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Conversion Factors, Non-SI to 
SI Units of Measurement 

Non-Si units of measurement used in this report can be converted to SI units 
as follows: 

Multiply By To Obtain 

acres 4,046.873 square meters 

acre-feet 1,233,489 cubic meters 

cubic feet 0.02831685 cubic meters 

feet 0.3048 meters 

Fahrenheit degrees 5/9 Celsius degrees1 

miles (U.S. statute) 1.609347 kilometers 

1  To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the follow- 
ing formula:  C = (5/9)(F - 32). 
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1   Introduction 

Background 

The U.S. Army Engineer Division, Missouri River (MRD) controls water 
resources on the main stem Missouri River to fulfill project purposes author- 
ized in the 1930's and 1940's. Since authorization, considerable demo- 
graphic, social, economic, and political changes have occurred in the 
region. In 1990, MRD began reevaluating the Missouri River Master Water 
Control Manual to meet the changing priorities of the system. The goal was 
to develop methods of impact assessment that would help MRD identify and 
promote equitable use of resources for authorized purposes. 

Purpose 

The purpose of this study was to provide MRD with the ability to predict 
the effects of reservoir operational changes on suitable coldwater fish habitat 
in Fort Peck Lake, Lake Sakakawea, Lake Oahe, and Lake Francis Case. 
Coldwater fish habitat is defined as water less than or equal to 15°C and 
greater than or equal to 5 mgl'1 DO. The only system operational variables 
which can be changed are end-of-month stages and monthly average 
releases. Results of this study must therefore predict suitable coldwater fish 
habitat as a function of these two variables. The results will be incorporated 
into MRD's Long Hange System model (LRS) and will be used to predict 
suitable coldwater fish habitat under various operational alternatives. 

Approach 

Fort Peck Lake, Lake Sakakawea, and Lake Oahe are long, narrow, deep- 
storage reservoirs. Reservoirs of this type typically exhibit both longitudinal 
and vertical water quality gradients (Cole and Hannan, 1990). The likeli- 
hood of two-dimensional (2D) water quality gradients dictated the use of a 
2D water quality model. The 2D water quality model, CE-QUAL-W2, was 
chosen to model temperature and dissolved oxygen (DO) and ultimately 
suitable coldwater fish habitat. Although Lake Francis Case more closely 
resembles a run-of-the-river reservoir in which longitudinal gradients may 
be negligable, it was also modeled using CE-QUAL-W2. 
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Since operational changes in an upstream reservoir could affect the down- 
stream reservoir, the four reservoirs were modeled in series in which 
releases from the upstream reservoir were routed to the downstream reser- 
voir. This required developing temperature and DO routing equations for 
the riverine reaches between reservoirs. 

Evaluation of operational alternatives using the LRS model involves model- 
ing a 92 year period using historical flows. Meteorologie data necessary to 
drive the water quality model during this historical period were not available 
prior to 1950. Therefore, a different approach was needed to produce 
results for coldwater fish habitat analysis for the 92 year period. The ap- 
proach used was to model 30 years and produce regression relationships 
relating stage and discharge to suitable coldwater fish habitat. 

The 30 years had to encompass the expected range of operating conditions 
used in the 92 year LRS simulations - specifically, the drought of the 1930's 
had to be incorporated into the 30 year simulations. The drought of the 
1930's was represented by surrogate years in which years with available 
meteorologic data were chosen to represent the drought based on yearly 
runoff from above Sioux City, SD. Table 1 shows the correspondence be- 
tween surrogate years and drought years. Nine 30 year operational scenar- 
ios developed by MRD were then run to produce monthly regressions relat- 
ing stage and discharge to suitable coldwater fish habitat. The monthly 
regressions will be used to predict habitat for all of the operational alter- 
natives proposed by the MRD. 

