BN bilayers. For the graphene/BN sys-

tem, the valence and conductions bands are pushed higher

with increasing field with a net increase in the gap. In con-

trast, the conduction band of BN/BN bilayer is pushed

towards the Fermi level with increasing field. While the va-

lence band is pushed higher with increasing field until

E¼ 2.0 V/nm, it decreases at until E¼ 2.5 V/nm and then

again increases monotonically from E¼ 2.5 V/nm onwards.

This results in an overall decrease in the bandgap. The effect

of applied field on bands closer to Fermi level can be sum-

marized as follows: (1) For graphene/BN bilayer, both the

conduction and valence bands move in the same direction to-

ward higher energies, (2) for the BN/BN bilayer, the valence

and the conduction bands move in opposite direction toward

the Fermi level. The net result is an increase, although very

small in the bandgap of graphene/BN bilayer but a decrease

in BN/BN bilayer case.

In order to understand the calculated effect of the

applied electric field on band structure in terms of the corre-

sponding effect on the contributing atomic states, the total

density of states (DOS) and projected density of states

(PDOS) are plotted in Figs. 3 and 4, respectively. The bands

closer to Fermi level have dominant contributions from 2pz
orbitals of each atom (data not shown) and so we focused on

them for the PDOS plots. Fig. 3 represents DOS and PDOS

when no electric field is applied to the graphene/BN bilayer.

As can be seen the contribution of 2pz orbital from N atom

dominates DOS below Fermi level and contributions from B

atom dominate unoccupied states, while C and N levels con-

tribute nearly the same in lower valence band region. With-

out the contributions from the carbon atoms there would be a

gap of about 4 eV, reflecting the characteristics of BN

FIG. 2. (Color online) Band structure of (a) graphene/BN and (b) BN/BN

bilayers at zero bias. Zero of the energy is set to the valence band maximum.

The inset in (2a) shows the bandgap near the K point of graphene/BN

bilayer.

TABLE I. Energies of bands at Dirac point of the graphene/BN and BN/BN

bilayers.

SYSTEM E (V/nm) VB (eV) CB (eV) Bandgap (eV)

Graphene/BN 0.0 2.157 2.262 0.104

Graphene/BN 1.7 2.219 2.329 0.109

Graphene/BN 2.1 2.227 2.339 0.111

Graphene/BN 2.5 2.235 2.349 0.112

Graphene/BN 3.0 2.241 2.357 0.115

Graphene/BN 3.4 2.245 2.362 0.116

Graphene/BN 4.1 2.251 2.370 0.118

BN/BN 0.0 0.580 5.174 4.594

BN/BN 0.4 0.581 5.172 4.591

BN/BN 0.8 0.585 5.169 4.584

BN/BN 1.2 0.592 5.162 4.570

BN/BN 1.6 0.602 5.159 4.557

BN/BN 2.0 0.805 5.141 4.537

BN/BN 2.5 0.624 5.125 4.501

BN/BN 2.9 0.636 5.102 4.466

BN/BN 3.3 0.648 5.074 4.427

BN/BN 4.0 0.666 5.028 4.362

FIG. 3. (Color online) (a) Total DOS and (b) PDOS of 2pz orbitals for gra-

phene/BN bilayer at an applied electric field, E¼ 0. The energies are sub-

tracted from the Fermi level E_F (�5.525 eV) and a factor of 0.015 used for

broadening the DOS.
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system. The presence of graphene layer carbon atoms intro-

duces DOS around the Fermi level, narrowing the gap from

4 eV to around 100 meV. This is not apparent from the figure

due to the use of a Gaussian smear (broadening) factor of

0.015 in order to make the plots continuous. The gap is clear

in a scattered plot18 without the broadening factor. It is also

interesting to note that in the absence of the field (Fig. 3), the

N states are localized in a narrow energy range, both below

and above Fermi levels, while the C and B states appear to

be more broadened.

Upon application of the electric field, E (Fig. 4), the N

states, both below and above the Fermi level, experience a

reduction in the density and shift to higher magnitude in the

energy, while little change is noticed in C and B states. Also,

the N states exhibit considerably broadening (Fig. 4(b)). The

overall effect on the modulation of the N levels in the conduc-

tion and the valence bands is to introduce a finite, though

small, net increase in the bandgap of the graphene/BN bilayer.

We have investigated the effect of the electric field on

the graphene/BN and BN/BN bilayer systems. The calcu-

lated results show the bandgap in graphene/BN bilayer is

dominated by graphene features and is electric field tunable.

The inverse relation of bandgap with the applied field in BN/

BN bilayer is consistent with earlier results. The calculated

electric field tenability of graphene/BN bilayer bandgap sug-

gests new applications for this system in semiconductor

devices.

Calculations were performed using the DOD Supercom-

puting Resource Centers (DSRCs) located at the U.S. Army

Engineer Research and Development Center. The work at

Michigan Technological University was performed under

support by the U.S. Army Research Laboratory through Con-

tract No. W911NF-09-2-0026-133417.
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Abstract
Segregation of impurities to grain boundaries (GBs) plays an important role in
both the stability and macroscopic behavior of polycrystalline materials. The
research objective in this work is to better characterize the energetics and length
scales involved with the process of solute and impurity segregation to GBs.
Molecular statics simulations are used to calculate the segregation energies for
carbon within multiple substitutional and interstitial GB sites over a database
of 125 symmetric tilt GBs in Fe. The simulation results show that there are two
energetically favorable GB segregation processes: (1) an octahedral C atom in
the lattice segregating to an interstitial GB site and (2) an octahedral C atom and a
vacancy in the lattice segregating to a grain boundary substitutional site. In both
cases, lower segregation energies than appear in the bulk lattice were calculated.
Moreover, based on segregation energies approaching bulk values, the length
scale of interaction is larger for interstitial C than for substitutional C in the GB
(≈5 Å compared to ≈3 Å from center of the GB). A subsequent data reduction
and statistical representation of this dataset provides critical information about
the mean segregation energy and the associated energy distributions for carbon
atoms as a function of distance from the grain boundary, which quantitatively
informs higher scale models with energetics and length scales necessary for
capturing the segregation behavior of alloying elements and impurities in Fe.
The significance of this research is the development of a methodology capable
of ascertaining segregation energies over a wide range of GB character (typical
of that observed in polycrystalline materials), which herein has been applied to
carbon segregation to substitutional and interstitial sites in a specific class of
GBs in α-Fe.

(Some figures may appear in colour only in the online journal)
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1. Introduction

The computational design of future alloys will greatly depend on our ability to understand and
quantify nanoscale phenomena in metallic material systems. For instance, impurity segregation
to grain boundaries (GBs) in alloys can have a profound effect on underlying microstructural
processes, which can subsequently be detrimental to mechanical properties in polycrystals,
e.g., hardness, toughness and fracture behavior [1–11]. On the other hand, in some cases,
atom segregation to GBs can actually be beneficial for macroscale material properties, e.g.,
by forming intermetallics, strengthening GB cohesion, or preventing grain growth [11–15].
Segregation also plays a role in GB decohesion. For instance, Yamaguchi et al. recently
showed that S segregation to Ni GBs leads to a reduction in GB tensile strength by an order of
magnitude [16]. Moreover, Solanki et al. found that certain H defects are favored at α-Fe GBs
and that these species affect the cohesive GB strength [17]. Since the presence of impurities
and atoms at GBs can have such an acute impact on many material properties, understanding
their interaction with and segregation to GBs and other lattice defects is crucial to the design
of future materials.

One potential application of work in atomic segregation is nuclear materials. Nuclear
material design is also dependent upon understanding the segregation of impurities and
defects within cladding materials. Radiation damage, through cascade events, ultimately
results in numerous vacancies and interstitial atoms within the lattice. Impurities within
the material then tend to diffuse with the vacancies or interstitial atoms as they attempt to
return to equilibrium positions in the lattice [18–20]. Such non-equilibrium radiation-induced
segregation has a profound effect on material properties due to the accelerated segregation
kinetics in comparison to the typical kinetics in thermal equilibrium [20–22]. Moreover,
since many cladding materials are polycrystalline and GBs are significant sinks for defect and
impurity segregation, understanding impurity segregation to GBs is crucial to nuclear material
design.

A number of studies have experimentally characterized the presence and effect of
impurities on GBs in various materials [4, 12, 13, 23–33]. For instance, Lejček used Auger
electron spectroscopy (AES) to show that segregants are equally distributed between fracture
surfaces in symmetric tilt grain boundaries (STGBs) and distributed unevenly for asymmetric
boundaries in Fe-Si bicrystals [28]. Furthermore, Lejček et al comprehensively classified
[1 0 0] tilt GBs in α-Fe into special, vicinal and general categories using AES measurements of
GB segregation [27]. Such studies have also proven useful in GB engineering. Recently,
Kobayashi et al used electron backscatter diffraction (EBSD) and orientation imaging
microscopy (OIM) to show that intergranular embrittlement caused by sulfur segregation
in nickel can be lessened by developing an optimal GB microstructure [29]. Moreover,
EBSD experiments of Al–Zr alloys have shown that GB sites in immobile twist GBs have
a much higher degree of segregation than at mobile tilt GBs [23]. Researchers have also
begun to use high-resolution transmission electron microscopy (TEM) and local electron atom
probes (LEAPs) [30–33] to create three-dimensional atom-by-atom representations of solute
segregation at GBs and characterize their concentrations. For example, Taheri et al utilized
a method that combined EBSD and focused ion beam milling specimen preparation with
LEAP to measure solute segregation at GBs in an Al alloy [30]. Furthermore, LEAP has
been utilized by Isheim and colleagues to illustrate the reduction in impact toughness in
low-carbon steels as a result of the combined segregation behavior of C, B, S and P [31].
While critical experiments provide valuable insight into solute segregation to GBs, techniques
that aim to probe how atomic structure impacts segregation are often difficult to perform,
expensive and very time intensive. Additionally, these sorts of experiments have yet to be used
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to study large numbers of boundaries with varying GB character, typical of real polycrystalline
materials.

Modeling and simulation of segregation to GBs at the atomic scale can also provide
valuable insight into segregation processes in polycrystalline materials [10, 16, 34–53].
Typically, modeling and simulation of GB segregation at the nanoscale use ab initio simulations
[10, 16, 34–43] or molecular dynamics (MD) [44–53]. Ab initio calculations are often used
to study the electronic effects of solute presence at GBs and their influence on cohesive
strength. For instance, Liu et al investigated the preferred site of Mg segregation at Al
GBs and determined that Mg forms weaker metallic bonds with Al atoms in the GB region
and decreases the cohesive strength of the GB [37]. Wachowicz and Kiejna [40] studied the
effect of substitutional and interstitial N, B and O impurities at an Fe GB and found that N
in both positions and interstitial B are embrittlers while O in both positions and substitutional
B enhance GB cohesion. The segregation energies and cohesive effects of twenty impurities
and alloying elements at a Zr twist GB were calculated by Christensen et al , who showed that
most elements have an adverse effect on GB cohesion, with Cs being the most embrittling [38].
These techniques, however, can be computationally expensive and have typically been used
only for a few GBs. On the other hand, MD studies often use empirical or semi-empirical
interatomic potentials fit to ab initio and experimental properties. These simulations are much
less expensive than their ab initio counterparts but are limited by the accuracy or availability
of interatomic potentials. Nonetheless, MD simulations are increasingly being used to study
GB segregation in both fcc and bcc materials. Millett et al investigated the impact of dopants
at a Cu GB and concluded that, for a particular concentration of each dopant atomic size,
the thermodynamic driving force for grain growth could be eliminated [45]. Lezzar et al
concluded that the driving force for intergranular segregation in Ag(Ni) and Ni(Ag) systems
can be primarily attributed to the atomic size effect [50]. While MD has been more commonly
used for fcc materials, such simulations have also provided insight into GB segregation in body-
centered cubic (bcc) Fe as well [51–53]. For instance, Gao et al used MD simulations to show
that, at α-Fe GBs, He binding energy increases with excess volume and binds to GBs more
strongly in interstitial positions than in substitutional ones [52]. Additionally, Malerba et al
modeled displacement cascades in an Fe–Cr system with MD to show that a large percentage of
Cr atoms are located in interstitial clusters, which may greatly reduce the mobility of interstitial
loops when compared to pure Fe [53].

While MD simulations are much less expensive than ab initio simulations, very few
simulations consider a large number of GBs in their analysis of GB-related properties. GBs
have five degrees of freedom associated with them (plus three associated with translation at
an atomistic level), and many experimental methods have begun to measure the GB character
in terms of these degrees of freedom [54–56] for GB engineering purposes. However, in
nanoscale calculations, only a few studies have explored fifty or more GBs in their analysis of
nanoscale properties. Tschopp and McDowell have shown that asymmetric tilt GB systems in
Cu and Al facet into the structural units of their corresponding symmetric tilt GB counterparts
[57–59] and that the GB structure results in very different dislocation nucleation properties
and mechanisms [60–63]. Holm et al calculated energies of 388 GBs in Al, Au, Cu and
Ni, and observed that the GB energy scales with the shear modulus and that boundaries with
significant stacking fault character correlate with the stacking fault energy [48]. The classic
work of Wolf has shown that, for several Mo and Fe GB systems, GB energy correlates
nearly linearly with volume expansion per unit area [49]. The recent work of Tschopp et al
used >150 Fe STGBs to demonstrate that, based on formation energies, self-interstitial atoms
display a larger energetic driving force for binding to GBs than vacancies do [64, 65]. Clearly,
a similar methodology using molecular statics and dynamics simulations that can analyze how
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segregation in α-Fe systems is influenced by GB character would be valuable to understanding
GB segregation and, perhaps, to engineering materials by increasing beneficial GBs while
decreasing detrimental GBs.

In this work, the research objective is to quantify the energetics and length scales associated
with C segregation to Fe GBs. The Fe–C system is chosen as an ideal system because C is known
both experimentally [66–68] and computationally [69–73] to segregate to the boundaries,
dislocations and surfaces; moreover, a number of experimental studies have shown that C
increases the GB cohesive strength in α-Fe [66–68]. The methodology used here provides a
means for simulating how GB character impacts the segregation of C to a large number of Fe
GBs. In this work, we utilize an interatomic potential [74] specifically formulated to capture
the energetics of C interactions with point defects in α-Fe, which is in good agreement with
ab initio results [75]. This paper is outlined as follows. Section 2 describes the simulation
methodology used to simulate and calculate segregation data. Section 3 discusses the results
of the simulations and their significance for modeling GB segregation. Section 4 discusses
our results, particularly addressing how the present methodology may need to be extended to
better model the interaction between GBs and interstitial atom species. Section 5 summarizes
this research and provides conclusions based on our results.

2. Simulation methodology

In this work, the segregation energy associated with a single C atom was calculated at sites
within or around α-Fe GBs. While it is well known that C occupies octahedral interstitial sites
in the perfect single crystal α-Fe lattice, here we examined a few different scenarios for C.
As a first-order approximation, we utilize sites formed on the initial GB lattice. This process
is meant to mimic the restructuring at the boundary that occurs through an interaction with a
vacancy and then a subsequent occupation of an available site in the restructured boundary (at
the exact location of the initial vacancy). The hypothesis is that at a GB that has undergone
some restructuring due to interactions with point defects, such segregation processes and
sites may be energetically favorable. This may be a reasonable assumption given that DFT
calculations have shown that another interstitial atom, N, has very similar formation energies in
both substitutional and interstitial sites within a �5(2 1 0) GB [40]. Moreover, in an ultra-low
C bake-hardening steel sheet, three-dimensional atom-probe measurements have found that C
atom concentrations at the GB can be more than 200 times that in the bulk [68]; hence the
possibility for C to segregate to both interstitial and substitutional sites is probable. In section 4,
this assumption will be further compared with interstitial sites within the GB lattice (as opposed
to sites directly on top of the GB lattice) for a few GBs, based on starting coordinates obtained
from a Voronoi tesselation of the simulation cell. The first-order process used to calculate the
segregation energies of C in α-Fe is as follows:

(i) A GB is selected from a GB database that contains 125 STGBs (50 〈1 0 0〉, 50 〈1 1 0〉,
25 〈1 1 1〉).

(ii) A GB site (within 15 Å) is chosen and a C atom is substituted for the Fe atom at this site.

(iii) A molecular dynamics code (LAMMPS [76]) is used to minimize the energy of the GB
with the substitutional C atom.

(iv) The GB, site position and calculated segregation energy of the substitutional C atom are
stored.

(v) The process is repeated for all sites within 15 Å of the GB center and for all GBs within
the GB database.
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The Hepburn and Ackland Fe–C interatomic potential [74] is used to model the Fe GBs and
their interaction with the subsitutional C atom. This potential is based on the embedded-atom
method (EAM) formalism [77, 78] and is in agreement with density functional theory with
respect to the energetics pertaining to interactions between C atoms and Fe self-interstitial
atoms, vacancies, and other C atoms. Unlike prior Fe–C potentials, the Hepburn–Ackland
Fe–C potential was the first EAM potential to correctly capture covalent bonding of two
C atoms within a vacancy. Moreover, previous EAM potentials showed strong binding of
C to overcoordinated defects, such as self-interstitial atoms, whereas the Hepburn–Ackland
potential correctly captures the strong repulsion between orvercoordinated defects and C, in
agreement with ab initio results. This repulsion can be important for interactions between
C atoms and GBs. Last, this potential has been simulated at temperature yielding dynamics
and mechanisms4 in agreement with ab initio results [75]. For instance, Terentyev et al [79]
recently used this potential to investigate the influence of C atoms on the stability and migration
of small clusters of point defects and found that C atoms have an attractive interaction with
vacancy clusters containing fewer than four vacancies. This potential provides a reasonably
accurate representation of the Fe–C system and is deemed appropriate for studies of single C
atoms within the bcc Fe lattice.

The segregation energy is calculated for C as a function of position at each site within 15 Å
of the GB. For each GB structure, an Fe atom at a particular site α is replaced with a C atom and
the simulation cell is relaxed using the Polak-Ribiére conjugate gradient energy minimization
process. The total energy of the simulation cell is calculated and the process is repeated for
each atomic site within each GB in the database. The segregation energy calculations follow
a similar approach to others, e.g., Liu et al [37]. The segregation energy associated with a C
atom at site α is calculated with

ECα

seg =
(
E

GB,Cα
sub

tot − EGB
tot

)
−

(
E

Fe,Csub
bulk − EFe

bulk

)
(1)

where E
GB,Cα

sub
tot and EGB

tot are the total energies of the GB structure with and without the solute
substitution. E

Fe,Csub
bulk and EFe

bulk are the total energies of a single crystal bulk Fe simulation cell
with and without the substituted C solute. The bulk energies used a 10a0x10a0x10a0 bcc cell
with 2000 atoms. Hence, EFe

bulk is equal to 2000EFe
c (EFe

c = 4.013 eV, i.e. cohesive energy of
Fe) and E

Fe,Csub
bulk = 2000EFe

c + 0.391 eV. These bulk energies are subtracted in equation (1)
to remove the effect of substituting the C atom. Hence, ECα

seg ≈ 0 represents that substituting
a C atom into site α in the GB simulation cell results in an equivalent energy difference as
substituting the C atom into a perfect bcc Fe lattice. As with prior work, a negative value
of ECα

seg represents that it is energetically favorable for C to bind to site α compared to the
bulk lattice. It should be noted that the segregation energy, ECα

seg, as defined is equal to (−1)

times the binding energy ECα
b . Using the same terms as in equation (1), the binding energy is

typically defined as

ECα

b =
(
EGB

tot + E
Fe,Csub
bulk

)
−

(
E

GB,Cα
sub

tot + EFe
bulk

)
= −ECα

seg. (2)

The segregation energy in equation (1) will be used for the subsequent analysis of a C atom
in substitutional GB sites. Later, in section 4, the segregation energy equation is discussed
in the context of two different scenarios: (1) a C atom in an octahedral site and a vacancy
in the bulk lattice combining into C at a GB substitutional site and (2) a C atom at an

4 The migration energy, Em = 0.887 eV, is in good agreement with the ab initio results of Domain et al [75],
Em = 0.902 eV. Additional dynamic simulations by Hepburn and Ackland [74] at 1400 K with a single C atom in an
Fe single crystal lattice show that C exclusively migrates from octahedral to octahedral sites through the tetrahedral
sites.

5



   
187

Modelling Simul. Mater. Sci. Eng. 21 (2013) 035009 N R Rhodes et al

octahedral site occupying GB interstitial sites. That is, the present definition of segregation
energy in equation (1) is modified for the Fe–C system to account for the fact that C does not
occupy substitutional sites within the bulk lattice. This energy difference is 0.930 eV; hence,
ECα

seg < −0.930 eV is necessary for Scenario 1 (octahedral C and vacancy to GB substitutional
C) to be energetically favorable. The method outlined in this section was used for each site in
all 50 �1 0 0� STGB, as well as 50 �1 1 0� and 25 �1 1 1� STGBs. For each GB, the segregation
energies were calculated as a function of atomic location.

3. Simulation results

3.1. GB structure and energy

The GB structure database used in the simulations herein contained 50 �1 0 0�, 50 �1 1 0�
and 25 �1 1 1� STGBs. Bicrystal simulation cells with three-dimensional periodic boundary
conditions were used to create the database [57–59, 80]. To remove any possible interaction
between the two boundaries, a minimum distance of 12 nm was used between them during
generation. As with past work [57–59], an atom deletion criterion along with multiple
initial configurations with various in-plane rigid body translations were utilized to accurately
obtain optimal minimum energy GB structure via the nonlinear conjugate gradient energy
minimization process.

The structures and energies of STGBs may be important to understand the interaction
between C atoms and the boundary. To examine the range of GB structures and energies that
might be seen in polycrystalline materials, different GBs from several GB tilt systems were
used in the present simulations. The database used in this work is an expanded version of
that first utilized in Tschopp et al [64]. The �1 0 0�, �1 1 0� and �1 1 1� STGB systems chosen
have several low-order coincident site lattice (CSL) GBs (e.g., �3, �5, �9, �11 and �13
boundaries), as well as both general high angle boundaries and low angle GBs (θ � 15◦).
The GB energy as a function of misorientation angle for the �1 0 0� STGB system is shown in
figure 1. This plot is similar to that found previously in Fe–Cr simulations [81] and similar to
misorientation-energy relationships found in fcc metals [80, 82–85]. The low-order CSL GBs
for the �1 0 0� STGB system (�5 and �13 boundaries) are also illustrated in this figure. For
the �1 0 0� tilt axis, only minor cusps were observed in the energy relationship, most noticeably
at the �5{3 1 0} boundary (990 mJ m−2). In addition to many general high angle boundaries,
several low angle boundaries (θ � 15◦) are also plotted. The range of GB energies sampled
was 500 mJ m−2.

The GB structure plays an important role on the GB properties [86]. For low angle
boundaries, the GB is composed of an array of discrete dislocations and the corresponding
energy can be calculated based on the classic Read–Shockley dislocation model. However, at
higher misorientation angles, the spacing between dislocations is small enough that dislocation
cores overlap and dislocations rearrange to minimize the energy of the boundary. The resulting
GB structures are often characterized by structural units [87]. GBs with certain misorientation
angles (and typically a low � value) correspond to ‘favored’ structural units, while all other
boundaries are characterized by structural units from the two neighboring favored boundaries.
An example of structural units in the �1 0 0� STGB system is shown in figure 2, where the
two �5 boundaries are favored STGBs, and the �29(7 3 0) boundary is a combination of
structural units from the two �5 boundaries. The structural units for the �5(2 1 0) and
�5(3 1 0) STGBs are labeled B and C, respectively, in a convention similar to that used for
face-centered cubic metals [80]. Also, notice that the ratio of structural units in the �29
GB can be determined by the crystallographic relationship of the two favored boundaries,
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Figure 1. �1 0 0� symmetric tilt grain boundary energy as a function of misorientation angle [65].
The low-� grain boundaries (� � 13) in each system are identified.

Figure 2. �1 0 0� symmetric tilt grain boundary structures with structural units outlined for the
�17(4 1 0), �5(2 1 0), �29(7 3 0), �5(3 1 0) and �17(5 3 0) boundaries [65]. Black and white
denote atoms on different {1 0 0} planes. The different structural units are labeled A, B, C and A’.

i.e. �29(7 3 0) = 2[�5(2 1 0)] + 1[�5(3 1 0)]. In a similar manner, the two �17 boundaries
are combinations of the favored B and C structural units and ‘structural units’ of the perfect
lattice, A and A’.

3.2. Segregation energy for �1 0 0� boundaries

The segregation energies that correspond to the atomic positions in the middle three GB
structures (figure 2) are shown in figure 3. AtomEye is used to visualize the simulation
results [88]. In this graph, the color bar is normalized by subtracting the energy of substitutional
C in the bulk so that the difference in energy between sites near the GB and in the bulk can be
easily compared (i.e. atoms colored white have bulk segregation energies). For all three GBs,
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Figure 3. Segregation energy as a function of site location for substitutional C atom in the �5(2 1 0),
�29(7 3 0), and �5(3 1 0) boundaries.

the segregation energy becomes lower as the sites are located closer to the GB, meaning that
segregation to the GB is favored for substitutional C. However, there is not a simple gradient
of the segregation energy from the GB center; the local structure also plays a pivotal role in the
segregation energy. For sites located farther from the GB, the segregation energy approaches
that of the bulk, as denoted by segregation energies close to 0 eV. Interestingly, although the
structural units are the same between these three GBs, there are some segregation energies in
the �29(7 3 0) that are lower than either of the favored �5(2 1 0) and �5(3 1 0) STGBs, e.g.,
inside the C structural unit. That is, the elastic interaction between differing structural units
may produce a different distribution of segregation energies than a boundary composed of all
the same structural unit. While these trends seem to indicate a driving force for the segregation
of C atoms from the bulk to the GB, this segregation energy needs to be further augmented
(ECα

seg + 0.930 eV) to account for the fact that C lies in octahedral interstitial sites in the bulk,
as will be further discussed in section 4.

Plotting segregation energy against distance from the GB shows information similar to
that in figure 3, but provides a convenient method to display the segregation energies of the
sites in many different GBs at once. The distribution of segregation energies as a function of
distance for the three GB structures seen in figure 3 is shown in figure 4. Near the GB, all
three GBs show a trend of negative segregation energies at sites near the boundary, which is
the same behavior reflected in figure 3. Moreover, notice the lack of any segregation energies
that are near bulk values within 5 Å of the GB center for these three boundaries. Figure 4(b)
is a plot of the same distribution for all 50 �1 0 0� STGBs, which includes both low angle
(θ � 15◦) and high angle GBs. As noted in figure 4(b), over 10 000 simulation sites (and
atomistic simulations) were considered herein. Most of the segregation energies that differ
from that of the bulk occur between the GB center and about 7 Å. While the majority of sites
within this region have segregation energies less than that of the bulk, there are also a few
GB sites that have segregation energies that are higher than in the bulk; most of these sites
tend to be located along the centerline of the boundary. There are a cluster of sites around
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Figure 4. Distribution of segregation energies as a function of distance from the grain boundary
for (a) the �5(2 1 0), �29(7 3 0), and �5(3 1 0) grain boundaries and (b) all 50 �1 0 0� STGBs.
ECα

seg < 0.0 eV indicates it is energetically favorable for substitutional C to bind to a substitutional
site at the grain boundary. However, since C occupies octahedral sites in the bulk lattice,
ECα

seg < −0.930 eV is required for an octahedral C atom and a vacancy to combine and bind
to a GB substitutional site.

7–12 Å from the GB that have segregation energies lower than the bulk as well. There is a
subtle difference between low and high angle boundaries. Within 5 Å of the GB center, low
angle GBs tend to have some segregation energies that are similar to the bulk values. This is as
expected, however. Low angle boundaries are composed of dislocations separated by regions
of perfect single crystal, which have similar segregation energies to bulk energies.

One way to represent the segregation energies–distance relationship is to bin the energies
according to their distance from the GB center and to analyze the statistics associated with
each bin (figure 5). Due to the symmetric nature of the GB segregation energies as a function
of distance (figure 4), the absolute value of the distance from the GB center was used to
provide more data points for the statistical analysis. Furthermore, the energies are split into
1 Å bins to characterize the distributions and compute statistics for sites at a given distance
from the GB. An example of the 0 Å bin (−0.5 Å to +0.5 Å) is shown in figure 5(a) along with
several statistics: number of boundaries, mean, median, standard deviation, and interquartile
range5. Once the appropriate statistics are calculated, a boxplot (figure 5(b)) is used to
represent the segregation energy statistics in each bin, i.e. the minimum, 25% percentile,
median, 75% percentile, and maximum segregation energies. In the boxplot, the red line in
the box is the median while the top and bottom edges of the blue boxes represent the 25%
and 75% quartiles. The whiskers extending from the boxes cover the remainder of the range
of energies for each bin, and the ends of the whiskers denote the maximum and minimum
values of the segregation energies for each bin. The mean value of the segregation energies
in each bin is also plotted in green. Boxplots can be very useful for displaying asymmetric
distributions.

The mean segregation energy is lowest with sites close to the GB, as shown in figure 5,
and it approaches the normalized bulk value of zero as sites are located farther from the
boundary. Interestingly, the lowest mean segregation energies actually occur a few Ångstroms

5 The interquartile range is defined as the difference between the 25% percentile and 75% percentile.
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Figure 5. (a) The distribution of segregation energies within 0.5 Å of the grain boundary center
and the associated statistics. (b) Boxplots of segregation energy as a function of distance from the
grain boundary for all 50 〈1 0 0〉 STGBs. The data are divided into 1 Å bins, and a boxplot is made
for each bin. The red lines are medians, the blue box ends are the first and third quartiles, and
the black whisker ends are minimum and maximum values. The mean segregation energy is also
plotted in green.

from the center of the boundary. Furthermore, at approximately >8 Å, the boxes are closely
centered about the bulk value, which shows that the overwhelming majority of atomic sites
display a segregation energy similar to the bulk value. However, it is noticed that there
are a number of sites with segregation energies significantly below the bulk value that still
persist up to approximately 11 Å. This trend indicates that it may be energetically favorable for
substitutional C to segregate to sites within 11 Å of the GB, albeit there is a much larger driving
force with decreasing distance from the boundary. Additionally, the majority of bins display
energy distributions that are skewed, usually in the direction of negative energy, i.e. the median
is closer to the lower edge of the box (mainly for distances less than 7 Å). While the median
fluctuates somewhat, the mean segregation energies—which track with the median—follow a
much smoother relationship with distance.

3.3. Segregation energy for 〈1 1 0〉 and 〈1 1 1〉 boundaries

The same process used for the analysis of 〈1 0 0〉 data in figures 3–5 has been repeated for the
data of 〈1 1 0〉 and 〈1 1 1〉 STGB simulations. The distribution of segregation energies as a
function of distance from the GB for all 50 〈1 1 0〉 and 25 〈1 1 1〉 STGBs is shown in figure 6.
This distribution is similar to that of the 〈1 0 0〉 STGBs shown in figure 4(b). However, the
minimum segregation energies are much lower than that of 〈1 0 0〉 STGBs and there are fewer
sites with segregation energy higher than that of the bulk.

A statistical representation of the data in figure 6 is shown in figure 7. Similar to figure 5(b),
the data have binned into 1 Å bins and the median, quartiles, minimum and maximum values of
the segregation energies contained within each bin are shown within the boxplots. The mean
segregation energy plots trend similarly to that in figure 5, though they display initially lower
values close to the GB. The minimum energy whiskers again show favorable C segregation
sites in most bins: up to 9 Å for 〈1 1 0〉 STGBs and up to 11 Å for 〈1 1 1〉 STGBs.
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Figure 6. Distribution of segregation energies as a function of distance from the grain boundary for
50 〈1 1 0〉 and 25 〈1 1 1〉 STGBs. Most grain boundary sites within 8 Å have negative segregation
energies that decrease with decreasing distance to the grain boundary center.
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Figure 7. Boxplots of segregation energy as a function of distance from the grain boundary for
(a) 〈1 1 0〉 and (b) 〈1 1 1〉 STGBs. As in figure 5, the data are divided into 1 Å bins and a boxplot
is made for each bin. The red lines are medians, the blue box ends are the first and third quartiles,
and the black whisker ends are minimum and maximum values. The mean segregation energy is
plotted in green.

3.4. Statistical characterization of segregation energies

Ideally, it would be advantageous to be able to analytically describe the evolution of the
segregation energies as a function of distance from the GB. Figure 8 provides further statistical
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Figure 8. Statistical data for binned segregation energies from figures 5 and 7: (a) mean and
standard deviation and (b) kurtosis and skewness.

data for the binned distributions of segregation energies at given distances from the GB. The
mean and standard deviation of the segregation energy distributions are plotted in figure 8(a).
For each of the GB systems, the mean values trend similarly between 5 and 15 Å, with
segregation energy decreasing with increasing distance from the GB. However, within 5 Å,
the mean segregation energy for the �1 0 0� STGB system (Eseg = −0.33 eV) is significantly
higher in magnitude than the �1 1 0� and �1 1 1� STGB systems (Eseg = −0.63 eV and
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Eseg = −0.74 eV, respectively). Also plotted in figure 8(a) is the standard deviation of the
distributions, which steadily decreases toward zero as distance from the GB increases. The
decrease is primarily due to the increasing number of sites with bulk energy values at distances
far from the boundary. For normal distributions, the mean and standard deviation would be
appropriate statistical descriptors to capture the segregation energies. However, the boxplots
in figures 5 and 7 clearly show that the distributions are asymmetric to some degree and may
have some extreme values or outliers.

To quantify the asymmetric distributions, the kurtosis and skewness of the distributions are
plotted in figure 8(b). The kurtosis is a measure of how heavily the variance of the distribution
is affected by extreme deviations, or outliers. Skewness is a measure of the asymmetry of
a distribution and denotes in what direction a distribution possesses a longer tail of values.
Figure 8(b) shows that the kurtosis is relatively low for most bins but becomes very large for
some GB systems at approximately 8–11 Å. This is due to most of the segregation energies
approaching bulk values (as viewed by the small box, or interquartile range) except for a
few negative extreme values. Interestingly, in this range, increasing kurtosis correlates with
decreasing skewness, which is negative for all but a few bins over all three GB systems. The
skewness indicates that the majority of segregation energy distributions possess longer tails
of negative energies; the kurtosis indicates when these tails are typically the result of extreme
deviations. Since the magnitudes of these measures become very large at distances far from
the GB, a great majority of these sites have the bulk value of segregation energy. These four
statistical parameters (mean, standard deviation, skewness and kurtosis) can be used to better
approximate asymmetric segregation energy distributions, e.g., using the Pearson system of
distributions.

4. Discussion

Carbon was inserted into prior Fe sites at the GB to examine the influence of a wide range
of GB structures on the distribution and magnitude of the segregation energies within the
GB region. However, in the perfect single crystal α-Fe lattice, it is known that C occupies
octahedral sites. Hence, to accommodate the difference in energy between an octahedral C
atom (and vacancy) in the bulk lattice and this same C atom occupying a substitutional site at
the GB, the segregation energy associated for substitutional site α can be modified, i.e.

ECα

seg∗ = (E
GB,Cα

sub
tot − EGB

tot ) − (E
Fe,Coct
bulk − EFe

bulk) + (E
Fe,vac
bulk − EFe

bulk), (3)

where the Fe cohesive energy EFe
c is added to the lefthand term in parentheses to account for

using the bulk energy from C in an octahedral site E
Fe,Coct
bulk in the right-hand term. Since the

difference between equations (2) and (3) is constant, this can be calculated. In equation (2),
(E

Fe,Csub
bulk − EFe

bulk) = 0.391 eV. In equation (3), (E
Fe,Coct
bulk − EFe

bulk) = −6.273 eV (solvation
energy) and (E

Fe,vac
bulk − EFe

bulk) = 5.734 eV. The difference between equations (2) and (3) is
0.930 eV. In other words, this energy (0.930 eV) must be added to the preceding analysis to
compare the energetic favorability of C in a substitutional site with that of an octahedral site
in the bulk lattice. Interestingly, there are a significant number of GB substitutional sites
that represent a lower energy configuration for a vacancy and interstitial C in the bulk lattice
(Eseg < 0.930 eV). Specifically, the interaction length scale where this process is energetically
favorable is approximately 3 Å from the GB center (total width of ≈6 Å) with the largest
percentage of favorable sites occurring at the GB center: 7.2% (within 0.5 Å), 5.1% (0.5–
1.5 Å), 1.1% (1.5–2.5 Å), 0.0% (2.5–3.5 Å). Additionally, the statistical representation of the
segregation energy distributions can be used to rapidly quantify the probability of lower energy
sites within the GB region as a function of distance from the GB plane.
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4.1. Substitutional versus interstitial carbon in grain boundary region

Interstitial sites at the GB can be assessed using a similar methodology. There are an infinite
number of potential interstitial starting positions that could be chosen since there is not a
set lattice for GB interstitial sites as with substitutional sites. The methodology chosen for
selecting interstitial sites was based on the Voronoi tesselation method. The atom positions
within each GB simulation cell was used in tandem with a Voronoi tesselation of the cell
to generate a list of potential starting positions for interstitial sites. In a three-dimensional
space, a Voronoi tesselation divides the space into a set of space-filling polyhedra that have the
following properties: (1) any point located within a polyhedron is closest to only one atom,
(2) any point on a polyhedron face is equal distance to two atoms, (3) any point on a line
connecting two polyhedron faces is equal distance to three atoms and (4) any point located on
a polyhedron vertice is equal distance to four atoms. We have chosen to use the vertices of the
Voronoi tesselation to populate the set of potential interstitial sites. In the perfect bcc lattice,
the polyhedron is a truncated octahedron with 14 faces (8 regular hexagonal and 6 square),
36 edges, and 24 vertices; the Voronoi vertices are located at interstitial tetrahedral sites (i.e.
equal distance to four Fe atoms). At the GB, however, the polyhedron takes on different
shapes and the Voronoi vertices constitute sites that are equal distance to four atoms, which
could potentially be located at the center of GB free volume regions. While a perturbation
of this technique could be used to identify interstitial octahedral sites in the bulk lattice6, the
present technique is deemed sufficient for identifying potential interstitial sites in the GB.

The following Voronoi-based methodology was applied to 50 �1 0 0� STGBs (>60 000
sites). First, the distance that each C was displaced during minimization was calculated to
examine how far each interstitial C moved from its initial site placement. This analysis showed
that most C atoms (94.5%) were displaced <0.2 Å during the energy minimization technique,
indicating that C initially placed in the tetrahedral sites tends to find a local minimum in energy
and does not move to a neighboring octahedral site. Even within the GB region, where most
(>99.7%) C atoms displaced greater than 0.2 Å lie, the maximum distance that the C atom
was displaced from the initial site was only 0.59 Å (<0.25a0—the minimum distance from a
tetrahedral to an octahedral site). Hence, the initial positions for the C interstitials identifies
local minimum energy configurations centered around the tetrahedral interstitial sites in the
bulk lattice, and the greatest displacements occur within the GB region, as would be expected.
Again, other perturbations of locations based on a Voronoi tesselation of the simulation cell
may result in finding interstitial sites with even lower segregation energies at the boundaries,
but it is anticipated that the present analysis will capture the relative influence of interstitial
sites segregating to the boundary.

The results of inserting C atoms at interstitial sites was then analyzed in a similar manner
to C placed at the substitutional sites. In this analysis, equation (1) is modified such that the
segregation energy associated with a C atom at site α, E

Cα
int

seg is calculated by

E
Cα

int
seg =

(
E

GB,Cα
int

tot − EGB
tot

)
−

(
E

Fe,Coct
bulk − EFe

bulk

)
, (4)

where E
GB,Cα

int
tot is the total energy of the GB structure with an interstitial C atom. Figure 9(a)–(d)

corresponds to figures 4 and 5, except that the calculated segregation energies are for interstitial
C using equation (4). There are several minimum energy states for interstitial C far away from

6 For instance, some perturbations of the present technique might be to use the midpoints of the polyhedra lines
connecting the faces or use the centers of polyhedra faces. In particular, the center of the {1 0 0} faces formed by the
four tetrahedral sites would be in exactly the minimum energy octahedral site (0,0.5a0,0.5a0). However, this technique
would also include the center of the {1 1 1} faces (0.25a0,0.25a0,0.25a0), which turns out to be a high energy interstitial
position for this potential.
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(a) (b)

(c) (d)

Å

Figure 9. Distribution of segregation energies for interstitial sites as a function of distance from
the grain boundary for (a) the �5(2 1 0), �29(7 3 0) and �5(3 1 0) grain boundaries and (b) all 50
�1 0 0� STGBs, as in figure 4. (c) The distribution of segregation energies within 0.5 Å of the grain
boundary center and the associated statistics. (d) Boxplots of segregation energy as a function of
distance from the grain boundary for all 50 �1 0 0� STGBs, divided into 1 Å bins and colored as in
figure 5.

the GB (figure 9(a)). The energy of ≈0.887 eV corresponds to the tetrahedral site. However,
the present Fe–C potential also has minimum energy interstitial sites at other locations, and
the Voronoi vertex technique did not locate the octahedral site for the C atom upon energy
minimization (i.e. E

Cα
int

seg = 0 is noticeably absent at large distances). Additional simulations
varying the location of interstitial positions in a 10a0x10a0x10a0 bcc cell with 2000 atoms show
that one of the high energy sites is directly between two Fe atoms along the �1 1 1� direction
(0.25a0,0.25a0,0.25a0). In figure 9(a), the distribution of segregation energies as a function
of distance is shown for the same three GB structures as in figure 4(a). The GB region again
shows both energetically favorable and unfavorable sites, with several energetically favorable
interstitial sites having E

Cα
int

seg of up to −0.5 eV (i.e. a binding energy of approximately 0.5 eV).
This same trend is also evident for all 50 �1 0 0� STGBs (figure 9(b)). In fact, based on this
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plot, the interaction length scale (E
Cα

int
seg < 0) of this GB system is on the order of 10 Å or

less. Binning the data from this plot, the distribution of segregation energies within 0.5 Å
from the GB center (figure 9(c)) show an asymmetric multimodal character with a few peaks
centered about the several minimum energy interstitial states observed at large distances from
the GBs. Approximately 6.9% of interstitial sites sampled showed a lower energy than C at an
octahedral site in the bulk lattice. The boxplots of interstitial C shows a decrease in the mean
segregation energy, the interquartile range, and the minimum segregation energy starting at
≈5 Å from the GB center (figure 9(d)). Interestingly, there is a larger percentage (11.8%) of
energetically-favorable sites in the second bin (0.5–1.5 Å from GB center) than in the first bin
(within 0.5 Å) and this percentage decreases with increasing distance from the boundary: 6.9%
(0.5 Å), 11.8% (0.5–1.5 Å), 6.2% (1.5–2.5 Å), 3.0% (2.5–3.5 Å), 0.3% (3.5–4.5 Å) and 0.2%
(4.5–5.5 Å). There is a high degree of anisotropy in the segregation energies in each bin due
to the GB character. Moreover, in contrast to the energetic length scales for point defects in
α-Fe using the same interatomic potential, the calculated length scales of interaction between
C and the GB are much lower.

4.2. Methodology application and extensions

There are a number of studies that examine the influence of various alloying elements and
impurities with grain boundaries. For the case of steels, while the interaction between GB
structures and C represents one example of segregation that has been experimentally observed
[66–68], many studies also focus on which elements segregate to the GB and how these elements
may interact with other alloying elements. For instance, elements that can impact the properties
of steels include, for example, phosphorus, sulfur, hydrogen, nitrogen, manganese, silicon,
molybdenum, nickel, chromium, antimony and tin (e.g., [89, 90–93]. Also, experiments have
shown that there may be competitive processes between elements (e.g., C and phosphorus [66])
at the GB that will also depend on processing conditions, such as equilibration temperature
and quench rate. Of course, this is just one example of the complexity of segregation in steels
due to the numerous interactions of different elements with GBs and the kinetics of those
processes. The present work may be modified to examine how binding behavior between two
different atom species (e.g., C-P, C-vacancy) or different atom configurations (e.g., H versus
H2 [17]) are affected by proximity to and within GBs. Understanding these interactions may
aid in understanding the complexity of segregation and its subsequent impact on properties in
α-Fe and alloy steels.

This methodology makes possible the statistical representation of impurity segregation
to GBs while accounting for differences between GB structures. Thus, the results from this
method could be used as inputs in other simulations, such as the kinetic Monte Carlo technique,
mesoscale models, or analytical models. In this sense, the information being passed is not
just scalar values but is distributions of values, which can be used to analyze sensitivity and
incorporate variability due to GB structure within multiscale models. Clearly, the present
application of calculating these distributions for segregation of C to GBs represents one such
example of this concept. Moreover, such studies could be expanded upon to include the the
effects of temperature with different solutes and solute concentrations. For example, Rittner
and Seidman [94] conducted such a study for 21 �1 1 0� GBs to calculate segregation free
energies, entropies and internal energies for a Ni–Pd system. Their work found a linear
relation of segregation internal energies and entropies, which suggests the possibility for
estimating segregation free energies from internal energies, an easier quantity to calculate.
Simulations at temperature may lead to an even better prediction of segregation behavior to
GBs in polycrystalline materials.
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5. Conclusion

In this work, we have used molecular statics simulations to investigate the segregation energy
of a single C atom to thousands of substitutional and interstitial atomic sites in 50 �1 0 0�, 50
�1 1 0� and 25 �1 1 1� STGBs. A large number of boundaries, including general low and high
angle GBs, were used in order to account for the variability in GB degrees of freedom observed
in experimental polycrystalline materials. We can draw the following conclusions based upon
our results:

(i) A methodology for calculating and analyzing the segregation energies of thousands of sites
within a large number of grain boundaries with molecular statics simulations has been
developed. This method samples different boundaries from a grain boundary database
and calculates the segregation energy for every grain boundary site to acquire segregation
statistics. As a first example, C segregation to α-Fe boundaries was examined. Both
substitutional sites were sampled as well as potential interstitial sites, using the polyhedra
vertices calculated using a Voronoi tesselation of the three-dimensional α-Fe coordinates.
Such a methodology is warranted given that we found a large degree of anisotropy in sites
and segregation energies due to varying GB structure.

(ii) The local structure within the grain boundary affects the segregation energy. As an
example, the �1 0 0� symmetric tilt system is shown where the two �5 grain boundaries are
both cusps in the energy relationship (figure 1) and contain the favored structural units of
this system (figure 2). However, boundaries of intermediate misorientations (e.g., the �29
boundary)—which contain combinations of the same structural units—do not necessarily
have the same segregation energy distributions as the �5 boundaries (much lower, see
figure 3).

(iii) For the substitutional C atom case, we found that it is energetically favorable for interstitial
octahedral C and a vacancy in the lattice to combine within the grain boundary at a
substitutional site. While this process is highly unfavorable in the lattice, there is a region
that extends ≈3 Å from the grain boundary center where there are favorable substitutional
sites for the grain boundaries sampled. The largest percentage of favorable sites are
directly at the grain boundary center.

(iv) For the interstitial C case, we found that it is energetically favorable for a C atom at an
octahedral site in the lattice to segregate to the grain boundary with a maximum binding
energy of ≈0.5 eV. The interaction length scale of the grain boundary with octahedral
C is ≈5 Å from the grain boundary center with the largest percentage of favorable sites
located within the bin just outside of the grain boundary center (0.5–1.5 Å from the grain
boundary center).

(v) To quantify the segregation energy distributions as a function of distance from the grain
boundary, the energies were separated into 1 Å bins and characterized using several
statistical descriptors: quartile values, median, mean and extreme values (see figures 5 and
7). The grain boundary atomic sites have asymmetric distributions of segregation energy
with some extreme values that extend over 10 Å from the grain boundary. Furthermore,
close to the grain boundary, the majority of these distributions are negatively skewed,
indicating longer tails of negative segregation energies. An analytical model informed by
these calculations whereby the segregation energy distribution as a function of distance is
captured using four statistical parameters (mean, standard deviation, kurtosis, skewness—
see figure 8) is hypothesized for upscaling to higher scale models, i.e. parameters necessary
for a Pearson system of distributions.
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The significance of this research is not just the calculations of the energetics of C
segregation in a specific class of grain boundaries in α-Fe, but also the development of a
methodology capable of ascertaining segregation energies over a wide range of grain boundary
character typical of that observed in polycrystalline materials.
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Abstract

Deformation twinning at the tip of a straight crack or notch is analyzed using a phase-field method that seeks equilibrium twin mor-
phologies via direct minimization of a free energy functional. For isotropic solids, the tendency to twin under mode I or mode II loading
is found to depend weakly on Poisson’s ratio and elastic nonlinearity and strongly on surface energy and twinning shear (i.e. eigenstrain).
Depending on the coherent twin boundary energy, anisotropy of surface energy is important for mode I loading but less so for mode II.
Model predictions for several single crystals are in agreement with experimental observations. Calcite demonstrates a preference for
mode I cleavage crack extension over crack tip twinning. Magnesium shows a likelihood for tensile twinning from a pre-existing crack
on the basal plane. In sapphire, a preference for rhombohedral twins over basal twins is apparent, with the latter thinner in shape than
the former.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Keywords: Phase field; Twinning; Fracture; Crystals; Modeling and simulation

1. Introduction

Deformation twinning, i.e. twinning induced by
mechanical stress, and cleavage fracture, i.e. transgranular
fracture on preferred crystallographic planes, are two fun-
damental inelastic deformation mechanisms that may
occur in crystals. In some cases, twins or twin boundaries
may act as nucleation sites for fracture [1]; in others, crack
tips may provide the necessary stress concentrations for
twin nucleation and growth [2].

In dynamic experiments such as plate impact, both twin-
ning and cleavage fracture may occur, but whether twin-
ning precedes or follows fracture cannot usually be
determined from analysis of experimental (e.g. Hugoniot)
data and post-mortem material characterization. This is
the case for impact experiments on sapphire [3], wherein
theoretical strengths for twinning, slip and shear fracture

are thought to be of the same order of magnitude [4].
Indentation experiments on ceramics and minerals often
show evidence of both fracture and twinning, with surface
damage strongly promoting the nucleation and growth of
twins in calcite, for example [5,6].

The present work seeks (i) to develop an improved
understanding of the general factors affecting twinning
induced by fracture; and (ii) to test a predictive model for
twinning at a crack/notch tip in several real materials.
Phase-field theory and numerical simulation are applied
to study twin nucleation and growth from a pre-existing
crack or notch. A prior analysis [2] based on the Peierls–
Nabarro concept and ideas from Ref. [7] was developed
to judge the tendency of a solid to undergo either microt-
winning or slip of leading and trailing partial dislocations
on the same plane. This treatment demonstrated success
for several face-centered cubic metals when compared to
results of atomic simulations, but the model requires
knowledge of parameters associated with the stacking fault
energy surface that seem only to be obtainable from atomic
simulation of planar defects. An analytical model
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predicting the likelihood of twinning or extension of a
mode I slit crack is described in Ref. [8]; this model requires
knowledge of energetic data associated with total resistance
to twinning or fracture that are evidently not available
from standard experiments, though twin boundary and
cleavage surface energies can be substituted as an approx-
imation. As will be shown later, the current work offers
more insight into the total twinning resistance that could
be used in such a model.

In the present phase-field approach [9,10], the only con-
stitutive model parameters are the twinning shear (usually
known from crystallography), elastic constants (known
from experiments), gradient energy coefficient(s), and dou-
ble-well energy barrier height. The latter two can be related
to the twin boundary surface energy (measurable from
experiment or atomic simulation) and the thickness of the
diffuse interface, which can be assigned physical signifi-
cance if the normal distance from the phase/twin boundary
over which atoms are displaced from their usual positions
in a perfect crystal is known, e.g. from atomic simulation.
For prescribed boundary conditions and problem geome-
try, the tendency for a pre-cracked crystal to continue to
crack or to twin then necessarily depends on these param-
eters and the surface energy associated with cleavage frac-
ture. The model does not depend on the numerical method
of solution or grid size (i.e. the theory itself is mesh inde-
pendent), but any discretization should be sufficiently
refined to resolve continuum fields where gradients exist,
e.g. in interfacial regions.

The present work does not address plastic slip distinct
from the motion of twinning partials inherent in deforma-
tion twinning. Nanoscale treatments of discrete slip criteria
include Refs. [2,7]; mesoscale continuum crystal plasticity
models of slip and twinning are described in Ref. [11]
and references therein.

Several other relevant modeling approaches are noted.
Phase transformation has been studied at tips of moving
cracks via analytical solutions to phase-field models
[12,13]. Like twinning, phase transformations may be
induced by strong local elastic fields at crack tips; transfor-
mation strain in the former often includes dilatation, while
deformation twinning involves large shear without inelastic
volume change. Competition among phase transformation,
fracture and plastic deformation was studied using a con-
tinuum thermodynamic approach implemented in the
finite-element method [14]; twinning was also modeled.
Phase-field models of fracture have also been implemented
[15–19]. The present paper does not develop a phase-field
model for fracture—herein a stationary pre-crack is repre-
sented explicitly by a thin notch with free surface boundary
conditions—but conceivably both twinning and fracture
could be modeled simultaneously using the phase-field
approach, with distinct order parameters accounting for
transformation to twinned and/or fractured material.

This paper is organized as follows. The phase-field the-
ory developed and implemented in Refs. [9,10] is reviewed
in Section 2, including various elasticity models (linear

isotropic, linear anisotropic, nonlinear neo-Hookean) con-
sidered later. Analysis of possible twinning or crack exten-
sion under pure mode I or mode II loading in generic
isotropic elastic solids follows in Section 3. In this analysis,
a normalized energy functional is derived that depends on
several dimensionless material parameters. The effects of
these parameters—twinning shear, Poisson’s ratio and
normalized twin boundary energy—on twinnability are
investigated through phase-field simulations. In Section 4,
two-dimensional (2-D) simulations of twinning from a
mode I crack are reported for calcite (CaCO3), sapphire
(a-Al2O3) and magnesium (Mg) and compared with exper-
imental observations. In Section 5, three-dimensional (3-D)
simulations of basal and rhombohedral twinning in a sap-
phire single crystal with a pre-existing halfpenny-shaped
notch are analyzed. Conclusions follow in Section 6.
Regarding notation, vectors and second-order tensors are
written in bold italic; scalars and components are written
in plain italic, with summation applied over repeated indi-
cial subscripts.

2. Theory

Only essential details of the phase-field theory are
reported here; complete descriptions are given elsewhere
[9,10]. Let x and X denote sufficiently smooth spatial and
material coordinates of a body of reference volume X,
related by the differentiable mapping x = v(X, t) that is
one-to-one and invertible at any fixed t. Let g(X, t) denote
the order parameter that distinguishes between the original
(parent) crystal, the twin, and the interfacial boundary
regions between parent and twin:

g ¼ 08X 2 parent; g ¼ 18X 2 twin;

0 < g < 18X 2 boundary: ð2:1Þ

The deformation gradient is

F ¼ rv ¼ FEFg; ð2:2Þ
where $ denotes the material gradient, FE accounts for
elastic stretch and rotation, and

Fg ¼ 1þ ½uðgÞc0�s�m ð2:3Þ
accounts for twinning shear. Orthogonal unit vectors (in
material coordinates) in the twinning direction and normal
to twinning plane are s and m, the magnitude of maximum
twinning shear is c0, and u(g) is an interpolator
satisfying uð0Þ ¼ 0; uð1Þ ¼ 1; u0ð0Þ ¼ u0ð1Þ ¼ 0, where
ð�Þ0 ¼ dð�Þ=dg. Defining CE = (FE)TFE, the local ratio of de-
formed to initial volume is J = detF = (detCE)1/2.

The total energy functional for the body is

Wðv; gÞ ¼
Z
X
½W ðF; gÞ þ f ðg;rgÞ�dX: ð2:4Þ

The strain energy W and interfacial energy f per unit refer-
ence volume are of the form
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W ¼ W ½CEðF; gÞ; g�; f ¼ f0ðgÞ þ j

: ðrg�rgÞ: ð2:5Þ

Let oX denote the boundary of X. Imposing the variational
principle

dW ¼
I
@X
ðt � dvþ hdgÞdS; ð2:6Þ

the following local equilibrium equations and boundary
conditions are derived [9]:

r � @W =@F ¼ r � P ¼ 0;

f 0
0 � 2r � ðjrgÞ þ @W =@g ¼ 0; ð2:7Þ
t ¼ P � n; h ¼ 2j : ðrg� nÞ: ð2:8Þ

Traction per unit reference area is t; conjugate force to the
order parameter is h; outward normal to oX is n. Phase
equilibrium in (2.7) can be written for homogeneous j as

f 0
0 ¼ 2j : rrgþ sc0u

0;

s ¼ S : ½CEðs�mÞFg �1�; S ¼ 2@W =@CE: ð2:9Þ

In the present work, attention is restricted to a double-
well potential f0 = Ag2(1 � g)2, with A a constant related
to the barrier height. When isotropic surface energy is
imposed, for which j = j1, with j a constant, then

f ¼ Ag2ð1� gÞ2 þ jjrgj2; j ¼ 3Cl=4;

A ¼ 12C=l; ð2:10Þ

where C and l are equilibrium energy per unit area and
thickness of an unstressed interface [9]. Anisotropic repre-
sentations of surface energy are also considered. For exam-
ple, in a material coordinate frame {eI} with e1ks and e2km,
then j11 > j22 accounts for the increase in energy at an
incoherent twin boundary [20] due to the local (e.g. core)
energy of twinning dislocations [21], and j12 = j21 = 0 in
this coordinate system.

Several different elastic models are considered [10]. For
compressible neo-Hookean behavior

W ¼ 1

2
k½ðln JÞ2 þ trCE � 3� � l ln J ; ð2:11Þ

where k and l are usual isotropic elastic constants. The
First Piola–Kirchhoff stress is

P ¼ @W =@F ¼ FESFg�T

¼ FE½l1þ ðk ln J � lÞCE�1�Fg�T: ð2:12Þ

For linear elastic behavior,

W ¼ W ½�Eðru; gÞ; g� ¼ 1

2
CIJKLðgÞ�EIJ �EKL; ð2:13Þ

where the following geometric relationships apply:

F ¼ 1þru’ 1þbE þbg; ð2:14Þ

FE ’ 1þbE; �E ¼ 1

2
½bEþðbEÞT�; CE ’ 1þ2�E; Fg ¼ 1þbg; ð2:15Þ

P¼ @W =@ru; s¼P : ðs�mÞ: ð2:16Þ

For anisotropic elasticity, second-order coefficents CIJKL

are interpolated between parent and twinned domains
using u [9,10]. For isotropic elasticity, CIJKL = kdIJdKL +
l(dIKdJL + dILdJK), and W and CIJKL do not depend
explicitly on g. The elastic driving force for twinning,
s, is the resolved shear stress on the twinning plane in the
direction of twinning shear.

Two different interpolation functions are also
considered:

u ¼ ð3� 2gÞg2 ðpolynomialÞ; ð2:17Þ
u ¼ 1=½1þ e�2kðg�0:5Þ� ðexponentialÞ: ð2:18Þ

Polynomial function (2.17) has been used frequently
[9,10,22] and yields a gradual change in u over 0 < g < 1;
the Fermi–Dirac function (2.18), here with k = 15, provides
a steeper increase in u at g � 0.5, as is clear from Fig. 1.

Solutions to governing equations are obtained numeri-
cally using the finite-element method. The solution proce-
dure [9] involves minimization of free energy functional
W, subject to possible boundary conditions/constraints,
over domain X, yielding the equilibrium fields (v, g). Kinet-
ics and dissipation are not quantified explicitly.

3. Twinning under mode I and II loading in isotropic solids

3.1. Dimensionless parameters

Consider the phase-field theory of Section 2 applied to
an isotropic solid. Dividing by the shear modulus, a nor-
malized free energy functional becomes

�W¼W=l¼
Z
X
ðW þ �f ÞdX; ð3:1Þ

W ¼ m
1�2m

ðtrruÞ2þðru� c0us�mÞs : ðru� c0us�mÞs; ð3:2Þ
�f ¼Ag2ð1�gÞ2þ �jl2jrgj2; ð3:3Þ
m¼ k=ð2kþ2lÞ; A¼A=l¼ 12C=ðllÞ; �j¼j=ðll2Þ¼ 3C=ð4llÞ: ð3:4Þ

Notation (�)s denotes the symmetric part of a second-order
tensor. Since l > 0, a solution (u, g) for a given set of
boundary conditions on oX that minimizes W also mini-
mizes �W; this could be a local (metastable) or global (sta-
ble) minimum energy configuration.

Fig. 1. Phase-field interfacial interopolation functions (2.17) and (2.18).
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Let C0 denote a constant reference value of twin bound-
ary surface energy per unit area, and let A0 and �j0 denote
the corresponding values of parameters in (3.4) for fixed
l = l0 and fixed l. Then

C=C0 ¼ A=A0 ¼ �j=�j0: ð3:5Þ
In all subsequent analysis l is held fixed. In what follows,
representative values of C0 = 100 mJ m�2 and
l0 = 25 GPa, with l = 1.0 nm [9,10,22], are used to establish
A0 and �j0. During simulations, the effect of surface energy is
then studied by varying C/C0. In most simulations, isotropic
surface energy is assumed, but in some (2-D) simulations,
j11 = aj22 = aj is prescribed, where a > 1 accounts for
incoherent boundary energy as noted in Section 2. (For a
twin system oriented differently from ske1 and mke2, j is ro-
tated as a second-order tensor.) Accordingly, for a given set
of boundary conditions and prescribed initial crystal orien-
tation (s, m), solutions thus obtained depend on the param-
eter set (c0, m, C/C0, a) and choice of interpolation function
u. The same arguments apply for the isotropic neo-Hook-
ean elastic model of Section 2.

Plane-strain simulations of an initially square domain X
of size 2a � 2a are reported in Section 4. The domain con-
tains a pre-existing straight edge crack of length a and
thickness 2r0, with a rounded tip of radius r0. The crack
is assigned a finite radius for two reasons: (i) a perfect slit
crack would result in truly singular stress fields at the tip
that cannot be fully resolved with conventional finite ele-
ments; and (ii) in a real material a finite r0 on the order
of or exceeding a lattice parameter is expected since the
separation distance across opposite faces of the crack
should exceed a cut-off distance for interatomic cohesive
forces that would otherwise result in traction across oppos-
ing faces of the crack.

Let the origin of reference coordinate systems ((r, h) in
polar form or (X, Y) in rectangular form) be located at
the crack tip. Boundary conditions are imposed as follows.
The crack surface N (h = ±p rad, 0 < r < a) is free of trac-
tion (t = 0). Neumann conditions h = 0 for conjugate force
to the order parameter are assigned along all of oX. Along
external boundary oXnN corresponding to X, Y = ±a, dis-
placements ûðr; hÞ corresponding to the K field for pure
mode I or mode II loading [23] are imposed. For mode I:

ûX ¼ 2D½ar=ð2pÞ�1=2 cosðh=2Þ½1� 2mþ sin2ðh=2Þ�; ð3:6Þ
ûY ¼ 2D½ar=ð2pÞ�1=2 sinðh=2Þ½2� 2m� cos2ðh=2Þ�; ð3:7Þ
D ¼ KI=ð2la1=2Þ: ð3:8Þ

For mode II:

ûX ¼ 2D½ar=ð2pÞ�1=2 sinðh=2Þ½2� 2mþ cos2ðh=2Þ�; ð3:9Þ
ûY ¼ �2D½ar=ð2pÞ�1=2 cosðh=2Þ½1� 2m� sin2ðh=2Þ�; ð3:10Þ
D ¼ KII=ð2la1=2Þ: ð3:11Þ

For both modes, the orientation of the twin system (s, m) is
such that the resolved shear stress s of (2.16) is maximum

according to the linear elastic solution [23]. For mode II,
s is simply oriented in the sense of positive r along h = 0.
For mode I, s is oriented in the sense of positive r along
h = 1.22 rad.

During phase-field simulations, D is increased incremen-
tally. For each increment, the domain is seeded with a small
twin nucleus at r 6 r0. Displacement boundary conditions
are updated according to the mode of loading via (3.6),
(3.7), (3.8) or (3.9), (3.10), (3.11), and then the equilibrium
solution (u, g) inX is obtained through energy minimization
using the finite-element method. If the driving force for
twinning is insufficient, then the initial nucleus will disap-
pear, and the equilibrium solution includes g = 0"X 2 X.
Otherwise, at a threshold load parameter D = DT, a stable
twin will appear at the crack tip (r = 0). With further
increasing D > DT, the twin will grow in length and/or thick-
ness until it interacts with the external boundary oXnN.

According to linear elastic fracture mechanics, crack
extension (i.e. cleavage) will occur if the applied stress
intensity factor or corresponding strain energy release rate
exceeds a threshold for a particular material and loading
mode:

KI=II P KC () GI=II P GC ) fracture; ð3:12Þ

where the fracture surface energies are

GI=II ¼ K2
I=IIð1� mÞ=ð2lÞ;

GC ¼ K2
Cð1� mÞ=ð2lÞ; ð3:13Þ

and here no distinction has been made in notation among
threshold fracture energies GC for different modes. For
comparison, dimensionless twinning and fracture parame-
ters associated with the normalized strain energy required
for either mechanism can be constructed:

CT ¼ CT=ðllÞ ¼ að1� mÞD2
T=l; GC ¼ GC=ðllÞ: ð3:14Þ

The following criteria then emerge that predict either crack
extension or twin emission from the crack tip:

2CT=GC ¼ 2CT=GC � 1 ) fracture;

2CT=GC ¼ 2CT=GC � 1 ) twinning: ð3:15Þ

Dimensionless CT can be interpreted as an inverse measure
of the “twinnability” of a given material subjected to mode
I or mode II loading, with smaller values of CT denoting an
increased tendency for crack tip twinning. The factor of
two arises because, in the usual convention of fracture
mechanics, the strain energy release rate GC is twice the
fracture surface energy CC. (In this paper, notation “C”
is associated generically with surface energy, “G” with
strain energy release.) When 2CT � GC, strain energy re-
leased by twinning and crack extension are comparable,
and either mechanism could be expected to occur. Note
that because D / a�1/2, imposed displacements û and twin-
ning resistance CT do not depend on a, which serves merely
as a normalization constant to render these quantities
dimensionless.
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In phase-field simulations, meshes are used with signifi-
cant refinement (element size �l) near the crack tip and
along the anticipated path of twin extension, such that
solutions are independent of mesh resolution. Twin nucle-
ation depends strongly on local fields near r = 0 but not
strongly on a; further increasing the domain size above
a/l = 50 did not significantly affect initial stages of twin-
ning, but as the twin grows and approaches the boundary,
the choice of a necessarily affects the solution. Solutions
can be modestly dependent on notch radius for small r0,
so two choices of r0 are explored. Tables 1 and 2 list param-
eters investigated in simulations reported subsequently in
Section 4. The typical (i.e. usual) parameter set referred
to as “linear elastic” in subsequent figures is given in
Table 1. Normalized twin boundary energy is
C0 ¼ C=ðllÞ. Deviations from these parameters referred
to in some later figures are explained in Table 2. In partic-
ular, the value of a = 100 follows from Refs. [20,21].

3.2. Numerical results

Figs. 2 and 3 show characteristic results for mode I and
mode II loading, respectively. The undeformed finite-ele-
ment (FE) mesh is shown in part (a) of each figure. Twin
morphology and a stress component—tensile stress for
mode I, shear stress for mode II—are shown in parts (b)
and (c), corresponding to a load increment exceeding
nucleation, i.e. D > DT. In each case, the twin (i.e. stress-
free shear eigenstrain c0/2) relieves much of the stress that
would otherwise be large as r ! 0 in an elastic medium
without a twin. Twin growth to the boundary oX is inhib-
ited by the displacement boundary conditions.

Twin morphologies for various simulations of mode I
deformation are compared at the same load increment
D = 0.04 > DT, i.e. at the same imposed KI, in Fig. 4.
Because differences in twin size and shape are small, it is
concluded that model predictions of fully formed twin
morphology are not sensitive to choice of linear or nonlin-
ear (i.e. neo-Hookean) elastic model, choice of interpola-
tion function (2.17) or (2.18), twin boundary surface
energy anisotropy a, or pre-existing thickness of the crack
or notch. However, as discussed later, twin nucleation is
affected by these choices in some cases.

Fig. 5 shows the effects of dimensionless material prop-
erties on twinning resistance 2CT of (3.14) under mode I
loading. Recall from (3.15) that this resistance can be com-
pared with GC to predict whether twinning or cleavage
crack extension would be energetically favorable, with
smaller CT suggesting a greater tendency for twinning at
the crack tip. Each data point on each piecewise linear
curve in Fig. 5 represents the result of a different phase-field

simulation in which D (i.e. KI) is increased in increments
of 10�3 from D = 0 to the condition for which a twin or
twin nucleus is first observed at D = DT.

Effects of twinning shear c0 on crack tip twinnability are
shown in Fig. 5a, where discrete values of c0 = (0.1, 0.3,
0.5, 0.7, 1.0) have been prescribed in simulations incorpo-
rating linear elastic or neo-Hookean strain energy density
W. Twinning shear significantly affects nucleation. A min-
imum of twinning resistance CT is predicted at c0 = 0.3 for
each model. For c0 < 0.3, resistance increases since the
eigenstrain does not reduce elastic energy so much. Nucle-
ation resistance also increases for c0 > 0.3, presumably
because the applied KI field must be sufficiently strong such
that a large eigenstrain relieves the elastic stress field
induced by the crack.

The effects of Poisson’s ratio m on twin nucleation resis-
tance are comparatively small, as shown in Fig. 5b for val-
ues of m = (0.05, 0.15, 0.25, 0.35, 0.45). The low influence of
Poisson’s ratio on twinning found here agrees with conclu-
sions of a previous linear elastic analysis [24]. Neo-Hook-
ean elasticity is more sensitive than linear elasticity to m,
as expected considering the nonlinear compressibility
inherent in (2.11).

As shown in Fig. 5c, twin boundary energy C0 strongly
affects twinnability, with resistance CT increasing with
increasing C/C0 in all cases. Discrete values C/C0 = (0.5,
0.75, 1, 1.5, 2) have been probed. Twinning resistance
increases relative to the linear elastic case when the expo-
nential interpolator of (2.18), anisotropic surface energy
(a = 100) or a thinner notch/crack is used. Differences
increase as the ratio C/C0 increases.

Fig. 6 shows effects of dimensionless material properties
on twinning resistance 2CT of (3.14) under mode II loading,
and is analogous to results for mode I of Fig. 5. Again,
each data point represents the result of a different phase-
field simulation in which D (here proportional to KII) is
increased in increments of 1 � 10�3 from D = 0 to the con-
dition for which a twin or twin nucleus is first observed at
D = DT.

The effects of twinning shear c0 on crack tip twinnability
are shown in Fig. 6a, where discrete values of c0 = (0.1, 0.3,
0.5, 0.7, 1.0) have been prescribed in simulations incorpo-
rating linear elastic or neo-Hookean strain energy W.
Twinning shear significantly affects mode II nucleation,
as was the case for mode I. Here, a minimum of twinning
resistance CT is predicted at c0 = 0.5 for each model in
mode II loading, which exceeds the minimum associated
c0 = 0.3 observed for mode I.

Table 1
Basic simulation parameters.

Descriptor Elasticity model u r0/l a C0

Linear elastic Linear isotropic Polynomial 2 1 4 � 10�3

Table 2
Other simulation parameters.

Descriptor Difference from basic parameters

Neo-Hookean Neo-Hookean elastic energy
Exponential interpolant Exponential u
Anisotropic j a = j11/j22 = 100
Thin notch r0/l = 0.5
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The effects of Poisson’s ratio m on twin nucleation resis-
tance under mode II loading are comparatively small, as
shown in Fig. 6b. Twinning resistance for neo-Hookean
elasticity is again more sensitive than linear elasticity to m.

As shown in Fig. 6c, twin boundary energy C0 strongly
affects twinnability, with resistance CT increasing with
increasing C/C0 in all cases, as was observed for mode I.
Twinning resistance increases relative to the linear elastic

Fig. 2. Mode I loading of isotropic elastic solid c0 ¼ 1
2
; m ¼ 1

4
;C ¼ C0

� �
: (a) finite-element mesh; (b) order parameter at D = 0.05; (c) tensile normal stress

(P11 = PYY) at D = 0.05. The origin of the (X, Y) coordinate system is at the crack tip, with positive X downward and positive Y to the right. For polar (r,
h) coordinates, h is measured counterclockwise from the positive X-axis.

Fig. 3. Mode II loading of isotropic elastic solid c0 ¼ 1
2
; m ¼ 1

4
;C ¼ C0

� �
: (a) finite-element mesh; (b) order parameter at D = 0.03; (c) shear stress

(P12 = PXY = PYX) at D = 0.03. The origin of the (X, Y) coordinate system is at the crack tip, with positive X downward and positive Y to the right. For
polar (r, h) coordinates, h is measured counterclockwise from the positive X-axis.

Fig. 4. Order parameter (twin morphology) for mode I loading of isotropic elastic solid at D ¼ 0:04 c0 ¼ 1
2
; m ¼ 1

4
;C ¼ C0

� �
: (a) linear elastic; (b) neo-

Hookean; (c) exponential interpolant; (d) anisotropic j; (e) thin notch.
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case when the exponential interpolator of (2.18) or aniso-
tropic surface energy (a = 100) is used, though the latter
influences the results modestly and only for C/C0 > 1. Con-
trary to results for mode I loading, a thinner notch reduces
rather than increases twin resistance under mode II. Differ-
ences among cases in Fig. 6c increase as C/C0 increases.

Comparing results in Figs. 5 and 6, numerical values of
resistance to twinning CT under mode I loading tend to
exceed those under mode II by a factor of the order of 2.
For example, for linear elasticity with the parameter set
[c0 ¼ 1

2
; m ¼ 1

4
;C ¼ C0], phase-field simulations predict

CT � 0:007 for mode II and CT � 0:011 for mode I. This
result is not unexpected since a minimum twinning resis-
tance would be associated with the geometry of mode II
loading in Fig. 3, i.e. with the twin system aligned perfectly
with maximum shear stress at the tip of a mode II crack.

4. Twinning under mode I loading in single crystals

Twinning under mode I loading of a square domain with
pre-existing edge crack is investigated next for single crys-
tals with relevant physical properties. Plane-strain simula-
tions on a sample of dimensions identical to that of
Section 3 are reported. In this 2-D idealization, only one
twin system is permitted to be active in any simulation,
and the crack propagation direction in a particular
cleavage plane is chosen such that crack opening is in the
plane h = ±p rad, i.e. the pre-existing crack is along

Y = 0, X < 0. Details regarding properties and results are
reported in Table 3; corresponding discussion for each
material follows next. As will become clear later, “Model”
in Table 3 designates the type of elasticity model and/or
twin boundary surface energy representation, with “isotro-
pic” referring to isotropic linear elasticity and isotropic sur-
face energy (a = 1), “aniso. W” referring to anisotropic
linear elasticity and isotropic surface energy, and
“a = 100” denoting isotropic linear elasticity with aniso-
tropic surface energy.

4.1. Calcite

Calcite is a soft mineral of trigonal symmetry whose
pure crystals are transparent. Calcite twins readily, with lit-
tle or no plastic slip, under concentrated surface loading.
The preferred twin system is e+, with relatively large shear
c0 = 0.694 and geometry h100i{011} in rhombohedral
pseudocell notation [25]. Calcite also cleaves easily on the
natural rhombohedral planes (i.e. {100} planes) of its
primitive unit cell, equivalent to f10�11g planes in the hex-
agonal notation of Refs. [26,27]. In the present simulations,
a 2-D projection is required, where h = 0.89 rad is the
resulting orientation of the e+ twin system that receives
the maximum stress s under mode I loading of a cleavage
plane. Cleavage surface energy entering GC in Table 3 is
obtained from experiments [27]. Properties associated with
twinning and elasticity are from Ref. [10] and references

Fig. 5. Normalized twin nucleation energy CT under mode I loading for (a) variable twinning shear c0; (b) variable Poisson’s ratio m; and (c) variable twin
boundary surface energy C. A low value of CT correlates with a low value of applied KI needed to initiate a twin at the crack tip.
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therein. Both isotropic and anisotropic elastic models are
investigated (i.e. forms of W). For the former, the Voigt
elastic constants shown in Table 3 apply. For the latter,
values (C11 = 165, C12 = 65, C13 = 62, C14 = �23,
C33 = 89, C44 = 37 GPa) from Ref. [10] are used. For either
elastic model, the displacement field of (3.6) and (3.7) is
applied by incrementally increasing D or, equivalently,
KI; this is an approximation of the true KI field when aniso-
tropic elasticity is used.

Results in Fig. 7a and b show the twin at loading soon
after nucleation, i.e. at D = 0.044 J DT. Nucleation
occurs first for the anisotropic model, but the orientation
(h � 0.9 rad) and shape of the twin are similar in each case.
A secondary twin belonging to the same twin system begins
to form at a larger applied KI field, as shown in Fig. 7c. For

anisotropic and isotropic models, 2:5K 2CT=GC K 3,
meaning that crack extension is preferred over twinning
according to criterion (3.15). This result is in qualitative
agreement with tensile fracture experiments [26,27] that
report no evidence of twinning. Parting fractures induced
by twins in calcite have also been noted [28]. These model
results do not contradict the possibility of twins induced by
defects during other modes of loading, e.g. under spherical
indentation, samples with visible surface cracks are known
to twin more easily than those without [5].

4.2. Sapphire

Sapphire, also known as corundum or single-crystal alu-
mina, is a hard ceramic/mineral that, like calcite, is of tri-

Fig. 6. Normalized twin nucleation energy CT under mode II loading for (a) variable twinning shear c0; (b) variable Poisson’s ratio m; (c) variable twin
boundary surface energy C. A low value of CT correlates with a low value of applied KII needed to initiate a twin at the crack tip.

Table 3
Single-crystal properties and results of phase-field simulations.

Material m l (GPa) Crack GC Twin system c0 2C0 Model 2CT=GC Prediction

Calcite 0.30 40 ð10�11Þ 0.017 e+ 0.694 0.0091 aniso. W 2.53 Fracture
Isotropic 2.96 Fracture

Sapphire 0.23 167 (0001) 0.48 Rhomb. (R) 0.202 0.0015 Isotropic 0.02 Twinning
Max. s 0.1 a = 100 0.11 Twinning
ð10�12Þ 0.072 Basal (B) 0.635 0.0089 Isotropic 0.62 Either
Max. s 0.1 a = 100 0.65 Either

Mg 0.28 19 (0001) 382 ½10�11�ð�1012Þ 0.130 0.0121 Isotropic 2 � 10�4 Twinning
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gonal elastic symmetry and can be transparent. As
reviewed in Refs. [4,10], the twin systems are rhombohedral
(R) with Miller indices h1�10�1if1�102g in the structural
unit cell, and basal (B) with Miller indices h1�100if0001g
in the structural unit cell. Twinning shear for R systems
(c0 = 0.202) is less than that for B systems (c0 = 0.635).
Surface energies for cleavage on rhombohedral, prismatic
and basal planes have been reported, with R planes the
most likely to cleave and B planes difficult to fracture
[29]. In various phase-field simulations reported next, either
a B twin system or a R twin system is active, with a mode I
crack located on one of several possible planes. Specifically,
the four cases reported in Table 3 correspond to (i) R twin-
ning induced by a basal plane crack (s at h = 1.07 rad); (ii)
R twinning induced by a noncrystallographic plane crack
that produces maximum s (s at h = 1.22 rad); (iii) B twin-
ning induced by a rhombohedral plane crack (s at
h = 1.07 rad); and (iv) B twinning induced by noncrystallo-
graphic plane crack that produces maximum s (s at
h = 1.22 rad). Cleavage surface energies entering GC in
Table 3 are obtained from [29]. For cases (i) and (iii), iso-
tropic surface energy is used. For cases (ii) and (iv), the
effects of anisotropic j associated with incoherent twin
boundary energy are explored by setting a = 100 [21,20].
In all cases, isotropic elasticity is imposed with Voigt elastic
constants, noting from previous work [10] that the effects of
elastic anisotropy are small in sapphire; elastic anisotropy
is also investigated later in 3-D simulations in Section 5,
confirming this assertion.

Results for cases (i) and (iii) are shown in Fig. 8a and b
at D > DT. The basal twin (Fig. 8a) nucleates at a larger D
and is thinner than the rhombohedral twin (Fig. 8b). Twin-
ning resistance is compared with fracture energy in Table 3.
Since 2CT � GC for cases (i) and (ii) involving R twinning,
this twinning mode is preferred over mode I crack exten-
sion. On the other hand, 2CT is smaller than GC, but not
significantly so, for cases (iii) and (iv) involving basal twin-
ning. It follows that basal twinning is possible in such
cases, but crack extension is also likely, considering possi-
ble sources of uncertainty in the phase-field model/param-
eters and local variations in microstructure (e.g. defects or
impurities) inherent in real experimental samples. Predic-
tions are in qualitative agreement with experiments. Specif-
ically, in cleavage experiments [29], basal fracture was
found much more difficult to induce than rhombohedral
fracture. In recovered specimens fractured by bending
[30] on unidentified planes, numerous thicker R twins were
found, and fewer thinner B twins were observed. The
thicker predicted shape of the R twin relative to the B twin
is evident in Fig. 8; it has been noted elsewhere [28] that
twin systems with larger c0 are prone to yield thinner twins.
The presence of both kinds of twins has been reported in
shock compression experiments on alumina polycrystals [3].

4.3. Magnesium

Magnesium is a moderately ductile metal with hexago-
nal crystal structure. A number of slip and twin systems

Fig. 7. Order parameter for mode I cleavage of calcite single crystal: (a) anisotropic elasticity, D = 0.044; (b) isotropic elasticity, D = 0.044; (c) isotropic
elasticity, D = 0.1.

Fig. 8. Order parameter for mode I cleavage of sapphire single crystal: (a) basal twinning and rhombohedral cleavage, D = 0.057; (b) rhombohedral
twinning and basal cleavage, D = 0.046.
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have been identified; the twin system investigated here is
the dominant inelastic mechanism observed in single crys-
tals stretched along [0001]: the system h10�11if�1012g,
with relatively small shear c0 = 0.1295. Elastic anisotropy
is very low in Mg; Voigt isotropic elastic constants [9] are
used, along with the isotropic twin boundary surface
energy listed in Ref. [9]. Although various cleavage modes
in single crystals have been reported [31], quantitative val-
ues of fracture surface energies are not evident in the exist-
ing literature; however, analysis suggests that the fracture
energies of prismatic and basal planes should be approxi-
mately equal [32]. In the present work, a pre-existing edge
crack on the basal plane is modeled, where the value of GC

in Table 3 is obtained from the macroscopic fracture
toughness of Mg polycrystals [33]. The most favorably ori-
ented twin system is oriented with s at h = 0.75 rad.

The predicted twin is shown in Fig. 9a at D � DT and in
Fig. 9b at D > DT. The rounded shape of the twin nucleus
in Fig. 9a is in qualitative agreement with previous theoret-
ical studies [9,34]. The symmetric double-twin morphology
in Fig. 9b is similar to atomic simulation results of tensile
twinning in a Mg single crystal with a pre-existing center
crack on the basal plane [35] (see their Fig. 4). In the pres-
ent simulations, the blunt shape of the twin(s) correlates
with the low value of c0 in Mg. Twinning resistance is com-
pared with fracture energy in Table 3. Since 2CT � GC,

Fig. 9. Order parameter for mode I basal plane cleavage of magnesium crystal: (a) twin nucleation, D = 0.044; (b) tensile twinning, D = 0.1.

Fig. 10. Order parameter for direct shear loading (c = 1) of sapphire single crystal with halfpenny-shaped edge notch: (a) basal twin, anisotropic elasticity
and anisotropic surface energy; (b) basal twin, isotropic elasticity and isotropic surface energy; (c) rhombohedral twin, anisotropic elasticity and
anisotropic surface energy; (d) rhombohedral twin, isotropic elasticity and isotropic surface energy.
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twinning is preferred over mode I crack extension for the
present boundary conditions.

The analytical model of Ref. [8] suggests the following
criterion for twinning vs. crack extension:

v � ðfT=fCÞ1=2 > 1 ) fracture;

v � ðfT=fCÞ1=2 < 1 ) twinning; ð4:1Þ

where the dimensionless parameter v depends on load
direction, crystal structure (e.g. c/a ratio in hexagonal met-
als) and anisotropic elastic constants, and fT and fC are
energies associated with “total inelastic resistance” against
twin and crack extension, respectively. For basal plane
cleavage and tensile twinning, a value of v = 1.66 is re-
ported for Mg [8]. Values of fT and fC have not been re-
ported; the former can be deduced from the present
results if fC ¼ 1

2
GC is assumed. Squaring both sides of

(4.1) and comparing with (3.15) yields

fT ¼ CT=v
2 ¼ llCT=v

2 � 0:26 J=m2; ð4:2Þ
which is significantly larger than the twin boundary surface
energy C = 0.12 J/m2. Such a result reinforces the notion
that total energetic resistance to twinning depends on other
factors besides C alone.

5. Twinning in a notched single crystal: 3-D simulations

Three-dimensional simulations demonstrate how the
phase-field model can be applied to predict twinning under
complex stress states. In the present simulations of single-
crystal sapphire, attention is restricted to a single potentially
active twin system. Boundary conditions imposing direct,
intense shear strain resolved on this system (discussed in

detail below) are such that only one system would be
expected to be active. Various simulations consider either
rhombohedral (R) or basal (B) twinning, with isotropic or
anisotropic material models. For the former, isotropic twin
boundary surface energy is also used. For the latter, the tri-
gonal elastic constants (C11 = 500, C12 = 168, C13 = 121,
C14 = 24,C33 = 502,C44 = 151 GPa) fromRef. [10] are used,
and anisotropic twin boundary energy is imposed with
a = 100. The remaining material properties have already
been discussed in Section 4.2 in the context of Table 3.

Consider here is a cube of material with initial dimen-
sions 4a � 4a � 4a, where a/l = 10. Six faces are labeled
±X, ±Y, ±Z, where the unit normal of each face is
aligned parallel to the corresponding axis in a global
Cartesian coordinate system with origin at the center of
the cube. A half-cylinder of radius a and height 2l is
extracted from the �X face of the cube along the mid-
plane Y = 0. This can be interpreted as a pre-existing,
halfpenny-shaped notch or edge crack. Displacement
boundary conditions are applied to the �X face and cre-
ate a region of intense shear deformation of magnitude c
over the region �l < Y < l, similar to conditions explored
in Ref. [36] for modeling slip, or to what might be
observed in the early stages of a dynamic Kalthoff exper-
iment. Specifically, face �X is held fixed for
�2a 6 Y 6 �l and displaced rigidly in the +X direction
for l 6 Y 6 2a. The opposite +X face is held fixed
(u = 0), and lateral faces ±Y, ±Z are traction free. All
surfaces comprising oX (six cube faces and the crack sur-
face) are assigned the free (h = 0) Neumann condition for
the order parameter, enabling possible twin nucleation at
any of these surfaces.

Fig. 11. Twin nucleation and growth along mid-plane Y = 0 for direct shear loading of sapphire single crystal, anisotropic model, basal twin: (a) c = 0.2;
(b) c = 0.4; (c) c = 0.6; (d) c = 0.8; (e) c = 1.0.

Fig. 12. Twin nucleation and growth along mid-plane Y = 0 for direct shear loading of sapphire single crystal, anisotropic model, rhombohedral twin: (a)
c = 0.2; (b) c = 0.4; (c) c = 0.6; (d) c = 0.8; (e) c = 1.0.
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Characteristic results are shown in Fig. 10 for an
imposed shear of unity (c = 1). Specifically, B twinning is
depicted in Fig. 10a and b, R twinning in Fig. 10c and d.
For each mode of twinning, predictions of linear isotropic
and anisotropic elasticity are similar for the order parame-
ter (g) profile in the region of intense shear. Anisotropic
surface energy suppresses formation of the partial second-
ary twins that emerge along the upper edge of the �X face
in each of the isotropic simulations (Fig. 10b and d). Sim-
ulations with neo-Hookean elasticity were also performed;
the results were very similar to those shown for linear iso-
tropic elasticity and are not shown. Consistent with the
results of 2-D simulations in Section 4.2 and experimental
observations [30], basal twinning is more difficult to enact
than rhombohedral twinning under the present direct shear
boundary conditions, and B twins tend to be thinner than
R twins.

Order parameter contours along mid-plane Y = 0 are
shown in Figs. 11 and 12, respectively, for B and R twin-
ning for incrementally increasing applied deformation c.
Some asymmetry of the twin boundary front is evident,
particularly for the B twin in Fig. 11, a consequence of
anisotropy. In these simulations, the semicircular edge
crack does not promote or inhibit twinning; however, dif-
ferent boundary conditions explored elsewhere in atomic
simulations of shock compression [37] have demonstrated
the possibility of R twinning induced at pre-existing planar
cracks in sapphire.

6. Conclusions

Twin emission from a crack tip has been studied using
phase-field simulations. A parameter associated with resis-
tance to twin nucleation under mode I/II loading has been
derived. This parameter can be compared with the fracture
energy of the material to suggest whether an existing crack
should extend or a deformation twin should emerge and
grow. Effects of material properties and phase-field model
features on twinning resistance have been studied paramet-
rically, with Poisson’s ratio and elastic nonlinearity show-
ing little effect. In contrast, resistance to crack tip
twinning depends strongly on twin boundary surface
energy and twinning shear. Plane-strain simulations of
twinning induced by a pre-existing crack on relevant cleav-
age planes in calcite, sapphire and magnesium single crys-
tals have been conducted. Results suggest that calcite
should cleave, magnesium should twin, and that rhombo-
hedral twinning is preferred to basal twinning in sapphire,
all in agreement with experiment. Three-dimensional simu-
lations of shear loading of sapphire demonstrate a prefer-
ence for rhombohedral over basal twins, with the former
thicker in shape, in agreement with experiment.
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a b s t r a c t

Accurate modeling of dislocation motion in bounded bodies is essential for the goal of obtaining desired
properties, for example electronic or optical, of many microelectronic devices. At present, we lack high
fidelity computer codes for such modeling that efficiently utilize modern parallel computer architectures.
In contrast, many dislocation simulation codes are available for periodic or infinite bodies. In principle,
these codes can be extended to allow for dislocation modeling in finite bodies. However, such extension
may involve an additional solver to be employed, coupled with a dislocation simulation code. We present
an algorithm for development of parallel dislocation simulation capability for bounded bodies based on
such coupling. Subsequently, we analyze the performance of the algorithm for a demanding dislocation
dynamics model problem.

Published by Elsevier B.V.

1. Introduction

Behavior of engineering materials is governed by the presence of
defects. Among various material defects, dislocations play a pivotal
role as primary carriers of inelastic deformation. While cooperative
dislocation motion is reasonably well understood and described
in macroscopic materials [1,2], its understanding for nano-scale
materials is still lacking. A case in point is dislocation motion in
microstructurally thin films [3,4]. A microstructurally thin film is
a film whose characteristic dimension is comparable to the char-
acteristic microstructural size. Today, most films that comprise
integrated circuits, microelectronic devices or magnetic storage
media are examples of microstructurally thin films. Understanding
how microstructural thin films deform is critical to obtain desired
electronic or optical properties of devices [5–7]. Dislocation motion
is crucial in this deformation process.

Among countless modeling techniques of material science, dis-
location dynamics [8–10] is most likely best suited to accurately
describe motion of dislocations in thin films. While there exist
several actively developed dislocation dynamics computer codes,
including microMegas [11], Tridis [12], Micro3d [13], PARANOID
[9,10], and ParaDiS [14], most can only handle simulations of
macroscopic materials or simple bounded bodies, such as boxes
or cylinders. Moreover, no existing dislocation dynamics code has
demonstrated the ability to handle general bounded bodies with
high dislocation content on modern parallel computer hardware.