Typically, DO is modeled along with a full suite of water quality variables 
including algal/nutrient interactions. Lack of available algal/nutrient data 
necessitated a different approach. DO was assumed to be a function of sedi- 
ment and water column oxygen demands which were adjusted during cali- 
bration to reproduce the average DO depletion during summer stratification. 
The drawback to this approach is that operational changes which might 
affect algal/nutrient interactions cannot be predicted. This approach also 
precluded modeling algal blooms and die-offs during model calibration. 
Results from this study show only how physical factors relating to changes 
in reservoir stage and discharge affect DO. 

Model Description 

CE-QUAL-W2 is a 2-D (longitudinal-vertical), hydrodynamic and water 
quality model developed for rivers, lakes, reservoirs, and estuaries (Envi- 
ronmental and Hydraulics Laboratories, 1986; Martin, 1987; Martin, 1988). 
It is based upon the LARM model originally developed by Edinger and 
Buchak (1978). The model is capable of making long-term predictions of 
hydrodynamics and in-pool and release temperature and water quality con- 
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Table 1.   Correspondence between 1930's drought years 
and surrogate years 

Drought Year Runoff (acre-ft) Surrogate Year Runoff (acre-ft) 

1930 18,452,000 1980 18,687,000 

1931 10,701,000 1988 12,352,000 

1932 19,463,000 1956 19,418,000 

1933 18,166,000 1989 17,700,000 

1934 11,164,000 1988 12,352,000 

1935 14,323,000 1977 16,080,000 

1936 14,339,000 1977 16,080,000 

1937 14,315,000 1977 16,080,000 

1938 20,652,000 1980 18,687,000 

1939 17,271,000 1989 17,700,000 

1940 12,101,000 1988 12,352,000 

1941 16,714,000 1955 16,410,000 

stituents. It is best suited for waterbodies that are relatively long and nar- 
row exhibiting water quality gradients in both the longitudinal and vertical 
directions. The model has been used extensively by Government and pri- 
vate firms in the United States and throughout the world to investigate water 
quality problems. An extensive bibliography is given as a separate section 
in the References. 

The model represents a reservoir as a grid of longitudinal segments and 
vertical layers having a length and height defined by the user. The width 
for each cell is defined as the surface area at the mid-height of the cell 
divided by the segment length. Predictions from the model represent values 
of temperature or a water quality constituent averaged over the length, 
height, and width of a cell. CE-QUAL-W2 has the following capabilities 
that were important in this study: 

1. Multiple branches 
2. Autostepping (automatic adjustment of timestep to maintain 

hydrodynamic stability) 
3. Layer/segment addition and subtraction 
4. Ice cover 

The following improvements to the model were implemented during calibra- 
tion to the Upper Missouri River reservoirs: 

1. A higher-order explicit transport algorithm (QUICKEST, 
Leonard, 1979) in the longitudinal and vertical, and a 
time-weighted, implicit transport algorithm in the vertical 
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were added to the model. These improvements were 
necessary to more accurately reproduce the temperature 
gradient in the thermocline. 

2. A fully implicit, vertical diffusion algorithm was imple- 
mented to eliminate density inversions during periods of 
rapid cooling. 

3. An improved ice-cover algorithm was implemented to 
more accurately reproduce ice-in and ice-out dates. 

4. A selective withdrawal algorithm was implemented to 
more accurately reproduce observed release temperatures. 

Site Description 

The modeled system consists of five reservoirs and two stretches of the Mis- 
souri River - Fort Peck Lake, Lake Sakakawea, Lake Oahe, Lake Sharp, Lake 
Francis Case, and the Missouri River below Fort Peck Dam and Garrison Dam 
(Lake Sakakawea) (Figure 1). Lake Sharpe was treated similarly to the Mis- 
souri River stretches. Release temperatures from Oahe Dam were routed as 
inflows to Lake Francis Case taking into account the travel time in Lake Sharpe 
(see page 29 for further details on the routing procedure). 
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Figure 1.   Map of the Upper Missouri River system modeled for this 
study 
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Fort Peck Lake 

Fort Peck Dam is 
located in eastern 
Montana on the Mis- 
souri River about 18 
miles southeast of 
Glasglow (Figure 2). 
The major tributaries 
to the main body of 
Fort Peck Lake are 
the Missouri River 
and the Musselshell 
River 

Glasgow 
Fort Peck 

Dam 

Station 1 

Figure 2.    Fort Peck Lake study area showing 
sampling stations 

Because of the proximity of the upstream boundary and the confluence 
with the Musselshell River, inflows from both rivers were combined and treated 
as a single inflow at the upstream boundary. The primary inflow to the south- 
ern branch of Fort Peck Lake is Little Dry Creek. The two sampling stations 
used in calibration are located near the dam and midway up the reservoir near 
Hell Creek. 