∗ Corresponding author. Tel.: +1 410 278 0420.
E-mail address: jaroslaw.knap@us.army.mil (J. Knap).

The treatment of small scale plasticity by means of dislocation
dynamics commonly requires solution of a boundary value problem
of elasticity [15]. Although it is possible to implement routines to
solve the boundary value problem directly into an existing disloca-
tion dynamics code [13], efficient parallel implementation may be
difficult because of the disparate treatment of the two problems.
For example, different domain decompositions can be expected
for the two problems in parallel computing environments, which
may necessitate a significant amount of communication between
them. Furthermore, methods of solving boundary value problems
of elasticity are well established and efficient parallel computer
codes based on these methods already exist [16,17]. Therefore, a
potentially better strategy than direct implementation, and the one
we explore in this article, is to couple an existing parallel disloca-
tion dynamics code to an existing parallel boundary value problem
solver. This choice has the advantage of introducing minimal mod-
ifications to the codes and promotes encapsulation of the distinct
problems.

Efficient coupling of disparate computer codes spanning length
and time scales is an active area of research in scientific computing
[18]. The desire to couple codes is motivated by a need to capture
more sophisticated scientific phenomena and take full advantage
of large modern computational platforms as they approach the
exascale. Over the years, many methodologies have been proposed
to address the issue of efficient coupling [19–21]. One of these
methodologies, the so-called cooperative parallelism approach,
uses remote method invocation to spawn and communicate with
numerous child programs. This approach has been successfully
employed to couple a coarse parallel finite element application with
a fine constitutive material model for multiscale simulation [22].

1877-7503/$ – see front matter. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.jocs.2013.02.002
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Cooperative parallelism appears ideal for loosely coupled applica-
tions where the number of child programs is unknown and where
child programs can fail or be terminated by the parent. In addition,
the cooperative parallelism methodology may be well suited for
coupling codes with non-deterministic and dynamic communica-
tion patterns and where communication is short [23].

Cooperative parallelism, however, may not be well suited as a
coupling choice for our application. The communication pattern
between the dislocation dynamics and boundary value problem
solver is deterministic and persistent. Moreover, a connection-
oriented approach may be desirable since the coupled codes may
exchange significant amounts of data.

Other coupling methodologies exist, but are not well-suited to
modern parallel hardware [24] or are overly application specific
for our needs [25,26]. For example, the Intercomm [25] and model
coupling toolkit [26] projects provide mechanisms for communica-
tion and interpolation of data between two grid-based applications.
In contrast, we require a more general coupling approach. To sat-
isfy our requirements for a general coupling approach capable of
efficiently handling communication of large amounts of data, we
employ distributed shared memory as the coupling mechanism
between a dislocation dynamics code and a boundary value prob-
lem solver [27]. In this article we describe the coupling algorithm
in detail and evaluate parallel performance of the application for
handling large dislocation dynamics simulations of small scale plas-
ticity.

2. Dislocation dynamics

In recent years, meso-scale simulations based on dislo-
cation dynamics have been the focus of many researchers
[28,11,15,9,10,12,29,13,30,31,8,14,32]. While some minor differ-
ences between individual approaches exist, their general features
are quite common. Usually, dislocation lines within a linear elas-
tic body are discretized into a set of connected line segments.
Subsequently, forces on degrees of freedom associated with these
discretized dislocation segments are computed. These forces orig-
inate from dislocation line segments interactions via their stress
fields and drag on dislocation motion. The drag forces on dislocation
line segments are calculated in terms of their respective velocities
by recourse to a drag function. The resulting ordinary differential
equations are then integrated in time allowing for updated disloca-
tion segment positions to be obtained. It is important to emphasize
that during the course of their motion dislocation segments are per-
mitted to intersect with one another. These intersections must be
properly accounted for and are ordinarily handled by a set of well-
defined topological operations. A concise representation of the
main components of a dislocation dynamics simulation is shown
in Fig. 1. An in-depth description of dislocation dynamics is beyond
the scope of this article. We summarize, however, the main points
of the theory below. In our summary we closely follow Bulatov and
Cai [8] and Arsenlis et al. [14].

2.1. Representation of dislocation lines

In the classical theory of dislocations (c.f. [33,34]) individual dis-
locations are treated as lines contained within a linear elastic body
B ⊂ R3. These dislocation lines are constrained to terminate at sur-
faces of the body, ∂B, but are otherwise free to move within B. With
each point along a dislocation line we associate the Burgers vector,
b ∈ R3, representing the direction of the local distortion of the crys-
tal lattice related to the dislocation. The practicality of dislocation
dynamics hinges upon a simplified treatment of these dislocation
lines. To this end, each dislocation line is approximated by a set
of straight dislocation segments D = {s1, s2, s3, . . .}. In turn, each

Topological
Operations

Position
Update

Force
Calculation

Begin New Cycle
Evaluate forces on

discretized dislocations
due to stress field

Append drag forces

Apply time integrator

Resolve direct intersections of
discretized dislocations

Perform adaptive
refinement of discretized

dislocations

Fig. 1. The main components of a dislocation dynamics simulation.

dislocation segment, si, is treated as an ordered pair of vertices, i.e.
si = (v1

i
, v2

i
), with the corresponding Burgers vector, bi. We more-

over assume that v2
i

and v1
i+1 are equivalent, i.e. correspond to the

same vertex. In addition, while vertices are allowed to belong to
multiple dislocation segments, each dislocation segment may only
belong to a single discretized dislocation line.

With the above representation at hand, the coordinates of a
point P ∈ si along a discretized dislocation line D, x(P), are readily
computed by linear interpolation

x(P) = x1
i (1 − �) + x2

i �, (1)

where x1
i
, x2

i
are, respectively, the coordinates of vertices v1

i
, v2

i
,

and � ∈ [0, 1] denotes the value of the parametric coordinate along
si corresponding to P.

We emphasize that a choice of dislocation line representation is
not, by any means, limited to the one introduced above. As a matter
of fact, other representations have been successfully employed in
dislocation dynamics simulations (e.g. [29,9]).

2.2. Computation of forces

The presence of dislocation lines in B, along with applied trac-
tions and displacements on ∂B, induces at every point in B stress
� ∈ Sym(R3) [33–35]. Sym(R3) is the space of symmetric second-
rank tensors overR3. This stress field acts on discretized dislocation
lines yielding a force density (per unit length) fPK

i at a point P ∈ si
with coordinates x(P)

fPK
i (x) = [�(x)bi] × ti, (2)

where bi is the segment Burgers vector, ti is the tangent direction
of si, and × is the vector (cross) product in R3. fPK

i can be inte-
grated along si and apportioned to each of the two segment vertices
according to

f1
i = |si|

∫ 1

0

fPK
i (�) (1 − �) d�, (3)

f2
i = |si|

∫ 1

0

fPK
i (�) � d�. (4)

Here, |si| denotes the length of si and � is the parametric coordi-
nate along si. Individual segment force contributions (3) and (4)
are accumulated at each vertex giving rise to a net vertex force.
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It is common to express fj
i
, j = 1, 2 as a composition of three

contributions,

fj
i
= fj

i

ext + fj
i

s +
�

k,k /= i

fj
ik

, (5)

where fj
i

ext
, fj

i

s
and fj

ik
represent contributions due to external loads,

si’s own stress field, and interactions with all other segments within

B, respectively. The computation of fj
i

s
and fj

ik
may be carried out

by means of efficient methods, both analytical and numerical, that
allow to avoid a direct evaluation of (3) and (4) [8,14]. In particular,

explicit analytical formulas for the computation of fj
i

s
and fj

ik
exist

for infinite elastic bodies [14]. In contrast, fj
i

ext
is usually computed

directly from (3) and (4) with

fPK
i (x) = [�ext(x)bi] × ti, (6)

where �ext is now the stress field due exclusively to applied trac-
tions and displacements.

2.3. Equations of motion for dislocation segments

The equations of motion for discretized dislocation lines are
derived under the assumption that the forces on discretized dis-
location lines due to the stress field in B are balanced by the drag
forces to dislocation line motion. More explicitly, for a vertex vk in
a discretization of dislocation lines, the following is assumed

Fk + Fdrag
k

= 0, (7)

where Fk denotes the vertex force due to dislocation segments and
applied tractions and displacements, Fdrag

k
is the vertex drag force,

and 0 denotes the null vector in R3.
The computation of the drag force relies on a drag function

B : R3 �→ R3, which maps velocity v to drag force density (per unit
length) fdrag. The drag function encapsulates the material specific
aspects of dislocation motion and usually takes additional argu-
ments, such as pressure and temperature. For clarity, we formally
omit these additional arguments.

Following the procedure outlined in Section 2.2, the drag force
density can be integrated over segment si by means of (3) and (4)
with fPK

i (�) replaced by fdrag
i

(�) = B[vi(�)]. This integration yields
drag force contributions to vertices v1

i
and v2

i
. vi(�) is the velocity

of a point P ∈ si with the parametric coordinate �, computed as the
time derivative of (1), i.e.

vi(�) = v1
i (1 − �) + v2

i �, (8)

where v1
i
, v2

i
are, respectively, the velocities of vertices v1

i
, v2

i
.

Clearly, the drag force Fdrag
k

is a function of vertex velocities and
also, by virtue of additional arguments to the drag function, vertex
coordinates. On the other hand, the vertex force Fk depends on the
coordinates of all vertices in a discretization of dislocation lines. As
such, Eq. (7) constitutes a non-linear system of ordinary differen-
tial equations. Therefore, the problem of finding a solution of (7)
amounts to obtaining trajectories of all vertices. It is worth noting
that the process of finding a solution of (7) for an arbitrary drag
function may be computationally very demanding. For that reason,
linear drag functions are frequently employed in practice, allowing
to reduce (7) to a system of linear ordinary differential equations.

2.4. Numerical solution of the equations of motion for dislocation
segments

The solution procedure for equations of motion (7) is custom-
arily carried out by means of numerical integrators for ordinary
differential equations. The role of these integrators is to propagate

the solution forward in time given its initial value. A wide body
of literature exists pertaining to such integrators (c.f. [36,37] and
references therein). Commonly, simple and robust explicit integra-
tors have been employed in dislocation dynamics simulations [14].
While computationally inexpensive, explicit integrators impose a
stringent constraint on the size of time change permitted during
a single forward integration step. In order to remove this severe
limitation, the use of implicit integrators in dislocation dynamics
has been advocated by some researchers [14]. It is unclear, how-
ever, whether the benefits offered by implicit integrators will be
realized since implicit integrators require solutions of a non-linear
system of algebraic equations.

2.5. Topological operations on discretized dislocation lines

In the course of a dislocation dynamics simulation, discretized
dislocation lines may experience substantial displacements relative
to their initial positions. These displacements may result in direct
segment–segment intersections or significant changes in segment
lengths. Both of these types of events must be properly handled
in order for the simulation to remain faithful to the underlying
physical phenomena, as well as, to maintain the desired accuracy.

Direct segment–segment intersections may lead to dislocation
segment annihilation, junction formation or cross-slip events. All
of these events can be efficiently treated by way of insertion or
removal of dislocation segment vertices and dislocation segments.
It bears emphasis that such operations are not, by any means,
arbitrary, but are based solely on the theory of dislocations. An
extensive overview of the segment–segment intersections, along
with a catalog of operations required to properly handle them, has
been provided by Arsenlis et al. [14].

An accurate representation of dislocation lines is essential in
order to maintain desired accuracy of the solution. This require-
ment is usually satisfied by means of adaptive refinement of
discretized dislocation lines. The overarching goal of such refine-
ment is to optimize the representation of dislocation lines with
respect to accuracy, and is customarily achieved by redistribution
of vertices along discretized dislocation lines, as well as, insertion
or removal of vertices.

3. Treatment of bounded bodies in dislocation dynamics

The calculation of forces due to dislocation segment’s own stress
field and interactions with other segments in (5) is, in practice,
carried out by recourse to analytical formulas. While, in princi-
ple, numerical methods can be employed for this calculation, their
computational expense could easily render dislocation dynamics
impractical. The analytical formulas are only available, however,
under the assumption that the body under consideration fills all
of space, i.e. B = R3. Additional steps are, therefore, necessary
for a bounded body. In our presentation, we follow the classical
approach of van der Giessen and Needleman [15].

The theory starts with a linear elastic body containing disloca-
tion lines,B, a bounded subset ofR3. The boundary ofB, ∂B, consists
of two disjoint parts: the traction free boundary ∂Bt and the null
displacement boundary ∂Bu (Fig. 2). The fundamental problem of
the elasticity theory is concerned with finding a displacement field
u over B satisfying

⎧⎨
⎩

div � = 0 inB
�n = 0 on ∂Bt

u = 0 on ∂Bu

(9)
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Fig. 2. The decomposition of the problem for a linear elastic bounded body containing dislocations into two problems: (1) dislocations in an infinite body and (2) the body
without dislocations.

where n ∈ R3 is the outer unit normal to ∂B, div(•) is the divergence
of a tensor field, and 0 ∈ R3 denotes the null vector. The stress field
� is obtained from u by

� = C : ∇u, (10)

where C is the fourth-order elasticity tensor, ∇(•) denotes the gra-
dient of a vector field in R3, and (•) : (•) denotes the operation of
double contraction of two tensors.

By virtue of its linear structure, the problem (9) can be readily
decomposed into two separate problems (Fig. 2). The first problem
aims to find a displacement field ũ in an infinite linear elastic body
containing all dislocation lines. In contrast, the second problem
aims to obtain a displacement field û in B without dislocation lines
but with suitably defined applied tractions T̂ and displacements Û.
The solution of (9) can be then obtained simply by pointwise super-
position of both displacement fields, i.e. u = ũ + û. Subsequently,
the stress field � becomes readily available from (10) and enters
into (2) to yield forces on discretized dislocation lines. However,
the superposition of displacements carries over to stresses due to
the linearity of (10), i.e. � = �̃ + �̂. Therefore, contributions to forces
on discertized dislocation lines from both �̃ and �̂ can be evaluated
entirely independently of each another via (2)–(4).

The computation of the displacement field ũ can be simplified,
again owing to the linear structure of (9), as composed of contrib-
utions from individual dislocation lines, i.e. ũ = �

iũ
i. In general,

for a dislocation line of arbitrary shape, ũi may still need to be com-
puted numerically. However, analytical ũi formulas exist for certain
types of dislocation lines [33,34], and in particular, a straight dis-
location line segment. Thus, in view of our discussion in Section
2, ũ may be assembled simply from contributions of individual
dislocation line segments in a discretization of dislocation lines.
Once ũ is calculated, the associated stress field, �̃, may be found
from �̃ = C : ∇ũ. Still, since, in the case of a dislocation line seg-
ment, analytical formulas also exist for its stress field, ũ may never
be explicitly computed. Instead, �̃ may be simply calculated by
superposition of stress contributions from individual dislocation
line segments. Subsequently, �̃ may be employed in (3) and (4)
to yield vertex force contributions on discretized dislocation lines.
Oftentimes, however, this route of computing vertex force con-
tributions, as discussed above, is side-stepped entirely, and direct
analytical formulas for dislocation line segment–segment forces are
employed [14].

Complementary displacement field û is a solution of

⎧⎪⎨
⎪⎩

div �̂ = 0 inB
�̂n = T̂ on ∂Bt

û = Û on ∂Bu

(11)

The tractions on ∂Bt are T̂ = −T̃, where T̃ = �̃n, and the displace-
ments on ∂Bu are Û = −Ũ, as required to satisfy the traction free and
null displacement boundary conditions in the problem (9). Here, Ũ
denotes the restriction of ũ on ∂Bu. It is worth noting that T̂ and Û
are computed on a segment-by-segment basis via analytical formu-
las [33,34]. As before, the stress field �̂ is related to the displacement
field û by �̂ = C : ∇û. We emphasize that analytical solutions of
(11) exist only for a very narrow class of simple bodies. Thus, in
practice, problem (11) is routinely solved by numerical methods
[38–40]. Again, with the help of (2)–(4), �̂ can be converted directly
to force contributions on discretized dislocation lines without the
need to explicitly form �. Such an approach is, of course, preferred
when the calculation of �̃ is bypassed altogether in lieu of the direct
analytical segment–segment force formulas.

We also note that �ext in (6) may be obtained from the solution
of a problem analogous to (11). Therefore, the computation of �ext

is usually integrated directly into (11) by means of an appropriate
modification of the applied tractions T̂ and displacements Û.

4. An algorithmic framework for coupling of a dislocation
dynamics and finite element codes by means of distributed
shared memory

The majority of available dislocation dynamics computer codes
tend to address only the first problem in the decomposition in Fig. 2,
i.e. the motion of dislocations in an infinite or periodic body [8,14].
This choice has been primarily motivated by the use of dislocation
dynamics in development of strength models in crystal plasticity
[30,31,41,42]. A renewed interest in small scale plasticity in recent
years has brought back into focus the use of dislocation dynam-
ics in this context [43–45,32]. The two problem decomposition of
the treatment of bounded bodies in dislocation dynamics (Fig. 2)
provides a convenient avenue for achieving the goal of disloca-
tion dynamics simulations of small scale plasticity. To this end, an
existing dislocation dynamics computer code needs to be simply
augmented with a computer code solving problem (11). However,
such a coupling between two disparate codes, especially in the con-
text of parallel computing, remains challenging. In this section, we
describe, in detail, an algorithmic framework for coupling a parallel
dislocation dynamics code and a parallel finite element code.

The solution procedure for problem (11) requires the knowl-
edge of the tractions T̂ and displacements Û on suitable parts of
the boundary ∂B. The computation of T̂ and Û, of course, entails
the evaluation of analytical formulas for all discretized dislocation
lines in B. This task can be best achieved if the discretized disloca-
tion line data is accessible by the finite element code. Thus, there
exists a need to establish a link allowing the dislocation dynam-
ics code to provide the discretized dislocation line data to the
finite element code. With these data at hand, the finite element
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Fig. 3. The algorithm for the coupling of the dislocation dynamics and finite element codes. Unmodified dislocation dynamics routines are colored white. Additional routines
introduced to handle bounded bodies are colored dark gray. The dotted line divides the routines into ones implemented in the dislocation dynamics code and those in the
finite element code.

code can proceed to evaluate, on a segment-by-segment basis,
the analytical formulas yielding T̂ and Û. Subsequently, the solu-
tion of (11), û, is employed to yield the stress field �̂. Once �̂
is available, the finite-element solver can compute force con-
tributions of individual dislocation segments, which are then
transmitted to the dislocation dynamics code for addition to locally
computed segment–segment force contributions. Further com-
munication between the two codes is also required once the
dislocation dynamics code has moved and carried out topological
operations on discretized dislocation lines. Since dislocation lines
must not terminate within B, additional steps may be necessary

as to satisfy this requirement [14]. Therefore, the discretized dis-
location data is transmitted again to the finite element code,
which enforces the above requirement by accordingly reposition-
ing vertices of discretized dislocation lines. The updated discretized
dislocation data is then sent back to the dislocation dynamics code,
which updates its representation. The algorithm for the coupled
operation of the two codes under consideration is presented in
Fig. 3. Obviously, relatively minor modifications are needed for
the dislocation dynamics code. However, the crucial aspect of the
algorithm is the two-way communication between the two codes.
In order to address this aspect of our algorithm we adopt the
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concept of distributed shared memory (DSM) [46] as a convenient
framework for carrying out the communication. Throughout the
remainder of this section we describe details of our DSM algorithm
for coupling the dislocation dynamics and finite element codes. For
practical purposes, both codes are assumed to employ the message
passing interface (MPI) [47,48] for communication.

DSM enables the coupling of parallel applications by providing
a shared global memory arena that is available to all processors
and which serves as a common storage location for shared data
between applications. A global memory arena is formed by DSM as
a collection of physically separate local memories. DSM conceals
the distributed nature of the shared memory behind an abstraction
layer, so that for applications, access to DSM appears identical to
interaction with contiguous memory.

For our application we elect to use H5FDdsm, a high level imple-
mentation of DSM [27]. In H5FDdsm, the DSM memory is accessed
through the Hierarchical Data Format (HDF5) application program-
ming interface (API), commonly employed by scientific applications
for storage of data on disk [49,50]. H5FDdsm provides a virtual
file driver to HDF5 that seamlessly translates HDF5 file locations
to memory addresses in DSM. To client applications, communica-
tion with DSM appears equivalent to interaction with an HDF5 file.
Parallel communication between applications and DSM is possible
through use of HDF5 hyperslabs. Additionally, parallel components
of H5FDdsm are built using MPI, meaning that communication
between DSM and coupled applications can take advantage of high-
speed interconnects like InfiniBand.

In order to correctly couple codes via DSM, strict access rules
between client codes and DSM must be enforced to ensure memory
coherency. In H5FDdsm, only one code is permitted to access DSM
at a time and access must be collective for all application processors
to guarantee atomicity. Furthermore, interactions with DSM will
block if DSM is already accessed by another code.

For the coupling of codes, DSM must be allocated and accessi-
ble to both. In our algorithm, the finite element code is selected
to allocate DSM on all of its processors during startup. The desired
size of the DSM memory is provided as input. The DSM memory
is distributed in equal allocations across all finite element pro-
cessors. The decision to allocate DSM memory on finite element
processors is arbitrary and allocation on dislocation dynamics pro-
cessors would work equally well. After allocation of DSM memory,
the dislocation dynamics code is launched and an MPI intercom-
municator is formed between DSM and the dislocation dynamics
code to serve as a communication channel. The dislocation dynam-
ics code obtains initial control of DSM and writes parameters to
DSM to initialize the coupled application. DSM control is released
to the finite element code, which reads and stores the initialization
parameters. After initialization, the coupled application enters the
main computational loop, consisting of force calculations, position
updates, and topological operations at each simulation timestep, as
outlined in Fig. 3.

As mentioned above, the first step of the main simulation loop
is communication of the discretized dislocation line data from the
dislocation dynamics code to the finite element code. In our algo-
rithm, for each dislocation line segment, ten doubles are written
to DSM: the start and end segment vertex coordinates x1

i
, x2

i
, the

segment Burgers vector bi, and a flag indicating whether any of the
two segment vertices belong to ∂B. The dislocation dynamics code
allocates a dataset in DSM of HDF5 data type H5T NATIVE DOUBLE
and size of the total number of dislocation line segments multiplied
by ten. Since the dislocation dynamics code is assumed to be paral-
lel, each of its tasks writes data for owned dislocation line segments
into the appropriate DSM memory location through HDF5 hyper-
slabs. The communication of data takes place collectively for all
dislocation dynamics tasks, providing parallel communication of
data to DSM.

Process 0

Process 1

Process 2

Process 0

Process 1

Process 2

Process 3

Dislocation
DynamicsDSM

100 MB

100 MB

100 MB

100 MB

250 MB

250 MB

250 MB

Fig. 4. Communication of data from the dislocation dynamics code to DSM. The
dislocation dynamics code consists of four processors each containing a 100 MB
dataset. These datasets are written to a 750 MB DSM distributed equally on three
processors.

When a parallel code issues a write to DSM, it is up to H5FDdsm
to determine how to route data from the code to DSM tasks. An
example of how data is routed from the dislocation dynamics code
to DSM is presented in Fig. 4. In this example, the dislocation
dynamics code is composed of four tasks each containing 100 MB
datasets. The datasets are written to a 750 MB DSM distributed
equally across three tasks. At present, data written to DSM is dis-
tributed in a bottom up fashion, filling the first processor in the DSM
before advancing to the next processor. More sophisticated distri-
bution strategies that balance written data throughout the DSM are
under development. Data is communicated from the dislocation
dynamics code to DSM in parallel using point-to-point MPI com-
munication. Once again, it is necessary to note that routing details
between codes and DSM are handled transparently by H5FDdsm
and these details are presented here so that a deeper understanding
of DSM interaction may be gained.

After the communication of dislocation segment data to DSM
has completed, the dislocation dynamics code releases control of
DSM to the finite element code and commences its dislocation seg-
ment force calculations. At the same time, the finite element code
carries out the computation of its contributions to dislocation seg-
ment forces. We emphasize that both of these force calculations are
completely independent and occur concurrently. This aspect of our
algorithm is crucial for performance as the force calculation usually
constitutes the most computationally expensive component of dis-
location dynamics simulations [51]. The finite element code begins
its calculation by reading dislocation segment data from DSM. For
simplicity, each finite element task acquires the entire segment
dataset into memory as all segments may be needed to compute
T̂ and Û. Upon completion of its calculation, the finite element
code writes its dislocation line segment force contributions to DSM
as six doubles per segment. Then, the control of DSM is released
back to the dislocation dynamics code, which reads the finite ele-
ment computed dislocation force contributions from DSM in order
to append them to form the total dislocation segment forces. We
place emphasis here on the fact the dislocation dynamics code may
block if the force calculation is still in progress in the finite element
code.
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Once the force calculation completes, the dislocation dynam-
ics code forms equations of motion (7) with the application of
a drag force and, then, employs a numerical integrator to obtain
updated coordinates of vertices in the discretization of dislocation
lines. In general, since the numerical integrator does not enforce the
constraint that the vertices must be contained in B, the updated
vertex coordinates are not guaranteed to satisfy it. Owing to the
fact that ∂B is explicitly known only to the finite element code,
additional communication with the finite element code must be
performed in order to assure that the above constraint is fulfilled.
The dislocation dynamics code again writes dislocation segment
information to DSM, consisting now of eight doubles per seg-
ment: x1

i
, x2

i
vertex coordinates and a flag for each vertex indicating

whether it has been previously marked as a vertex in ∂B. Then, the
dislocation dynamics code releases control of DSM and the finite
element code reads the dislocation line segment data and begins
updating dislocation line segment information to account for
bounded B.

The finite element code iterates over received dislocation line
segments and generates a list of topological directives for the dis-
location dynamics code that are used to modify vertex coordinates.
The first step in generating topological directives is determining
whether dislocation line vertices are located inside or outside of
B. This task may be accomplished by means of an efficient cell-
tree element location algorithm, which quickly determines possible
encompassing elements for segment vertices through use of a
bounding interval hierarchy [52]. If both vertices of a segment are
located outside B, a directive is generated to remove the segment
entirely from the simulation. In contrast, if one of its vertices is
located in B and the other outside, the dislocation segment must
intersect a free surface and a directive is generated to cut the seg-
ment at the intersection point. If both segment vertices are insideB,
the segment remains unchanged. Additional work may be required
in order to handle segment vertices that the dislocation dynam-
ics code has marked as residing in ∂B. These segment vertices
are required to remain in ∂B throughout the simulation to ensure
the Burgers vector conservation. Therefore, it may be necessary to
update the coordinates of all vertices in ∂B. The finite element code
writes thirteen doubles per segment to DSM, which include the
updated vertex coordinates x1

i
, x2

i
, the outer normals to ∂B at x1

i
, x2

i
,

and a directive for the topological operation the dislocation dynam-
ics code must carry out. In addition, if a segment pierces ∂B and is
marked for cutting, the new coordinates for the external vertex are
taken as the coordinates of the intersection point of the segment
and ∂B. After writing data to DSM, control of DSM is transitioned yet
again to the dislocation dynamics code, which reads the topological
directives and modifies segment data accordingly. Once complete,
the end of the computational loop is reached and if required, a new
cycle can commence.

After completing all necessary cycles in the computational loop,
the dislocation dynamics code instantiates the teardown of the cou-
pled application by issuing a call to disconnect from the DSM. Upon
that, the finite element code exits its main computational loop and
deallocates the DSM arena. Both codes are now disjoint and exit
individually.

We finally note that DSM has been used previously to
couple scientific codes. An early version of H5FDdsm, the Net-
work Distributed Global Memory (NDGM) was employed to
perform serial one-way coupling of commercial finite element
code LS-Dyna to shock physics code CTH for fluid–structure
interactions [53]. In addition, H5FDdsm has served to couple
simulations to visualization tools for in situ visualization [54].
However, the uniqueness of our approach stems from the fact
that we use DSM to facilitate parallel two-way coupling of
applications, with each application interacting in parallel with
DSM.

Fig. 5. The cubical body considered for our performance evaluation containing 4096
randomly distributed straight edge dislocations.

5. Results

In this section, we assess the overall performance of our cou-
pling algorithm. To this end, as a dislocation dynamics code
we employ Parallel Dislocation Simulator (ParaDiS)-a massively
parallel dislocation dynamics simulator under development at
Lawrence Livermore National Laboratory [14]. ParaDiS enables
three-dimensional dislocation dynamics simulations with the
primary focus on strain hardening modeling. Thanks to new math-
ematical algorithms and their robust implementation, ParaDiS
allows for efficient handling of an unprecedented number of dislo-
cations in very large parallel computing environments.

As a solver for problem (11) we utilize a parallel finite ele-
ment code developed at the U.S. Army Research Laboratory [55].
This solver combines conventional two- and three-dimensional
finite element technology [56,57,40] with non-overlapping domain
decomposition for parallel processing [58].

Body B is taken to be a cube of tungsten with dimension
1.3625 �m containing 4096 randomly distributed straight dislo-
cation lines with Burgers vector of 2.725 Å(Fig. 5). Each dislocation
line crosses the entire cube, i.e. both of its ends are in the cube
surfaces. We discretize the dislocation lines into dislocation line
segments no longer than 272.5 Å, yielding the total of 280,261 dis-
location segments.

Following Arsenlis et al. [14] we employ a linear drag function
which leads to a particularly simple expression for the vertex drag
force at vertex vk, Fdrag

k
= 1

2

∑
j|sj|Bjvk. The summation extends over

all dislocation segments connected to vk. vk denotes the velocity of
vk, |sj| is the length of dislocation segment sj, and Bj is the drag
tensor for sj. We take Bj ≡ 1 Pa s, where 1 represents the second-
rank identity tensor in the space of tensors overR3. The trapezoidal
rule numerical integrator is utilized in ParaDiS in order to propagate
the dislocation dynamics solution.

The body is discretized into 1,012,860 quadratic tetrahedral
elements for use by the finite element code (Fig. 6). We employ
isotropic linear elasticity to describe the mechanical response of
tungsten. Specifically, the following form of (10) is used

� = �(tr∇u)1 + 2�(∇u + ∇uT ), (12)
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Fig. 6. The discretization of the cubical body considered for our performance eval-
uation into 1,012,860 quadratic tetrahedral elements.

where the Lamé constants are � = 204 GPa and � = 161 GPa. tr(•) and
(•)T denote, respectively, the trace and the transpose of a second-
rank tensor over R3. We assume null displacements boundary on
the bottom of the cube, while the remaining cube surfaces are
treated as traction free.

All our performance studies have been carried out on the Per-
shing supercomputer at the U.S. Army Research Laboratory (ARL),
which contains an Intel Xeon Sandy Bridge sixteen-core processor
and 32 GB of RAM on compute nodes. The compute nodes are inter-
connected by FDR-10 InfiniBand. All codes have been compiled with
the Intel 12.1.0 MPI compiler.

In Fig. 7, we plot the strong scalability of the dislocation dynam-
ics and finite element codes individually, as well as the coupled
application. The strong scalability of the dislocation dynamics code
is assessed by executing 10 simulation cycles. Since the initial par-
tition of dislocation line segments among processors may not be
necessarily optimal, 200 load balancing steps are executed at the
onset of each run. For the finite element code, the discretization of
the body is partitioned among processors as to ensure an approx-
imately equal number of elements assigned to each processor. A
linear conjugate gradient solver with Jacobi preconditioning is used
for solving problem (11) [59]. A single cycle of the finite element
code, consisting of computing surface tractions, carrying out the
solution, and computing dislocation segment force contributions
is executed.

We evaluate parallel performance of the coupled application
utilizing identical setups as for assessing individual components.
A total DSM size of 100 MB is allocated evenly across all finite ele-
ment processors. A single cycle of the coupled application is then
executed to acquire timings. For the dislocation line configura-
tion under consideration, 21.4 MB of segment data is transmitted
from the dislocation dynamics code to the finite element code
and 12.8 MB of force data is transmitted back for each dislocation
segment force calculation. For each scalability run of the coupled
application, we elect to utilize equal numbers of dislocation dynam-
ics and finite element processors, up to 1024 processors each. As
evident from Fig. 7, the coupled application exhibits strong scal-
ability that matches well with the scalability of the individual
applications.
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Fig. 7. Scalability of dislocation dynamics, finite element, and coupled applications.
The dislocation dynamics code, indicated by blue triangles, has been executed for 10
simulation cycles using a tungsten material containing 4096 dislocations as pictured
in Fig. 5. The finite element code, indicated by green squares, has been executed for
a single cycle using the mesh in Fig. 6 and the same dislocation system as for the
dislocation dynamics code. The coupled application, indicated by red stars, has been
executed for a single simulation cycle using the same dislocation system and mesh
as in the standalone codes. In the coupled case, number of processors is the number
used in each individual application (i.e. a one processor run is the execution of the
dislocation dynamics code on one processor and the finite element code on one
processor). The ideal scalability is also plotted for reference. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

An additional complexity associated with the coupled applica-
tion is that the number of processors assigned to each individual
application cannot be selected adaptively during the course of exe-
cution and instead must be chosen prior to execution. However, a
judicious selection of the number of processors assigned to each
individual application is crucial for the optimal performance of the
coupled application. When examining the algorithm of the cou-
pled application in Fig. 3, it is clear that synchronization points,
where the applications exchange data, are important for overall
performance. If too many processors are assigned to either of the
two applications, one of them may be forced to wait at any of the
synchronization points, wasting execution time.

In order to explore the impact of processor assignment on the
performance of the coupled application, we denote the total num-
ber of processors for the coupled application, N, and partition it
into Ndd, the number of processors for the dislocation dynam-
ics application, and Nfem, the number of processors for the finite
element application, i.e. N = Ndd + Nfem. We utilize the tungsten
problem setup and execute the coupled application for five simula-
tion cycles. Since the finite element application is most likely more
expensive computationally, we employ Ndd: Nfem ratios of 1:1, 1:3,
1:7, 1:15, 1:31, and 1:63. In Fig. 8, we plot the wall clock execution
time as a function of the Ndd: Nfem ratio. Clearly, the minimal exe-
cution time is achieved at Ndd: Nfem = 1 :15 for all processor counts
studied. Still, differences in execution time between different pro-
cessor ratios are quite small near the minimum as 1:3, 1:7, and 1:15
execution times are fairly similar to each other.

To further explore the scalability of the coupled application, we
take two vertical cuts from Fig. 8, one along the “naïve” 1:1 ratio
and one along the optimal 1:15 ratio. We plot these results in Fig. 9.
As expected, the execution time is greatly reduced for the optimal
ratio. Moreover, the scalability of the coupled application remains
strong for both the “naïve” and optimal ratios.

It is important to note that, in general, the ideal partitioning of
processors between the dislocation dynamics and finite element
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Fig. 8. Wall clock execution time of the coupled application for different ratios of
processors assigned to the dislocation dynamics and finite element applications. A
total number of processors, N, is split into Ndd , the number of processors for the
dislocation dynamics application, and Nfem , the number of processors for the finite
element application, where N = Ndd + Nfem . Wall clock time is acquired for execution
of five simulation cycles for a tungsten material containing 4096 dislocations as
pictured in Fig. 5 and a finite element mesh in Fig. 6.

applications may be difficult to determine. Many factors may
influence this partitioning, chiefly among them, the number of
dislocation segments in the system and the finite element mesh
discretization. In addition, the ideal partitioning may evolve during
the course of a simulation, for example, if new dislocation segments
are introduced. However, enabling adaptive processor partitioning
remains challenging. Migration of individual processors between
the dislocation dynamics and finite element applications would
require repartitioning each problem to utilize newly reassigned
processors. This task may be difficult to accomplish on the fly with-
out stopping and restarting the applications. It is clear that new
ideas and algorithms are needed to enable this type of adaptivity
in multiple program multiple data applications.

After exploring the parallel performance and scalability of the
coupled application, we wish to examine the performance of indi-
vidual components of the dislocation force calculation, so that we
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Fig. 9. Wall clock execution time of the coupled application for two different ratios
of processors assigned to the dislocation dynamics and finite element applications:
the “naïve” case of Ndd: Nfem of 1:1 and the optimal execution case of 1:15. The plot
consists of two vertical slices taken from Fig. 8 in order to clearly demonstrate the
scalability of the coupled application.

can target efforts aimed at improving overall performance. We
focus on assessing performance of the finite element code and its
interactions with DSM, as the finite element calculation is the more
expensive part of the coupled application, as revealed by the opti-
mal Ndd : Nfem ratio of 1:15 for the dislocation configuration studied.
More specifically, these components include: (1) dislocation seg-
ment data read from DSM, (2) computation of T̂ and Û on ∂B, (3)
problem (11) solve, (4) computation of dislocation segment force
contributions due to �̂, and (5) dislocation segment forces write to
DSM.

The execution times for the components of the dislocation seg-
ment force calculation carried out by the finite element code are
plotted in Fig. 10. We acquire timings for two ratios of Ndd : Nfem
processors, 1:1 and the optimal 1:15. As expected, the timings for
the two ratios are very similar, as the finite element force calcula-
tion executes independently of the number of dislocation dynamics
processors employed. The solution time for problem (11) domi-
nates the entire calculation. This fact is scarcely surprising, as this
is the most computationally expensive part of the calculation. How-
ever, the high cost is offset at large processor counts by excellent
scalability.

The computation of surface tractions is the second most com-
putationally expensive component. The traction calculation scales
with increasing processor count, but not ideally. This behavior
is mostly due to the fact that the partitioning of the discretiza-
tion of ∂B derives directly from a partitioning of B, which may
lead to a significant imbalance during the course of the traction
computation. More specifically, only processors holding elements
in the discretization of ∂B will ultimately be carrying out the
calculation, while all others, possibly the majority, will remain
idle.

The evaluation of dislocation segment forces displays rather
poor parallel performance. This behavior is not unexpected since
dislocation segments are not partitioned among finite element pro-
cessors as the finite element code lacks a priori knowledge about the
location of the segments within B. Therefore, each processor must
iterate over the entire list of dislocation segments when comput-
ing dislocation segment forces. Obviously, at present, the relative
computational cost of this component remains quite small, but
may become more significant at large processor counts. This lack of
scalability, however, can be ameliorated by means of fairly simple
modifications, as discussed below.

Finally, although accounting for the least execution time among
all components for all processor counts studied, time spent commu-
nicating data between the finite element code and DSM increases
with increasing processor count. Each finite element processor
reads the entire dislocation segment dataset from DSM, which
means that for larger processor counts, a larger amount of data
must be communicated from DSM. Additionally, each finite ele-
ment processor writes dislocation segment forces for all dislocation
segments to DSM, resulting in more communicated data for larger
finite element processor counts. Despite the poor scalability of
DSM communication, the overall scalability of the coupled appli-
cation remains good up to 1024 processors as the runtime is
dominated by the finite element solve. However, given the exe-
cution timing data generated on the test system, it is reasonable
to expect that communication costs may, at some point, begin to
dominate the runtime at larger processors counts than studied
here.

On the basis of our timing data, there appear to be several
potential paths that could be explored to increase the overall per-
formance of the coupled application. First, the performance of the
finite element solve can be improved via more efficient linear
solvers and preconditioning. Second, a partitioning of the surface
discretization independent from the partitioning of the volume dis-
cretization is bound to yield a better load-balancing of the traction
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Fig. 10. Timings for individual components of the finite element calculation. Communication between the finite element code and DSM are shown as blue diamonds for
the reading of segments and purple circles for writing of computed forces. The other routines include computing T̂ and Û on ∂B (green triangles), solution of the elasticity
problem (red stars), and computing forces on segments from the resulting �̂ (light blue squares). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

computation, allowing, in turn, for increased scalability. Finally, the
performance of the dislocation segment force calculation can be
readily improved by pruning the dislocation segment list on each
processor in order to avoid iterating over all dislocation segments.
To this end, the dislocation dynamics code could transmit bound-
ing box data of its partitions to the finite element code in addition
to the dislocation segment data. The bounding box data could then
be employed to handle only dislocation segment data located in
overlapping dislocation dynamics domains. However, avoiding the
increasing communication costs between the finite element code
and DSM on larger numbers of processors is difficult to achieve,
as each finite element processor must read the entire segment list
in order to properly compute surface tractions. It may be possi-
ble that a more balanced distribution of segment data across DSM
processors, rather than the current bottom up allocation, could
improve performance by spreading communication costs. But, this
approach does not nullify the necessity of communicating larger
amounts of data for increasing numbers of processors. A possible
approach to reduce the amount of segment data communicated to
the finite element code may be to utilize the fast multipole method
algorithms that are currently available in dislocation dynamics
codes [14]. Utilization of these algorithms may enable communi-
cation of a reduced set of data for each multipole cell rather than
the entire segment data list. However, it is unclear how the result
generated from the finite element force calculation would be com-
municated to the dislocation dynamics code if only fast multipole
cell data is available. Additionally, it is possible that utilization of
fast multipole method algorithms may impact the concurrency of
the finite element and dislocation dynamics force calculations, pos-
sibly reducing performance of the overall application. Given the
execution timings and scalability data generated on the example
system, it appears possible that efforts to improve DSM scalability
should not become the first priority, as solving problem (11) and
computing surface tractions clearly dominate execution time of the
coupled application.

6. Summary

We have proposed an algorithmic framework, based on a dis-
tributed shared memory concept, to couple a parallel dislocation

dynamics code and a parallel finite element elasticity solver.
The algorithm enables large scale parallel simulations of small
scale plasticity by means of dislocation dynamics. The coupled
codes communicate data between each other frequently during a
computational loop. The communication between the codes and
distributed shared memory occurs in parallel. We have carried out
a performance analysis of the coupled application and contrasted it
with performance of the individual component codes. For our test
problem, the coupled application exhibits good performance with
strong scalability up to 1024 processors. The distributed shared
memory coupling approach employed in this work is generic and
likely applicable to a wide range of parallel coupling applications.
On the basis of our performance analysis, we have also identified
several components of the coupled application that are good
candidates for algorithmic modifications in order to increase
performance. However, even in its initial state, the coupled code
is capable of handling large systems containing tens of millions
of dislocation segments and executing on many processors with
good performance.
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a b s t r a c t

A new plasticity integration algorithm is proposed based upon observations from the
closed form integration of a generalized quadratic yield function over a single time step.
The key to the approach is specification of the normal to the plastic flow potential as a
function of the current state and strain increment. This uniquely defines the direction of
the stress tensor for a convex, non-faceted flow potential. The stress magnitude and plastic
strain increment are computed to satisfy the yield function. A non-quadratic, isotropic,
associative flow model is coded to demonstrate accuracy and time step convergence fol-
lowing a step change in loading path. The model is used in additional simulations of strain
localization in an expanding ring and a perforated plate.

Published by Elsevier Ltd.

1. Introduction

Traditional plasticity models are defined in terms of rate equations, and the stress and any history dependent state vari-
ables must be integrated through time (Hill, 1950). In the context of a displacement based finite element code, a strain incre-
ment or an average strain rate over the time increment is provided to the plasticity algorithm, and updated stress and state
variables are returned. The stability and accuracy of the material time integration algorithm may limit the time step. Con-
sequently, the computational efficiency of simulations can be affected by the material time integration method.

Time integration algorithms for general plasticity equations typically involve subtracting a plastic strain increment from
the total strain increment to arrive back at the yield surface. Extensive literature reviews of strength models and integration
procedures in finite element codes are given by Yu (2002) and Kojić (2002), respectively. More recent plasticity integration
algorithms have also been described (e.g. Ulz, 2009; Mosler and Bruhns, 2010; Brannon and Leelavanichkul, 2010). Details
can vary considerably, but the underlying concept is common: a return mapping to the yield surface from an initial projec-
tion. Textbook descriptions (e.g. Dunne and Petrinic, 2005; Hill, 1950) often provide a 2-D depiction of the yield surface, a
stress increment projecting some small distance outward from the surface, and a vector in the direction of the plastic strain
increment returning to the surface, Fig. 1a. The plastic strain direction is normal to the flow potential surface. This is the
same as the yield surface for associative-flow plasticity models.

The manner in which finite element analyses are run can depart significantly from this textbook illustration. Many finite
element codes will take strain increments on the order of 10% or more (Abaqus, 2009). If the material yields at a strain of
0.1%, the vector projecting off the yield surface may be 100 times the radius of the surface. The plastic strain direction must
project back to the surface. A slight error in the direction could result in missing the surface entirely, Fig. 1b. This projection
at large strain increments is a major difficulty for integrating anisotropic material models (Kojić, 2002).

The problem is simplified considerably for J2-Flow theory and an associated flow rule. This yield surface is a hyper-sphere
in deviatoric stress space. A vector passing through the center of the yield surface is colinear with the surface normal. Hence,
a plastic strain increment directed toward the center of the yield surface intersects the surface at a stress consistent with the
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plastic flow direction. The normality condition is satisfied automatically. Implicit integration schemes have to solve for the
magnitude of the plastic strain increment, not the direction. This radial return method (Krieg and Krieg, 1977; Wilkins, 1964)
is robust, efficient and widely used for J2-Flow theory with an associative flow rule. Radial return can be used for plasticity
models where the yield surface is not a hyper-sphere. This results in a non-associative flow rule because the yield surface
and plastic flow potential are not the same. The approach remains efficient and robust, but it may give results different than
those of an associative flow rule.

J2-Flow theory and other plasticity models for which the rate form can be expressed as _s ¼ a _eþ _ksmay be integrable ana-
lytically or semi-analytically over a time step. Solutions can be obtained for J2-Flow theory (Krieg and Krieg, 1977), kine-
matic hardening (Krieg and Xu, 1997; Auricchio and Beirão da Veiga, 2003; Arioli et al., 2006), the Drucker–Prager model
(Rezaijee-Pajand and Nasirai, 2008; Szabó, 2009), and potentially other plasticity models. These methods have demonstrated
accuracy advantages over purely numerical integration algorithms and do not suffer the return mapping direction issues, but
the range of models which can be integrated analytically or semi-analytically is limited. Analytical solutions do, however,
provide valuable insight into the behavior of plasticity relations. It is this insight that motivates the proposed new plasticity
integration scheme presented in Section 3.

The aim of this work is to explore a different approach to plasticity model integration. It is based upon observations from
the closed form integration of a generalized quadratic plasticity model over a time step described in Section 2. As an explo-
ration, presentation of the method is the focus. Isotropic elasticity, plastic incompressibility and other assumptions are used
to keep the relations simple and more transparent. The implementation is in an explicit finite element code, so formulation
of a consistent tangent is not considered. The closed form integration is the starting point for the presentation, followed by:
observations leading to the new numerical integration approach; a description of the implementation into a finite element
code; simulations verifying the implementation; and results from simple localization calculations.

2. Closed form integration for a generalized quadratic yield function

2.1. Rate formulation

The yield function, /, and flow potential, w, for a generalized quadratic plasticity model with an associated flow rule
(Karafillis and Boyce, 1993; Maudlin and Schiferl, 1996) can be written as:

/ ¼ w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : K : r0

r
� �r ¼ req � �r ¼ 0; ð1Þ

r0 is the deviatoric stress; �r is the material flow strength (a material property); and K is fourth order tensor characterizing
the material anisotropy. K is the identity tensor for an isotropic material. / ¼ w defines an associative flow rule; /– w results
in a non-associative plasticity model.

Following the classical plasticity formulation (Hill, 1950), the plastic part of the rate of deformation tensor is normal to
the flow potential

dp ¼ _k
@w
@r

¼ _kp ¼ _k
3
2
K : r0

�r
: ð2Þ

The plastic multiplier, _k, can be determined from the equivalence of plastic power between the tensor field and material
property representations

r : dp ¼ _kr : p ¼ _�e �r; ð3Þ

a b

Fig. 1. Stress increment andplastic returnmappingusinga plastic straindirectionestimated from the beginningof the time step for: (a) a small strain increment
typically described in text books and (b) many analyses where the strain increment can be more than an order of magnitude larger than the yield strain.
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_�e is the equivalent plastic strain rate for a uniaxial stress test specimen. It is work conjugate to the flow stress, �rð _�e; �e; T; . . .Þ.
Eq. (3) leads to an expression for the plastic multiplier

_k ¼ _�e
�r

r : p
; ð4Þ

_k ¼ _�e if the J2-Flow theory yield criterion and associative flow rule are used.
For a hypo-elastic formulation the deviatoric part of the rate of deformation tensor, d0, is decomposed additively into elas-

tic and plastic parts. The Jaumann stress rate is given in terms of the elastic part of the rate of deformation tensor which is
expanded by substituting the flow rule from Eq. (2)

r̂0 ¼ L : d0e ¼ L : ðd0 � dpÞ; ð5aÞ

¼ L : d0 � _�e
�r

r : p
L : p ¼ L : d0 � 3

2

_�e
r : p

L : K : r0: ð5bÞ

L is the fourth order elasticity tensor.

2.2. Closed form integration over a time step

The objective is to integrate Eq. (5b) in closed form for one time step, Dt, given the average rate of deformation tensor
over the time step. The anisotropy creates a rate form that is not amenable to the analytic techniques cited above (e.g., Arioli
et al., 2006; Szabó, 2009). The equations are instead integrated by summation over infinitesimal parts of the time step. It is
assumed that the flow strength and the plastic multiplier are constants over the time step. It is also assumed that material
rotations are applied prior to integrating the stress. The latter is common practice when using the Jaumann rate. Details of
the integration are given in Appendix A. The resulting stress at the end of the time step is

r0
tþDt ¼ exp �3

2

_�eDt
r : p

L : K

 !
: r0

t þ
2
3
r : p
_�eDt

I 0 � exp �3
2

_�eDt
r : p

L : K

 !" #
: K�1 : d0Dt: ð6Þ

Subscripts t and t + Dt refer to the stress at the beginning and end of the time step, respectively. I0 is a modified fourth order
identity tensor operating only on the deviatoric response, and it is defined by

I0 ¼def I� 1
3
d� d

� �
; ð7Þ

where I is the fourth order identity tensor and d is the second order identity. Some of the Dt ’s could be factored out of Eq. (6)
and from subsequent equations, but they are retained as an explicit reminder that the expression are intended to be applied
over time increments and are not alternative rate equations. The exponentials are reminiscent of those in analytic solutions
for J2-Flow theory (e.g., Arioli et al., 2006) and the Drucker–Pragar model (e.g., Szabó, 2009), but the anisotropy renders these
fourth order tensors rather than scalars.

A quick check can be made for small and large strain increments to verify that Eq. (6) behaves appropriately in the limits.
In the limit of a small strain increment where only the linear term in the exponential expansion is important, the stress at the
end of the step is

r0
tþDt ¼ r0

t �
3
2

_�eDt
r : p

L : K : r0
t þ L : d0Dt: ð8Þ

This is the forward integration result. At large strain increments the exponential vanishes, leaving

3
2

_�e
r : p

K : r0
tþDt ¼ d0

: ð9Þ

Comparing this with the Eq. (2) leads to the condition that the total strain rate and the plastic strain rate are the same in the
limit of very large strain increments. This is required for large strain increments to keep the stress bounded in Eq. (5a).

The plastic flow direction (flow potential normal) at the end of the time step follows from Eqs. (2) and (6). To simplify the
result, the exponential from Eq. (6) is written as the series expansion. From the expansion it is readily seen that the K
premultiplying the stress from Eq. (2) can be placed within the exponential on the left allowing the existing K to be factored
out on the right. The resulting expression is:

dp
tþDt ¼

3
2

_�e
r : p

exp �3
2

_�eDt
r : p

K : L

 !
: K : r0

t þ
2
3
r : p
_�e

I0 � exp �3
2

_�eDt
r : p

K : L

 !" #
: d0

( )

¼ exp �3
2

_�eDt
r : p

K : L

 !
: dp

t þ I0 � exp �3
2

_�eDt
r : p

K : L

 !" #
: d0 ð10Þ
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An important, but not surprising observation is that the plastic flow direction at the end of the time step is not necessarily
the same as the average plastic flow direction over the time step, which is given by

dp ¼ d0 � L�1 : r0
tþDt � r0

t

� �
=Dt: ð11Þ

The direction from Eq. (10) and the average direction are the same in the limit of small strain increments, but there is no
requirement for the flow potential normal at the end of the time step to be in the same direction as the average over the
time step. Equating the two is a common unstated assumption made in many plasticity algorithms because some additional
constraint is needed to close the set of equations. A second observation from Eq. (10) is that the evolution of the plastic flow
direction over a time step can take a simple form with well defined limits at small and large time steps.

3. Proposed time integration algorithm

The strategy for the proposed time integration method is to determine the flow potential normal at the end of the time
step and use that in conjunction with the flow potential to calculate a stress direction consistent with the normal. The mag-
nitude of the stress will then be adjusted to satisfy the yield condition and flow strength model. The ensuing development is
specialized to plastically incompressible materials. Extension to more general models is possible but beyond the scope of this
work. It is important to stress that this method is not a direct integration of the constitutive model; it is a general approx-
imate technique motivated by observations from a closed form solution.

3.1. Yield surface normal

The central component of the model is the flow potential normal at the end of the time step. The expression for the nor-
mal, n, at the end of the time step is motivated by Eq. (10) along with relations from Eqs. (2) and (4) and assuming
n ¼ p

ffiffiffiffiffiffiffiffi
2=3

p
.

ntþDt ¼ a exp �
ffiffiffi
3
2

r
�r _�eDt
r : p

@n
@r0

� �

t

: L

 !
: nt þ

ffiffiffi
2
3

r
r : p
�r _�eDt

I 0 � exp �
ffiffiffi
3
2

r
�r _�eDt
r : p

@n
@r0

� �

t

: L

 !" #
: d0Dt

( )
: ð12Þ

The leading factor, a, allows normalization of nt+Dt to a unit tensor at finite time increments where the rate of deformation
tensor is not exactly normalized by the plastic strain rate. The normalization by a is only for convenience in the ensuing
numerical treatment, the direction is the important feature. An additional extrapolation was made in replacing

ffiffiffi
3

p
K=

ffiffiffi
2

p
�r

with the derivative the flow potential normal with respect to stress. The goal in making this generalization is to provide
a plausible linearization of the normal in Eq. (12) at small strain increments

ntþdt ¼ nt þ
@n
@r0

� �

t

: L : d0 �
ffiffiffi
3
2

r
�r _�e
r : p

nt

 !
Dt ¼ nt þ

@n
@r0

� �

t

: Dr0: ð13Þ

The middle expression of Eq. (13) is a linearization of Eq. (12), and the Dr0 in the right hand expression is the stress incre-
ment through Eqs. (5a) and (5b). At large strain increments the plastic flow direction must approach the applied strain rate
direction in order for the stress to be bounded properly, Eq. (5a). As a result, Eq. (12) should provide an accurate limiting
direction for any plastically incompressible flow potential surface.

Eq. (12) could be used as the basis for the integration algorithm, but evaluating the exponential of the fourth order tensors
in Eq. (12) would be prohibitively expensive in most explicit finite element applications. Further assumptions are made to
obtain a scalar argument for the exponential. A more computationally practicable basis for the proposed time integration
scheme is

ntþDt ¼ a exp �3l _�eDt
r : p

 !
nt þ

r : p
�r�_eDt

ffiffiffi
2
3

r
1� exp �3l _�eDt

r : p

 !" #
d0Dt

( )
: ð14Þ

Eq. (14) is consistent with the exact expression, Eq. (10), specialized to J2-Flow theory. For a more general constitutive
model, Eq. (14) gives the proper flow potential normal direction at a zero time step, nt, and at large strain increments, d0Dt.
However, the path along the flow potential connecting these two limits will be in error, particularly at small time steps. This
is the trade-off in going from Eqs. (12) to (14). The significance of this path error will be evaluated later through several
examples. Eq. (12) would give a better approximation to the path if one could compute it efficiently.

For improved accuracy at small strain increments while using Eq. (14), a traditional backward difference, normal return
algorithm is used in place of the new approach. If the strain increment exceeds some value or is beyond the radius of con-
vergence for the traditional normal return algorithm, the newmethodology is used. Thus, the traditional forward approach is
used where it is accurate and efficient, and the new algorithm provides improved robustness and accuracy at larger strain
increments.
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3.2. Plastic strain rate estimate

The proposed algorithm using Eqs. (12) or (14) requires an estimate of the plastic strain rate. A reasonable approximation
can be obtained through a radial return solution for the time step. In the radial return mapping for an isotropic elastic mate-
rial, the direction of the plastic flow is assumed to be coaxial with the elastic trial stress, which is defined as;

rT ¼def r0
t þ 2ld0Dt: ð15Þ

Consequently, the stress at the end of the time step is in the same direction, Eq. (5a). The strain rate and stress tensor must
satisfy the yield function

/ ¼ GðrÞ � �rð�e; _�e; T; . . .Þ ¼ req � �r ¼ 0; ð16Þ

as well as the stress increment given by Eq. (5a). If / 6 0 the material is elastic; the strain rate is zero and the updated stress
is equal to the trial stress. If / > 0 the material will deform plastically, and the strain rate will be determined.

The yield function is homogeneous order one in stress. Using the assumption that the stress is coaxial with the trial stress,
the radial return algorithm reduces to finding the plastic strain rate that satisfies

/ ¼ GðrTÞ � 3l _�eDt
GðrTÞ
rT
vm

� �2

� �rð�e; _�e; T; . . .Þ ¼ 0; ð17Þ

rT
vm is the von Mises stress from the trial stress tensor, Eq. (15). Eq. (17) is solved using a combination Newton–Raphson/

Bisection algorithm described in Numerical Recipes (Press et al., 1992).
One could stop at this point and determine the stress by

r0 ¼ rT �rð�e; _�e; T; . . .Þ
GðrTÞ : ð18Þ

The yield function would be satisfied but the direction of plastic flow does not satisfy the flow potential. For some applica-
tions the salient aspects of the constitutive model may be adequately captured by only satisfying the yield function. Other-
wise, the Eq. (17) only provides an estimate of the plastic strain rate for use in Eqs. (12) or (14).

3.3. Stress direction calculation

The most significant computational effort in determining the stress tensor is in finding its direction from the flow poten-
tial normal.

dw
dr

dw
dr

����
����
�1

¼ ntþDt: ð19Þ

In forming the matrix to solve Eq. (19), the shear terms are multiplied by
ffiffiffi
2

p
, where appropriate, to permit standard matrix

operations while taking advantage of the symmetry of the stress tensor. The solution of Eq. (19) is a well defined, purely
mathematical problem, particularly for smooth, convex flow potentials. The mechanistic approximations and the depen-
dency on time step and material properties have been separated. Alternative methods can be used to solve Eq. (19) to im-
prove efficiency without affecting the algorithm.

Eq. (19) is solved here using Newton–Raphson iteration for the stress tensor. The primary difficulty is that the matrix cre-
ated from Eq. (19) has a null space of at least order two. The consistent components of the null space are related to the pres-
sure and to the magnitude of the stress tensor. The pressure does not impact the flow potential for materials which are
plastically incompressible. The magnitude of the tensor is removed from Eq. (19) by the explicit normalization. The stress
tensor itself is normalized after each iteration to maintain a consistent stress magnitude. Other contributions to the null
space may come from combinations of stress increments which do not affect the normal direction.

The null space complicates the solution of Eq. (19). A singular value decomposition (SVD) module from the LAPACK library
is used in the Newton–Raphson iteration. The LAPACK DGESVD routine returns the input matrix A decomposed into orthog-
onal matrices U and V and diagonal matrix w

½A� � fsg ¼ ½U�ðwÞ½V �T � fsg ¼ feg; ð20Þ

{s} is the correction to the deviatoric stress and {e} is the error for the Newton–Raphson equation. The null space is associated
with zeros in the diagonal w matrix. Since U and V are orthogonal matrices and w is diagonal, inversion of Eq. (20) is straight
forward. When inverting the w matrix, the reciprocals of the zero values are replaced by zeros. This eliminates the contri-
bution of the null space from the solution. The SVD is computationally intensive.

An alternative approach to deal with the null space is to add penalty terms to the matrix. Fourth order tensors are con-
structed from the outer product of the second order identity with itself and from the outer product of the deviatoric stress
with itself. These are multiplied by a penalty parameter and added to matrix. The penalty parameter is 106 times the norm of
the error, {e}, with a minimum penalty of 1.0.
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3.4. Plastic strain rate determination

The plastic strain rate is determined by first creating a scalar equation from the yield function, the flow rule, and a plastic
work equivalence statement. The normalized stress direction determined in Section 3.3 is denoted ~r and the deviatoric stress
at the end of the time step is given by

r0 ¼ b~r; ð21Þ

where b is an unknown scale factor. The equivalent stress is defined through Eq. (16) as

req ¼ GðrÞ ¼ Gðr0Þ ¼ Gðb~rÞ ¼ bGð~rÞ ¼ b~req ð22Þ

and similar relations can be constructed for the von Mises stress

rvm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
~r : ~r

r
¼ b~rvm: ð23Þ

These relations will be use to determine the scale factor b.
The equivalent plastic strain rate is defined such that the plastic work rate from the tensor expression is equal to that

defined by the equivalent scalars, Eqs. (1) and (3),

r : dp ¼ req
_�e ¼ �r _�e: ð24Þ

The plastic part of the rate of deformation tensor is obtained by specializing Eq. (11) to an isotropic elastic material and
substituting into Eq. (24). Eq. (24) becomes

req
_�eDt ¼ r : r0

t þ 2ld0Dt � r0� �
=2l: ð25Þ

Making a few substitutions from Eq. (15) and Eqs. (21)–(23), and after some manipulation, Eq. (25) can be written as

3lreq
_�eDt ¼ 3

2
req

~req
~r : rT �

r2
eq

~r2
eq

~r2
vm: ð26Þ

Using the yield function, Eq. (16), this can be cast into a form similar to Eq. (17) to solve for the plastic strain rate

3
2

~req

~r2
vm

~r : rT � 3l _�eDt
~r2
eq

~r2
vm

� �rð�e; _�e; T; . . .Þ ¼ 0: ð27Þ

With the plastic strain rate and flow strength known, the deviatoric part of the stress tensor at the end of the time step is
determined from Eqs. (21) and (22) as

r0 ¼
�r
~req

~r: ð28Þ

The full stress tensor is recovered by adding the contribution of the hydrostatic stress determined by an equation of state.

3.5. Treatment for reverse loading

If the inner product r0
t : d

0
< 0, the loading path may project into the yield surface. Development of Eqs. (12) and (14) as-

sumed continuous loading, so these do not apply. Therefore, an alternative solution is needed for reverse loading situations.
If the final stress state lies within the yield surface, / < 0, the increment is elastic and the trial stress becomes the stress at
the end of the time step. If the reverse loading increment is sufficiently large, the loading path may cut across the yield sur-
face causing plastic flow in a substantially different direction. The radial return solution of Section 3.2 is adopted for these
cases. In such situations the deformation increments are too large to track the path details explicitly over the time step. Con-
sequently, any solution will be approximate, and an efficient and robust method is a practical choice.

4. Examples using isotropic, non-quadratic yield surface

An isotropic, non-quadratic yield surface model with an associated flow rule is used as an example (Hosford, 1972;
Karafillis and Boyce, 1993). It is written in terms of principal stresses as:

/ ¼ w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ðr1 � r2Þq þ ðr2 � r3Þq þ ðr3 � r1Þq
� �q

r
� �r ¼ 0; ð29Þ

where q is an even integer exponent. This model reduces to J2-Flow theory for a yield surface exponent of 2, which enables
comparisons with the well-known radial return method. It also approximates a Tresca yield surface when high exponents are
used. Experimental yield surface measurements on aluminum sheet (Barlat et al, 1997) and polycrystal plasticity simulations
(Logan and Hosford, 1980) suggest an exponent of approximately eight for FCC materials. Details of the flow potential
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derivatives needed for Eq. (19) are given in Appendix B. The yield function and flow rule were implemented in the Arbitrary
Lagrange Eulerian code ALE3D (Nichols, 2009) for evaluation and demonstration.

4.1. Yield function representation

The first verification check is to ensure that the yield function is implemented correctly, independent of the details of the
integration algorithm. Time varying velocity gradients were imposed independently on the x, y and z-coordinates of all the
nodes of a unit cube.

x-direction :
d _x
dx

¼ cosðtÞ;

y-direction :
d _y
dy

¼ cos t þ p
3

� �
;

z-direction :
d _z
dz

¼ t þ p
3

� �
:

ð30Þ

The imposed deformation traverses a plane normal to the pressure axis in principle stress space (known as the p-plane). No
pressure or shear stress are induced beyond numerical integration error. The yield surface exponent was 20, and the constant
yield stress was set to 480 MPa. Deviatoric stresses in the x, y and z-directions were recorded and projected to a 2-
dimensional representation of the p-plane according to

x ¼ r0
x � r0

zffiffiffi
2

p y ¼
�r0

x þ 2r0
y � r0

zffiffiffi
6

p : ð31Þ

The resulting yield surface is shown in Fig. 2 for three different integration schemes: (1) traditional normal return using
the rate equations; (2) radial return, which results in a non-associative flow rule; and (3) the new algorithm described in
Section 3. All reproduce the same yield surface shape to within a 0.05% at this time step. J2-Flow theory would create a circle
with this projection and the Tresca yield criterion would create a hexagon.

4.2. Comparison with radial return for J2-Flow theory

The accuracy of the new integration algorithm is assessed by comparison with the radial return method applied to stan-
dard J2-Flow theory. This is achieved in the proposed algorithm by setting q = 2 in Eq. (29). A single element is run through
an abrupt change in loading path by prescribing the displacements of all of the nodes. The loading rates are defined to main-
tain an effective plastic strain rate of approximately 0.001 s�1 in both loading stages. The initial deformation resembles uni-
axial tension with the lateral strain rates prescribed equal to negative one-half of the extension strain rate in the x-direction.
The extension rate is 0.001 s�1. At a time of 40 s, the deformation is abruptly changed to pure shear in the xy-plane with a
shearing rate of 0:0005

ffiffiffi
3

p
s�1. All of the degrees of freedom of the element are again specified.

The shear modulus is 40 GPa and the constant yield strength is set to 480 MPa. Initial yield occurs at 4 s when the devi-
atoric stress in the x-direction is 320 MPa. The deformation is isochoric, so the bulk modulus is inconsequential. Since all of
the degrees of freedom are prescribed, inertial contributions do not affect the solution.

Fig. 2. Yield surface in the p-plane for a yield surface exponent of q = 20. Results are plotted for normal return, radial return and the proposed algorithm.
They are nearly coincident.

1230 R. Becker / International Journal of Plasticity 27 (2011) 1224–1238



   
237

Author's personal copy

Fig. 3 shows the x-direction stress from the radial return algorithm and the proposed method for runs at several fixed
time step sizes. The solid curves are for a time step of 0.002 s. The results for the two methods at this time step are the same
to 0.01 MPa, and this is considered to be the converged solution. Time steps of 2 s, 8 s and 40 s are indicated by symbols.
These correspond to strain increments of half, twice and ten times the initial yield strain. Fig. 3a displays the radial return
results and Fig. 3b shows the results from the new integration scheme. Following the loading path change, the radial return
method displays increased error with increasing time step size. The new algorithmmatches the baseline solution muchmore
closely with larger time steps. This is expected since method is based on the exact incremental solution for a J2-Flow theory
material. Similar plots of shear stress show less time step error for the radial return algorithm and similar time step insen-
sitive results for the new algorithm.

4.3. Evaluation for non-quadratic surfaces

The same loading path change test is run for q = 8 in Eq. (29). The baseline result is established using the traditional for-
ward integration method based on the rate equations run at a time step of 0.0002 s. Results are shown in Fig. 4 for the radial
return method and the proposed algorithm at two time steps: 0.0002 s and 8.0 s. The latter corresponds to twice the yield
strain. The forward time step integration method does not work at this large time step. As indicated in the discussion fol-
lowing Eq. (14), the current algorithm has an integration path error at small strain increments resulting in deviation from
the baseline solution. However, this error does not increase with time step, and it is of the same order as the time step errors
shown for the J2-Flow theory radial return algorithm in Fig. 3a. The radial return results shown in Fig. 4 appear close to the
baseline solutions even though using a radial return for a non-quadratic model creates a non-associative flow rule. One may
wonder why not just use the radial return method?

4.4. Evaluation in off-axis loading

The examples reported above involved axial and shear loading which accesses a rather simple path along the yield surface
with no rotation. The final unit tests are performed by a path change between two more general loadings. As before, the loca-
tions of all of the nodes on the single finite element are prescribed. PathA is applied for 40 s, and the deformation is abruptly
switched to path B. The isochoric velocity gradients associated with these two paths are

A ¼
0:5 1:0 0:4
0:0 �0:3 0:0
0:4 0:0 �0:2

2
64

3
75 B ¼

�0:4 0:0 �0:2
0:5 0:7 0:4
0:0 �0:3 �0:3

2
64

3
75: ð32Þ

Similar to Fig. 4, the baseline solution was obtained by using the forward gradient method and a time step of 0.0002 s. Solu-
tions with the radial return method and the new algorithm are run at time steps of 0.0002 s and 8 s.

The results shown in Fig. 5 again show that the proposed integration algorithm tracks the baseline solution and that there
is little time step dependence. A behavior not noted in the prior examples is that the radial return method converges to the
wrong stress. With these more complex loading states the stress evolution is dependent on the plastic strain rate direction. A
radial return is not consistent with the flow potential, so deviations should be expected.

4.5. Strain localization in an expanding ring

One of the goals of using a yield surface with a higher curvature is to allow strain localization more readily than J2-Flow
theory. This possibility was investigated using an expanding ring. The plane strain ring has in outer radius of 25.4 mm and a
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Fig. 3. Axial stress for a J2-Flow theory at various time steps during a loading path change: (a) radial return and (b) proposed algorithm. The solid lines
correspond to a baseline time increment of 0.0002 s.
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wall thickness of 3 mm. There are 20 constant stress quadrilateral elements across the thickness of the ring and 180 circum-
ferentially in the quarter symmetry model. The density is 7.8 g/cc, the shear modulus 40 GPa and the bulk modulus
66.67 GPa. The yield stress was varied randomly from element to element to provide defects to seed strain localization.
The statistics of the strength distribution were Gaussian. The average yield strength was 480 MPa and the standard deviation
was 0.96 MPa—representing 0.2% of the initial yield stress. A slight linear strain hardening of 0.005 MPa was used. A constant
pressure of 100 MPa was applied to the inner surface from the beginning of the analysis.

Plastic strain rate contours at 60 ls are shown in Fig. 6 for yield surface exponents of 8 and 2. The latter is J2-Flow theory.
For q = 8, strain localization patterns emerge before 20 ls and are continuously refined as the deformation proceeds, Fig. 6a.
These patterns do not appear in the q = 2 analysis, even at late times, Fig. 6b. A calculation was also run with q = 8 and the
radial return algorithm. This provides a q = 8 yield surface and a q = 2 plastic flow potential. The results are very similar to
Fig. 6a, indicating that the yield surface shape is facilitating the localization rather than the direction of plastic flow.

4.6. Plugging during plate perforation

A configuration where the plastic flow direction is likely to be more important is in ‘‘plugging’’ of a plate penetrated by a
projectile. In recovered samples, shear bands are observed ahead of the projectile, and the material ahead of the penetrator
appears to be pushed as a plug through the remaining plate (Murr et al., 2009). Thermal softening and damage within the
shear bands can accentuate the bands in a positive feedback mechanism.

For these simulations, the configuration and material properties are idealized to isolate the role of the plastic flow direc-
tion. Temperature dependence, strain hardening and fracture are not included in the calculations so that these factors do not
have a role in the current strain localization predictions. A 5.0 mm diameter, 10.0 mm long, right circular steel cylinder is
impacted against a 5.0 mm thick, 200 mm diameter aluminum plate at 225 m/s. The steel cylinder has a shear modulus
of 71.8 GPa and a bulk modulus of 419 GPa. It remains elastic. The aluminum plate has a shear modulus of 28 GPa, a bulk
modulus of 80 GPa and a constant flow strength of 150 MPa. The axisymmetric finite element mesh is uniform in the vicinity
of the penetration with an element size of 0.05208 mm in both the r and z directions. This provides 48 elements across the
penetrator radius and 96 in the plate thickness. The penetration is simulated in Eulerian mode in ALE3D to preclude mesh
motion biases that would complicate comparisons among ALE runs with solution dependent mesh motion. Simulations were
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and solutions from a radial return (radial) and the proposed algorithm (new) are shown. (a) Axial stress and (b) shear stress. The lines correspond to a time
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run with: J2-Flow theory; the proposed integration scheme with q = 8 and an associative flow rule; and with q = 8 for the
yield surface and radial return (q = 2 flow potential, non-associative flow rule).

Fig. 7 shows strain rate contours (ls�1 units) for the three runs at 15 ls. The scale is logarithmic to highlight the strain
rate fan ahead of the projectile corner. The plots are similar, but the fan ahead of the corner for the new algorithm is some-
what narrower, Fig. 7b. This indicates greater strain localization than for the other two runs. The fan feature is not steady
state and the gap in the fan near the free surface is due to wave reflections.

Significant differences among the runs are not evident until the projectile exits at approximately 50 ls. The projectile exit
is earlier for the new model than for the other two runs. The projectile velocity at exit for the J2-Flow theory run is 52 m/s.
The exit velocity is 70.5 m/s for q = 8 and the new algorithm using an associate flow rule and 58 m/s for a q = 8 yield surface
and radial return. These latter differences indicate that the alignment of the plastic flow direction changes the ease of shear
and the dissipated energy.

The simulations were run in parallel on eight processors on a dedicated compute node. The time increment was set by the
Courant limit and advection accuracy criteria, so the number of time steps is very near the same in each run. The wall clock
time for the new algorithm with the penalty approach to solve Eq. (19) was 18% higher than for J2-Flow theory with radial
return. The time was 50% longer when using singular valued decomposition to solve the matrix. The timing reflects modest
impact to the computational analyst for using a more complex material model. It is not a statement of numerical efficiency of
the integration algorithm since J2-Flow theory is a much simpler model than the non-quadratic. An implementation of a con-
ventional integration approach for a non-quadratic model would be necessary for a meaningful timing comparison. The CPU
time for the non-quadratic model will be much greater than the J2-Flow solution, but the expense of advection and other
physics reduces the overall impact on turn-around time. Some fraction of this can be recovered by weighting the domain
decomposition so more processors are allocated to work on the aluminum plate rather than the steel and surrounding

Fig. 6. Strain rate contours at 60 ls for an expanding ring. (a) Non-quadratic yield surface, q = 8; and (b) quadratic yield surface. Strain rate legend units are
ls�1.

Fig. 7. Plastic strain rate contours (ls�1 units) for plugging simulation using: (a) J2-Flow theory; (b) new algorithm with q = 8 and associative flow rule; and
(c) q = 8 yield surface and radial return (q = 2 flow potential, non-associative flow).

R. Becker / International Journal of Plasticity 27 (2011) 1224–1238 1233



   
240

Author's personal copy

air. Gains for the proposed approach would also come from a more efficient algorithm to calculate the stress given the flow
potential normal.

5. Summary and conclusions

A new approach for integrating continuum plasticity relations has been introduced based on observations from closed
form integration of a generalized quadratic yield function over a time step. The normal to the flow potential is computed
from a relatively simple expression, and the new stress is calculated to be consistent with the flow potential normal. This
introduces a different set of approximations than traditional approaches, and further evaluation will be necessary using a
variety of yield surfaces and flow potentials. A consistent tangent was not derived in this work. It should be straight forward,
albeit tedious.

The preliminary results presented here are promising. The method may be somewhat less accurate than traditional ap-
proaches at small strain increments, but it can be significantly more accurate at large strain increments. The method is also
very robust numerically.

The new approach has additional attractive features from a numerical implementation perspective. The physics approx-
imations in the time integration scheme are decoupled from the expensive computations. Thus, the approximations are well
defined, and work to improve numerical efficiency can proceed without concerns of impacting the solution quality. Gains
may be realized over the current implementation by using a different approach to find the stress tensor given the flow po-
tential normal. No attempts have yet been made to improve the numerical efficiency of the new algorithm. However, a hy-
brid approach using a forward integration algorithm at small strain increments improves the overall computational
efficiency while also providing a more accurate solution for small strain increments.

Although not the focus of this work, it was observed that simulations using the associative and non-associative flow rules
give similar results in some circumstances but not others. Depending on the application, one may be able to use a radial re-
turn method and get a satisfactory solution at appreciable computational savings. Further investigation along these lines
could be fruitful.

Appendix A. Integration of generalized quadratic yield function

Eq. (5b) is integrated over a time step assuming that that corrections for spin have already been incorporated and that _k
and �r are constant over the time step.

_r0 ¼ L : d0 � 3
2

_k
�r
L : K : r0 ðA1Þ

The time increment is divided into N steps giving the recursion relation at the M’th sub-step

r0
tþM

NDt

h i
¼ I0 � 3

2

_k
�r
Dt
N

L : K

( )
: r0

tþM�1
N Dt

h i
þ L : d0 Dt

N
: ðA2Þ

I0 is defined in Eq. (7). Applying this formula to successive sub-steps and noting the trend:

r0
tþ1

NDt
¼ I0 � 3

2

_k
�r
Dt
N

L : K

( )
: r0

t þ L : d0 Dt
N

; ðA3Þ

r0
tþ2

NDt
¼ I0 � 3

2

_k
�r
Dt
N

L : K

( )2

: r0
t þ I0 � 3

2

_k
�r
Dt
N

L : K

( )
: L : d0 Dt

N
þ L : d0 Dt

N
; ðA4Þ

r0
tþ3

NDt
¼ I0 � 3

2

_k
�r
Dt
N

L : K

( )3

: r0
t þ I0 � 3

2

_k
�r
Dt
N

L : K

( )2

: L : d0 Dt
N

þ I0 � 3
2

_k
�r
Dt
N

L : K

( )
: L : d0 Dt

N
þ L : d0 Dt

N
; ðA5Þ

. . .

. . .

r0
tþDt ¼ I 0 � 3

2

_k
�r
Dt
N

L : K

( )N

: r0
t þ

XN�1

M¼0

I0 � 3
2

_k
�r
Dt
N

L : K

( )M
2
4

3
5 : L : d0 Dt

N
: ðA6Þ

Taking the limit as N ! 1 allows simplification. Writing the quantity in braces as

I � 3
2

_k
�r
Dt
N

L : K

( )
¼ A ¼ I 0 � 1

N
B ðA7Þ

1234 R. Becker / International Journal of Plasticity 27 (2011) 1224–1238



   
241

Author's personal copy

to shorten the notation, and expanding the binomial gives

AN ¼ I0 � N
N
Bþ NðN � 1Þ

N22!
B2 � NðN � 1ÞðN � 2Þ

N33!
B3 . . . : ðA8Þ

Letting N approach infinity results in

lim
N!1

I0 � 3
2

_k
�r
Dt
N

L : K

( )N

¼ exp �3
2

_k
�r
DtL : K

 !
: ðA9Þ

The simplified form for the summation follows the form for a truncated geometric series

1
N

XN�1

M¼0

AM ¼ 1
N
ðI0 � ANÞ : ðI0 � AÞ�1 ¼ ðI0 � ANÞ : B�1: ðA10Þ

This can be verified by multiplying Eq. (A10) by (I0 � A); all but the first and last terms of the resulting summation drop out.
Upon substituting the series results, Eq. (A6) becomes

r0
tþDt ¼ exp �3

2

_k
�rDtL : K

 !
: r0

tþDt þ
2
3

�r
_kDt

I 0 � exp �3
2

_k
�rDtL : K

 !" #
: K�1 : d0Dt: ðA11Þ

This becomes Eq. (6) in Section 2.2.

Appendix B. Yield function details

Computation of the yield function

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½ðrI � rIIÞq þ ðrII � rIIIÞq þ ðrIII � rIÞq�

q

r
� �r ¼ 0 ðB1Þ

is through the invariants of the deviatoric stress tensor

J01 ¼ r0
11 þ r0

22 þ r0
33 ¼ 0; ðB2Þ

J02 ¼ �r0
22r

0
33 � r0

33r
0
11 � r0

11r
0
22 þ r0

23r
0
32 þ r0

31r
0
13 þ r0

12r
0
21 ðB3Þ

¼ 0:5 r02
11 þ r02

22 þ r02
33 þ 2r0

23r
0
32 þ 2r0

31r
0
13 þ 2r0

12r
0
21

� �
¼ 1

3
r2
vm; ðB4Þ

J03 ¼ r0
11r

0
22r

0
33 þ r0

12r
0
23r

0
31 þ r0

13r
0
32r

0
21 � r0

11r
0
23r

0
32 � r0

22r
0
31r

0
13 � r0

33r
0
12r

0
21 ðB5Þ

and the Lode angle

a ¼ 1
3
cos�1 3

ffiffiffi
3

p

2
J03=J

032
2

 !
¼ 1

3
cos�1ðkÞ 0 � a � 1

3
p ðB6Þ

The distinction between the ij and ji shear stress components is maintained in Eqs. (B2)–(B5) to facilitate taking derivatives
later in this section. The principal stresses are given by

r0
I ¼

2ffiffiffi
3

p J
012
2 cos a� 1

3
p

� �
r0

II ¼
2ffiffiffi
3

p J
012
2 cosðaÞ r0

III ¼
2ffiffiffi
3

p J
012
2 cos aþ 1

3
p

� �
: ðB7Þ

After a bit of manipulation, the yield function can be expressed in terms of only a and the von Mises stress.

/ ¼ 2ffiffiffi
3

p rvm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

sinq a� 1
3
p

� �
þ sinqðaÞ þ sinq aþ 1

3
p

� �� �
q

s
� _r ¼ req � _r ¼ 0: ðB8Þ

rvm is defined as the vonMises stress by the standard definition, Eq. (B4), and req is defined in Eq. (B8) as the equivalent
stress. These are equal if q = 2, as in the von Mises yield criterion, but they are not equal in general. The von Mises stress
is used in the relations to facilitate ties to J2-Flow theory.

Both first and second derivatives of the yield function are needed. It is convenient to define the quantity under the radical
of Eq. (B8) as F , resulting in the first derivative being

d/
dr

¼ dreq

dr
¼ req

rvm
drvm
dr

þ 1
q
req

F
dF
dr

: ðB9Þ

The second derivative is manipulated by using Eq. (B9) to replace all of the first derivatives of F . This produces a form where
the required symmetry is evident
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d2/
dr2 ¼ 1� q

req

dreq

dr
dreq

dr
� 1þ q

rvm
req

rvm
drvm
dr

drvm
dr

þ q
rvm

dreq

dr
drvm
dr

þ drvm
dr

dreq

dr

� �
þ req

rvm
d2rvm
dr2 þ 1

q
req

F
d2F
dr2 : ðB10Þ

The first and second derivatives of the von Mises stress needed in Eq. (B10) are

drvm
dr

¼ drvm
dr0 ¼ 3

2
r0

rvm
and

d2rvm
dr2 ¼ 3

2
1
rvm

I0 � 3
2

r0

rvm
r0

rvm

� �
; ðB11Þ

where I0 is defined in Eq. (7). The derivatives of F are written with the chain rule in terms of both a and k to aid in addressing
the singular points.

1
q
dF
dr

¼ 1
q
dF
da

da
dk

dk
dr

; ðB12Þ

1
q
d2F
dr2 ¼ 1

q
d2F
da2

da
dk

da
dk

dk
dr

dk
dr

þ 1
q
dF
da

d2a
dk2

dk
dr

dk
dr

þ 1
q
dF
da

da
dk

d2k
dr2 ; ðB13Þ

k is defined in Eq. (B6).
The scalar derivatives in Eqs. (B12) and (B13) are

1
q
dF
da

¼ 1
2

sinq�1 a� 1
3
p

� �
cos a� 1

3
p

� �
þ sinq�1ðaÞ cosðaÞ

�

þ sinq�1 a� 1
3
p

� �
cos a� 1

3
p

� ��
; ðB14Þ

1
q
d2F
da2 ¼ 1

2
sinq�2 a� 1

3
p

� �
þ sinq�2ðaÞ þ sinq�2 aþ 1

3
p

� �� �
� qF ; ðB15Þ

da
dk

¼ �1
3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p ¼ �1
3 sinð3aÞ ; ðB16Þ

d2a
dk2

¼ �1
3
kð1� k2Þ�

3
2 ¼ 9k

�1
3 sinð3aÞ

�1
3 sinð3aÞ

�1
3 sinð3aÞ : ðB17Þ

The reason for writing Eq. (B17) in this manner will evident shortly. At a ¼ 0 and a ¼ p=3 the sine function in Eqs. (B16) and
(B17) is zero, and the values are singular. However, the product

da
dk

dk
dr

¼ da
dr

ðB18Þ

is bounded. The value of the product at the singular points is determined by an abusive application of l’Hôpital’s rule.

Lij ¼
da
drij

¼
dk
drij

�3 sinð3aÞ)
l0Hospital0s

rule

d
rkl

dk
drij

� �

�9 cosð3aÞ da
rkl

¼
d2k

drlkdrij

�9 cosð3aÞLkl
: ðB19Þ

The derivative at the singular angles is determine by solving Eq. (B19) for Lij.

Lij ¼
da
drij

¼ �1
3 sinð3aÞ

dk
drij

¼ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

cosð3aÞ
d2k

drijdrij

s ������
a!0kp=3

: ðB20Þ

Note that Eq. (20) takes the diagonal of the second derivative matrix. It will be shown later that the radical is non-singular, so
Eq. (B20) addresses the singular values in Eq. (B12) and the first term of Eq. (B13). Further, by the expansion given in Eq.
(B17), the result in Eq. (B20) also eliminates two of the three orders of singularity in the second term of Eq. (B13).

The remaining singularities in the second term and in the last term of Eq. (B13) are eliminated because Eq. (B14) is zero at
these singular points. Specifically, by series expansion of Eq. (B14)

�1
3 sinð3aÞ

1
q
dF
da

’ �signðcosð3aÞÞ
9að1þ Oa2Þ

� �
a
1
3

ffiffiffi
3

p

2

 !q

½ðq� 4Þ þ Oa2 þ Oaq�2�
( )

’ �signðcosð3aÞÞ ðq� 4Þ
27

ffiffiffi
3

p

2

 !q�����
a!0kp=3

:

ðB21Þ

The limits near a ¼ 0 and a ¼ p=3 differ by an algebraic sign. The next highest term is quadratic in a so the limit is accurate
numerically in 64 bit calculations to approximately a < 10�7 of the singularity. A similar expansion could be used to remove
the singularities from Eq. (B12). This would be expedient if the second derivatives were not computed for Eq. (B20).
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Considering Eqs. (B16) and (B17), Eq. (B13) can be rewritten as

1
q
d2F
dr2 ¼ 1

q
d2F
da2 þ 9cosð3aÞ 1

q
dF
da

�1
3 sinð3aÞ

� �" #
da
dr

da
dr

þ 1
q
dF
da

�1
3 sinð3aÞ

� �
d2k
dr2 : ðB22Þ

It is not difficult to demonstrate that the argument of the square brackets is zero at a ¼ 0 and a ¼ p=3.
What remains is to specify the tensor derivatives in Eqs. (B12) and (B13). Using

dJ02
dr

¼ r0 and
d2J02
dr2 ¼ I0; ðB23Þ

these become

dk
dr

¼ 27
2

1
r3
vm

dJ03
dr

� 9
2

J03
r2
vm

r0
� �

; ðB24Þ

d2k
dr2 ¼ 27

2
1
r3
vm

�9
2

1
r2
vm

J03I
0 þ dJ03

dr
r0 þ r0 dJ

0
3

dr

� �
þ 135

4
J03
r4
vm

r0r0 þ d2J03
dr2

" #
: ðB25Þ

Calculating the derivatives of the third invariant is accomplished by utilizing the derivatives with respect to the deviatoric
stress

dJ03
dr

¼ dJ03
dr0 þ

1
9
r2
vmd: ðB26Þ

In component form, the first term on the right hand side of Eq. (B26) is

dJ03
dr0

11
¼ r0

22r
0
33 � r0

23r
0
32

dJ03
dr0

22
¼ r0

11r
0
33 � r0

31r
0
13

dJ03
dr0

33
¼ r0

11r
0
22 � r0

12r
0
21

dJ03
dr0

23
¼ r0

12r
0
31 � r0

11r
0
32

dJ03
dr0

31
¼ r0

12r
0
23 � r0

22r
0
13

dJ03
dr0

12
¼ r0

23r
0
31 � r0

33r
0
21:

ðB27Þ

Note that not distinguishing between the ij and ji shears in taking the derivatives would have increased the corresponding
derivates by a factor of 2. The second derivative of J03 is given in Table B1.
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a b s t r a c t

We use the cohesive zone failure model to simulate debonding and failure in high strain-rate plane

strain deformations of a heat conducting particulate composite comprised of initially circular metallic

particulates immersed in a metallic matrix, with the goal of delineating the effect of these failures on

the initiation and propagation of adiabatic shear bands (ASBs). Failure is assumed to ensue at an

interface between two elements when a predefined combination of the normal and the tangential

tractions on that interface reaches a critical value. We postulate that the critical value of the traction in

the cohesive zone failure model decreases affinely with an increase in the temperature. Both particulate

and matrix materials are assumed to be isotropic, heat conducting, and to obey the von Mises yield

criterion with the flow stress depending upon the effective strain, the effective strain rate, and the

temperature according to the Johnson–Cook relation. The coupled transient thermomechanical problem

is analyzed by the finite element method by using 3-node triangular elements and the finite calculus

technique to prevent volumetric locking. It is found that the critical strength of the bond between the

particulate and the matrix significantly influences the loss of strength of the entire specimen. The time

of initiation of an ASB is influenced by the time when debonding ensues which depends upon the values

of the critical traction and the mode-mixity parameter in the cohesive zone failure criterion.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As modeling and simulation is increasingly used to predict the
behavior of structures and systems under catastrophic loading,
simulation techniques and physical models for dynamic failure
have become very important. Dynamic failure of ductile materials
is quite often preceded by the initiation and development of
adiabatic shear bands (ASBs) which are narrow regions, a few
micrometers wide, of intense plastic deformation. ASBs are
known to play a significant role in penetration problems, and
machining and metal-forming processes. For example, Magness
and Farrand [1] have postulated that if in a penetration problem
ASBs continuously form and lead to failure near the nose of the
projectile, resulting in a projectile with a sharp, rather than a
mushroomed, nose, then the penetration depth will be more
than that for the case of no ASB formation. Similarly, ASBs
facilitate the punching of a hole in a metal cutting process since
the kinetic energy required for punching a centimeter thick plate

by plugging equals nearly that needed to indent the same plate by
less than 1mm.

Tresca [2] observed ASBs (he called them hot lines) over a
century ago during the hot forging of a platinum bar. Subse-
quently they were reported by Massey [3]. However, Zener and
Hollomon’s [4] observing them during the punching of a hole in a
low carbon steel plate, and proposing that they form when
softening of the material due to its being heated up has overcome
its hardening due to strain- and strain-rate effects generated
considerable interest in the field. Clifton [5] used the criterion that
an ASB initiates when the shear stress in quasi-static simple
shearing deformations of a homogeneous body attains its
maximum value to find the shear strain at the initiation of an
ASB in a thermoviscoplastic material obeying a power-law type
relation among the shear stress, the shear strain and the
temperature rise. Bai [6] postulated that an ASB initiates when
infinitesimal perturbations superimposed on finite homogeneous
deformations of a body begin to grow. Wright and Walter [7] built
upon the numerical solution of Wright and Batra [8] to show that
the shear stress collapses at the initiation of an ASB. These results
were confirmed experimentally by Marchand and Duffy [9] during
torsional deformations of thin-walled tubes. They also reported
the shear strain within an ASB being as large as 20. Even though
heat conduction plays a significant role in determining the ASB
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width, the band is called adiabatic since there is not enough time
for the heat to be conducted away from it. Numerical solutions of
the coupled nonlinear equations governing simple shearing and
plane strain thermomechanical deformations of a thermoelasto-
viscoplastic body reveal that an ASB forms much later than when
the effective stress attains its maximum value (e.g. see Batra [10]),
and the delay between these two instants depends upon the
number, the size and the type of defects present in the body.
Much of the earlier work on ASBs is summarized in Bai and Dodd’s
[11] book, the book edited by Perzyna [12], and the review paper
by Tomita [13]. Mathematical aspects of the ASB phenomenon are
described in Wright’s [14] book.

Works enumerated above and numerous others have studied
the shear banding phenomenon in homogenous materials.
However, many materials are inhomogeneous because of impu-
rities and/or second-phase particles, which are frequently intro-
duced in order to strengthen the material (or give some other
desirable property). One such class of materials is metal-
particulate/metal-matrix composites, which are frequently pro-
duced to tailor bulk properties (density, failure strength, ductility)
by varying the volume fraction of two dissimilar constituents.

ASBs in particulate composites have been studied both
experimentally (e.g. see Zhou et al. [15]) and numerically (e.g.
see Zhou [16], Batra and Wilson [17], Batra and Love [18]). The
latter approach has considered both homogenized materials (e.g.
see Batra and Love [19]) and analyzing deformations of each
constituent (Zhou [16], Batra and Love [18]). During their analyses
of a particulate composite by the finite element method (FEM)
Batra and Love [18] found that the ASB initiation criterion for a
homogeneous material does not apply to particulate composites,
and proposed the following alternative criterion: an ASB initiates
at a point when the energy dissipation rate there suddenly
increases by nearly an order of magnitude. This ASB initiation
criterion has subsequently been adopted by Charalambakis and
Baxevanis [20] and Batra and Love [19]. Zhu and Batra [21]
analyzed the initiation and propagation of ASBs in plane strain
deformations of laminated composites, and found that an ASB
initiating from a point on an interface between two adjoining
layers propagated easily into the softer material. Batra and Kwon
[22] studied ASB initiation in simple shearing deformations of a
bimetallic body with a defect placed at the interface between the
two materials and found that the ratio of the shear moduli of
the two materials significantly influenced which material shear
banded.

It has been conjectured that during high strain rate deforma-
tions of particulate composites, particulates debond from the
matrix resulting in the loss of load transfer between the two
constituents, preventing or significantly delaying the initiation
and development of ASBs. Depending upon the strength of the
particulate and the matrix materials and the bond between them,
failure may initiate in either constituent or along particulate/
matrix interfaces. This differs from earlier studies on ASBs in
delineating how crack formation and particulate/matrix debond-
ing affect the formation and evolution of ASBs. This additional
knowledge in failure mechanics would allow particulate compo-
sites to be constructed such that the ASB formation could be
deliberately reduced or enhanced.

In order to make the problem tractable with reasonable
computational resources, we adopt a cohesive-zone technique
to simulate failure at a point. That is, the formation of a crack is
determined by a small dissipative region called a cohesive zone,
where the combination of tractions and opening displacements
determine the level of failure of a material or of an interface
between two distinct materials. The cohesive zone method allows
numerical simulation of failure at multiple locations in the body
simultaneously and allows these failures to interact.

Dugdale [23] and Barenblatt [24] proposed the use of cohesive
zones to model material failure and generate traction-free crack
surfaces. Xu and Needleman [25]and Camacho and Ortiz [26]
introduced this theory in the FE methodologies to simulate
fracture along inter-element boundaries. The technique has been
used by numerous researchers to study material failure and
delamination of composites. Computed results depend upon
values assigned to material parameters in the cohesive zone
relation, and to some extent on the FE mesh. In this work cohesive
zones are inserted adaptively when surface tractions at an
interface between two adjoining FEs reach a critical value. A
limitation of this approach is that failure is only allowed to ensue
along element boundaries and, therefore, computed results are
mesh dependent. Using randomly oriented FEs and conducting
the same analysis with multiple meshes is required to increase
confidence in results.

The rest of the paper is organized as follows. The problem
studied is formulated in Section 2 that also describes the cohesive
zone relation and the ASB initiation criterion. The computational
algorithm is briefly discussed in Section 3. Results including the
effect of the particulate/matrix interfacial strength on the
development of ASBs are discussed in Section 4. In Section 5 we
remark on similarities and differences between the cohesive zone
and the nodal release techniques. Conclusions of this work are
summarized in Section 6.

2. Formulation of the problem

2.1. Governing equations

A schematic sketch of the problem studied is shown in Fig. 1.
Because of the assumption of plane strain deformations the
dimension of the prismatic body perpendicular to the cross
section shown in Fig. 1 is very large. A 2mm� 2mm square
particulate composite body is compressed by applying in the
vertical direction an axial velocity VðtÞ ¼ 20m=s¼ 0:02mm=ms on
the top surface while the bottom surface rests on a rigid and
frictionless surface. The prescribed velocity increases linearly
from zero to its steady state value in 1ms, giving the steady state
nominal axial strain-rate of 10,000/s. Circular cylindrical

Fig. 1. Schematic sketch of the problem studied.
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particulates of diameters ranging from 50 to 80mm are randomly
placed in a metallic matrix.

We use the referential description of motion and rectangular
Cartesian coordinates to describe the dynamic thermo-mechan-
ical deformations of the particulate composite. Both the particu-
late and the matrix materials are modeled as heat-conducting,
isotropic, homogeneous thermo-elasto-viscoplastic and exhibit
strain and strain-rate hardening and thermal softening. These are
characterized by the Johnson–Cook [27] empirical viscoplastic
relation:

sy ¼ ðAþBðepe Þ
nÞ 1þC ln

_epe
_e0

� �� �
ð1� TmÞ ð1Þ

in which the flow stress sy increases with an increase in the
effective plastic strain epe and the effective plastic strain rate _epe ,
but decreases with an increase in the non-dimensional tempera-
ture T. In Eq. (1), parameters B and n characterize the strain
hardening of the material, C and _e0 its strain-rate hardening, and
m its thermal softening. The non-dimensional temperature T is
defined as T ¼ ðy� yref Þ=ðym � yref Þ, where y is the current temp-
erature at the material point and ym and yref are the presumed
melting and the reference temperatures, respectively. Note that
ym is obtained by fitting the relation (1) to the test data, and need
not equal the actual melting temperature of the material.
Furthermore, the hardening parameters C and n are considered
to be constants, despite a known transition in strain-rate
hardening in many metals between quasi-static and dynamic
rates. However, this assumption’s impact on the results presented
here is lessened due to the exclusive consideration of high rates of
deformation (_epe4103=s), which are above the transition strain
rates seen in the materials of interest; e.g. see Section 4.1. The
materials of the particulates and the matrix are assumed to obey
the von Mises yield criterion and the associated flow rule.

Deformations of the body are governed by the balance of mass,
linear momentum, moment of momentum, and internal energy,
which can be found in many continuummechanics books (e.g. see
Truesdell and Noll [28], Batra [29]). Effects of heat conduction are
considered with all of the plastic working converted into heating;
thus the Taylor–Quinney coefficient is taken to equal 1.

We assume that the body is initially stress-free, at rest, and at a
uniform temperature. It is subjected to the following boundary
conditions:

v2 ¼
�v0 t̂=t̂ ramp; 0r t̂r t̂ ramp

�v0; t̂4 t̂ ramp

(
on X2 ¼H; ð2Þ

v2 ¼ 0 on X2 ¼ 0;

T11 ¼ T21 ¼Q1 ¼ 0 on X1 ¼ 0 and X1 ¼H;

T12 ¼ Q2 ¼ 0 on X2 ¼ 0 and X2 ¼H:

Here, t̂ represents the analysis time. All bounding surfaces are
taken to be thermally insulated, the top and the bottom surfaces
to be smooth, and the left and the right vertical surfaces to be
traction free. Q equals the heat flux measured per unit area in the
reference configuration, T the first Piola–Kirchhoff stress tensor,
and ðX1;X2Þ coordinates of a point in the reference configuration
with respect to rectangular Cartesian coordinate axes (e.g. see
Fig. 1).

Prior to debonding, particulate/matrix interfaces are assumed
to have continuous tractions, displacements, temperatures and
normal components of the heat flux. Subsequent to debonding,
the newly created surfaces are taken to be thermally insulated
and tractions on them are computed from the cohesive relation
given in Section 2.2. Since the failure occurs in less than 40ms
traction-free crack surfaces being thermally insulated is a reason-

able assumption; for longer analyses, a convective boundary
condition would be necessary.

2.2. Cohesive zone relations

Fig. 2 demonstrates the traction-separation law used in the
computational model. Each interface between two adjoining FEs
is considered for failure, where the state variables of the two ele-
ments connected to the segment are used to compute the failure
state of the segment. Fig. 2a shows one such segment, which is
connected to elements 1 and 2. The outward normals to the seg-
ment surfaces are denoted by n1 and n2, where the superscripts
denote the connected elements. The normal tractions (s1;s2) and
tangential tractions (t1; t2Þ on the interface are computed using
each element’s stress tensor sij as shown in Eq. (3) (computations
are performed for each element; superscripts are deleted for
clarity); (e.g., see Truesdell and Noll [28], Batra [29]).

s¼ sijninj;

ti ¼ sijnj � sni; ð3Þ

where a repeated index implies summation over the range
ði¼ 1;2Þ of the index, and r is the Cauchy stress tensor. We
denote by t the magnitude of the tangential traction. For the
segment, the normal and the tangential tractions ŝ and t̂ are

ŝ ¼ ðs1þs2Þ=2;

t̂ ¼ ðt1þt2Þ=2: ð4Þ

Fig. 2. Cohesive law: (a) tractions at the interface between two adjoining elements

and (b) traction/opening displacement relation.
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That is, ŝ and t̂ equal the average of magnitudes of the normal
and the tangential tractions on the two sides of the common
interface; this helps reduce numerical errors introduced by the FE
analysis since the magnitudes of the normal and the tangential
tractions on either side of the interface are identical in a perfect
continuum.

We follow Ortiz and Pandolfi [30] and define an effective
traction t as:

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2jt̂j2þmaxðŝ;0Þ2

q
; ð5Þ

where ŝ and t̂ are the tractions defined in Eq. (4). The parameter
b determines the relative importance of the shear traction and
therefore represents a form of ‘‘mode-mixity’’ of the crack and the
material. This effective traction t is computed at every element
interface at every timestep. When t reaches a critical value
(defined as tcrit), the segment is considered failed, appropriate
nodes are duplicated, a new segment is generated, and a cohesive
element is introduced. The introduction of the cohesive element
and the alteration of the mesh is carried out dynamically in the
analysis and does not require the introduction of cohesive
elements at the beginning of the analysis. The mesh alteration is
also considered irreversible; that is, the material cannot ‘‘heal’’
and re-join two crack faces into undamaged material. The crack
faces may meet and stay in contact, but they are still considered
two separate segments and are dealt with by the appropriate
contact algorithm to avoid inter-penetration of the material
across the contact surface.

Upon failure initiation at an interface between two adjoining
elements, we define an effective crack opening displacement d
(again, following Ortiz and Pandolfi [30]):

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2d2s þd2n

q
; ð6Þ

where ds and dn are the tangential and the normal relative
displacements of the two crack faces.

The cohesive zone concept indicates that the material under-
going cracking does not reach two fully traction-free surfaces
until a certain amount of work has been performed (which is
usually correlated to the familiar Griffith fracture energy). To
accomplish this, we adopt the cohesive relation (Eq. (7)) proposed
by Camacho and Ortiz [26].

t=tcrit ¼ 1� d=dcrit ; _dZ0;

t¼ tmax

dmax
d; either _do0; or _d40 and drdmax

on the debonded interface;

t¼ 0; dZdcrit : ð7Þ

As evident from Fig. 2b, Eq. (7) implies that the applied tractions
vanish when either (a) one reaches the critical opening displace-
ment dcrit or (b) the AO segments unload as the crack closes (as
indicated by the line to the origin in Fig. 2b). For dZdcrit the
segments are truly independent and one has a pair of traction-free
thermally insulated surfaces forming the crack faces. For drdcrit ,
a failed segment is checked for _d40 or _dr0. In the former case,
tractions are given by Eq. ð7Þ1 if d is a monotonically increasing
function of time for the segment; otherwise the traction is given
by Eq. ð7Þ2 which is also used if _dr0. While using Eq. ð7Þ2 the
percentage change in both ŝ and t̂ is kept the same. In Eq. ð7Þ2
tmax and dmax are values of t and d, respectively, just prior to
reversing of the opening of the segment; tmax and dmax satisfy
Eq. ð7Þ1. It should be noted that , for monotonic increase of d to
dcrit, the area, tcritdcrit=2, under the t2d curve is the energy per unit
surface area that is dissipated during fracture and equals the
Griffith fracture energy. Molinari et al. [31], among others, have

used the cohesive failure model to simulate fragmentation in a
bar made of a linear elastic brittle material. They have shown that
introducing a slight degree of randomness improves upto two
orders of magnitude the convergence of the energy.

Determination of the appropriate critical traction tcrit and
critical displacement dcrit from experimental results obtained
during dynamic loading is difficult. It has been experimentally
shown (see Rosakis et al. [32]) that dynamic fracture toughness
depends on crack speed. In all likelihood, the fracture toughness
depends on the material, the strain-rate and temperature in the
vicinity of the crack, and the initial flaw distribution.

Here, we account for temperature effects by assuming that the
critical traction decreases affinely with temperature increase
according to the following relation:

tcrit ¼ tcrit;0 1�
y� yref

minðymeltÞ � yref

� �
; ð8Þ

where tcrit;0 is the critical traction at the reference temperature
yref and minðymeltÞ is the lower of the presumed melting
temperatures of the particulate and the matrix. This assumption
mimics the thermal softening in the Johnson–Cook constitutive
relation (Eq. (1)); we have assumed that the critical traction
decreases as the yield stress of the material decreases. The
functional form (8) of the thermal softening is a postulate;
experimental investigation of the dependence of fracture tough-
ness on temperature would benefit the analysis greatly. We have
tacitly assumed no strain-rate or other state-variable dependence
of the critical traction tcrit;0.

The mode-mixity parameter b determines the relative strength
of the material in mode-I (tensile) and mode-II (shear). Estimates
for the mode mixity have been found experimentally by Chen and
Ravichandran [33,34] for brittle ceramics; but little experimental
work has been done for ductile metals, especially under extreme
plastic deformations. Here, we have assumed that b equals 0.866,
mainly for lack of information. This value of b represents a
moderate mode-mixity ratio seen in a variety of ductile metals
(a range between 0.7 and 0.9 has been reported for steels [32] and
similar ranges have been used in simulations for brittle ceramics
[26]). The effect of the value of b is assessed in Section 4.3. For
mode II failure b is close to zero, t given by Eq. (5) approaches
infinity and d equals dn. Thus the present approach is not suitable
for simulating shear dominated failure.

The critical opening displacement dcrit cannot be readily
determined from theoretical knowledge or experimental evi-
dence. The pair tcrit and dcrit define the fracture energy per unit
surface area. The value of dcrit affects stability of the numerical
algorithm, and must be chosen such that the computations (a) are
stable (which places a floor on dcrit) and (b) give reasonable results
for small crack openings (which places a ceiling on dcrit). Here, the
value of dcrit has been taken to be one-tenth the mean element
altitude in the specimen (which for the FE-meshes employed
herein equals 0.015mm); this value allows for stable numerical
results while allowing for a fairly small crack opening displace-
ment. With an assumed value of dcrit , one can compute the value
of tcrit;0 from published values of the Griffith fracture energy per
unit surface area.

2.3. ASB initiation criterion

We assume that an ASB initiates at a point when the energy
dissipation rate there suddenly increases by nearly an order of
magnitude, the material point is deforming plastically, and
deformations in its neighborhood are inhomogeneous. This differs
from the ASB initiation criterion proposed by Batra and Kim [35]:
an ASB initiates at a point when the shear stress there has
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dropped to 80% of its peak value at that point, the material point is
deforming plastically, and the deformations of the material
surrounding it are highly inhomogeneous. For a simple shearing
problem, Batra and Kim’s criterion quantifies Marchand and
Duffy’s [9] experimental observation that the torque required to
deform the specimen drops very rapidly when an ASB initiates. As
made clear by results presented in Fig. 1 of Batra and Lear’s [36]
paper, the requirement of the material point deforming plastically
rules out false ‘‘initiation’’ of an ASB due to elastic unloading.
During high strain rate deformations of particulate composites,
Batra and Love [18] found that this criterion can be satisfied at a
material point at time t̂1 but is not necessarily satisfied at a
subsequent time t̂2 due to the load exchange between particu-
lates and the surrounding matrix.

Experimentalists generally decipher the formation of an ASB
through post-mortem examination of failed specimens, calling a
narrow region of intense plastic deformation a shear band. Some
experimentalists have attempted to capture an ASB in situ
through surface observations. As ASB formation is highly sensitive
to initial defects, one must take great care when comparing either
post-mortem or in situ experimental results to computational
results to ensure that one is comparing the same quantity at the
same material point. Furthermore, analysis of 3-dimensional
deformations have shown that an ASB initiates first at a point in
the interior of the body [37,38]. Thus measurements on a surface
may not be true indicators of the time of initiation of an ASB.

We note that concepts of fracture toughness and/or the J-
integral cannot be used to characterize the initiation and/or the
propagation of an ASB; e.g. see Batra and Love [18,39]. However,
these are implicitly imbedded in the cohesive zone model and are
thus being tacitly used for the initiation of debonding.

Here we hypothesize that an ASB has initiated when the axial
load rapidly drops.

3. Numerical solution of the problem

3.1. Brief description of the technique

We analyze the problem by the FEM, using 3-node triangular
elements. The FE mesh using triangular elements provides a much
larger number of potential crack paths and the mesh generation is
easier than a mesh using quadrilateral elements. The problem of
volumetric locking is remedied by utilizing a node-centered
pressure and the finite calculus technique of Onate et al. [40].

Coupled nonlinear ordinary differential equations obtained
from the weak formulation of the problem are integrated by using
the conditionally stable explicit central difference method. The
time step is controlled by the well documented Courant [41]
condition. We employ a lumped mass matrix produced by the
row-sum technique and lumped heat capacitance matrix to allow
efficient solutions using the explicit central difference method.
The constitutive update uses a backward Euler method similar to
the radial return algorithm. Deformations during a time step are
first assumed to be elastic; if they are not, the stresses, plastic
strains, and temperature are updated such that the resulting state
is on the yield surface. It is assumed that all plastic work results in
an increase in temperature (the Taylor–Quinney coefficient is
tacitly assumed to be unity). The heat conduction equation is
solved and the resulting nodal temperatures are calculated by
taking a forward Euler step after the mechanical step is taken; the
very short time steps in this analysis allow this stepping
technique to produce reasonable results.

Following the debonding/fracture process detailed in Section
2.2, the interpenetration of the material across an interface is
avoided by using a contact algorithm. The algorithm checks for

interpenetration after the position/velocity update in the central
difference scheme, and then interpenetrations are corrected using
a symmetric sliding interface algorithm, similar to that given by
Johnson and Stryk [42]. This algorithm has no ‘‘defined’’ master
and slave surfaces, and thus is independent of the order of
processing. Here, we have assumed no friction between the
contacting/sliding surfaces; in reality, the friction between these
surfaces is complex and difficult to model at the scale of this
problem.

3.2. Verification of the computer code

The computer code has been verified by using the method of
fictitious body forces, e.g. see comments following Eq. (20) of
Batra and Liang [43]. In this method, a closed form expression for
the solution variables is assumed, and these are substituted in the
balance laws to find body forces and sources of energy needed to
satisfy them. Also, initial and boundary conditions corresponding
to the assumed solution are found. The initial-boundary-value
problem corresponding to these initial and boundary conditions,
body force and the source of internal energy is solved numerically
with the code. If the computed solution agrees with the presumed
analytical solution of the problem, then the code’s accuracy has
been verified. The results for a plane-strain shear banding
problem were further compared to results from our previous
code [18], and ASB initiation times were predicted to within 1%
difference in heterogeneous bodies with no debonding.

4. Computation and discussion of results

We assigned the following values to material parameters for
the particulates and the matrix:

Particulates (metal 1): r0 ¼ 19;300kg=m3, E¼ 400GPa, n¼
0:29;k¼ 160W=mK, cp ¼ 138 J=kgK, a¼ 5:3� 10�6=K.

A¼ 730MPa, B¼ 562MPa, C ¼ 0:029,m¼ 1:0, n¼ 0:0751, ym ¼
1700K, _e0 ¼ 1� 10�6=s.

Matrix (metal 2): r0 ¼ 9200kg=m3, E¼ 255GPa, n¼ 0:29, k¼
100W=mK, cp ¼ 382 J=kgK, a¼ 15:0� 10�6=K.

A¼ 150MPa, B¼ 546MPa, C ¼ 0:0838, m¼ 1:0, n¼ 0:208; ym ¼
1225K, _e0 ¼ 1� 10�6=s.

Here r0 is the initial mass density, E the Young’s modulus, n
the Poisson’s ratio, cp the specific heat, k the thermal conductivity,
and a the coefficient of thermal expansion. The reference
temperature yref was taken to be 293K.

The parameters for the cohesive law were taken to be:
Metal 1–metal 1: tcrit;0 ¼ 1:8GPa, dcrit ¼ 1:5� 10�2 mm,

b¼ 0:866.
Metal 2–metal 2: tcrit;0 ¼ 1:5GPa, dcrit ¼ 1:5� 10�2 mm,

b¼ 0:866.
Metal 1–metal 2: tcrit;0 ¼ 0:8,1:0;1:2;1:5GPa, dcrit ¼ 1:5�

10�2 mm, b¼ 0:866.
These values are computed from fracture energies for the

respective materials, realizing that the area under the curve in
Fig. 2b equals the fracture energy per unit surface area. For
tcrit;0 ¼ 1:8GPa; dcrit ¼ 0:015mm, energy dissipated per unit sur-
face area during monotonic debonding equals 13;500 J=m2.
Effects of varying strength tcrit;0 of the particulate/matrix interface
and b on the ASB formation have been studied.

Square specimens of various sizes (1, 2 and 4mm side) were
given random distributions of particulates with radius ranging
from 50 to 80mm, holding the volume fraction of particulates to
3170:2%. The specimens were meshed with triangular elements
with an approximate side length of 0.02mm. The particulates
were arranged such that there was a minimum of three triangular
elements (0.06mm) between any two particulates. Subsequent to
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the initial rise in the applied axial velocity, each specimen was
subjected to plane strain compression at a nominal axial strain
rate of 10,000/s.

4.1. Results without debonding

As a reference, each specimen was deformed without allowing
debonding and fracture to occur. ASBs formed in a way consistent
with that given in Batra and Love [18]; i.e. large plastic strains and
a nearly discontinuous velocity field at about 453 to the loading
axis. Figs. 3a and b exhibits contours of the effective plastic strain
and the vertical velocity component for one of these cases. It is
clear that one dominant ASB with effective plastic strain of � 1
and inclined at � 453 to the loading direction formed. Once the
ASB had formed the specimen was divided into two regions; the
lower virtually stationary pyramid, and the upper one moving
downwards with the velocity imposed on the top surface. There is
a sharp gradient in the velocity field between these two regions
where strain rates and the effective plastic strain are quite large.

Fig. 4 exhibits fringe plots of the velocity field at t̂ ¼ 25ms and
time histories of the effective plastic strain rate at four points.
Points 1 and 3 are within the ASB, and 2 and 4 are outside of the
ASB; points 1 and 2 are in the matrix, and points 3 and 4 in the
particulates. It is clear that the effective plastic strain at these four
points are more than 104=s except at late times when the ASB has
developed. The strain rates at points 1 and 3 increase by a factor
of 10 as the ASB develops. It is clear from these results that the
error, if any, in not considering the dependence of C in Eq. (1)
upon the strain rate is negligible.

We note that the random distribution of the particulates does
not significantly impact the ASB initiation time. Fig. 5 shows the
axial load versus the nominal axial compressive strain for six
microstructures with approximately 31% volume fraction of
particulates. The axial load is computed from tractions at nodes
on the top surface where axial velocity is prescribed, and taking
the specimen dimension in the X3�direction equal to 1mm. Note
that the sudden drop in the applied load (indicative of shear band
formation) occurs at the axial strain between 30% and 34% for
each of the specimens. Thus the difference between the minimum
and the maximum ASB time is 12%.

Fig. 3. Contours of (a) effective plastic strain and (b) vertical velocity at time

t¼ 23:8ms for a particulate composite subjected to plane strain compression at a

nominal axial strain rate of 10,000/s.

Fig. 4. Strain rate histories for four points; position of points at t ¼ 25ms
shown in (a).
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4.2. Results with material failure

4.2.1. Effect of specimen size

When simulating microstructures, the question of an appro-
priate size for the specimen always arises. To examine this effect,
we subjected 1mm� 1mm, 2mm� 2mm, and 3mm� 3mm
specimens to plane strain compression. The particulates were
randomly generated with diameters ranging from 100 to 160mm,
and their volume fractions equaled 31%70:2%. The finite
element size was held constant throughout all of the simulations.
The critical traction tcrit;0 on the particulate/matrix interface was
taken to be 1.0GPa, and material properties were assumed not to
depend on the particulate diameter.

Fig. 6 shows the load versus compression curves for all three
specimen sizes. Note there are two 2mm� 2mm specimens;
these two curves show the typical variation caused by slightly
different particulate arrangements but the same volume fraction;
this is similar to the effect of microstructures studied in Section
4.1. Note that the ASB initiation time for the 3mm� 3mm case
coincides with that of one of the 2mm� 2mm specimens, but the
1mm� 1mm specimen shows a substantially earlier load drop.
This difference can possibly be attributed to the number of
particulates in the specimen; in the 1mm� 1mm specimen, the
small number of particulates allows an ASB to form entirely in the
matrix at a substantially earlier time. With a sufficient number of
particulates, the formation of the ASB is impeded by the harder
particulates; this effect was also seen in Batra and Love [18]. Note
that the oscillations seen in the load/compression curves are due
to the stress-wave reflections in the specimen. The period of these
reflections is related to the size of the specimen and thus, a
3mm� 3mm specimen is the largest plausible at this loading
rate without the stress wave effects becoming significant. The
difference in the acoustic impedences of the particulate and
the matrix materials affects reflections, refractions and the
transmission of waves at interfaces; the acoustic impedance of
metal 1 equals 1.81 times that of metal 2. The time integration
scheme should be checked for not producing excessive
oscillations in the solution due to the acoustic impedance
mismatch between the particulate and the matrix.

Until the axial compressive strain of 0.15, the axial compres-
sive load essentially scales with the specimen width, i.e., the axial
force for the 3� 3 specimen is three times that for the 1� 1
specimen.

For further analyses, we use the 2mm� 2mm specimen, as it
gives reasonable results with substantially less computational
effort than the 3mm� 3mm specimen.

4.2.2. Crack-tip pinning

One potential problem that arose early in the analyses is that
of crack-tip ‘‘pinning’’ (see Fig. 7) which led to a collapse of an
element and the termination of the analysis. This phenomenon

Fig. 7. Crack ‘‘pinning’’ phenomenon that can result in termination of the analysis.
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occurs due to compressive stress fields in the domain, which are
typical of this loading scenario. A crack nucleates due to shear
stress at 453 to the loading direction on the particulate/matrix
interface and propagates until it is arrested due to this
compressive field. Subsequently, the compressive deformations
tend to crush the element near the crack tip in the softer matrix.
To allow the analysis to proceed, we resorted to element deletion

when the minimum altitude of an element became 1/10,000th of
its original value. The element was simply removed from compu-
tation (thus removing a small amount of mass from the problem
and creating a small void) and contact surfaces were updated and
the analysis continued. For the problems studied herein at most
ten out of several thousand elements were deleted; thus the error
caused due to the deletion of these elements is negligible.

4.3. Effect of mode mixity

The parameter b in the cohesive law (see Eqs. (5) and (6))
determines the critical traction under mixed-mode (normal and
shear) loading conditions. One determines tcrit;0 from the pure
mode I fracture toughness, and then computes b using the pure
mode II fracture toughness. The cohesive law then determines the
critical traction under combined loading. Unfortunately, experi-
mental determination of mode II fracture toughness is difficult,
particularly under dynamic loading. While there are reasonable
estimates for b for monolithic materials (see Chen and Ravichan-
dran [33,34]; Pandolfi et al. [32]), the strength of the interface due
to shear is much less well characterized.

Fig. 8 shows the load versus compression for a single
microstructure with a range of values of b for the interface. The
critical traction was taken to be tcrit ¼ 1:2GPa. We consider values
of b ranging from 0.6 to 1.2, which should contain the physically
meaningful solutions to the problem (note that functions in Eqs.
(5) and (6) become singular as b tends to zero or infinity). The
load versus compression curves are quite different over this range
of b, although the load versus compression curves seem to
‘‘converge’’ for bZ1:0. Further evidence of this is seen in Fig. 9;
note the similarity of the results for b¼ 1:0 and 1.2.

Fig. 9. Contours of vertical velocity for a single specimen for mode-mixity parameter and times of (a) b¼ 0:6 and t̂ ¼ 13:2ms, (b) b¼ 0:8 and t̂ ¼ 19:4ms, (c)

b¼ 1:0 and t̂ ¼ 22:8ms, and (d) b¼ 1:2 and t̂ ¼ 22:8ms. Dark lines denote cracks/new interfaces.
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The dark circles in Fig. 9 imply that the matrix has debonded
from the particulate. Also white regions imply voids or cracks. The
deformed shapes and locations of ASBs for b¼ 0:6 and 0.8 are
quite different from those for b¼ 1:0 and 1.2. Thus the mode-
mixity or the cohesive failure criterion plays dominant roles in
not only the time of formation of an ASB but also in their spatial
locations. A smaller value of b makes the interface more
susceptible to shear fracture; for b¼ 0:6, many of the particulate
matrix interfaces are fractured prior to the development of the
ASB. As one would expect this debonding of particulates and
matrix materials leads to distinctly different local stress states
and velocity fields which in turn change the ASB evolution as
evinced by differences in results shown in Figs. 9a and 9b. The ASB
initiation time for b¼ 0:6 is nearly one-half of that for b¼ 1:1.
Without experimental data for mixed-mode loading for particu-
late/matrix interfaces, we continue to use b¼ 0:866 for the
interface as well as for the monolithic materials.

4.4. Effect of interfacial strength

We note that experimental data on the particulate/matrix
interfacial strength is not readily available in the open literature.
Accordingly, we conduct a parametric study and consider three
values of this strength, namely tcrit;0 ¼ 1:0, 1.2, and 1.5GPa; results
for the no debonding case are also presented.

The results for a single microstructure for all three values of
the critical traction tcrit;0 and for the no debonding case are shown
in Fig. 10, and the plot of axial load versus axial compressive
strain for these four cases is exhibited in Fig. 11. Note that
reducing the interface strength generally decreased the ASB

initiation time. Furthermore, the lower two values of the
interface strength exhibited significant ‘‘debonding’’ of the
particulates from the matrix prior to localization, which is
evinced from the load versus compression curve deviating from
the ‘‘no fracture’’ case. The 1.2 and 1.5GPa critical stresses

Fig. 10. Contours of vertical velocity for a single specimen for critical tractions and times of (a) no fracture and t̂ ¼ 23:8ms, (b) tcrit;0 ¼ 1:0GPa and t̂ ¼ 15:0ms, (c)
tcrit;0 ¼ 1:2GPa and t̂ ¼ 20:4ms, and (d) tcrit;0 ¼ 1:5GPa and t̂ ¼ 23:0ms. Dark lines denote cracks/new interfaces while light gray lines denote particulate/matrix interfaces

that are still bonded.
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showed fracture almost exclusively along the ASB through the
bulk material (mainly in the matrix) at fairly late times; note the
agreement with the ‘‘no fracture’’ case in the load/compression
curve to 20% compression.

Examining the dissipation rate to observe the initiation of an
ASB reveals some interesting results. For the case of no fracture,
Fig. 12a shows the expected dramatic rise in the dissipation rate
for an element in the ASB. For a relatively high value of the critical
traction, tcrit;0 ¼ 1:5GPa in Fig. 12c, the dissipation rates show a
similar trend. However, for a relatively low value of the critical
traction (tcrit;0 ¼ 1:0GPa in Fig. 12b), the dissipation rate increases
but there is no dramatic change of slope (other than the brief

spikes at the time of fracture of segments near the element in
question), despite the dramatic drop in load shown in Fig. 11.
Examining the details of deformations reveals the difference
between these two cases. In the tcrit;0 ¼ 1:0GPa case, fracture
occurs while the axial compressive load is increasing, with little
plastic strain near the fractured surfaces (thus indicating ‘‘brittle’’
fracture). The ASB forms along a path through the matrix
connecting multiple sites of brittle fractures, and the load drop
is due to a combination of the decrease in strength of the material
induced by fracture surfaces and the thermal softening of the
material in the ASB. For the higher value of the critical traction
tcrit;0 ¼ 1:5GPa, an ASB forms just as in the case of no fracture, and
the load drop occurs due to the thermal softening of the material
along the ASB. A crack develops in the shear banded material. The
crack and the ASB include many particulate/matrix interfaces. The
rapid increase in the energy dissipation rate is not a good
indicator of ASB formation in the presence of weak particulate/
matrix interfaces.

5. Remarks

Batra and Love [39] used the nodal release technique to
simulate crack propagation in mode I and mode II deformations of
a functionally graded thermoviscoplastic body deformed at high
strain rates. When a prespecified local failure criterion was met at
a node, it was split into two nodes an infinitesimal distance apart
and the nodal connectivity was modified. The brittle failure was
assumed to ensue at a point when the maximum principal stress
there exceeds three times the quasi-static yield stress, and the
ductile failure was initiated when the effective plastic strain
equals 1.5. They thus studied crack initiation and propagation in
plane strain deformations of an inhomogeneous plate deformed in
either tension or shear. Batra and Lear [36] had employed a
similar procedure to study crack initiation and propagation in a
prenotched steel plate impacted on the notched side, and found
computed results to be in reasonable qualitative agreement with
those observed experimentally. Hassan and Batra [44] used a
similar procedure to study delamination between adjoining layers
in a laminated composite plate.

Both the cohesive zone technique and the nodal release
method assume that fracture initiates instantaneously once the
respective failure criterion has been satisfied at a point. Whereas
in the cohesive zone procedure the rate of decrease to zero of
surface tractions depends on the rate of increase of the crack
opening displacement d, in the nodal release technique it is
decided empirically. In both methods surface tractions are
decreased gradually to keep the numerical algorithm stable and
mitigate effects of shock waves being released from the crack
faces. The mode-mixity of deformations near a crack-tip is
approximately accounted for in the cohesive zone failure
equations (5) and (6) through the parameter b, it is not considered
in the nodal release technique employed in [39,36]. Note that b
cannot be assigned either an extremely large or a very small
value; otherwise the computational algorithm becomes unstable.

The postulate that the critical traction drops with temperature
(see Eq. (8)) was chosen because it allows for fracture in the high
temperature regions produced by ASBs. This assumption, how-
ever, is not unique-analyses that utilized a critical strain to failure
were conducted and the results were qualitatively similar to those
given by the temperature dependent traction. In reality, the
cohesive zone relation should depend on several state variables,
particularly the strain rate and the temperature. This dependence
is still an open area of research and published data on it is not
available in the open literature.
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Here we have employed the Johnson–Cook relation to model
the thermo-visco-elasto-plastic response of the particulate and
the matrix. It is shown in [45,46] that even when different
constitutive relations have been calibrated to give identical shear
stress versus shear strain curve at one nominal strain rate, they do
not predict the same ASB initiation time and the post-localization
response.

6. Conclusions

We have studied the plane strain transient thermomechanical
deformations of a particulate composite with the finite element
method. Various representative volume elements comprised of
approximately 31% metallic particulates dispersed in a metallic
matrix were subjected to plane strain compression at an axial
nominal strain rate of 10,000/s. Effects of heat conduction, strain
and strain-rate hardening, thermal softening, and debonding at
interfaces and fracture in each material have been incorporated in
the analysis. Computed results for various values of the interface
strength parameter have indicated that the interface strength
noticeably influences the shear band susceptibility and the load
carrying capacity of the composite. Furthermore, debonding
between the particulates and the matrix does not deter the
formation and the propagation of adiabatic shear bands.

The present work suggests that additional studies are needed
to find reasonable values for the critical traction tcrit and the
mode-mixity parameter b in the cohesive zone relation. Further-
more, the cohesive zone relation should also take into account the
strains, strain-rates, and temperatures experienced by the body;
here we have used a tcrit that is invariant with respect to strain
and strain-rate and has a presumed affine softening due to
temperature. Experimental investigation into the strength of
these interfaces in both mode I and mode II would allow this
type of analysis to give results that compare well with experi-
mental findings and then could be used to help predict the onset
of adiabatic shear bands in particulate composites, and appro-
priately design interfaces and composites. The present work
suggests that strong interfaces delay the adiabatic shear band
initiation.
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a b s t r a c t

The effects of projectile characteristics on the probabilistic impact response of single-layer fully-clamped
flexible woven fabrics is numerically studied using a yarn-level fabric model with a statistical implemen-
tation of yarn strengths. Six small and large sized spherical, cylindrical, and conical projectiles of the same
mass are considered. Probabilistic velocity response curves which describe the probability of fabric pen-
etration as a function of projectile impact velocity are generated for each projectile type through a series
of forty impact simulations at varying impact velocities. The probabilistic fabric impact response is
observed to be strongly dependent on the shape of the projectile’s impact face and the manner of projec-
tile–yarn interactions at the impact site.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

High strength fabrics woven from continuous-filament aramid
yarns are used in flexible protective structures because of their
excellent impact performance [1]. The state of the art in finite
element (FE) modeling of woven fabric impact is continually
improvingwith recent advances in single-layer filament-level fabric
modeling byWang et al. [2], multi-layer yarn-level fabric modeling
by Chocron et al. [3], and single-layer multiscale fabric modeling by
Nilakantan et al. [4,5]. Yarn-level models are especially useful to
parametrically study how fabric impact performance is affected by
factors such as fabric architecture, yarn stiffness and strength,
friction, and boundary conditions [6–11]. However, a topic that
has been not been systematically addressed with simulations is
the effect of the projectile characteristics such as size, shape, mass,
velocity, and trajectory on the impact response of flexible woven
fabrics. Some experimental studies on projectile effects have been
reported [12–14], although the generality and fidelity of the results
are limited by a number of factors. For example, the uncertainty
introduced by fabric boundary slippage can significantly bias the
fabric impact response [15]. The projectile trajectory and exact
impact location are also difficult to control with precision. A further
limitation of experimental testing is the inability to closely monitor

and track individual yarn energy dissipations, interactions with the
projectile, and yarn failure at the impact site during the impact
event, all of which are important in order to fully understand how
different projectiles interact with the woven fabric. These limita-
tions can be overcome with numerical studies, thereby proving
them to be a potentially useful complement to experimental
investigations.

Talebi et al. [16] numerically studied the effect of the nose angle
of conical shaped projectiles on the impact response of fully-
clamped single-layer plain-weave Twaron fabrics and concluded
that a nose cone angle of 60� provided the most penetration
efficiency. Nilakantan et al. [17] studied the effect of projectile char-
acteristics on the impact response of fully-clamped single-layer
plain-weave Kevlar fabrics. One large and one small spherical, cylin-
drical, and conical shaped projectile with the samemass and impact
velocity were considered. The conical shaped projectiles were
observed tomost easily penetrate through the fabric due to the ten-
dency of these projectiles to ‘‘window’’ or push aside the principal
yarns. The impact responses in terms of projectile velocity histories
and energy transformation histories of the large spherical and small
cylindrical projectiles were almost identical to each other.

One limitation of the aforementioned numerical studies is that
they simulate all material, geometric, and boundary conditions
deterministically, and consequently cannot predict the probabilis-
tic impact response of fabrics. For example the tensile strengths of
all yarns in these woven fabric models are assumed to be uniform
and identical. However experimental studies indicate that yarn
strengths are highly statistical in nature [18]. In a recent study
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Nilakantan et al. [19] developed a probabilistic computational
framework that allowed the sources of variability (e.g. statistical
yarn strengths) to be mapped into the fabric finite element model,
which then through a series of impact simulations and a subse-
quent statistical analysis allowed the prediction of the probabilistic
fabric impact response. The experimentally observed zone of
mixed results (ZMRs) during fabric impact testing was successfully
captured within this probabilistic computational framework. In
this paper, the probabilistic computational framework from Ref.
[19] is applied to study the effects of projectile size and shape on
the impact response of fabrics. A statistical yarn strength model
based on previous experimental measurements [18] is imple-
mented to generate a probabilistic penetration response. Results
from the present study are compared to the deterministic results
reported in Ref. [17] to understand how projectile characteristics
affect the probabilistic impact response of fabrics. Probabilistic
velocity response (PVR) curves, that describe the probability of
fabric penetration for a given projectile velocity, are generated
for each projectile type and then compared against each other.

2. Numerical setup and methodology

With the exception of the tensile strengths assigned to the
woven yarns, the details of the numerical fabric and projectile
models are consistent with Ref. [17] and are therefore only briefly

repeated here. Fig. 1 displays the six projectiles chosen for this
study. All projectiles have a mass of 0.692 g. The spherical and
cylindrical projectiles impact the fabric at the center of a yarn
cross-over while the conical projectiles impact the gap in-between
the yarns at the center of the fabric. The fabric considered is Kevlar
S706, a fabric comprised of 600 denier Kevlar KM2 yarns plain
woven at 34 � 34 yarns per inch. Fig. 2a displays the impact test
setup. The preprocessor DYNAFAB [20] is used to set up the fabric
mesh. The fabric is gripped on all four sides with zero slippage
boundaries. The yarns are assigned a linear elastic orthotropic
material model. Yarn failure is modeled via element erosion using
a maximum principal stress based failure criterion. Fig. 3 displays
the cumulative distribution function (CDF) used to describe the
statistical yarn tensile strengths of 600 denier Kevlar KM2 spool
yarns of gage length 50.8 mm obtained from the experimental
work of Nilakantan et al. [18]. A 3-parameter Weibull distribution
function was used to generate the CDF, and is given by

F ¼ 1� exp � ðS� cÞ
h

� �b
 !

ð1Þ

where F represents the cumulative probability of yarn failure at a
strength of S, and b, h, and c respectively represent the shape, scale,
and threshold parameters of the 3-parameter Weibull distribution.
Table 1 lists the values of these three distribution parameters, the

Fig. 1. Shapes and dimensions of the various projectiles used: (a) spherical, (b) cylindrical and (c) conical.
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mean (l) and standard deviation (r) in the experimental yarn
strengths, and the statistical yarn strengths at the 1%, 50%, and
99% probabilities respectively listed as S1, S50, and S99. The degree
of scatter in yarn strengths is given by the coefficient of variation
(CV) defined as the percentage ratio of r to l.

The statistical yarn strengths are then adjusted by the respective
warp and fill yarn filament volume fractions to account for the
homogenized nature of the yarn model using the technique
described in Ref. [19]. These adjusted strengths are then mapped
onto the warp and fill yarns of the fabric model as shown in

Fig. 2b where the color map indicates the tensile strength assigned
to each yarn. It is assumed that each yarn has a uniform strength
that spatially varies from one yarn to another. Forty such unique
strength mappings are created. Finally a series of forty impact
simulations are run at different impact velocities using the tech-
nique described in Refs. [19,21] in order to statistically estimate
the Normal distribution parameters (mean g, standard deviation
n) used to mathematically represent the PVR curve. The dynamic
finite element code LS-DYNA [22] is used to run the impact simula-
tions. The CDF of the Normal distribution (i.e. PVR curve) is given by

P ¼ 1
2

1þ erf
V � g
n
ffiffiffi
2

p
� �� �

ð2Þ

where P represents the cumulative probability of fabric penetration
at an impact velocity V, and erf represents the error function.
Because of the symmetry of the Normal distribution, the mean (g)
also represents the V50 velocity. Using Eq. (2), the expressions for
the V1 and V99 velocities are given by

V1 ¼ g� 2:3263n
V99 ¼ gþ 2:3263n

ð3Þ

3. Results

Tables 2–4 respectively list the simulation results from the forty
impact simulations for the spherical, cylindrical, and conical pro-
jectiles. These results include the impact velocity (Vi), residual
velocity for penetrating shots (Vr), number of failed warp (Nw)
and fill (Nf) yarns, and total number of failed yarns (Nt). The data
is arranged in an increasing order of impact velocities. The lowest
penetrating shot (VP) and highest non-penetrating shot (VNP) are
listed in bold. Fig. 4 displays the simulation results (symbols)
and corresponding PVR curves (smooth lines) for all six projectile
cases. The ZMR, defined as the region between VP and VNP such that
|VP| < |VNP|, is successfully captured in all cases. Table 5 lists the
maximum likelihood estimates of the mean (g) and standard devi-
ation (n) of the Normal distribution functions that are used to rep-
resent the PVR curves, the V1 and V99 velocities, and the 95%
confidence limits on g and n.

The order of impact performance from highest to lowest fabric
V50 velocities is as follows: large cylinder, small cylinder, large
sphere, large cone, small sphere, and small cone. The V50 velocities
corresponding to the large sphere (45.54 m/s) and small cylinder
(45.61 m/s) are almost identical. The V50 for the large cylinder
(61.21 m/s) is considerably higher than all other projectiles, and
the V50 for the small cone (20.23 m/s) is considerably lower than
all other projectiles.

Fig. 2. Numerical model (a) impact test setup, (b) sample yarn strength mappings using the spool based strength distributions adjusted by the filament volume fraction.

Fig. 3. Yarn strength distribution.

Table 1
Properties of the spool yarn strength distribution [18].

Parameter Value Comment

Material 600d Kevlar KM2 Spool yarn with gage
length = 50.8 mm

Distribution type 3-Parameter Weibull 3-Parameter Weibull
distribution parametersShape (b) 4.07

Scale (h) 473.36
Threshold (c) 2499.34

S1 (MPa) 2652 X% of yarns are likely to
exhibit a strength less than
or equal to SX

S50 (MPa) 2932
S99 (MPa) 3189
Width = S99 � S1 (MPa) 537

Mean (l) (MPa) 2929
Std. Dev. (r) (MPa) 116
CV = r/l (%) 3.96
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The degree of variability in fabric impact performance can be
assessed by the width of the ZMR or width of the PVR curve, with
a wider PVR curve implying greater variability in impact perfor-
mance. However amore usefulmeasure to compare the impact per-
formance variability between different fabrics and impact scenarios
is the CVof the PVR curve (=n/g%)whichprovides a normalizedmea-
sure of the impact performance variability. Fig. 5 displays thewidths
and CVs of the PVR curves and the V50 velocities corresponding to all
six projectile cases, arranged left to right from highest to lowest CV
values. The plot shows that conical, spherical, and cylindrical projec-
tiles produce the highest, intermediate, and lowest CV values,
respectively, demonstrating a clear correspondence between pro-
jectile shape and CV performance. The small conical projectile
results in the greatest variability in fabric impact performance and
the large cylinder results in the least variability. The plot also shows
that V50 generally trends upwards as CV decreases.

Fig. 6 displays the means and standard deviations in the
number of failed warp (Nwarp) and failed fill (Nfill) yarns, as well
as total number of failed yarns (Ntotal), for all penetrating impact

simulations. The V50 values for each projectile are also given in
the figure, and the data is arranged in order of increasing Ntotal.
The large cylindrical projectile case results in the highest Nwarp,
Nfill, and Ntotal values while the small conical projectile case results
in the smallest corresponding values. These projectiles were also
respectively associated with the lowest and highest CV values
(see Fig. 5). However, unlike the CV trends, here the trends for Ntotal

are dominated first by projectile size, with the smallest projectiles
producing the lowest numbers of failed yarns and the largest pro-
jectiles producing the highest numbers of failed yarns. Projectile
shape is still significant, with the cone, sphere, and cylinder projec-
tiles providing the smallest, intermediate, and largest numbers of
failed yarns within both the small and large projectile groupings.
It is also apparent that increasing numbers of failed yarns correlate
with increased V50 values.

Fig. 7 compares the PVR curves of the large spherical and small
cylindrical projectiles, which intersect at the V56 velocity. The large
spherical projectile PVR curve is wider implying a greater degree of
impact performance variability.

Table 2
simulation results for the spherical projectiles.

Shot # Large sphere Small sphere

Vi (m/s) Vr (m/s) Nw Nf Ntot Vi (m/s) Vr (m/s) Nw Nf Ntot

1 30.00 – – – – 15.00 – – – –
2 35.00 – – – – 25.00 – – – –
3 40.00 – – – – 30.00 – – – –
4 42.50 – – – – 32.00 – – – –
5 43.00 – – – – 32.20 – – – –
6 43.50 – – – – 32.50 – – – –
7 43.80 – – – – 32.80 – – – –
8 44.00 – – – – 33.00 – – – –
9 44.10 – – – – 33.10 – – – –

10 44.20 – – – – 33.20 – – – –
11 44.50 – – – – 33.40 – – – –
12 44.70 – – – – 33.50 – – – –
13 44.80 – – – – 33.60 0.80 2 2 4
14 45.00 – – – – 33.70 – – – –
15 45.00 – – – – 33.80 – – – –
16 45.00 6.72 5 4 9 33.80 – – – –
17 45.00 – – – – 33.90 – – – –
18 45.10 2.24 7 4 11 34.00 – – – –
19 45.20 4.34 5 5 10 34.00 3.24 3 1 4
20 45.40 – – – – 34.10 1.01 2 1 3
21 45.50 – – – – 34.20 1.12 2 2 4
22 45.60 6.25 5 5 10 34.30 – – – –
23 45.80 3.56 5 5 10 34.40 2.53 1 3 4
24 45.90 7.85 5 5 10 34.50 – – – –
25 46.00 5.11 6 3 9 34.60 1.44 2 3 5
26 46.20 8.94 5 5 10 34.70 2.63 3 2 5
27 46.40 9.60 5 5 10 34.80 – – – –
28 46.50 4.96 5 6 11 34.90 2.00 2 3 5
29 46.60 – – – – 34.90 4.08 3 1 4
30 46.70 – – – – 35.00 3.40 2 3 5
31 46.80 0.22 6 5 11 35.00 5.36 2 3 5
32 46.90 9.67 5 5 10 35.10 3.44 2 3 5
33 47.00 6.98 5 5 10 35.20 1.64 2 3 5
34 47.00 14.42 5 6 11 35.30 4.25 3 3 6
35 47.10 5.65 5 5 10 35.40 4.60 2 3 5
36 47.20 11.05 6 5 11 35.50 3.51 2 3 5
37 47.50 3.91 6 4 10 35.80 4.81 1 1 2
38 50.00 14.11 5 5 10 36.00 4.26 1 3 4
39 55.00 15.19 5 6 11 40.00 12.35 3 3 6
40 60.00 30.13 7 5 12 45.00 21.09 2 3 5

#NP 20 Nl 5.4 4.9 10.3 #NP 20 Nl 2.1 2.5 4.6
Nr 0.7 0.7 0.7 Nr 0.6 0.8 0.9

#P 20 Min 5 3 9 #P 20 Min 1 1 2
Max 7 6 12 Max 3 3 6

Nl – mean number of failed yarns.
Nr – standard deviation in number of failed yarns.
#NP – number of non-penetrations.
#P – number of penetrations.
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4. Discussion

Fig. 5 shows that the PVR curve CV value correlates strongly
with the shape of the projectile. Keeping in mind that all simula-
tions are based on fabrics with the same statistical yarn strength
distribution (i.e. same mean strength and same degree of scatter
in yarn strengths), clearly this difference in CV must arise from
the difference in the manner in which the projectiles engage the
principal yarns. It was shown in Ref. [17] that the conical projec-
tiles are easily able to push aside the principal yarns (also known
as ‘‘windowing’’) by virtue of their sharply pointed impact faces,
leading to a highly sequential (time-dispersed) projectile–yarn
interaction and failure pattern. Because of the high differences in
yarn loadings at each time step, the progression of failure and pen-
etration will be highly sensitive to the individual yarn strengths. In
contrast, with their flat-impact face, the cylindrical projectiles in-
duce a more simultaneous loading and catastrophic failure of the
principal yarns [17]. By simultaneously engaging a greater number
of yarns at the impact site, the yarn strengths are ‘‘averaged’’ to

produce a more consistent failure response. Spherical projectiles,
with a shape intermediate between cone and cylinder, produce
intermediate CV results. One can also then conclude that for a large
enough flat-faced projectile that spans the entire range of statisti-
cal yarn strengths, one may see little to no variability in impact
performance. This hypothesis is supported by the observation that,
for the present set of projectiles, the large cylindrical projectile
results in the smallest CV values. Furthermore, the strong correla-
tion between CV and projectile shape noted in Fig. 5 reinforces the
concept that sequential failure, such as for conical projectiles, leads
to wider performance variation while blunter projectiles produce
more consistent penetration behavior.

It is important to remember that the conical projectiles impacted
thegapbetweenyarnswhile the spherical and cylindrical projectiles
impacted the center of a yarn cross-over at the center of the fabric.
Shifting the shot location of the cylindrical projectiles to an intersti-
tial gap would not be expected to have a significant effect on the
resulting penetration behavior, due to their blunt face. However,
changing the sphere impact location to an interstitial gap would

Table 3
Simulation results for the cylindrical projectiles.

Shot # Large cylinder Small cylinder

Vi (m/s) Vr (m/s) Nw Nf Ntot Vi (m/s) Vr (m/s) Nw Nf Ntot

1 50.00 – – – – 30.00 – – – –
2 55.00 – – – – 40.00 – – – –
3 59.00 – – – – 43.00 – – – –
4 59.50 – – – – 44.00 – – – –
5 60.00 – – – – 44.10 – – – –
6 60.10 – – – – 44.30 – – – –
7 60.30 – – – – 44.50 – – – –
8 60.40 – – – – 44.60 – – – –
9 60.50 – – – – 44.80 – – – –

10 60.60 – – – – 44.90 – – – –
11 60.70 0.13 5 8 13 45.00 – – – –
12 60.70 2.67 6 7 13 45.10 – – – –
13 60.80 – – – – 45.20 – – – –
14 60.90 – – – – 45.20 – – – –
15 61.00 – – – – 45.30 0.90 3 3 6
16 61.10 – – – – 45.40 – – – –
17 61.10 – – – – 45.40 – – – –
18 61.20 – – – – 45.50 5.04 3 4 7
19 61.20 – – – – 45.60 3.25 3 3 6
20 61.30 – – – – 45.80 0.18 3 3 6
21 61.30 6.46 6 7 13 45.90 – – – –
22 61.40 2.83 9 6 15 46.00 4.99 3 5 8
23 61.40 – – – – 46.00 0.26 3 3 6
24 61.50 2.34 6 7 13 46.10 – – – –
25 61.50 5.64 5 7 12 46.10 0.02 3 3 6
26 61.60 2.53 8 8 16 46.20 1.64 3 3 6
27 61.60 6.55 5 7 12 46.20 6.90 3 3 6
28 61.70 1.68 5 7 12 46.30 0.98 3 3 6
29 61.80 6.30 7 7 14 46.30 1.76 4 3 7
30 62.00 6.74 5 7 12 46.40 1.01 3 3 6
31 62.10 7.77 7 7 14 46.50 4.36 3 4 7
32 62.20 3.94 7 7 14 46.80 6.50 3 3 6
33 62.30 6.64 6 7 13 46.90 6.38 3 3 6
34 62.50 8.22 7 7 14 47.00 1.26 3 3 6
35 62.80 10.03 6 7 13 47.20 5.94 4 3 7
36 63.00 6.45 6 8 14 47.30 7.91 3 4 7
37 65.00 11.48 7 8 15 47.50 1.30 3 4 7
38 67.00 14.80 6 8 14 47.70 7.60 4 4 8
39 70.00 21.85 7 10 17 50.00 9.99 3 3 6
40 80.00 34.99 8 9 17 60.00 26.90 3 4 7

#NP 19 Nl 6.4 7.4 13.8 #NP 18 Nl 3.1 3.4 6.5
Nr 1.1 0.9 1.5 Nr 0.4 0.6 0.7

#P 21 Min 5 6 12 #P 22 Min 3 3 6
Max 9 10 17 Max 4 5 8

Nl – mean number of failed yarns.
Nr – standard deviation in number of failed yarns.
#NP – number of non-penetrations.
#P – number of penetrations.
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likely lead to more windowing, and could lead to a more time-
dispersed and sequential failure pattern as compared to the current
impact at a yarn cross-over. Therefore, CV values for the spherical
projectile might be higher when impacted at an interstitial gap.

It should also be noted that sharp-edged flat-faced cylinders
have been experimentally shown [12] to promote a shearing mode
of yarn failure at the impact site which can induce failure before
tensile elongation based failure limits are reached. Such effects
are not captured by the present study, since we only consider a
tensile mode of yarn failure due to a lack of available yarn shear
strength data. The circumferential edges of our cylindrical projec-
tiles are also given a slight radius to minimize stress concentration
effects at the projectile edges.

Fig. 6 shows that the number of failed yarns tracks more with
strongly projectile size, rather than projectile shape. This trend is
not surprising, since for a fixed yarn architecture a higher number
of yarns will be engaged as projectile size increases. Projectile
shape still has a significant influence over number of failed yarns,
however, since sharper projectiles are more likely to window
the fabric and will require fewer yarn failures to accommodate

penetration. The strong correlation between V50 values and num-
ber of failed yarns is also not surprising, as more total projectile en-
ergy is required to fail a larger number of yarns.

The probabilistic simulations shownearly identicalV50 values for
the large sphere (45.54 m/s) and small cylinder (45.61 m/s) projec-
tiles. Fig. 7 displays the projectile velocity histories for the large
spherical and small cylindrical projectiles with a deterministic
implementation [17] of yarn strengths for a non-penetrating and a
penetrating shot respectively chosen roughly 10 m/s below (i.e.
35 m/s) and 5 m/s above (i.e. 50 m/s) the V50 velocity. These projec-
tile velocity histories almost overlap each other. The similarity be-
tween the V50 velocities and deterministic simulations can be
explained based on the previously observed trend that, for a fixed
degree of scatter in yarn strengths and for a given projectile, the
V50 values for probabilisticallymodeled fabric impacts trend linearly
with the mean yarn strength [21]. Thus the V50 velocity can be
thought of as a response to the ‘‘average’’ yarn strength. It is
therefore logical that if both large spherical and small cylindrical
projectiles produce almost identical impact responses when failure
is modeled deterministically using the mean yarn strength for all

Table 4
Simulation results for the conical projectiles.

Shot # Large cone Small cone

Vi (m/s) Vr (m/s) Nw Nf Ntot Vi (m/s) Vr (m/s) Nw Nf Ntot

1 30.00 – – – – 14.00 – – – –
2 40.00 – – – – 15.00 – – – –
3 41.70 – – – – 17.00 – – – –
4 42.00 – – – – 17.50 – – – –
5 42.20 – – – – 18.00 – – – –
6 42.30 2.12 6 4 10 18.50 – – – –
7 42.60 – – – – 19.00 – – – –
8 42.70 – – – – 19.10 – – – –
9 42.80 – – – – 19.20 – – – –

10 42.90 – – – – 19.30 – – – –
11 43.00 – – – – 19.40 – – – –
12 43.00 7.56 5 4 9 19.50 3.18 1 2 3
13 43.10 – – – – 19.60 1.64 1 2 3
14 43.10 – – – – 19.60 – – – –
15 43.20 – – – – 19.70 3.39 1 2 3
16 43.30 5.48 4 4 8 19.80 – – – –
17 43.40 – – – – 19.90 2.98 1 2 3
18 43.50 – – – – 20.00 – – – –
19 43.50 0.18 4 6 10 20.20 1.10 1 2 3
20 43.60 – – – – 20.30 2.77 1 2 3
21 43.70 1.52 5 4 9 20.40 – – – –
22 43.80 – – – – 20.50 3.65 1 2 3
23 43.90 1.90 6 5 11 20.60 – – – –
24 44.00 – – – – 20.70 4.48 1 2 3
25 44.10 3.99 5 4 9 20.80 4.22 2 2 4
26 44.10 – – – – 21.00 4.65 1 2 3
27 44.20 7.93 5 4 9 21.10 – – – –
28 44.30 – – – – 21.20 – – – –
29 44.40 5.20 6 5 11 21.30 5.00 2 2 4
30 44.50 2.61 5 5 10 21.40 4.45 2 1 3
31 44.60 2.98 4 4 8 21.50 – – – –
32 44.80 6.89 5 4 9 21.60 5.95 1 2 3
33 44.90 10.55 7 4 11 21.70 4.48 2 1 3
34 45.00 9.41 6 4 10 21.80 6.64 2 1 3
35 45.10 1.27 5 5 10 22.10 6.91 1 2 3
36 45.20 6.77 6 4 10 22.20 6.15 1 2 3
37 45.30 5.70 6 4 10 22.50 7.18 2 1 3
38 45.50 11.19 6 4 10 24.00 8.28 1 2 3
39 50.00 16.89 6 5 11 25.00 10.89 2 1 3
40 55.00 24.98 7 4 11 35.00 25.79 2 2 4

#NP 20 Nl 5.5 4.4 9.8 #NP 19 Nl 1.4 1.8 3.1
Nr 0.9 0.6 1.0 Nr 0.5 0.4 0.4

#P 20 Min 4 4 8 #P 21 Min 1 1 3
Max 7 6 11 Max 2 2 4

Nl – mean number of failed yarns.
Nr – standard deviation in number of failed yarns.
#NP – number of non-penetrations.
#P – number of penetrations.
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yarns, then these same projectiles should also produce similar V50

velocities.
In spite of their similar V50 values, however, the large spherical

and small cylindrical projectiles show different V1 and V99 values,
with the large spherical projectile producing a wider fabric PVR
curve and a higher CV (Table 5 and Fig. 8). This effect was previ-
ously explained based on the manner in which the projectile
engages the principal yarns. The more simultaneous loading and
catastrophic failure of the principal yarns when engaged by the

cylindrical projectile leads a decreased sensitivity to the yarn
strength variability and consequently a narrower PVR curve.

5. Conclusions

The probabilistic impact performance of a single-layer fully-
clamped plain weave Kevlar fabric impacted by projectiles with
the same mass but different sizes and shapes was studied. The
yarn-level fabric finite element model was based on a statistical

Fig. 4. Simulation results and PVR curves: (a) large sphere, (b) small sphere, (c) large cylinder, (d) small cylinder, (e) large cone and (f) small cone.
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implementation of yarn strengths thereby enabling the capture of
the zone of mixed results (ZMR). Probabilistic velocity response
(PVR) curves were generated for each projectile case through a
series of impact simulations and then compared with one another.

The simulations demonstrate that projectile size and shape have
an important effect on the probabilistic response of fabrics. Sharper,
pointed projectiles such as the conical projectiles result in a sequen-
tial manner of projectile–yarn interaction and a sequential (time-
dispersed) yarn failure pattern, while flatter and blunter projectiles

such as the cylindrical projectiles result in a simultaneous manner
of projectile–yarn interaction and a simultaneous or catastrophic
yarn failure pattern. The sequential yarn failures lead to more sen-
sitivity to the strengths of individual yarns and a higher variability
in response, as evidenced by higher standard deviation and CV val-
ues for the PVR curves of conical projectiles as compared to spheri-
cal projectiles. The cylindrical projectiles showed the smallest CV
values. For a given projectile shape, a larger impact face will result

Table 5
PVR curve parameters.

Large sphere Small sphere Large cylinder Small cylinder Large cone Small cone

# Test shots 40 40 40 40 40 40
MLE estimate of g (m/s) 45.54 34.19 61.21 45.61 43.67 20.23
MLE estimate of n (m/s) 0.94 0.57 0.45 0.42 0.95 1.32
CV = n/g (%) 2.07 1.66 0.73 0.92 2.18 6.53
V1 velocity (m/s) 43.35 32.87 60.17 44.64 41.46 17.16
V99 velocity (m/s) 47.73 35.50 62.25 46.58 45.88 23.30
Width of PVR = V99 � V1 (m/s) 4.38 2.63 2.08 1.94 4.42 6.14
Width of ZMR (m/s) 1.70 1.20 0.70 0.80 2.00 2.00
95% Confidence limits glower (m/s) 44.96 33.82 60.92 45.3 43.16 19.43

gupper (m/s) 46.08 34.53 61.5 45.89 44.21 20.93
nlower (m/s) 0.57 0.33 0.25 0.24 0.57 0.76
nupper (m/s) 1.9 1.12 0.94 0.84 2.2 2.97

Fig. 5. Comparison of variability in the probabilistic fabric impact performances.

Fig. 6. Yarn failure analysis.

Fig. 7. Comparison of PVR curves for the large sphere and small cylinder cases.

Fig. 8. Comparison of deterministic impact results for the large spherical and small
cylindrical projectiles.
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in a larger total number of failedwarp and failed fill yarns at the im-
pact site. However for the same projected impact face area, a
pointed projectile will more easily be able to push aside the princi-
pal yarns at the impact site resulting in the failure of a fewer number
of principal yarns.

These results could have important implications for under-
standing how practical protective barriers, such as personnel pro-
tective clothing, respond to projectiles with different geometries.
The concept of reducing penetration response variability, an
important constraint on the practical design of protective clothing,
by loading more yarns simultaneously may also serve as inspira-
tion for new barrier design concepts.

The probabilistic simulations were able to distinguish between
the impact responses of the large spherical and small cylindrical
projectiles, which the deterministic simulations were unable to
do. An important conclusion drawn was that decisions regarding
impact performance cannot be based only on the V50 velocity,
rather depending on the design criteria of the protective target
and projectile, the V1 and V99 velocities respectively become
important considerations. Future studies will investigate how the
trends reported in this study vary when the fabric boundary condi-
tions are changed from fixed–fixed to fixed–free and free–free, in
which case inter-yarn friction will become an important consider-
ation. As suitable material data becomes available, yarn failure
modes apart from tensile elongation will be implemented such
as yarn transverse shearing and filament crushing modes. Such
additional failure modes will become especially important when
analyzing multi-layered fabric targets.
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a b s t r a c t

A ply-level material constitutive model for plain-weave composite laminates has been developed to
enable computational analyses of progressive damage/failure in the laminates under high velocity
ballistic impact conditions. In this model, failure-initiation criteria and damage evolution laws are
introduced to account for the major fiber-failure modes (tensile, compressive, punch shear and crush
loading). In addition, two matrices related failure modes (in-plane shear and through the thickness
delamination) are also accounted for. These types of fiber and matrix failure modes are commonly
observed during a ballistic event. The composite-material model has been implemented within LS-DYNA
as a user-defined material subroutine and used successfully to predict the damage and ballistic behavior
of composite laminates subjected to various ballistic impact conditions. It is hoped that the availability of
this material model will help facilitate the development of composite structures with enhanced ballistic
survivability.

Published by Elsevier Ltd.

1. Introduction

Composites have long been used in personnel and vehicle
protective/structural applications for protection against various
ballistic and blast threats. Composite materials are well suited to
this role because of their superior stiffness and strength-to-weight
properties over many other classes of materials. Utilization of
composite materials provides mass efficiency with enhanced
survivability for various combat vehicles and protection devices. To
rapidly develop novel protective systems, it is essential to employ
advanced numerical simulations together with experimental
evaluation to assess a range of material and structural solutions.
However, in order to accurately capture the protective performance
using numerical simulations, the compositematerial behaviormust
be modeled correctly. Toward this goal, a robust material model for
composites subjected to blast and ballistic impact has been devel-
oped and validated by the author in preceding decades [1e4]. This
paper reports an extension of the previous work to include
a unidirectional model together with the validation of modeling
composite ballistic behavior using newly acquired material and
ballistic test data.

While composites have been effectively used in personnel and
vehicle protection since World War II, modeling the progression of
damage and ultimate failure caused by blast and ballistic impact

has only been developed since the 1980’s. This is due to the enor-
mous complexity of the material loading and failure that occurs
when a composite is impacted and perforated. During ballistic
impact, composite laminates absorb energy primarily due to the
failure of fibers under axial tension/compression, punch shear and
crush loading. Failure modeling of composite materials under
impact loading has been the subject of numerous studies [5e8].
However, few studies have been reported on modeling progressive
damage/failure in composites under high strain rate ballistic
loading. The composite failure model originally adopted within
LS-DYNA is the ChangeChang [9] model (MAT 22), which provides
various fiber and matrix failure modes solely due to in-plane
stresses in unidirectional lamina. In this 2D failure model, the
failure mode due to out-of-plane shear and normal stresses are
neglected. While this may be sufficient for composite structures
under in-plane loading, this model is not expected to adequately
represent composite material response under transverse impact
loading conditions during which all six stress components are
known to contribute to damage/failure development.

A continuum damage mechanics (CDM) model for unidirec-
tional composite layers based on plane-stress state was reported by
Matzenmiller et al. [10]. Studies reported byWilliam and Vaziri [11]
and Van Hoof et al. [12], have shown that CDM-type post failure-
initiation models can significantly improve the prediction of
impact progressive damage/failure in composite structures. Note
that non-interactive failure criteria (based on maximum strain
assumption) due to tension, punch shear and crush loading were
originally proposed by Van Hoof et al. [12], to account for the major
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failure modes accompanying ballistic impact of composite mate-
rials. This model, however, neglects the rate dependency of the
material response. The same deficiency, i.e., a lack of accountability
for the strain-rate dependent effects in composite materials, can be
assigned to more recent CDM composite material models such as
[13e15]. The latter models are highly advanced in capturing various
continuously distributed static intra-lamina and inter-lamina
damage mechanisms (e.g. fiber breakage within the yarns, fiber/
matrix de-bonding, diffuse delamination/inter-lamina separation
etc.) as well as in accounting for discrete damage modes (e.g.,
transverse micro-cracking). Nevertheless, they fail to include the
effect of rate dependency in composite materials and, hence, are
not considered reliable for modeling the behavior of these mate-
rials under high strain rate loading conditions.

High strain rate and high pressure loading conditions generally
occur in the impact area when a composite material is subjected to
high velocity ballistic impact. Previous studies have shown that
certain composite materials subjected to high rate loadings, such as
blast and ballistic impact, exhibit significant strain rate sensitivity
of both their stiffness and strength. Experimental characterization
of the mechanical behavior of composite materials under high
strain rate conditions has been reported in literature [16,17]. It has
been shown that some protective materials such as woven glass
and aramid composites exhibit significant rate sensitivity [18,19].

To enhance the modeling capability of the progressive failure
behavior of composite laminates due to transverse impact, a rate-
dependent composite lamina model based on the 3D stress field
has been developed and reported herein. The model takes into
account rate dependency of the composite-material response and
can be used to accurately represent the aforementioned experi-
mentally observed strain-rate effects. In this model, damage-
initiation criteria have been developed for all major fiber failure
(tensile, compressive, punch shear and crush loading) and matrix
failure (in-plane shear and through the thickness delamination)
modes. These are supplemented with the corresponding
continuum damage-mechanics evolution laws/equations which
characterize damage progression and the associated decrease in
material stiffness.

The model has been implemented into explicit dynamic codes
such as LS-DYNA as a user-defined subroutine. This material model
can be used to effectively simulate fiber failure, matrix damage, and
delamination behavior under different closure/loading conditions
of the internal delaminated surfaces/cracks (e.g., crack-face
opening, closure and sliding). Furthermore, this progressive
failure modeling approach enables the prediction of delamination
when locations of delamination sites cannot be anticipated; i.e.,
locations of potential delamination initiation are calculated
without a-priori definition of an interlaminar crack surfaces. This
material model has been successfully utilized previously by the
author to characterize the impact damage in composite structures
for a wide range of impact problems [1e4].

The organization of the paper is as follows: A brief account of the
key features/relations of the present material model is provided in
Section 2. Determination of the material parameters required by
the model is given in Section 3, while the validation of the ballistic
modeling capacity is provided in Section 4. The conclusions
resulting from the present study are summarized in Section 5.

2. Composite progressive failure model

The ballistic material model for composite laminates reported
herein considers the contribution of 3D strain state to damage
initiation within plain weave fabric layers and provides an
improved treatment of damage evolution (progressive failure). As
will be shown later, the model can be used to effectively account

for both damage/failure of the fiber reinforcements and the
matrix under high strain-rate and high pressure ballistic impact
conditions.

Strength-based failure criteria are commonly used with the
finite element method to predict failure events in composites
structures. A large number of continuum-based criteria have been
derived to relate internal stresses and experimentally measured
material strengths to the onset of failure. A general tensor poly-
nomial criterion was proposed by Tsai and Wu [20] for failure of
brittle unidirectional fiber composites. Hashin [21] pointed out the
need of establishing failure criteria based on failure modes due to
the fact that a unidirectional fiber composite consists of strong and
stiff fibers and comparatively weak and compliant matrix. For these
two very dissimilar phases, he proposed four different failure
criteria relating to tensile and compressive failure of fibers and
matrix for a unidirectional composite layer.

Over the last two decades, several researchers have proposed
modifications to Hashin criteria to improve its prediction capabil-
ities. Hashin failure criteria were modified to include the effect of
transverse compressive normal stress on the matrix shear strength
by Sun, et al. [22]. The application of the MohreCoulomb (MeC)
criterion to transverse compression under combined transverse
normal and axial shear stresses was studied by Chatterjee [23].
Using a simple modification to account for the difference between
the transverse and axial shear strengths, he was able to obtain good
correlation of matrix failurewith experimental data of compression
tests of angle ply as well as off-axis unidirectional specimens. The
MeC criterionwas also used to include the effect of compression on
the shear strengths of transverse matrix failure by Puck and
Schurmanner [24] and Davila and Camanho [25]. In general, the use
of MeC for the transverse matrix failure has improved the accuracy
over the Hashin matrix failure criterion. However, the effect of
transverse normal stresses on the fiber failure also needs to be
considered for accurately predicting the composite ballistic
behavior.

The proposed failure model has been established by general-
izing Hashin failure criteria [21] to a unidirectional composite
lamina to account for 3D stress effects and to include the effects of
high strain rate and high pressure on composite failure resulting
from a wide range of ballistic/blast loading conditions. The unidi-
rectional model has then been extended to a plain weave lamina.
The MohreCoulomb (MeC) criterion has also been generalized for
modeling the through the thickness fiber/matrix failure of
a composite lamina where fracture under compression is very
different from the fracture under tension.

2.1. Damage-initiation/progression functions

The unidirectional and fabric layer damage-initiation/
progression criteria developed in the present work are expressed
in terms of ply-level engineering strains ( 3x, 3y, 3z, 3xy, 3yz, 3zx) with x, y
and z denoting the in-plane fill, in-plane warp and out-of-plane
directions, respectively. Note that for the unidirectional model, x,
y and z denote the fiber, in-plane transverse and out-of-plane
directions, respectively, while for the fabric model, x, y and z
denote the in-plane fill, in-plane warp and out-of-plane directions,
respectively. The associated Young’s and shear moduli are
(Ex,Ey,Ez,Gxy,Gyz,Gzx).

2.1.1. Unidirectional lamina damage functions
Three fiber damage mechanisms are considered: (a) damage

under combined uniaxial tension and transverse shear; (b) damage
under uniaxial compression; and (c) damage under transverse
compressive loading. Matrix mode failures must occur without
fiber failure, and hence theywill be on planes parallel to fibers. Two
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matrix damage mechanisms are considered: (d) damage plane
perpendicular to the layer plane under in-plane tensile and shear
stresses; and (e) damage plane parallel to the layer plane (delam-
ination) due to through-the-thickness tensile and shear stresses.

Uniaxial tension/Transverse shear

f1 � r21 ¼
�
Exh 3xi
SxT

�2

þ
G2
xy 32xy þ G2

xz 32xz

S2FS
� r21 ¼ 0 (1)

Uniaxial Compression

f2 � r22 ¼
�
Ex
�

30x
�

SxC

�2

�r22 ¼ 0;

3
0
x ¼ max

�
� 3x �

�
� 3y

� Ey
Ex

;� 3x � h� 3zi
Ez
Ex

�
ð2Þ

Transverse Compression

f3 � r23 ¼
 
Ey
�
� 3y

�
SFC

!2

þ
�
Ezh� 3zi
SFC

�2

�r23 ¼ 0 (3)

where hi are Macaulay brackets, SxT and SxC are the axial tensile and
compressive strengths, respectively, and SFS and SFC are the fiber-
shear controlled layer shear strength and crush failure strength,
respectively. The damage thresholds, ri i ¼ 1,2,3, which are set to 1
for the initial damage-free material. The individual failure criterion
is then used to determine the onset of the associated fiber damage
mode when the straining condition provides f1 ¼1, f2 ¼ 1 or f3 ¼ 1.

In Eq. (1), the unidirectional fiber tensile/shear damage is given
by the quadratic interaction between the associated axial and
through the thickness shear strains. This fiber failure is a general-
ization of the criterion of Hashin for a unidirectional layer. It is,
however, important to note that the fiber shear failure, which is
commonly observed under ballistic loading conditions, is governed
by the layer (punch) shear strength (SFS) and this mode of fiber
failure was not covered by the original Hashin’s model [21].

In Eq. (2), it is assumed that the in-plane compressive damage in
the axial fiber directions is given by the maximum strain criterion,
when 3x is compressive. Note that the effect of transverse
compressive strains on the in-plane compressive damage is taken
into account.

When a composite material is subjected to transverse impact by
a projectile, high compressive stresses will generally occur in the
impact area with high shear stresses in the surrounding area
between the projectile and the targetmaterial.While thefiber shear
punchdamagedue to thehigh shear stresses canbe accounted for by
Eq. (1), the crush damage due to the high through the thickness
compressive stresses is modeled using the criterion of Eq. (3).

Perpendicular Matrix Damage

f4� r24 ¼
( 

Ey
�

3y
�

SyUT

!2

þ
"

Gyz 3yz

Syz0þSySR

#2
þ
"

Gxy 3xy

Sxy0þSySR

#2)
� r24 ¼ 0

(4)
Parallel Matric Damage (Delamination)

f5� r25 ¼ S2
(�

Ezh 3zi
SzUT

�2
þ
"

Gyz 3yz

Syz0þSzSR

#2
þ
�

Gxz 3xz

Sxz0þSzSR

�2)
� r25 ¼ 0

(5)

where r4 and r5 are the damage thresholds for modes 4 and 5,
respectively; SyUT and SzUT are the transverse tensile strengths in
the y and z directions, respectively; and Sxy0, Syz0 and Sxz0 are the
shear strengths corresponding to the tensile modes in the associ-
ated directions, i.e. 3y � 0 or 3z � 0. Under compressive transverse
strain, 3y < 0 or 3z < 0, the internal surfaces induced by matrix
cracking are considered to be in full contact, and the damage
strengths are assumed to be dependent on the associated
compressive normal strain 3y or 3z similar to the Coulomb-Mohr
theory, i.e.,

SySR ¼ Eytan 4U
�
� 3y

�
(6)

SzSR ¼ Eztan 4Uh� 3zi (7)

where 4U is the Coulomb’s friction angle.
While the damage surface due to Eq. (4) is perpendicular to the

composite layer plane and is associated with transverse matrix
cracking, the damage surface due to Eq. (5), which is the quadratic
interaction between the thickness stresses, is parallel to the
composite layer plane and is associated with inter-layer separation/
delamination. Note that a scale value S is introduced into Eq. (5) to
account for the stress concentration factor at the delamination
front. During numerical simulations, S value greater than 1.0 is
assigned only to the composite laminate regions adjacent to the
delamination front(s). No stress concentration effects are consid-
ered in the remainder of the composite laminate and S is set to 1.0.

In order to identify the delamination front elements, an array of
elements surrounding the current active element is passed into the
material subroutine from the main program of LS-DYNA. If the
onset of delamination is computed in the active element during the
current loading step, those surrounding elements, which are in the
same composite layer plane but are not yet delaminated, are
identified as the delamination front elements by flagging a history
variable associated with each of those elements for assigning the S
value in the later loading steps. When an appropriate value for the
scale factor S is selected, this non-local approach was found to
provide better correlation of delamination area with experiments.
Such optimal value of the scale factor can be determined by fitting
the analytical prediction to experimental data for the delamination
area.

The damage criteria fi � ri
2 ¼ 0, i ¼ 1,.,5, given in Eqs. (1)e(5)

provide the damage initiation/progression surfaces in strain
space. For the undamaged state, ri are set to 1, and, thus, the
material remains in the initial undamaged state as long as fi� 1�0,
for each i (i ¼ 1,.,5). The damage evolution laws introduced in the
next section are used to model the damage progression behavior.

2.1.2. Plain weave fabric lamina damage functions
Similar to the unidirectional model, five fiber damage mecha-

nisms are considered: (a) damage under combined uniaxial tension
and transverse shear, fill and warp fibers are treated separately; (b)
damage under uniaxial compression, fill and warp fibers are
considered separately; and (c) damage under transverse
compressive loading, no distinction between fill and warp fibers is
made. Two matrix damage mechanisms are also considered: (d)
damage under in-plane shear loading; and (e) delamination due to
through-the-thickness tensile and shear stresses. The plain weave
model was reported in Ref. [1] and is summarized as follows for the
sake of completeness.

First, the fiber failure criteria of Hashin for a unidirectional layer
are generalized to characterize the fiber damage in terms of strain
components for a plain weave layer. The fill and warp fiber tensile/
shear damage are given by the quadratic interaction between the
associated axial and through the thickness shear strains, i.e.,
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f6 � r26 ¼
 
Exh 3xi
SxT

!2

þ
�
Gxz 3xz

SxFS

�2

�r26 ¼ 0

f7 � r27 ¼
 
Ey
�

3y
�

SyT

!2

þ
 
Gyz 3yz

SyFS

!2

�r27 ¼ 0

(8)

where SxT and SyT are the axial tensile strengths in the fill and warp
directions, respectively, and SxFS and SyFS are the layer shear
strengths due to fiber shear failure in the fill and warp directions.
These failure criteria are applicable when the associated 3x or 3y is
positive. The damage thresholds r6 and r7 are equal to 1 without
damage.

When 3x or 3y is compressive, it is assumed that the in-plane
compressive damage in the fill and warp directions are given by
the maximum strain criterion, i.e.,

f8 � r28 ¼
 
Ex
�

30x
�

SxC

!2

�r28 ¼ 0; 3
0
x ¼ � 3x � h� 3zi

Ez
Ex

f9 � r29 ¼
 
Ey
�

30y
�

SyC

!2

�r29 ¼ 0; 3
0
y ¼ � 3y � h� 3zi

Ez
Ey

(9)

where SxC and SyC are the axial compressive strengths in the fill and
warp directions, respectively, and r8 and r9 are the corresponding
damage thresholds.

The crush damage due to the high through the thickness
compressive pressure is modeled using the following criterion:

f10 � r210 ¼
�
Ezh� 3zi
SFC

�2
�r210 ¼ 0 (10)

where SFC is the fiber crush strengths and r10 is the associated
damage threshold.

A plain weave layer can be damaged under in-plane shear
stressing without occurrence of fiber breakage. This in-plane
matrix damage mode is given by

f11 � r211 ¼
�
Gxy 3xy

Sxy

�2
�r211 ¼ 0 (11)

where Sxy is the layer shear strength due tomatrix shear failure and
r11 is the damage threshold.

Another failure mode, which is due to the quadratic interaction
between the thickness strains, is expected to be mainly a matrix

failure. This through the thickness matrix failure criterion is
assumed to have the following form:

f12�r212 ¼ S2
(�

Ezh 3zi
SzT

�2

þ
"

Gyz 3yz

Syz0þSSR

#2
þ
�

Gxz 3xz

Sxz0þSSR

�2)
�r212 ¼ 0

(12)

where r12 is the damage threshold, SzT is the through the thickness
tensile strength, and Syz0 and Sxzo are the shear strengths for tensile 3z.
The damage surface due to Eq. (12) is parallel to the composite
layering plane. Under compressive through the thickness strain,
3c < 0, the damaged surface (delamination) is considered to be
“closed”, and the damage strengths are assumed to depend on the
compressivenormal strain 3c similar to theCoulomb-Mohr theory, i.e.,

SSR ¼ Eztan 4h� 3zi (13)

where 4 is the Coulomb’s friction angle. Similar to the unidirec-
tional model, a scale factor S is introduced to provide better
correlation of delamination area with experiments. The scale factor
S can be determined by fitting the analytical prediction to experi-
mental data for the delamination area.

2.2. Damage evolution laws

To quantify the extent of damage-induced stiffness loss, six
damage variables 6j with j ¼ 1,.6, are introduced, one for each of
the six moduli mentioned earlier. The compliance matrix S is
related to the damage variables as in Ref. [10]:

The stiffness matrix C is obtained by inverting the compliance
matrix, [C] ¼ [S*]�1.

As suggested in Matzenmiller et al. [10], the growth rate of
damage variables _6j, is defined by the following type of evolution
law:

_6j ¼
X
i

_fiqji (15)

where the scalar functions _fi (i ¼ 1,.,12) define the growth rate of
damage mode, i, and the binary vector-valued functions qji
(j ¼ 1,.6, i ¼ 1,.,12) provide the coupling between the individual
damage variables, 6j, and one of the previously defined seven
damage modes (each characterized by its damage-initiation func-
tion fi).

h
S*
i
¼

2
66666666666666666666666664

1
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�nxy
Ex

1
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1

ð1�64ÞGxy
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1
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0
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3
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(14)
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2.2.1. Derivation of _fi
As described previously, the damage criteria fi � ri

2 ¼ 0 of Eqs.
(1)e(5) or (8)e(12) provide the damage surfaces in strain space.
The growth rate of damage type i, _fi, will be non-zero when the
strain path crosses the corresponding updated damage surface
fi � ri

2 ¼ 0 and the associated strain-vector increment has a positive
component along the outward normal to the damage surface, i.e.,
when

P
kðvfi=v 3kÞ_3k > 0, where k(¼1,.,6) is used to denote six

components of the strain vector. Combined with a damage growth
function gið 3k;6jÞ, _fi is assumed to have the form

_fi ¼
X
k

gi
vfi
v 3k

_3k (16)

Choosing

gi ¼
1
2
ð1� fiÞf

m
2
�1

i (17)

and noting that

X
k

vfi
v 3k

_3k ¼ _f i (18)

for the quadratic functions of Eqs. (1)e(5) or (8)e(12), leads to

_fi ¼
1
2
ð1� fiÞf

m
2
�1

i
_f iðno summation over iÞ (19)

where fi is a variable representing the extent of mode-i damage,
and m is a material constant that quantifies sensitivity of the
material stiffness to the extent of damage. To summarize, Eq. (19)
governs the rate of progression of different damage modes and,
in turn, the extent of stiffness loss as a function of damage with
multiple damage modes. As described in Ref. [10], the gi of Eq. (17)
is chosen to ensure that a Weibull distribution for damage flaw
accumulation is realized for the softening behavior under the
unidirectional straining condition.

2.2.2. Derivation of qji
For the fiber tensile/shear and compressive damage of modes of

6e9 defined in the fabric model, the damage coupling vector q6i, q7i,
q8i and q9i are chosen such that thefiber damage in either thefill and
warp direction results in stiffness reduction in the loading direction
and in the related shear directions. For the fabric fiber crush damage
of mode 10, the damage coupling vector q10i is chosen such that all
the stiffness values are reduced as an element is failed under the
crush mode. For the fabric in-plane matrix shear failure of mode 11,
the stiffness reduction due to q11i is limited to in-plane shear
modulus, while the through-the-thickness matrix damage (delam-
ination) of mode 12, the coupling vector q12i is chosen for the
through thickness tensile modulus and shear moduli. The damage
coupling matrix qij for the unidirectional model can be established
accordingly. Consequently, the damage coupling functions qji for the
unidirectional and fabric models, respectively, are then

½q� ¼
h
quni;qfabric

i

½quni� ¼

2
66666666664

1 1 1 0 0

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

0 0 1 1 1

1 1 1 0 1

3
77777777775

;
h
qfabric

i
¼

2
66666666664

1 0 1 0 1 0 0

0 1 0 1 1 0 0

0 0 0 0 1 0 1

1 1 1 1 1 1 0

0 1 0 1 1 0 1

1 0 1 0 1 0 1

3
77777777775

(20)

Through Eq. (15), the above function qji relates the individual
damage variables 6j to the various damage modes provided by the
damage functions of the fabric models.

2.2.3. Derivation of 6j
Utilizing the damage coupling functions of Eq. (20) and the

growth function of Eq. (19), a damage variable 6j can be obtained
from Eq. (15) for an individual failure mode i as

6j ¼ 1� e
1
m ð1�rmi Þ; ri � 1 (21)

Note that the damage thresholds ri given in the damage-initia-
tion criteria of Eqs. (1)e(5) and (8)e(12) are continuously
increasing functions with increasing damage. The damage thresh-
olds have an initial value of one, which results in a zero value for the
associated damage variable 6j, in accordance with Eq. (21). This
condition defines an initial damage-free elastic region bounded by
the damage functions in strain space. The nonlinear material
response is modeled by enabling the damage surfaces to expand
and the damage threshold ri to increase as a result of increase in
damage of type i. This, in turn, causes an increase in the associated
damage variable(s) 6j and a decrease in material stiffness. Reduc-
tion in material stiffness associated with an increase in damage
variables 6j is governed by Eq. (15). In other words, within the
strain space bounded by the damage surface material response
remains elastic while the material stiffness is governed by the
extent of damage. When fiber tensile/shear damage of a fabric layer
is predicted in a layer by Eq. (8), the load carrying capacity of that
layer in the associated direction is reduced to zero according to
damage variable Eq. (21). On the other hand, when fiber
compressive damage is predicted in a fabric layer by Eq. (9), the
layer is assumed to retain a residual strength in the damaged
direction. For the fill and warp fibers, the residual strengths are
denoted as SxCR and SyCR, respectively. To account for this residual
stiffness/strength effect, the damage variables of Eq. (21) for the
compressive failure modes have been modified in the fill and warp
directions, as

6j ¼
�
1� e

1
m ð1�rmi Þ

�
ð1� hiÞ; i ¼ 3 or 4

�
h3
h4

�
¼

8>><
>>:

SxCR
Ex 30x
SyCR
Ey 30y

9>>>=
>>>;

(22)

For through the thickness matrix (delamination) failure in
a fabric layer given by Eq. (12), the in-plane load carrying capacity
within the element is assumed to be elastic (i.e., no in-plane
damage). The load carrying behavior in the through the thickness
direction is assumed to depend on the opening or closing of the
internal delaminated surfaces. For tensile loading, 3z > 0, the
through-the thickness-stress components are softened and ulti-
mately reduced to zero due to the damage criteria described above.
For compressive loading, 3z < 0, the internal delaminated surfaces
are considered to be closed, and thus, sz is assumed to be elastic,
while syz and szx are allowed to reduce to a sliding friction stress of
Eq. (13). Accordingly, for the through-the-thickness matrix failure
of mode 12 under compressive loading, the damage variable Eq.
(21) is further modified to account for the residual sliding strength
SSR of the form

�
65
66

�
¼
�
1� e

1
mð1�rm7 Þ

�0@1� SSRh�
Gyz 3yz

�2þðGzx 3zxÞ2
i1=2

1
A (23)
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where the sliding strength is given by Eq. (13). Note that the
modifications of uj for an unidirectional layer to account for the
residual behavior can be carried out similar the procedure
described above for a fabric layer.

2.3. Typical stress-strain response and damage surface

Fig. 1 shows typical axial tensile and compressive stress-strain
curves obtained using the present progressive-damage
composite-material model for a plain weave S2/Epoxy layer with
a value of 4.0 assigned to the damage model parameter, m. Fig. 1(a)
shows that, under monotonic loading, the model provides an initial
damage-free elastic response up to the stress values of 586 MPa
(85 ksi) for tension and 345 MPa (50 ksi) for compression. This is
followed by a post damage-initiation material response character-
ized by continued softening. Note that the compressive stress
reduces ultimately to a residual strength of 103 MPa (15 ksi) and
remains constant afterward. Fig. 1(b) shows stress-strain curves
due to cyclic loading along the fill-fiber direction (direction x). It
demonstrates the effect of the accumulated damage on the stress-
strain response. Note that during unloading/reloading, the material
is more compliant than the initial damage-free material. The
associated reduced elastic modulus is equal to (1�61)Ex, where 61
is the updated damage parameter for the axial fiber damage mode.

Fig. 2 shows typical axial shear stress-strain curves obtained
from the damagemodel. Shown in Fig. 2a are the shear stress-strain
curves for szx with tensile through the thickness normal loads
(opening delamination). Fig. 2b shows the effect of the compressive
through the thickness normal stress (closing delamination), sz on
the szx stress-strain response for a Coulomb’s friction angle 4¼ 20�.

Fig. 3 shows the typical stress-strain curves of a unidirectional
S2/Epoxy layer. It demonstrates the energy absorption capacity in
the axial fiber direction is significantly higher than those associated
with the fracture due to matrix damage resulted from the trans-
verse tensile and in-plane shear loadings.

2.4. Strain-rate dependent formulation

The effect of strain rate on the mechanical response of
composite laminates is modeled by making strength values
appearing in Eqs. (1)e(5) and (8)e(12) and the six elastic moduli,
strain-rate dependent quantities. Strength values are made strain-
rate dependent through the introduction of a scale factor as

fSRTg ¼ fS0g
�
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f_3g
_30

�
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>>>>>>>>;

RT
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SyT
SxC
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>>>>>>>>;
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��

9>>>>>>>>>>=
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(24)

where C1 is the strain rate constant, and {S0} are the strength values
of {SRT} at the reference strain rate _30.

The strain-rate effect on the layer elastic moduli is modeled in
an analogous fashion as:

fERTg ¼ fE0g
�
1þ C2ln
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�
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9>>>>>>=
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0

(25)

where {E0} are the moduli of {ERT} at the reference strain rate _30.
The effect of strain rate on the axial stress-strain response is shown
in Fig. 4 for C1 ¼ 0.02 and C2 ¼ 0.

3. Material-model parameterization

3.1. In-plane strength and modulus strain-rate dependence
parameters

A literature survey has been conducted to identify the effect of
strain-rate on the composite strength properties. Reviews of works
and development in the area concerning themechanical behavior of
composite materials under high strain rate conditions are reported
in Refs. [5,16,17 and 26]. In general, the experimental data indicates
that composite failure strength is sensitive to the strain rate for glass/
epoxy plain weave composites and much less so for carbon.

Fig. 1. Axial stress-strain curves for damage model under (a) Monotonic and (b) Cyclic loading conditions.
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Various public-domain experimental data has been utilized to
determine strength ({S0} and C1) and modulus ({E0} and C2) strain-
rate dependency parameters for various composite systems and
reported in [2] and [3]. Typical strain-rate dependent tensile and
shear punch data for a fine weave glass composite was obtained by
Hopkinson Pressure Bar testing (HPBT) and reported in [27] and
[18], respectively. It was shown in [2] that these tensile and shear
punch stress-strain curves can be accurately represented by the
material model using the proper rate-dependentmodulus, strength
and damage parameters.

Of particular interest in this study is the dynamic behavior of the
S2-glass/Epoxy plain weave composite laminates. The dynamic
compressive stress-stain data of HPBT was reported by Song et al.
[28], and shows in Fig. 5. The plain weave laminate shows
a moderate increase in modulus, strength, and strain to failure with
increasing strain rate. Fig. 5 also shows the computed stress-strain
curves using the proposed material model for strain-rates ranging
from 1/sec to 104/sec. Note that the modeling results for the GFRP
composite were obtained by using the rate-dependent modulus,
strength and damage parameters of C1¼0.03, C2¼ 0.03 andm¼ 4. It

is seen that the proposed material model can represent the overall
rate-dependent nonlinear stress-strain response reasonably well.

It is important to note that in order to accurately account for the
experimentally observed strain-rate dependency of the in-plane
tensile and punch shear strengths over a wide strain-rate range
multiple values of the strain rate constants C1 and C2 may be
required. However, it should be recognized that under ballistic
impact conditions, it is expected that the composite failure will
mainly occur under relatively high strain rates, i.e.,_3 � 1 s�1.
Therefore, for the correlation shown in Fig. 5, as well as the ballistic
impact analysis reported later, the use of single values of C1 and C2
with a cut-off strain rate _3c is recommended. For the current S2-
glass/Epoxy plain weave laminate, it assumes that the strengths
remain constant (rate independent) for strain rates below the cut-
off threshold at 1.0 s�1.

3.2. Crush compressive and punch-shear fiber strengths

Typical ballistic impact tests aswell as ballistic simulation studies
have indicated that the fiber shear failure resulting from the

Fig. 3. Stress-strain curves of a unidirectional layer for axial tensile, transverse tensile
and in-plane shear loads.

Fig. 4. Axial tensile stress-strain curves for damage model under various constant
strain rate loading.

Fig. 2. Shear stress-strain curves for damage model under the effect of through the thickness normal load, (a) Opening delamination and (b) Closing delamination.
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through-thickness impact loading has had an important effect on
the ballistic capacity of composite laminates [1,2]. It is expected that
during high-velocity impact, large normal stresses are created in the
direction orthogonal to the layer surfaces and that these stresses
may induce shear failure along weak material planes. In unidirec-
tional composites such failure usually occurs without cutting the
fibers and thismatrix dominated shear strength is typically very low
[29,30]. Collin [31] performed compression tests using cube-shaped
thick unidirectional-composite specimens by loading in one of the
transverse directions, but providing constraint in the axial fiber
direction. As the specimen is allowed to expand in the un-
constrained transverse direction, matrix dominated failure has
been found to occur in the transverse direction. It was mentioned
previously that such matrix shear failure under the influence of
normal stress can be accurately modeled by taking into consider-
ation the effect of transverse compression under combined trans-
verse normal and axial shear stresses using MeC criterion [23].

The effect of transverse normal stresses on the fiber failure has,
however, drawn less attention. It is important to note that fiber
failure under transverse compressive loading cannot be accurately
predicted by the original Hashin failure model [21] since transverse
shear mode of failure was not considered in the original Hashin
failure model. In this work, the compressive loading is considered
to contribute to both crush failure (Eq. (3) or (10)) and transverse
shear failure (Eq. (1) or (8)) of the fibers. The required shear
composite failure strengths for the fiber breakage due to the
through-thickness compressive loading can be obtained from the
laterally constrained compression test (LCCT) procedure.

The laterally constrained compression test procedure originally
used by Collin [31] was extended to characterize the shear failure
strength of fibers in both unidirectional and plain weave laminates.
Fig. 6 shows the transversely constrained compression test fixture
introduced by Collin. It is seen that one of the fiber directions of
a plain weave composite specimen is arranged in the x direction,
the compressive load is applied in the through the thickness
direction z (perpendicular to the lamination planes) while the
lateral constraint is provided to the other in-plane fiber direction y.
Utilizing this LCCT, fiber shear failure is introduced as a result of the
transverse compressive load. A failure surface cutting through the
fibers with an inclined angle in the compressive loading direction
typically results from such a compressive test.

By loading the specimen in the through-thickness direction and
constraining laterally in one direction, failure must occur on certain

preferred planes cutting the fibers. In particular, for homogeneous
materials obeying Tresca or Mohr-Coulomb type strength criterion,
failure will occur by sliding on planes perpendicular to the faces
which are constrained (the plane making an angle q to the through-
thickness plane as shown in Fig. 7). In plain weave fiber reinforced
composites, such failures are possible only after a shear type failure
in the fibers occurs. In woven fabric composite with fibers running
in two perpendicular directions, one set of fibers (which are more
highly stressed) will likely fail in shear before the other. Fig. 6
shows the front view from the constrained side indicating shear
failure cutting fibers in the unconstrained direction.

For the case of plain weave specimens with one of the warp (0�)
or fill (90�) fiber direction coinciding with the unconstraint direc-
tion, the following stresses exist when the compressive stress on
the specimen is SFC,

SNFS ¼ 0:5 SFCsin 2q

SN ¼ SFCcos2 q
(26)

where SNFS and SN are shear and compressive normal stresses,
respectively, and q is the angle of the shear sliding plane shown in
Fig. 7. The above equations are obtained using the two principal
stresses, i.e., compressive stress SFC and zero. The other (interme-
diate compressive) principal stress (on planes parallel to the con-
strained faces) does not contribute to the stresses in Eq. (26).

The crush strength, SFC, for S-2 Glass/Epoxy composite was
measured using cubes with sides of 0.5 inch and 0.75 inch. For each
specimen size, both of the 0� and 90� plain weave composite

Fig. 5. Comparison of axial stress-strain response between modeling results and test
data [28] for various constant strain-rates.

Fig. 6. Laterally constrained transverse compressive test fixture and unidirectional
specimen.

Fig. 7. Shear failure plane cutting fibers under transverse compression.

C.-F. Yen / International Journal of Impact Engineering 46 (2012) 11e2218



   
278

orientations were tested. The volume fractions of fiber reinforce-
ments in 0� and 90� directions govern the composite fiber shear
strength and the crush strength. For thematerial tested, the amount
of reinforcements in the two directions is nearly equal. The crush
strengths for the twoorientations for 0.75 inch cubes are similar. The
average values for 0� and 90� orientations are 758MPa (110 ksi) and
745MPa (108ksi), respectively. For0.5 inchcubes, the averagevalues
for the two orientations differ by 6%with average values of 724MPa
(105 ksi) and 683 MPa (99 ksi). It may be noted that for smaller
specimens the amount of fibers may be affected by the location of
themachining planes with respect to the fiber yarns. Therefore, test
data for 0.7 inch cubes appear tobemore reliable and thevalueof the
average of the 0� and 90� crush strengths (SFC ¼ 751 MPa (109 ksi))
was used to calculate the punch shear strength SFS using Eq. (26).

Before the value of the fiber punch shear strength SFS can be
calculated, one must determine the failure plane angle q. For plain
weave composite-laminate architectures, the failure planes are
often corrugated and exhibit a zigzag pattern. A typical fracture
surface in plain-weave composite material specimens failed by
shear of 0� fibers is shown in Fig. 8. It appears that failure possibly
initiates in some fiber yarns in the composite fiber shear failure
mode, which is followed by very localized inter-yarn and/or inter-
layer de-bonding which offset the shear plane in subsequent
layers. The failure planes are measured from the failed specimens
and the value of q lies between 40� and 42�. Therefore, a value of
41� was used to calculate SFS ¼ 751 MPa (109 ksi).

The fiber shear failure behavior of a plain weave layer is
modeled by Eq. (8) where the required punch-shear strength values
of SxFS and SyFS are the SFS values obtained from the laterally con-
strained transverse compression tests in the x and y directions,
respectively. The measured fiber shear strength allows us to
construct the failure envelope associated with the through the
thickness components (sz, szx) for the tested S2/Epoxy plain weave
layer shown in Fig. 9. The matrix strength failure envelope is gov-
erned by Eq. (12) for both the tensile and compressive through the
thickness normal stress. The fiber shear strength is given by
equation (8), while the crush strength is provided by equation (10).
The residual strength of fractured material under shear stress is
provided by the Coulomb-Mohr criterion of equation (7) with Sxz0
set to zero where 4 ¼ 8� as given in Ref. [1].

4. Material-model additional parameterization and
validation

In this section, a series of ballistic impact computational analyses
of composite laminateswith projectiles is carried out and the results

compared with their experimental counterparts. The outcome of
this comparison was next used to both identify the still-
undetermined material-model parameters and to provide valida-
tion for the present material model. The objective of this task is to
evaluate the capability of utilizing the proposed progressive failure
criteriawithin 3D brick element of LS-DYNA to model the structural
response of composite plates subjected to high velocity ballistic
impact conditions. Simulations of the ballistic impact of two S2-
Glass/Epoxy composite panels were conducted by accounting for
the strain-rate sensitivity properties. Analyses were performed to
predict and correlate the measured perforation limit velocity (V50)
and damages in the composite plates subjected to fragment simu-
lating projectile (FSP) impact testing. The analyzed ballistic prob-
lems were: (1) a 3.41 kg/m2 composite plate of 30.5 cm �
30.5 cm � 1.8 cm subjected to 0.50 caliber FSP impact [32], and (2)
a 1.18 kg/m2 composite plate of 30.5 cm � 30.5 cm � 0.623 cm
subjected to 0.30 caliber FSP impact.

The finite element models for the 1.18 kg/m2 composite panel
and the 0.30 caliber FSP are shown in Fig. 10. Only one quadrant of
the composite panel and one quadrant of the FSP with chisel head
were modeled due to the geometric and material symmetry. Both
the plate and the projectile were modeled with 8-node brick
elements with a single integration point. There were 24 layers of
elements through the thickness.

The panel was placed over a rigid ring with a rigid body contact
surface assumed between the plate and the ring. Initial velocity was
provided to the impacter/FSP to start the analysis. The projectile
was made out of AISI 4340 steel which was modeled as an elasto-
plastic material. An eroding contact algorithm provided within
LS-DYNA together with the integrated failure model was used to
simulate the contact and penetration between the projectile and
the impact area of the plate. Note that the element erosion criterion
is associated with the complete fiber failure in both plain weave
yarn directions. All failed elements were deleted and the contact
surfaces were automatically updated to the newly exposed layers of
material.

The material properties for an S2-Glass/Epoxy plain weave
composite layer and the AISI 4340 steel FSP, listed in Table 1, were
used to perform the simulation. The composite-material quasi-
static elastic properties were obtained from the MIL-HDBK-17-3E
handbook [33]. The axial tensile and compressive strength values
of the plain weave S2-glass/epoxy composite were obtained from
the routine tensile and compressive tests, while the punch shear
and crush strengths were determined from the LCCT tests
described in the previous section. Note that the composite layer
strengths related to the fiber failure, which include the in-plane
tensile and compressive strengths as well as the out-of-plane
punch shear and crush strengths, have strong effects on the
composite ballistic behavior.Fig. 8. Typical damage surface of a fractured specimen.

Fig. 9. Failure envelope associates with the through-thickness-stress components
(sZ,sZx) for an S2/Epoxy plain weave layer.
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It was described in Section 3.1 that the strain-rate dependent
axial stress-strain data provided in Ref. [28] for the current S2-
glass/epoxy plain weave laminate can be reasonably represented
by the rate effect parameters of C1¼0.03 and C2¼ 0.03, which were
used in the current simulations of the test cases (1) and (2). This
should provide an improvement over the earlier correlation studies
of the test cases of (1) provided in Ref. [1] for which the strain-rate
considerationwas only limited to the composite strength while the
rate effect of elastic modulus was neglected due to the lack of data.

The post failure damage softening parameter,m ¼ 4, was chosen
due to the fact that it usually provided the best agreement between
the computed and the experimentally measured values of the
ballistic limitV50 for several cases reported inprevious studies [1e3].
Additionally, it is evidently demonstrated that m ¼ 4 provided the
best agreement between the computed and the experimentally
measured value for the ballistic limit V50 for the first case of the
3.41 kg/m2 plate subjected to 0.50 Caliber FSP impact.

The set of material properties listed in Table 1 were then used to
predict the V50 of the 1.18 kg/m2 composite plate subjected to
impact by a 0.30 caliber FSP. Fig. 11 shows the time histories of
projectile velocity for three values of initial impact velocity. Note
that the initial velocity is negative (downward) and the rebounding
velocity is positive, which is not shown in the figure for clarity. It is
seen from Fig.11 that the predicted V50 of the second panel is about
1345 fps (410 m/s), which is about 6% higher than the experimental
value of 1270 fps (387 m/s).

For the second series of ballistic tests, the damage zones were
visible on each target to compare the relative sizes of damage area.
To increase the visibility and contrast, targets were placed against
a backlit box, and the images of each impact area were captured.
The visible area of each damage zone was quantified using Axio-
Vision image processing software (Carl Zeiss, Inc.) [34]. Fig. 12

shows a typical back lit image of a damaged target subjected to
an impact velocity of 342 m/sec. The back lit image is compared to
the image obtained by using the well-known C-scan with satis-
factory result. In Fig. 13, the measured damage areas are plotted
with the associated impact velocities.

To determine an optimal value for the stress concentration
parameter for delamination propagation, S, a comparison is made
between the computed and experimentally measured delamina-
tion areas for the first test series. The effect of different S values on
the delamination areas as function of the impact velocities is shown
in Fig. 13. Based on the results displayed in this figure, the value of
S¼ 1.1 clearly provides the best match of predicted damage areas to
the experimental data for the impact velocities ranging from partial
penetration to complete perforation. Note that the value of S ¼ 1.1
was also used in the previous ballistic simulations of the first case
and matched the experimental data of delamination areas with
reasonable accuracy.

It is important to point out that the main goal of this research is
to develop a robust modeling tool which can effectively be used to
simulate the ballistic capacity of plain weave laminates of various
configurations subjected to impact of different projectiles with
a wide range of velocities. The accuracy of the model was validated
by providing blind predictions for a series of glass/epoxy laminates
of various areal densities subjected to impact by several types of
projectiles with measured V50 and residual velocities as reported
in Yen and Morris [35] and [4]. Note that a set of material param-
eters was obtained for the composite by following the procedure
described in this paper based on a set of data of a composite system.
This was then used for predicting the remaining test cases. The
predicted V50s and residual velocities are within 10% of the

Fig. 10. Finite element model for a composite panel and an FSP impacter, (a) Full view, and (b) Close-up of impact area.

Table 1
Material properties used for dynamic analysis.

S2-glass/Epoxy plain weave layer
Ex ¼ Ey ¼ 24.1 GPa (3.5 Msi) Ez ¼ 10.4 GPa (1.51 Msi)
nxy ¼ 0.12 nxz ¼ nyz ¼ 0.40
Gxy ¼ Gyz ¼ Gzx ¼ 5.9 GPa (0.85 Msi)
SxT ¼ SyT ¼ 0.59 GPa (85 ksi) SxC ¼ SyC ¼ 0.35 GPa (50 ksi)
SzT ¼ 69 MPa (10 ksi) SFC ¼ 0.75 GPa (108 ksi)
SFS ¼ 0.37 GPa (54 ksi) SxCR ¼ SyCR ¼ 0.10 GPa (15 ksi)
Sxy ¼ Syz ¼ Szx ¼ 48.3 MPa (7 ksi)
S ¼ 1.1 C1 ¼ 0.03, C2 ¼ 0.03, _30 ¼ 1 s�1

4 ¼ 8� m ¼ 4
r ¼ 1783 kg/m3 (1.668 � 10�4 lbs-s2/in4)
Steel 4340
E ¼ 207 GPa (30 Msi) n ¼ 0.33
sy

a ¼ 1.03 GPa (150 Ksi) Etb ¼ 6.9 GPa (1.0 Msi)
3f
c ¼ 0.35 r ¼ 7877 kg/m3

(7.37 � 10�4 lbs-s2/in4)

a Yield stress.
b Plastic tangent modulus.
c Failure strain.

Fig. 11. Computed time histories of projectile velocity for an S2-Glass/Epoxy composite
subjected to 0.22 caliber FSP impact.
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associated experimental data. The modeling accuracy has been
accomplished by considering strain-rate effects for the fiber failure
modes but assuming rate independency for the matrix dominated
failure modes with the introduction of a scale factor “S” for
modeling the delamination zone, as described in Section 2.

The composite model has also been incorporated in LS-DYNA as
the Material 162 (MAT162) since 2003 [36]. The accuracy of the
model has been reported by numerous users, e.g. Refs. [37e39]. For
examples, the model was used in Deka et al. [36,37] to predict
damage progression in a series of composite panels subjected to
single- and multi-hit impact. Good agreement between the
numerical and experimental results was attained in terms of pre-
dicting ballistic limit, delamination and energy absorption of E-
glass/PP laminate.

In summary, good correlation between the predicted and
experimental results on the ballistic capacities of various composite
laminates seems to indicate that the model provides proper
prediction of the overall energy dissipation during ballistic events
which are dominated by the fiber failure modes. Although the
current simplified approach provides satisfactory results on pre-
dicting the delamination behavior, the rate effect on matrix
dominated modes can be readily included in the model for rate
sensitive matrix materials. The model can also incorporate the
well-known cohesive element approach for better modeling of the
delamination progression. However, this usually requires addi-
tional characterization in terms of the interface fracture parameters
including the peak strength, critical energy release rate and the
associated strain-rate sensitivity properties for the three fracture
modes. Furthermore, cohesive elements must be inserted at every

inter-layer interface in the finite element model to simulate the
laminate delamination. Finally, the use of 3D photogrammetry
techniques to acquire the time history of the panel deflection
profile during a ballistic event will provide an opportunity for
further validation of the models accuracy in future studies.

5. Conclusions

A strain rate dependent lamina model based on continuum
damage mechanics has been successfully developed and imple-
mented within LS-DYNA for modeling the progressive failure
behavior of plain weave composite layers. It can be used to effec-
tively simulate the fiber failure and delamination behavior under
high strain-rate and high-pressure ballistic impact conditions. The
integrated code was successfully utilized to predict the ballistic
limit velocity of composite laminates subjected to high velocity
ballistic impact conditions. Simulations of ballistic impact of
composite panels have been conducted by taking into account the
strain-rate sensitivity of material response. The strain rate effect
will need further investigation by experimentally characterizing
the rate dependent behavior of various composite materials.
Correlation for impact damage such as delamination area will also
need to be conducted when the test data is available in the future.

The present composite material model can provide insight into
the damage development and progression that occurs during the
ballistic impact of composite panels. By identifying specific damage
mechanisms that occur, reinforcement schemes can be determined
to suppress them, which may ultimately enhance the survivability
of the designed protection systems.
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Abstract A method for the multiobjective optimization
of local-scale material topology is presented. The topol-
ogy optimization scheme is based on a constructive solid
geometry-like representation, in which convex polygons—
defined as the convex hull of arbitrary-length lists of
points—are combined using an overlapping function. This
data structure is tree-shaped and so genetic programming
is used as the optimizer. The forward problem is solved
with a multiscale finite element method with automatic
cohesive zone insertion to model damage. As a multiscale
method, loads and boundary conditions are applied and
objective functions measured at a global scale, while the
local scale material structure is optimized. The global scale
geometry is assumed fixed. Pareto optimal designs are gen-
erated, representing optimal tradeoffs between conflicting
goals: quasi-static displacement and dynamic strain energy.
Results demonstrate the efficacy of the proposed algorithm.

Keywords Topology optimization · Pareto optimization ·

Genetic programming · Energy absorbing material

1 Introduction

Materials designed to absorb energy have applications in
numerous areas: crashworthiness (Mozumder et al. 2012;
Guo et al. 2011; Huang et al. 2007; Anghileri et al. 2005),
head protection (Rueda et al. 2009), impact resistance (Qiao
et al. 2008), and blast resistance (Main and Gazonas 2008;
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Qi et al. 2013). There are several ways to design an energy
absorbing material or system of materials, for example,
one could layer several different materials in a one dimen-
sional sense, while optimizing for material placement and
thickness. Another approach is to design the geometry or
topology of a bi-material system or truss structure in two
dimensions or three dimensions. In this work, we take the
latter approach, and focus on designing energy absorbing
materials at a local scale in a multiscale finite element
(FEM) setting.

Our approach to designing materials will be to optimize
the topology of a material at a local scale in two dimen-
sions, while applying loads and boundary conditions and
computing objectives at the global scale. A heterogeneous
representative volume element (RVE) (strictly two materi-
als in our case) will represent the local scale, and the global
scale will be assumed to be statistically homogenous with
material properties derived from a homogenization of the
representative volume element (RVE). At the local scale,
boundary conditions will be spatially homogenous using
linear displacements, while at the global scale, a material
sample will be fixed at one edge, with different loading con-
ditions applied depending on whether we are considering
static displacement or dynamic energy absorption. The dif-
ferent loading configurations are used to simulate possible
scenarios in which such a material would be used, either
as a structural element or an energy absorbing material for
blast-like loading. As will be discussed in more detail later,
these two loading conditions will be used as two separate
goals in a multi-objective optimization problem. There are
several options for optimizing such a configuration, the first
choice being between a simple geometry or shape optimiza-
tion method or a topology optimization method. A shape
optimization method assumes a specific topology (i.e. each
design is homeomorphic in that they must have the same
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number of shapes and holes), and parameterizes that shape
with some type of function expansion, the simplest being
a linear interpolation between a given number of vertices.
An optimization method, either local, derivative-based or
global heuristic, can then be used to solve for the defining
parameters of the shape. An example of this approach can be
found for the design of energy absorbing tubular structures
in Chiandussi and Avalle (2002).

Shape optimization is overly restrictive, however, as one
must fix the topology a priori. A popular method for topol-
ogy optimization is known as the solid isotropic material
with penalization (SIMP) method, introduced by Bendsøe
(Duysinx and Bendsoe 1998; Bendsoe and Sigmund 2003).
This method uses a square grid of unknowns (pixels), where
each unknown is continuous value representing a graded
material. A local optimization method is used to determine
the optimal value of graded material at each pixel. Though
a structure consisting of graded material is the result, meth-
ods exist to regularize the final result to a single material.
Level-set methods have also been used to optimize topol-
ogy (Sethian and Wiegmann 2000), which use contours
of a higher dimensional function to represent topology in
the plane. Finally, evolutionary methods have also been
designed for topology optimization (Xie and Steven 1993,
1997).

To optimize topology, we use a constructive solid geom-
etry (CSG) representation (Requicha and Voelker 1977),
which uses Boolean operations to combine shape primitives.
While typical implementations of CSG use canonical shapes
such as rectangles and circles, we use convex polygons rep-
resented as the convex hull of an arbitrary length list of
points. This encoding can represent any physically realiz-
able (orientable) topology as a set of line segments. Though
line segments are used, their length is not restricted, so
arbitrarily small line segments can be used to approximate
curves. Genetic programming (GP), a variant of genetic
algorithms (GA) that uses a tree-based chromosome, will
be used and is a natural fit for this topology representa-
tion as CSG can be readily expressed as a tree structure.
This approach has been used in several applications includ-
ing RF microwave inverse scattering (Wildman and Weile
2007, 2010), gravitational anomaly inversion (Wildman and
Gazonas 2009), and phononic bandgap material design
(Wildman and Gazonas 2011).

The approach presented here can be compared with cur-
rent methods in two ways: geometry representation and
optimization method. Our approach offers an alternative to
the SIMP and level set methods in that it ultimately uses
a set of line segments to approximate a topology rather
than a grid (SIMP) or smooth curves (level-set). As will
be described below, multiple materials are also easily rep-
resented in this approach. Further, as automatic meshing is
used, the discretization of the topology as represented in

the optimization method is uncoupled from the discretiza-
tion used in the forward solver. SIMP and level-set methods
typically use a local optimization method that requires gra-
dient information. The genetic programming method used
here does not require the computation of gradients and
it is well-suited for multi-objective problems as it is a
population-based method. The topology representation used
here can also be adapted to a local search methodology, as
described in Wildman and Gazonas (2009).

Previously, microstructural (or microscale) topology
optimization has been performed for different goals: max-
imum stiffness of a periodic material (Huang et al. 2013),
prescribed macroscale constitutive parameters (Sigmund
1995, 1994; Zohdi 2002; Mei and Wang 2004), and ex-
tremal microstructural properties (Allaire and Kohn 1993;
Sigmund 2000). In this paper, we focus on balancing struc-
tural stability with energy absorption in a multiobjective
setting. Typical engineering problems involve balancing
conflicting goals, using the present example, if we wish to
design an energy absorbing material and incorporate it into
an overall structure, that material may not be structurally
sound and could be unusable in our final design. We could
place constraints on the optimization problem, such as a
mass constraint, though this approach may leave out impor-
tant information that could be garnered from the Pareto
front, or set of multiobjective designs (Cohon 1978; Cohon
and Marks 1975; Steuer 1989). The goal of Pareto optimiza-
tion is to deliver a set of designs, rather than one single
design, that represent the optimal trade-offs between two or
more conflicting goals. This set of designs is Pareto opti-
mal in that no other design simultaneously outperforms it in
all goals. (The Pareto front can be defined as the boundary
between the infeasible region of designs, and the dominated
region.) Each design in the Pareto optimal set (Pareto front)
can only outperform another design in the Pareto optimal set
by at most one goal less than the total being optimized (or
one goal in a two-goal problem, two in a three-goal problem,
etc.).

While an individual design on the Pareto front may be
determined using constraints on one or more goals, the
shape of the Pareto front can provide information as well.
For example, the front’s shape may indicate areas of dimin-
ishing returns, whereby minuscule improvement in one goal
only comes at the severe detriment of another. Here, we
will optimize for two goals: a quasi-static loading problem
representing a material’s structural qualities, and a dynamic
loading problem to measure energy absorption. These goals
are conflicting because a structural material will be massive
and stiff, while an energy absorbing material tends to be soft
and compliant.

Three objectives, though only ever two simultaneously,
will be considered in a multi-objective setting: Static dis-
placement under uniaxial load, dynamic energy absorption
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under hydrostatic, blast-like loading, and total mass. Each
goal is defined and measured at the global scale, with
no objectives considered at the local scale. The forward
solver for the static and dynamic problems is a multiscale
FEM code, with a global scale representing a sample of
the material and the local scale representing a heteroge-
neous, repeatable (though not necessarily periodic) RVE,
consisting of one or more brittle, elastic materials and void.
This method is described in Souza et al. (2008), and com-
mercially available as MultiMech (MultiMech Research &
Development 2012). In our approach, the global scale is a
fixed, unchanging structure, on which the loads and bound-
ary conditions will be applied. A single design for the local
scale will be used (i.e. the global scale will be homoge-
neous), and it will be assumed to be made of up to two
materials or a single material with a void. Damage can also
be modeled in the form of automatically inserted cohesive
zones. In both the dynamic and quasi-static case, cohe-
sive zones can be inserted at the local scale, representing
micro-cracking and damage. In the quasi-static case, these
micro-cracks can coalesce into macroscale damage, being
inserted at the global scale with an extended finite element
method (XFEM) (Chessa et al. 2002). We will consider the
different models in turn, showing the difference in results
when incorporating damage in the form of cohesive zones.

In summary, we will use a constructive solid geometry-
based topology representation in conjunction with genetic
programming to optimize the local structure of a material.
Loads are applied and objectives measured at the global
scale in a multiscale FEM setting. A multiobjective design
approach is used, with one goal being a material’s static,
structural response, and a second being its dynamic, energy
absorbing capability. The remainder of this paper is orga-
nized as follows: Section 2 details the topology representa-
tion and GP optimization method. Section 3 then discusses
the multiscale finite element method used as the forward
problem to model energy absorbing materials. Section 4
then presents results of the optimization, and Section 5
discusses our conclusions.

2 Optimization method

The optimization of geometry/topology is complicated by
the difficulty in representing topology numerically. Here,
we use a combinatorial approach based on constructive
solid geometry applied to convex polygon primitives. This
representation forms a tree data structure, with Boolean
operations as function nodes (operators) and convex poly-
gons as terminal nodes (operands), and is most naturally
optimized with genetic programming (GP). In this section,
we detail the topological data structure (Subsection 2.1) and
the optimization method (Subsection 2.2).

2.1 Topology representation

Our approach to topology optimization is based on a CSG
representation (Requicha and Voelker 1977), in which com-
plex topologies are generated by combining shape primi-
tives using Boolean operations. Over the past decade, this
type of approach has been used for several applications,
including optimization of truss joints (Hamza and Saitou
2004), optimization of statically loaded beams (Ahmed
et al. 2013), optimization of phononic bandgap structures
(Wildman and Gazonas 2011), gravitational inversion
(Wildman and Gazonas 2009), and imaging (Wildman and
Weile 2007, 2008, 2010; Yamagiwa et al. 2010). Our
approach differs in that the shape primitives are based on
convex polygons or polyhedra, rather than canonical shapes
such as rectangles and ellipses (or cubes, spheres, and cylin-
ders in 3D). Subsection 2.1.1 discusses the use of convex
polygons as shape primitives, and subsequently Subsection
2.1.2 discusses generating more complex topologies.

2.1.1 Shape primitives

Typically, CSG methods use a canonical set of shape prim-
itives to generate a desired topology. While, as shown in
previous work, this approach can be effective, we use a
more flexible representation that can result in smaller tree
sizes. Here, shape primitives are convex polygons repre-
sented by the convex hull of arbitrary-length lists of points.
The convex hull can be defined as the intersection of all
half-planes that contain the points, or more colloquially, as
the shape that results from stretching an elastic membrane
around the points. Figure 1 gives an example of the convex
hull (dashed line) of a set of randomly generated points in
the plane (black dots). The total number of points allowed in
each convex polygon is not restricted, so that curved shapes

Fig. 1 An example of the convex hull of a set of random points
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can be well-approximated by small line segments, while
retaining the ability to match sharp corners where necessary.

In CSG methods with canonical shape primitives, each
shape may have a few defining parameters such as cen-
ter location, bounding box size, or rotation. These may or
may not be compatible between varying shapes making
hybridization or crossover difficult with a GA approach.
Here, each shape is described as a list of points, and though
its length is arbitrary, we can easily perform crossover
as the data has identical meaning across chromosomes.
While this convex hull approach is capable of generating a
wide variety of shapes, it is incomplete as it is incapable
of generating concave shapes and varying topologies; the
methodology for deriving concave shapes from convex hulls
using Boolean operations is described in Subsection 2.1.2.

2.1.2 Constructive geometry

The convex shape primitives described in the previous
subsection can be combined to generate more complex
geometries and topologies in a variety of ways. Boolean
operations can be used in applications with a single mate-
rial, such as the microwave imaging of perfect conductors
(Wildman and Weile 2007). For problems with more than
one material, an overlapping scheme can be used, in which
each convex polygon also contains material properties and
a priority value designating which operand is placed on top
(Wildman and Weile 2010). Here, we will use a scheme
similar to the overlapping scheme of (Wildman and Weile
2010), but somewhat simplified by removing priority values
from the terminal nodes.

The construction scheme used here is rather simple:
Given a binary tree with terminal nodes containing point
lists and material properties, at each function node, always
place the topology from the left operand on top of the topol-
ogy from the right operand. This is somewhat equivalent
to using only union functions, but assigning each termi-
nal node a sign (essentially the material properties), so that
subtraction can be generated with two oppositely signed
operands (equivalent to differing material properties). While
simple, this approach will generate any physically realizable
topology including shapes with holes and multiple disjoint
shapes. Consider a few examples, each assuming a two
material system embedded in an infinite medium consisting
of one of those materials.

First, a concave shape can be generated by overlapping
two convex shapes of the same material, essentially result-
ing in the union of the two shapes. Figure 2 shows a three
node binary tree representing the overlap of the convex
polygon C1 on convex polygon C2. The two (randomly gen-
erated) polygons are shown in Fig. 3, with C1 represented
as the solid line resulting from the convex hull of the points
marked as circles, and C2 being the dashed line resulting

C
1

C
2C1 C2

Fig. 2 A three node binary tree

from the points shown as squares. The result of applying the
tree of Fig. 2 to the convex polygons of Fig. 3 is shown in
Fig. 4. Disjoint topologies can be generated if C1 and C2

do not overlap, thus generating two convex polygons in the
plane.

Next, a topology with a hole can be generated if a shape
contained entirely within another and of a different mate-
rial is overlapped. Say C1 is contained within shape C2 and
is made of the same material as the background medium,
as shown in Fig. 5. Generating polygons from the convex
hulls and overlapping using the tree shown in Fig. 2, the
topology in Fig. 6 is generated. These three basic operations
described can then be combined with more complex tree
structures, generating more complex topologies.

The computational geometric operations used to evaluate
a CSG tree are available in the Computational Geome-
try Algorithms Library (CGAL) (CGAL 2007) as Boolean
operations on Nef polyhedra (Bieri 1995). A Nef poly-
hedron is a polygon or polyhedron that is generated by
Boolean operations on half-spaces, which may be open or
closed; i.e. they may or may not be inclusive of the defining
boundary of the half-space. Nef polyhedra may then have

Fig. 3 Two randomly generated sets of points and their convex hulls
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Fig. 4 A concave polygon result generated by applying the tree
operation in Fig. 2 to the convex polygons in Fig. 3

infinite extents and be open or closed on their boundaries.
While there is no specific “overlap” function in CGAL,
we can generate one using Boolean operations. Consider a
binary overlap function, with Nef polyhedra as operands in
general. The first step in computing an overlap function is
to compute a boundary inclusive “union mask” of the right
operand. This union mask is simply the union of all under-
lying operands, ignoring material properties and including
the defining boundaries of the topology. Next, we subtract
the union mask from the left operand with its boundary
excluded. Finally, the union of the result of the subtraction
operation and the right operand (with boundary excluded)
is computed to generate the final topology. Essentially, our
binary overlap operator, must include the boundary inclu-
sive union mask as a third parameter, which is updated at
each node and passed up the tree during computation.

Fig. 5 Two randomly generated sets of points and their convex hulls

Fig. 6 A hole topology result generated by applying the tree operation
in Fig. 2 to the convex polygons in Fig. 5

2.2 Genetic programming

Genetic programming (Koza 1999) is a variation of a GA,
whereby the chromosome structure is tree-shaped, rather
than linear with fixed length (Goldberg 1987). It is func-
tionally equivalent to a standard GA because it uses the
same three genetic operators—selection, crossover, and
mutation—applied iteratively to a population of chromo-
somes. Because the chromosome is tree shaped, crossover is
the same in spirit, though issues such as tree bloat (Banzhaf
et al. 1999) preclude a naı̈ve implementation. Due to the
flexibility in the chromosome, mutation has several more
options than in standard GA. The following subsections dis-
cuss the implementation of our topology scheme in GP in
more detail.

2.2.1 Chromosome structure

The chromosome in a GA is a data structure that encodes a
potential solution to the optimization problem. In a standard
GA with a fixed-length, linear chromosome, the position on
the chromosome of each “gene” or value in the chromosome
has a specific meaning. In other words, if our optimization
problem were to find the optimal rectangular solid for a
given forward problem, we could parameterize the shape as
shown in Table 1, where h is the height of the unrotated rect-
angle, w is its width, θ is a rotation angle, and x0 and y0 are
its center location.

Table 1 A chromosome with five genes representing a parameteriza-
tion of a rectangle

g1 g2 g3 g4 g5

h w θ x0 y0
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Each gene has a specific meaning pertaining to some
aspect of the rectangle and of course hybridizing g1, the
height with g3, the rotation angle, would be meaningless.

In GP, chromosomes are more flexible, and as such, spe-
cific data or functions may have to be labeled. For example,
if we use a more general binary tree that includes differ-
ent operations, we would have to label each function node
with its function: union, subtraction, etc. As with a standard
GA, hybridizing genes with different meanings may not aid
in optimization. In order to keep crossover meaningful, we
attempt to simplify the data structure as much as possible,
so that each function node is identical (i.e. overlap the shape
on the left), and each terminal node contains a list of points
and material properties. Material properties can either be
arbitrary with a given range, or chosen from a database. A
complete chromosome is then described by two data struc-
tures, a tree giving the constructive geometry, and point
lists and material properties for each terminal node of the
tree. Table 2 gives an example of the data structure of two
terminal nodes that might correspond to the tree shown in
Fig. 2.

2.2.2 Selection

GAs have many options for selection. Typical single objec-
tive methods include tournament selection, roulette wheel
selection, or truncation selection (Goldberg 1987). In this
work, we will use selection appropriate for multiobjective
problems. GAs are amenable to multiobjective problems
because they use a population of potential solutions. Rather
than a single solution, we seek a set of solutions corre-
sponding to the optimal tradeoffs between two conflicting
objectives. Consequently, to convert a standard GA to a mul-
tiobjective GA, the only change necessary is to the selection
operator. The most popular multiobjective selection method
is known as non-dominated sorting (Srinivas and Deb 1994;

Table 2 Example data structure of a chromosome with two terminal
nodes

C1 C2

Mat ID Mat ID

k l

x y x y

x0 y0 u0 v0

x1 y1 u1 v1

x2 y2 u2 v2

x3 y3 u3 v3

u4 v4

u5 v5

Deb et al. 2002), in which the population is ranked based on
its performance relative to the current Pareto front.

Non-dominated sorting proceeds as follows: First, the
Pareto front is determined by finding all non-dominated
chromosomes. The set of dominated chromosomes (for
minimization) Y can be defined as

Y =
{

y|∃y∗ ∧ ∀i, y∗
i ≤ yi ∧ ∃j, y∗

j < yj

}
, (1)

where y = [y1, y2, ...] is a goal vector or vector of objective
function values. The non-dominated set is then just the com-
plement of the dominated set. In other words, the dominated
set is simply the set of chromosomes with objective function
values that are clearly worse than at least one other chromo-
some in the population; for each dominated chromosome,
there exists another with all objectives less than or equal,
and at least one objective strictly less. The chromosomes in
the non-dominated set cannot be compared within their set
as each will have at least one better performing goal.

With the definition of non-domination in hand, we can
now assign a single objective function value to each chro-
mosome, beginning by ranking each in terms of relative
distance to the Pareto front. The first non-dominated set
of chromosomes is given a rank of one, and temporarily
removed from the population. The non-dominated chromo-
somes of the remaining set are determined and assigned of
rank two. After removal, this process is repeated until each
chromosome in the population has a rank. An example of
this procedure is shown in Fig. 7, with two goals being
minimized and four total ranks.

A chromosome’s rank gives a measure of a chromo-
some’s relative distance to the Pareto front, however, it can
be insufficient as an objective function value for selection as
it will not encourage movement along the front. After all, we
want a set of designs that well-represents the Pareto front.
To encourage a diverse front, we add a sharing value that
penalizes chromosomes that are close to each other in goal

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Rank 1
Rank 2
Rank 3
Rank 4

Fig. 7 An example of goal vectors assigned with Pareto ranks
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space. Each chromosome i with goal vector xi is assigned a
sharing value by first finding all other chromosomes within
a radius r in goal space. The sharing value for chromosome
i is then given by

si = Ni −

Ni∑
j=1

∥∥xi − xj

∥∥
r

, (2)

where xj is the goal vector of chromosome j within sharing
radius r of chromosome i and Ni is the number of chromo-
somes within the sharing radius. This approach is described
in more detail in Weile et al. (1996).

Finally, a single objective function value that will be
maximized can be assigned to each chromosome using its
Pareto rank and sharing value. First, all rank one chromo-
somes are given an objective function value of f 1

i = 1/si .
Next, the minimum objective function value of the rank one
chromosomes is used as the starting value for the rank two
chromosomes, i.e. now, for rank two, f 2

i = φ1/si , where
φ1 = mini f 1

i . This process is repeated for rank three and
so on. After all chromosomes are assigned an objective
function value, standard roulette wheel selection is used.

2.2.3 Crossover

After selection, a new population is generated with an aver-
age fitness better than the previous generation. Crossover is
then used to combine traits of those surviving chromosomes
to hopefully generate even better performing chromosomes.
In a standard GA, crossover is typically performed by first
randomly choosing two chromosomes from the new popula-
tion. A gene, say g3 in Table 1, and hybridized in some way.
The genes following (g4 and g5) are then swapped between
the two chromosomes.

In GP, crossover is performed in a similar way: Two
nodes in a tree are chosen at random and hybridized if
applicable, and their subtrees are swapped. Given that our
function nodes are identical, there is no hybridization to
be done, however, if two terminal nodes are chosen, their
point lists and material properties can be hybridized. As
the point lists are of arbitrary length, they can grow with-
out bound in some situations. This is related to the issue
of tree bloat (Banzhaf et al. 1999), in which tree sizes
grow without bound as protection against harmful muta-
tions and crossover. Larger trees (or point lists) can contain
more redundant information, so that crossovers and muta-
tions with the potential to harm performance are minimized.
This can lead to population stagnation, so it is undesirable.
For point lists, we then use a two point crossover, ensuring
that the number of points exchanged between two termi-
nal nodes is equal so that each point list remains the same
length. An example of this process is shown in Table 3: The
double-horizontal lines and text in bold in the point lists

Table 3 Example of crossover between two terminal nodes

C D

Mat ID Mat ID

k l

x y x y

x0 y0 u0 v0

u1 v1 x1 y1
u2 v2 x2 y2
u3 v3 x3 y3

x4 y4 u4 v4

u5 v5

show the two crossover points, and the coordinates xi , yi

and ui , vi will be swapped between nodes C and D. The
crossover points are chosen at random. Additionally, the
points at the crossover locations are hybridized, i.e. mixed
together by choosing a number t from a uniform random
distribution between 0 and 1 as

p∗
= tp + (1 − t) q

q∗
= tq + (1 − t) p, (3)

where p and q are the points at the crossover locations.
Finally, because we are using a database of material prop-
erties, we do not hybridize materials, although this is not
a restriction, as randomly generated constitutive parameters
may benefit from hybridization.

To combat tree bloat, we use a crossover probability
based on geometric similarity. Typically, the crossover prob-
ability is a constant around 80 %, and subtrees are chosen
at random between two random chromosomes. Our imple-
mentation sets a crossover probability by first selecting a
chromosome for crossover. A mate is chosen out of a pool of
random chromosomes, the size of which is an input parame-
ter, typically chosen as ten. Each chromosome in the mating
pool is assigned a probability by randomly choosing a given
number of subtrees (again, usually chosen to be at most ten)
in each and comparing their decoded geometries as

pc =

[
�

(
C1

⋂
C2

)

�
(
C1

⋃
C2

)
]s

, (4)

where � (C1) indicates the area of the topology generated
from subtree C1 and s is a biasing exponent typically cho-
sen as 2.5. Consequently, if C1 does not overlap C2, then pc

is zero, and if C1 = C2 then pc is one. Now, pc is computed
for a given number of randomly chosen subtrees of a mat-
ing pair, and the maximum is saved. After the maximum pc

is found for each mate in the pool, a mate is chosen at ran-
dom using a weighted roulette wheel with the weights given
as the crossover probabilities. In other words, we choose
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a random mate from the pool, favoring mates with higher
crossover probabilities. Crossover is then performed using
the chosen mating pair and subtrees with the maximum pc.

While this scheme is somewhat convoluted, it is designed
to match similar pairs of subtrees, but with some random-
ness. Matching similar subtrees helps ensure population
convergence and randomness aids diversity. Striking a bal-
ance between the two is important in the design of a GA, so
that it can cover a large search space and resolve fine details
simultaneously. These issues are not present with a fixed
length chromosome representation as we know a priori the
function of each gene in a chromosome, thus ensuring that
crossover is meaningful.

2.2.4 Mutation

The final genetic operator, mutation, is used to inject new
genetic information into a population, preventing prema-
ture convergence or stagnation. In our implementation, the
flexibility in the chromosome allows for a large number
of options for mutation. We can, on one hand, manipulate
solely the encoded chromosome (tree structure with point
lists at the terminal nodes) and on the other hand, adjust the
decoded topology. The mutation rates for the examples in
Section 4 are constant throughout, so they are listed here.

First, single points from terminal node point lists are
deleted with a given probability. This rate can be set some-
what high (for mutation rates) as terminal nodes tend to
grow in length for reasons discussed earlier. Here we use
a point deletion rate of 2 % per point. There is a mini-
mum length for terminal nodes of three, as three points are
required for a 2D simplex. We also duplicate points in a ter-
minal node with a 0.5 % rate per point. New points are first
duplicated then shifted by a random amount according to
a Gaussian distribution with standard deviation of 10 % of
the largest dimension of the design bounds (20 mm in all
examples from Section 4).

Points are also added by splitting existing convex hull
segments. First, a terminal node is decoded by taking its
convex hull. Next, for each line segment in the hull, we ran-
domly insert a new point at a random location between 10 %
and 90 % of its length. This mutation is performed with a
rate of 0.5 % per segment.

In a mutation most analogous to a standard GA, points
are shifted by a random amount. The shift amount is chosen
from a Gaussian distribution with zero mean and standard
deviation of 10 % of the region size (as above for point
duplication), and the mutation rate is 1 % per point.

One issue with the above point mutation method is that
a non-coding point (a point not on a convex hull) can
be moved to another non-coding position, meaning that
ultimately the mutation had no effect on the decoded topol-
ogy. A convex hull aware point mutation was designed to

remedy this situation. Given a point p inside a convex
hull, the closest segment on the hull is found. Two vec-
tors are formed pointing from the point inside the hull, to
the two points q1 and q2 defining the closest segment. The
point inside the hull is then moved inside the parallelogram
formed by the addition of these vectors as

p∗
= r1 (q1 − p) + r2 (q2 − p) + p, (5)

where r1 and r2 are two random values from a uniform dis-
tribution between 0 and 1. This mutation then has a 50 %
probability of altering the convex hull and is used with an
overall rate of 1 % per point.

Points are also deleted by pruning non-coding points that
are inside a point set’s convex hull. As an extreme example,
a point list may contain hundreds of points, but only three
actually on the convex hull that defines its decoded shape.
These redundant points can be harmful to a population’s
progress, and so they can be pruned. Points to be pruned are
chosen by first computing the convex hull of the point list
and scaling it by a random amount between 0.4 and 0.8. All
points within this scaled convex polygon are removed from
the point list. This mutation is performed at a rate of 5 %
per terminal node.

We can also apply affine transformations to the terminal
node point lists, effectively altering the overall geometry.
Here, we separately apply scaling, rotation, or translation
mutations with a rate of 1 % per terminal node. If a node is
chosen for affine transformation, scaling, rotation, or trans-
lation is chosen at random with equal probability. Each
transformation has its defining parameter chosen from a
Gaussian distribution: Scaling uses a mean value of 1 and
a standard deviation of 0.1, rotation uses a mean of 0 and
standard deviation of π /10, and translation uses a mean of
zero and standard deviation of 10 % of the region size for
both coordinates.

Material properties can also be mutated. Here we use a
database of materials and so, with a given probability of
1 % per terminal node, we simply choose a new material at
random from the database.

Finally, we can alter the tree structure of a chromosome.
The first type of tree mutation is standard in GP, subtree
deletion and regrowth. In this mutation, a subtree is deleted
and replaced with a randomly generated subtree with a given
probability. This type of mutation can be destructive so it
is applied with a low probability of 0.5 % to each node in
a tree. Another way of altering the tree structure is to split
terminal nodes into a function node with two new terminal
nodes. There are a few ways of accomplishing this, first,
we can simply split a terminal node’s point list at an arbi-
trary point and separate it into two new nodes. Next, we can
separate points internal to a list’s convex hull, much like
the pruning operation described above. Here, we again scale
down the convex hull of a point list, and separate points
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Table 4 Summary of mutation rates

Type Rate Unit

Point deletion 2 % Point

Point duplication 0.5 % Point

Segment splitting 0.5 % Segment

Point translation 1 % Point

Convex hull mutation 1 % Point

Point pruning 5 % Terminal node

Affine transformation 1 % Terminal node

Material mutation 1 % Terminal node

Delete node 0.5 % Node

Split list 1 % Terminal node

Split hole 1 % Terminal node

Split line 1 % Terminal node

Aggregate lists 6 % Function node

inside the scaled hull and those outside into two new termi-
nal nodes. Finally, we can split a set of points by placing
a line through the polygon and separating all points (geo-
metrically) left of the line into one new list and points right
into another. The line is chosen by passing an infinite line
through two randomly generated points within the list’s con-
vex hull. The intersection points of this line and the convex
hull are computed and inserted into each new terminal node
to ensure that the decoded subtree is similar to the origi-
nal. Each of these splitting mutations are performed with a
rate of 1 % per terminal node. As these mutations can lead
to large tree sizes, subtree point list aggregation is also per-
formed in opposition. In this mutation, a function node is
chosen and all point lists in the terminal nodes within the
subtree are aggregated into a single terminal node. This is
performed at a rate of 6 % per function node.

The types and rates of mutation are summarized in
Table 4. The number and complexity of the mutation oper-
ators is due to the flexibility in the topology representation,
and some work remains in determining the effectiveness and
usefulness of each individual operator.

3 Multiscale forward problem

The goal of this work is to optimize a material’s local-scale
structure. One approach would be to construct a model of
a material by repeating a given RVE over a finite region
and use a very fine mesh; however, this may lead to overly
long execution times due to the fine mesh. Instead, we will
use the concurrent multiscale finite element method Multi-
Mech, which uses RVEs to represent a material at a local
scale (Souza et al. 2008; Souza and Allen 2010, 2013). We
assume that our global scale structure is statistically homo-
geneous, but has inhomogeneous local structure, which will

be optimized. We will consider static loading problems to
address structural stability along with dynamic problems for
energy dissipation.

3.1 Methodology

Typically, a finite element problem will have the material
properties of each element as an input. In a multiscale FEM
problem, the global scale only assumes that the material
properties over an element are statistically homogeneous,
and they are then derived from local scale representative vol-
ume elements (RVEs). Each integration node in the global
mesh has an associated RVE, each of which is itself a
finite element problem, with loads derived from the global
mesh. These RVE problems are quasi-static with spatially
homogenous (linear displacement in this case) boundary
conditions. Material properties are then garnered from the
RVE problems and used to solve the global problem. The
purpose of this work is to then optimize the topology of the
material at the RVE scale, assuming a homogenous set of
RVEs, though the model RVE itself is not homogeneous.
Figure 8 gives an example of a multiscale problem: A global
mesh is shown with points representing integration nodes
of a one-point rule. Each integration node then has an RVE
attached, the geometry of which is shown in the inset. The
global geometry is assumed to have the same RVE geometry
at each element, and the RVE itself is a bi-material system,
with one material shown in black and one in white in this
example; however, this methodology is easily generalized
by allowing RVEs to vary from point to point for solution of
a globally inhomogeneous optimization problem. The RVE
is shown to scale; in this case, it is one tenth the size of the
global mesh.

Each RVE is an independent finite element problem and
so they can be solved simultaneously. MultiMech can take

Fig. 8 An example of a global mesh with embedded RVEs
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advantage of this and parallelize the computation of the indi-
vidual RVE FEM problems. We can also parallelize the GA,
leading to a parallel problem that requires a large number of
compute nodes. Consider a GA running 150 compute nodes
in parallel, if we then want to use 16 nodes for each multi-
scale FEM forward problem, we need 2,400 compute nodes
for this problem.

3.1.1 Damage modeling

Damage is modeled in this FEM code using cohesive zones
(Xu and Needleman 1994, 1996) at the local scale and
XFEM at the gobal scale. At the local scale, cohesive zones
are automatically inserted between elements after the trac-
tion has exceeded a given value. If a number of cohesive
zones coalesce within the RVE, the damage is propagated
up to the global scale. In this case, extended finite elements
(Chessa et al. 2002) are inserted in the global scale finite
element mesh. Currently in MultiMech, XFEM together
with multiscale RVEs are only available for static loading,
so they are not used in the dynamic problem under con-
sideration. One unfortunate side effect of this approach is
that inserting cohesive zones adds elements to the mesh,
increasing the number of unknowns. A design that is badly
damaged can lead to long run times, so it is important to
parallelize both the GA and the forward problem. Finally,
triangular elements are used at the global scale through-
out, rather than the more standard quadrilateral elements,
because the XFEM algorithm in MultiMech is implemented
for triangular elements.

3.1.2 Meshing

FEM necessitates the use of a mesh for each design.
The global scale can be meshed once and used for each
forward evaluation, but each new chromosome must be
meshed before it can be used as an RVE. As described in
Subsection 2.1.2, the topology is decoded using Boolean
operations on Nef polyhedra using CGAL (CGAL 2007),
which must be performed with exact arithmetic using ratio-
nal numbers. We use the meshing algorithm from CGAL,
though some care must be taken: CGAL’s meshing utili-
ties use inexact arithmetic with floating point numbers, so
there can be slight errors on the order of machine preci-
sion in converting from exact to inexact numbers. CGAL’s
meshing algorithm uses a constrained Delaunay triangula-
tion, requiring the input of constraints. After decoding a
topology, constraints are simply the edges and vertices of
the resulting polygons; however, if a vertex should lie on
an edge in a “T”-like junction in the exact representation,
but ends up slightly off due to roundoff error during the
floating point conversion, the meshing algorithm may crash.
Figure 9 gives an example of this issue. The vertex in the

Fig. 9 An example of a difficult meshing case

center belongs to one polygon and the flat edge on the
bottom belongs to a second polygon. The meshing algo-
rithm will attempt to place very small triangles in this area,
in an attempt to maintain triangles that are close to equi-
lateral. As the vertex approaches the edge, the number of
triangles grows, and at some point the meshing algorithm
will crash.

This situation is most easily handled on the exact side
through some pre-processing. We iterate over all vertices
and all edges and check if a vertex is “close” to an edge, but
is not one of its defining vertices (i.e. a T-junction). “Close”
is defined here with an input parameter, which is compared
to the length of the vector connecting the vertex and its
orthogonal projection onto the edge. If this length is less that
the input parameter (used here as 0.01 mm), then the vertex
is replaced with its orthogonal projection. In this represen-
tation the vertex is now exactly lying on the edge, and so the
segment will be replaced with two segments connecting at
that vertex during decoding.

As we are using a stochastic optimization method, diffi-
cult to mesh designs frequently crop up. There are situations
that may lead to meshes with excessively large numbers of
triangles, and so these are best discarded as designs that
cannot be evaluated to save execution time.

Figure 10 gives a flow chart that summarizes the over-
all algorithm. The main GA loop is shown in the center,
consisting of evaluation, selection, crossover, and muta-
tion. Each stage has an exploded view on the right or left
describing those steps in detail.

3.2 Problem setup

We will optimize for two types of loading in a multiob-
jective setting: Quasi-static and dynamic. The goal of the
quasi-static loading problem is to develop a material for
structural stability, so we will minimize displacement under
a given vertical load. The goal of the dynamic loading prob-
lem is to design a material that will absorb energy, so we
will maximize strain energy. The two types of problems are
described in the subsequent subsections.

3.2.1 Static loading

The quasi-static problem is configured as shown in Fig. 11.
We apply a vertical displacement to a 200 mm-by-200 mm
block of material that has fixed displacement in both the x



   
294Multiobjective topology optimization of energy absorbing materials

Fig. 10 Algorithm flow chart
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and y directions along the y = 0 edge. The size of the RVE
is 20 mm-by-20 mm and the problem is plane stress. We
apply a load in the −ŷ direction with a value of 2 Pa along
the top edge of the structure. The goal of the optimization
problem is to minimize the displacement along the load-
ing area, so the objective function is simply the sum of the
displacement along the top edge:

D =

∫

�

u (x, T ) dx, (6)

200 mm

Fig. 11 Static loading problem

where u is the displacement, T is the time at the final time
step, and � is the boundary where loading is applied at the
global scale. Without the inclusion of damage, the prob-
lem is linear so the magnitude of the load is not important
because it will be normalized in the objective function. With
damage, we use total time of 0.1 s with 200 steps in a quasi-
static solver. Another goal used in the static loading case
will be total mass of a local scale RVE:

m =

∫

�l

ρ (x) dA, (7)

where �l represents the local scale region, and ρ is the
density.

3.2.2 Dynamic loading

The setup of the dynamic problem (shown in Fig. 12) is
similar to that of the static problem, though we apply a hor-
izontal load along the x = 0 and x = 200mm edges as well
and with a pressure-time history shown in Fig. 13. Here,
we use a time step size of 1 μs over a total of 300 μs. The



   
295

R. A. Wildman, G. A. Gazonas

Fig. 12 Dynamic loading problem

objective function is the strain energy at the global scale,
summed over the entire run time, as

U = 1

2

∫ T

0

∫

�g

σij (x, t) �ij (x, t) dAdt, (8)

where σ is the stress tensor, � is the strain tensor, �g is
the global scale region, and Einstein summation is assumed.
This objective will be maximized as we seek a design
that absorbs energy. It represents a conflicting goal with
the static loading problem, and so we must solve in a
Pareto-optimal sense.

4 Results

In this section, results of the optimization are presented.
Several design cases are presented, each with the same
material system, (a dense, stiff linear elastic material and
void), though with varying damage models. To summarize,
first, in Subsection 4.1, a baseline linear elastic model at
the local scale with no damage modeling is given. Next, in
Subsection 4.2, we consider the same linear elastic material,
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Fig. 13 Pressure load for the dynamic problem

but allow damage in the form of cohesive zone inser-
tion at the local scale only. Finally, in Subsection 4.3, the
same local scale model (linear elastic with cohesive zone
insertion) is used, but global scale damage is considered
using XFEM and a multiscale localization method described
below. In each case, we will use two objectives, forming a
generic goal vector as:

f = [f1, f2] , (9)

with f1 and f2 being one of the objectives defined above,
U , D, or m.

In addition, each example was run twice (with differ-
ent seeds for the random number generator) and compared
to demonstrate stability of the stochastic method. As this
is a multiobjective optimization that does not iteratively
step through one design goal as a constraint, any compar-
ison between optimization results must consider the curve
of the approximate Pareto fronts. To that end, we define
the difference in results as the integral of the difference
in approximate Pareto fronts, using a linear interpolation
between rank-one chromosomes, given by the piece-wise
parameterization

F (t) = (n − t + 1) fn + (t − n) fn+1, n ≤ t ≤ n + 1 (10)

where n = 1, . . . , N1 and N1 is the number of rank-one
designs. While the results from two runs may have different
values of N1 and different spacings between all f1, (10) can
nonetheless be converted from a parametric form as, by def-
inition of Pareto optimality, it can be defined as a function.
Given a suitable mapping to a function g (x), a relative error
measure can then be defined as

Errora,b :=
∫ f1,max

1 |ga (x) − gb (x)| dx√∫ f1,max
1 |ga (x)| dx

∫ f1,max
1 |gb (x)| dx

, (11)

where f1,max = min
(
max fa,1, max fb,1

)
is the minimum

of the maximum values of goal f1 of both runs, fa,1 is the
first goal of one run and corresponds to function ga, and fb,1

and gb represent a second run. In practice, the two functions
are simply discretized on an even, fine grid and the integral
is computed numerically.

4.1 Linear elastic

The first results use a linear elastic material in the RVE,
with Young’s modulus 65 GPa, Poisson’s ratio 0.2, and den-
sity 2235 kg/m3. The remaining material was assumed to
be void. The global scale geometry is given in Figs. 11
and 12, with loads and boundary conditions as discussed in
Subsections 3.2.2 and 3.2.1. Here, the goal vector is given as

f = [∣∣D · ŷ
∣∣ , U

]
, (12)

and we wish to minimize f1 and maximize f2.
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Fig. 14 Population for the linear elastic example after 350 generations

The algorithm was run for 350 generations with a pop-
ulation size of 500, resulting in the population shown in
Fig. 14, plotted in goal space. In this figure, the red circles
indicate the approximately Pareto optimal members of the
set (the rank 1 members), while the set of blue × show the
suboptimal population members. The static displacement is
given on the x-axis with the strain energy on the y-axis and
both were normalized by the value given by a design con-
sisting fully of the material given above (i.e. no voids). The
approximate Pareto front appears to be devoid of many dis-
continuities and only contains a small area of large slope

on the left, indicating that any choice on the front would be
satisfactory if it fit a problem’s constraints. Several designs
from the front are shown in Fig. 15, in which the elas-
tic material is shown as black and void is shown as white.
The first is the best performing design in terms of strain
energy shown in Fig. 15a. The outer frame is deliberately
inserted by the algorithm, so that closed cell solutions are
generated. The next design is from the center of the front
(Fig. 15b), and has a normalized displacement of approxi-
mately 5 and a normalized strain energy of approximately
7.5 (in other words, the displacement is 5 times higher and
the strain energy is 7.5 times higher than those of a fully
dense design). It has an interesting design, with a pillar
through the middle of the cell. The final two designs (the
first with a normalized displacement 2.3 and a normalized
strain energy 4.8 shown in Fig. 15c, and the second with
displacement of nearly 1 and strain energy of 1.9 shown in
Fig. 15d) show designs with two voids. Designs with nor-
malized values of 1 are fully dense with material, so the
final design shows some diminishing returns in terms of
displacement, i.e. we have to give up a large amount of
strain energy to get only a small amount of displacement.
This type of analysis is difficult when simply applying
constraints to generate a single design.

To test the significance of the results, a few canoni-
cal designs were tested and compared against the designs
returned by the optimization algorithm. First, a local scale

Fig. 15 Selected designs from
the approximate Pareto front
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design with a centered, circular inclusion was tested for
three different volume fractions, 36 %, 50 %, and 75 %, and
are shown in Fig. 14 as the green circles, with the 75 % vol-
ume fraction design having the lowest relative displacement.
As can be seen from the plot, the designs with circular inclu-
sions do not approach the approximate Pareto front. Next,
centered, square inclusions were tested, again with volume
fractions of 25 %, 50 %, and 75 % and shown in Fig. 14 as
the magenta squares. Again, these designs are not compet-
ing with the designs returned by the optimization algorithm,
though the optimal design at the minimal displacement and
maximal strain energy is a square inclusion due to the con-
straints placed on the designs. Finally, the SIMP algorithm
was run on a 50-by-50 grid constrained at the same vol-
ume fractions, with the outer frame forced as solid material
and the boundary condition given by the static displacement
boundary condition used at the global scale. These designs
were then used as the local scale RVEs and their objective
function values computed. (Their contours were generated
using the built-in Sobel edge detection algorithm from
Matlab and the 50 % volume fraction design is shown in
Fig. 16 as used in MultiMech before automatic meshing.)
The SIMP designs are plotted in Fig. 14 as the black
diamonds. The lowest displacement design (75 % vol-
ume fraction) lies with the rank-1 GP-generated designs,
while the 50 % and 25 % designs are suboptimal in the
Pareto sense. That the lower displacement design lies on
the approximate Pareto front is not surprising; because
low-displacement designs are mostly solid material, small
changes in geometry would not produce large changes in
strain energy.

To further study the results, local optimization was per-
formed on a design from the approximate Pareto front. As
we are interested in two goals, the local optimization will

Fig. 16 A SIMP-generated design with 50 % volume fraction

Fig. 17 Result of local optimization

attempt to improve one goal, while holding the second as a
constraint using a penalty in the form:

f =
∣∣D · ŷ

∣∣ + p |U0 − U |
2 , (13)

where p is a weighting factor set to 10 and U0 is the strain
energy of the initial design before local optimization. The
CSG description of the solution is converted to a set of linear
splines to remove any redundant points, thus reducing the
dimensionality of the search space. A gradient-based local
search algorithm, BFGS, is used on the components of the
points in the linear spline. The initial design is shown in
Fig. 17 in red, with the final result shown in blue. After opti-
mization, the normalized displacement of the design was
improved to 2.34, over 2.43 of the original. Interestingly,
while a small improvement was realizable, the resulting
design is no more symmetric than the original, indicating
a possible insensitivity to symmetry in the optimization
problem.
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Fig. 18 Approximate Pareto fronts for forced symmetric designs vs.
asymmetric designs
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Fig. 19 Population for the example with local scale damage after 250
generations

Finally, as the algorithm tends to generate asymmetri-
cal designs, it was tested with symmetry enforced on the
local scale RVE designs. The symmetry plane is x = 0
so that the left plane is simply copied and reversed to the
right half plane. All dimensions remain the same, though the
design domain is now of course restricted to half the original
domain. The symmetric designs resulted in an approximate

Pareto curve with a difference relative to the asymmetric
designs of 1.9 × 10−1. Overall, the asymmetric designs out-
performed the symmetric designs, except for an area below
f1 < 2; the two interpolated fronts are plotted in Fig. 18.

4.2 Linear elastic with damage

The problem set up is identical to that of Subsection 4.1,
though here we allow insertion of cohesive zone elements
at the local scale. Otherwise, all parameters and goals are
identical to those in Subsection 4.1, with the cohesive zone
model given by the viscoelastic formulation introduced in
(Allen and Searcy 2001). The critical opening distances
were set to 1 mm, the maximum stresses were set to 10
MPa, and the elastic properties for the model had a Young’s
modulus of 1 KPa, a Poisson’s ratio of 0.2, and a den-
sity of 1000 kg/m3. The approximate Pareto front after
250 generations is shown in Fig. 19, with selected designs
shown in Fig. 20. The design in Fig. 20a has a normal-
ized strain energy of 11.9 and a normalized displacement
of 9.1, the design in Fig. 20b has a normalized strain
energy of 8.3 and a normalized displacement of 4.0, the
design in Fig. 20c has a normalized strain energy of 4.5
and a normalized displacement of 2.0, and the design in

Fig. 20 Selected designs from
the approximate Pareto front
shown in Fig. 19
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Fig. 21 Population for the example with local scale damage and a
mass goal after 500 generations

Fig. 20d has a normalized strain energy of 1.7 and a nor-
malized displacement of 1.14. The addition of damage to
the optimization problem seems to have removed designs
with a thin, central pillar, rather using an hourglass-like
design.

Next, the dynamic loading goal (minimization of strain
energy) was changed to minimization of mass, to observe
the difference in designs resulting from these two goals.
The static displacement goal remains the same, again
with the insertion of cohesive zones. The population size
was again 500, with the Pareto optimal designs shown in
Fig. 21 after 500 generations. The resulting designs are
similar to those above in that they do not have any thin seg-
ments, though they lack the hour-glass shape seen in designs
incorporating strain energy. For example, a design with a
similar displacement to that shown in Fig. 20b is shown in
Fig. 22, and has a normalized displacement of 1.72 and a
normalized mass of 0.63. A second run was performed, and

Fig. 22 An example of a tradeoff design from Fig. 21

similar results were obtained, with an error as defined by
(11) of 4.6 × 10−3.

4.3 XFEM results

Finally, an example was run using XFEM at the global scale.
The criterion for XFEM element insertion was that a cohe-
sive element is transitioned to the macroscale if the acoustic
tensor of the homogenized material tangent degrades to
90 % of its original value, according to

det
[
Q0

ij (t)
]

≤ χc det
[
Q0

ij (t = 0)
]
, (14)

where Q0
ij is the acoustic tensor at the macroscale at each

time step and χc = 0.9 is the multiscale localization cri-
terion (Souza and Allen 2011; Nguyen et al. 2011). Here,
XFEM element insertion is only available for quasi-static
problems, so we use static displacement as one goal and
total mass as a second, as

f = [∣∣D · ŷ
∣∣ , m

]
. (15)

In this example, normal loading (as shown in Fig. 11), a
population size of 500, and a total of 280 generations were
used. The approximate Pareto front at the final generation
is shown in Fig. 23, along with a tradeoff design from the
center of the curve (with a value of 1.7 for normalized dis-
placement, and 0.66 for normalized mass) in Fig. 24. This
design can be compared with that of Fig. 22, as they have
similar objective function values. As expected, for the same
displacement, the design using XFEM requires a slightly
higher mass, because damage at the global scale weakens
the response.

The normal stress (in the y-direction) of a randomly cho-
sen design (with its local scale geometry shown in Fig. 25b)
is shown in Fig. 25a along with the inserted XFEM zones
(as black lines) at the final time step. A second run resulted
in similar results, with an error of 9.8 × 10−3.

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized displacement

N
or

m
al

iz
ed

 m
as

s

Fig. 23 Population for the example with XFEM 280 generations
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Fig. 24 Tradeoff design

4.4 Discussion

Several design cases are presented above, each producing
slightly different results. The design goals always included
minimization (at the global scale) of static deflection and
either maximization of elastic strain energy or minimiza-
tion of mass. The use of different damage models (none,
local scale CZ, and global scale XFEM) was to establish a
baseline design (i.e. no damage model) and compare two
damage models, one more accurate but with a higher com-
putational cost (XFEM). The purpose of replacing energy
maximization with mass minimization is that they are non-
conflicting goals and so it may be possible to replace energy
maximization with the more computationally efficient mass
minimization.

The results comprise a linear elastic case with no dam-
age, one with damage modeled solely at the local scale in
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Fig. 26 Comparison between local scale damage model and XFEM

the form of cohesive zone insertion, and XFEM with dam-
age localization at the global scale. The main difference
seen between the models that include damage and the base-
line is the inclusion of thin supporting members through the
center of the RVE. This is sensible as any thin members
may incur damage and not contribute to the improvement
of static loading, while contributing to the detriment of the
strain energy. The main difference seen between the cases
including energy maximization or mass minimization as the
second goals is the hour-glass like shape of the inclusions. A
comparison of Figs. 24 and 20b or 20c reveals that designs
accounting for energy maximization tend to form hour-glass
structures, while those using total mass result in a more stan-
dard structure. Finally, Fig. 26 shows the difference between
the Pareto curves generated by the local scale damage model
and XFEM. The curves are fairly similar, with a difference
of 4 × 10−2, and, as would be expected, show that the local
scale damage model gives results that are consistently better
in displacement for the same mass. This figure demonstrates

Fig. 25 An example of the
global scale stress and inserted
cohesive zones
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that it may be possible to forgo the use of XFEM for this
design study.

5 Conclusions

A method for the multiobjective design of energy absorb-
ing materials was presented that uses a GP-based topology
optimization method and a multiscale FEM code. Topology
was represented using a CSG-like approach, where convex
polygons defined by the convex hulls of lists of points were
used as primitives and combined with an overlapping func-
tion. This approach is flexible in that convex polygons with
any number of sides can be combined together generating
complicated topologies. Material properties are embedded
in the convex polygons as well. A commercially available
multiscale FEM code was used that models damage using
automatic insertion of cohesive zone elements at the local
scale and XFEM at the global scale. Pareto optimal designs
were generated for several different cases, including quasi-
static and dynamic loadings, with and without local scale
cohesive zone insertion, and with and without global scale
XFEM insertion.

Future work includes extending the algorithm to 3D
designs. The method is easily implemented in 3D as all
concepts–convex hulls and CSG–are equally valid in 3D.
We also plan to incorporate a hierarchical design scheme,
where the global structure is optimized along with the
local structure. This can be done again with a homogenous
assumption of global scale material properties, or we could
enable multiple local scale designs that can be used at the
global scale.
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Richard B. Leavy started working as a researcher at the Ballistic Research Laboratory in 1991, following completion of a B.S. 
degree in physics from Loyola College. Initial work as a contractor in the Engineering Physics Branch included research in sen-
sors, active protection, and electromagnetic gun programs. Shortly thereafter, he transferred to the Armor Mechanics Branch 
and began work in armor design. Mr. Leavy was involved in the initial testing of encapsulated ceramics, as well as conventional 
armor programs for a variety of Army armored vehicles. Leavy took a brief hiatus in 1995 to become an Air Force pilot; he cur-
rently holds the rank of Major. Upon completion of the training, Brian was brought back with ARL as a government employee in 
1998. In 2001, he completed a M.S. degree in computer science from Towson University, and he is currently pursuing a Ph.D. 
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in computational solid mechanics at the University of Utah. As a member of the Impact Physics Branch, Mr. Leavy is working on 
modeling ceramics in a variety of codes, as well as developing new armor technologies and experimental methodologies. 

Kenneth W. Leiter has been a computer scientist at ARL since 2011. His research interests focus on the development of com-
putational algorithms for large scale high performance computing, focusing on the formulation of adaptive numerical algorithms 
for multiscale materials modeling. He received a B.S. in chemistry and B.A. in computer science from Duke University in 2008.

Bryan M. Love received his B.S. and M.S. degrees in mechanical engineering from North Carolina State University in 1999 and 
2001, respectively; and his Ph.D. in engineering mechanics from Virginia Polytechnic Institute and State University (VA Tech) in 
2004. He joined ARL in 2005, and is currently a team leader in the Materials Response and Design Branch. His research inter-
ests are broadly characterized as the dynamic deformation of materials, particularly experimental and computational mechanics 
to accurately characterize failure of materials during dynamic events.

Up until his retirement on May 31, 2013, James W. McCauley was ARL senior research engineer (ST) in ceramics (chief scientist 
in Materials); he is now in an emeritus/guest researcher position at ARL. He earned his B.S. (cum laude) in geology from St. 
Joseph’s College (Indiana) in 1961, his M.S. in mineralogy in 1965, and Ph.D. in solid state science (crystallography) in 1968, 
both from the Pennsylvania State University. From 1990–1994, he served as Dean (SUNY Chief Administrative Officer) of the 
New York State College of Ceramics at Alfred University, and from January 1995–June 1996, he was Professor of Ceramic 
Engineering. Prior to joining Alfred, he worked at the Army Materials Technology Laboratory for 22 years, serving as founding 
chief of the Materials Characterization Division and Materials Science Branch, and as liaison scientist, Army Research Office, Far 
East, Tokyo, Japan, during 1988. He is the author or co-author of 154 open literature publications and reports, has presented 
260 oral presentations, was the editor/co-editor of eight books, and holds five patents. He has served on the Army Science 
Board, the external review committee for the Materials Science and Technology Division of Los Alamos National Laboratory, 
and on the Visiting Advisory Board of the Department of Materials Science and Engineering of Drexel University. Dr. McCauley 
is the inventor and name originator of Aluminum Oxynitride Spinel (AlON), a transparent armor and RADOME material. He has 
been actively involved with the initiation of the Collaborative Research Alliance in “Materials in Extreme Dynamic Environments” 
and the sponsor of the National Research Council study on “Opportunities in Protection Materials Science and Technology for 
Future Army Applications”. A Fellow and Distinguished Life Member of the American Ceramic Society, he is a past President of 
the Society and the co-founder of the International Journal of Applied Ceramic Technology. He has been named an Academician 
of the World Academy of Ceramics, and is a winner of several awards from Penn State and from the National Research Institute 
in Materials, Japan, and from the Russian Academy of Sciences. He has also won the FY 2007 Senior Scientific-Professional (ST) 
Employee Presidential Rank Award. He is a past chair of the ARL Fellows and the Army ST Corps. 

Michael J. McQuaid is a Research Physical Scientist in the Propulsion Science Branch of the Weapons and Materials Research 
Directorate. He graduated with distinction from the University of Virginia in 1979, receiving a B.S. in Chemical Engineering. He 
then worked for four years as a fluid systems design engineer, resolving issues related to operating Nimitz-class aircraft carrier 
power plants. He subsequently attended Georgia Tech and received his Ph.D. in Physics. He came to what is now ARL as an NRC 
postdoctoral research associate in 1989, and was hired as a staff member in 1991. Since that time, Dr. McQuaid has been 
involved in a variety of experimental and theoretical research efforts designed to understand energetic material ignition and 
combustion. Over the past eight years, his research has focused on using computational quantum chemistry to understand the 
reaction mechanisms underlying propellant ignition and combustion, and to predict performance-dictating properties of notional 
energetic materials. He has also developed chemical kinetic mechanism reduction techniques. He has been awarded three 
Army Research & Development Achievement Awards and two U.S. patents. He has authored or co-authored 24 open literature 
publications and 38 ARL technical reports.

Lynn B. Munday has been a mechanical engineer in the Simulation Sciences Branch of the Computational Sciences Division 
within the Computation and Information Sciences Directorate (CISD), since joining ARL in 2011. His research interest is in solid 
mechanics, especially computational models for inelastic deformation. He is currently working on a coupled finite element—
discrete dislocation dynamics simulation tool to model dislocation induced plasticity of heterogeneous materials. His doctoral 
research was on atomistic models of dislocation motion and nucleation in the energetic molecular crystal RDX. He received a 
Ph.D. (2011) from the University Of Maryland, an M.S. (2005) from the University of New Mexico, and B.S. (2002) from Montana 
State University, all in mechanical engineering. 

Michael J. Nusca earned his Ph.D. in aerospace engineering from the University of Maryland in 1997. His thesis research fo-
cused on the integration of real gas, high temperature, reacting flow physics into high-fidelity computational fluid dynamics (CFD) 
codes. He is an Associate Fellow of the AIAA, Baltimore Section AIAA Engineer of the Year (2006), Sustained Superior Service 
Award recipient from JANNAF (2006), Superior Civilian Service Award recipient (2007), Assoc. Ed. of the JANNAF Journal for 
Propulsion and Energetics, and chairman of the JANNAF Combustion Subcommittee. Dr. Nusca has been with ARL for over 25 
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years and is the subject-matter expert (SME) for the development and application of multi-dimensional, multiphase, CFD models 
for combustion in solid propellant gun charges. He is credited with co-development of the Next-Generation interior ballistics code 
that lead to breakthrough investigations of the U.S. Army’s Modular Artillery Charge System for 105/155mm Army cannon. He 
received an Army Material Command Research and Development Award (RDA) in 2001 for this work, and then in 2003/2009 
for coupling the code to structural dynamics codes, predicting projectile response to high-g launch. Dr. Nusca is also the SME for 
the development and application of multi-dimensional, multiphase, reacting-flow CFD models that numerically model combus-
tion, including instabilities, in small rocket engines fueled with liquid or gelled hypergols and used in tactical as well as strategic 
missiles. For this work he received RDAs in 2006, 2007, and 2012. Dr. Nusca regularly teams with the U.S. Army Armament 
(ARDEC) and Aviation & Missile Research Development and Engineering Center (AMRDEC) as well as international research 
groups (TTCP).

Betsy M. Rice serves as the leader of the Multiscale Reactive Modeling Team in the Energetic Materials Science Branch at 
ARL, and is responsible for initiating, planning, and personally performing research investigations to determine microscopic 
details of the physical and chemical processes of materials of interest to the Army, including energetic materials and materials 
related to armor/armaments. Dr. Rice’s expertise lies in the theoretical chemistry areas of classical molecular simulation and 
quantum mechanical molecular characterization directed toward advanced modeling of materials that are critical components 
of several DoD weapons and S&T mission areas. Dr. Rice earned a B.S. in chemistry from Cameron University in Oklahoma in 
1984, and was awarded a Ph.D. in chemistry from Oklahoma State University in 1987. She held a postdoctoral position in 1988 
with Chemical Dynamics Corporation before joining the Army research community in 1989, first as a National Research Council 
(NRC) Postdoctoral Research Associate, then as a staff member in 1990 with the predecessor organization of ARL, the Ballistic 
Research Laboratory. Dr. Rice has authored more than 80 open literature publications in chemical physics journals. She has 
also written 11 invited book chapters on molecular simulations of energetic materials. She was the recipient of the 1999 and 
2007 ARL Award for Publication, both of which detail her activities to predict properties of energetic materials related to their 
performance in weapons systems or their sensitivity to shock impact. She was also awarded the 1997, 2003, and 2008 Army 
Research and Development Achievement (RDA) Awards for molecular simulations of energetic materials, as well as the 2012 
RDA Award for Technical Leadership.

Deborah A. Sarkes received her B.A. in biochemistry and molecular biology, and M.A. in biotechnology (summa cum laude) from 
Boston University in 2005, in a dual-degree program. She worked with Dr. Lucia Rameh for seven years at Boston Biomedical 
Research Institute (BBRI) studying phosphoinositides and lipid kinases as they relate to diabetes and cancer, with a first0author 
publication regarding a novel HPLC method for separating the lipids PI-5-P from PI-4-P. While at BBRI, she also collaborated with 
the Structural Biology Department of Pfizer RTC, successfully forming protein crystals of PIP4K II isoforms. She joined ARL in 
2010 as a contractor for the Sensors and Electron Devices Directorate (SEDD), contributing to several publications. She cur-
rently conducts research for the Biomaterials Team of the Biotechnology Branch at ARL, with particular emphasis on protein 
mutation and purification by FPLC, ELISA assay development, bacterial peptide display, directed evolution and FACS analysis of 
binders to various biological and material targets.

The objectives of Yelena R. Sliozberg’s research is to develop multi-scale computational tools to understand critical phenomena 
that can control properties of macromolecules and enable rational materials design for soft materials. Dr. Sliozberg performed 
simulations of soft polymers and proteins by means of particle and mean-field methodologies (atomistic, coarse-grained mo-
lecular dynamics, dissipative particle dynamics and slip-link model), using commercial and in-house developed computer codes. 
Results of these studies have been presented at several conferences and published in multiple peer-reviewed journals, proceed-
ings and technical reports. She received her B.S. and M.S. in chemical engineering from D. Mendeleev University of Chemical 
Technology of Russia in 1994. During her graduate studies at Drexel University Philadelphia (2002-2008), Dr. Sliozberg modeled 
thermodynamics of the protein folding inside the chaperonin central cavity and studied mechanism of conformational changes 
of the E. Coli chaperonin GroEL through its reaction cycle.

Timothy W. Sirk is a researcher in the field of computational materials science at ARL. He began his research career at ARL in 
2010 as an ORISE postdoctoral fellow working with Jan Andzelm in the Macromolecular Science and Technology Branch. Tim 
has investigated the mechanics and structure-property relationships of polymers at extreme conditions through the use of a vari-
ety of particle-based simulation methods, including atomistic molecular dynamics, Monte Carlo, coarse-graining, and dissipative 
particle dynamics. His current interests focus on the development of atomistically-informed computational methods that bridge 
length and timescales to connect with experiments. Prior to joining ARL, Tim earned his Ph.D. in 2009 from the Mechanical Engi-
neering department at Virginia Tech, where he used molecular simulations to relate the chemical structure of tea antioxidants to 
their anti-bacterial and anti-carcinogenic properties.

Dimitra Stratis-Cullum leads the biomaterials team at ARL. This interdisciplinary research program focuses on developing new 
tools for understanding the biomolecular peptide recognition and bio(molecular)materials discovery. Dr. Stratis-Cullum received 
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her Ph.D. in chemistry from the University of South Carolina. She joined the ARL in Adelphi, MD, in 2002 after completing a 
postdoctoral fellowship at U.S. Department of Energy Oak Ridge National Laboratory. She has 17 years experience as an analyti-
cal chemist, including 11 years on enabling technologies for chemical and biological detection with emphasis on novel transduc-
tion and synthetic molecular recognition technologies. Her scientific advances are evidenced by 96 open literature publications 
and several invention disclosures. These publications have been favorably cited more than 730 times. In recognition of her 
fundamental and applied research in synthetic recognition materials for threat sensing applications, Dr. Stratis-Cullum recently 
received the 2012 Army Research and Development Achievement Award. 

DeCarlos E. Taylor received his Ph.D. in quantum chemistry from the Quantum Theory Project, University of Florida in 2004. His 
thesis work focused on development of coupled cluster methods, many body perturbation methods, and creation of accurate 
semiempirical quantum chemistry Hamiltonians, enabling accurate molecular dynamics simulations of condensed phase ma-
terials. He currently supports multiple ARL core and customer research programs focused on multiscale modeling of energetic 
materials, protection materials, and chemical warfare agents. His research responsibilities include the design, execution, and 
management of innovative computational research programs, enabling a fundamental understanding of the underlying physics 
and chemistry of materials subjected to high-strain environments for both lethality and protection.

Mark A. Tschopp is currently appointed as a materials engineer at ARL in the Lightweight and Specialty Metals Branch of the 
Weapons and Materials Research Directorate. He obtained an M.S. in metallurgical engineering from the Missouri University of 
Science and Technology in 1999, where his research on defect formation mechanisms in lost foam casting won the Best Paper 
Award at the American Foundry Society conference. He obtained a Ph.D. in materials science and engineering from the Geor-
gia Institute of Technology, where his atomic scale research into grain boundary and dislocation interactions received several 
awards, including the Sigma Xi Best PhD dissertation award. Before joining ARL in 2012, Dr. Tschopp spent four years in the 
Advanced Materials Development Center and the Casting Development and Validation Center at General Motors Powertrain, 
two years in material sustainability and mechanics within the Life Prediction and Behavior group within the Metals branch at 
the Air Force Research Laboratory, and over four years as faculty at Mississippi State University. Dr. Tschopp has authored or 
co-authored over 100 journal papers, book chapters, conference papers, and technical reports, with over 60 papers in peer-
reviewed materials science and solid mechanics journals. At present, he has been either the author or co-author on over 100 
presentations and seminars at national/international conferences and universities, including over 50 invited and keynote talks. 
His research has been featured on the covers of two journals and in popular press. Dr. Tschopp’s current research interests lie 
in developing, utilizing, and integrating computational and experimental techniques to design materials for lightweight vehicle 
applications, soldier protection systems, and lethality applications in support of the Warfighter and the mission of the U.S. Army.

Eric D. Wetzel is the Multifunctional Materials team leader at ARL, and is ARL’s technical area manager for Materials for Sol-
dier Protection. His research interests span a range of topics, including ballistic textiles, multifunctional composite materials, 
bio-inspired materials and systems, and power and energy materials. Dr. Wetzel has co-authored over 40 peer-reviewed journal 
publications and book chapters, 60 conference proceedings articles, and holds 11 patents. Dr. Wetzel has served on review and 
advisory panels for the Army Research Office (ARO), Air Force Office of Scientific Research, the National Aeronautics and Space 
Administration (NASA), the Petroleum Research Fund, the National Science Foundation, and the National Institute of Justice. In 
2002, Dr. Wetzel’s research on shear thickening fluid (STF)-treated protective fabrics was awarded the U.S. Army Paul A. Siple 
award.

Raymond A. Wildman is a materials research engineer with ARL since 2010. He received the Ph.D., M.E.E, and B.E.E in electri-
cal engineering from the University of Delaware in 2008, 2005, and 2003 respectively. While at the University of Delaware, Dr. 
Wildman researched and developed improved methods for solving time domain integral equations of electromagnetic scattering 
in the microwave regime. Also, he developed topology optimization methods for the inverse scattering of conducting objects and 
inhomogeneous dielectrics. Dr. Wildman joined ARL in 2007 as a post-doctoral researcher, initially working on topology optimiza-
tion methods for the design of phononic bandgap materials and the inversion of buried structures from their gravitational and 
magnetic fields. Since then, he has researched peridynamics-based methods for the fracture simulation of brittle elastic solids. 
Dr. Wildman is a member of the Tau Beta Pi and Eta Kappa Nu engineering honor societies. 

Kang Xu has been researching electrolyte materials and interphasial chemistry in electrochemical devices, especially Li-ion 
batteries, for over 20 years. His research interests cover materials development and interphasial mechanisms for electrochemi-
cal energy storage devices, including batteries and capacitors. He has been recognized four times by R&D Achievement Awards 
from the Department of the Army (1999, 2001, 2002, and 2011), an ARL Publication Award (2005), an ARL Science Award 
(2011), and the Army Science Conference Best Paper Award (2008). He also received a Citation for Leadership Excellence in 
DDR&E 2008 Wearable Power Prize Competition (2008), and won “Top 10 Hottest Technologies Contest of DoD” (2011). His 
work on the “5 V Li-ion battery” was featured as cover story in “Army AL&T” magazine. He has published over 120 papers in 
peer-reviewed journals, written/edited three chapters/books, and currently holds 18 issued U. S. patents. His publications have 
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received over 6800 citations in the open literature, with an h-index of 46. He is an active member of the Electrochemical Society 
and Materials Research Society, and often serves in various academic/governmental/industry panels as an expert in energy 
storage technology and materials.

Chian-Fong Yen has been with ARL for more than 10 years. He received his Ph.D. and M.E degrees in Engineering Mechan-
ics from the University of Florida and a B.S. degree in civil engineering from the Chung Yuan University, Taiwan. He is a senior 
program manager and principal investigator in the DoD research and development environment with a proven track record in 
winning proposals and managing successful programs. Dr. Yen is a multi-disciplined engineer with a wide range of experience in 
multi-scale material characterization and modeling, dynamic simulation, design and analysis of advanced composite and metal-
lic materials and structures. He also has extensive experience in simulation and design of advanced protection systems against 
ballistic and blast threats. His current interests include: development and application of design methodologies and innovative 
concepts for composite materials and vstructures under extreme loading conditions, development and implementation of 
progressive failure and durability material models for various composite and ceramic systems, design and fabrication of com-
posite and metallic systems for DoD protective applications. He has published over 100 journal articles, reports and conference 
papers.

Approved for public release; distribution unlimited   •   July 2014



   
311

Approved for public release; distribution unlimited   •   July 2014