Lake Sakakawea 

Garrison Dam is 
located in central 
North Dakota at Mis- 
souri River mile 1390 
about 75 miles north- 
west of Bismark 
(Figure 3). The 
major tributaries to 
Lake Sakakawea are 
the Missouri River 
and the Little Mis- 
souri River. The 
Missouri River enters 

VUIiston 
Lake 

Sakakawea 

Figure 3.   Lake Sakakawea study area showing 
sampling stations 

Lake Sakakawea upstream of Williston, MT. Flows at this point consist pri- 
marily of inflows from the Yellowstone and Milk Rivers and releases from Fort 
Peck Dam. The two sampling stations used in calibrating the model are located 
near the dam and a little over midway upstream from the dam near New Town. 
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Lake Oahe 

Oahe Dam is located in central 
South Dakota on the Missouri 
River just north of Pierre, South 
Dakota (Figure 4). The Missou- 
ri River enters Lake Oahe just 
downstream from Bismarck, 
ND. Flow at this point is pri- 
marily from Garrison dam re- 
leases. The Cheyenne River is 
the other significant inflow. The 
two sampling stations used in 
calibrating the model are located 
near the dam and about two- 
thirds of the way upstream from 
the dam near Pollack. 

Lake Francis Case 

Fort Randall Dam is located on 
the Missouri River in southeast- 
ern South Dakota near the Ne- 
braska state line (Figure 5). 
Lake Francis Case, formed by 
Fort Randall Dam, is 107 miles 
in length. The upstream bound- 
ary of Lake Francis Case is Big 
Bend Dam (river mile 988). In- 
flows to Lake Francis Case are 
from the White River and Crow 
Creek and releases from Big 
Bend Dam. The two sampling 
stations used in calibrating the 
model are located near Fort 
Randall Dam and a little over 
midway upstream from the dam 
near Elm Creek. 

Lake 
Oahe 

Lake 
Oahe 

Oahe 

Figure 4.   Lake Oahe study area show- 
ing sampling station locations 

Big Bend 
Dam 

Station 2 

Station 1 

Fort Randall 
Dam 

Figure 5.  Lake Francis Case study area 
showing sampling station locations 
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2  Input Data 

Bathymetry 

CE-QUAL-W2 requires the reservoir be discretized into longitudinal segments 
and vertical layers that may vary in length and height. An average width must 
then be defined for each active cell where an active cell is defined as potentially 
containing water. Additionally, every branch has inactive cells at the upstream 
and downstream segments and top layer. Inactive cells are also located below 
the bottom active cell in each segment. Segment lengths and layer heights for 
all four reservoirs were constant for a given branch. 

Once the segment lengths and layer weights were finalized, average widths 
were then determined for each cell from sediment range data obtained from the 
Omaha district. A computer program was written to average widths for each 
cell using linear interpolation. 

Fort Peck Lake 

The computational grid is shown in Figure 6. The reservoir was discretized 
into two branches with a total of 49 segments and 32 layers. Segments are 
numbered horizontally and layers are numbered vertically. Inactive cells are 
seen as blank spaces on the grid (i.e, segments 35 and 36). Branch one (se- 
gments 1-35) is the mainstem portion of Lake Fort Peck and branch two (se- 
gments 36-49) is the Big Dry Creek arm of the reservoir. Cells were 5km long 
and 2 m high. A comparison of computed volume-area-elevation curves and 
U.S. Army Corps of Engineers (USACE) data is given in Figure 7. 
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Figure 6.  Fort Peck Lake computational grid 
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Figure 7.  Fort Peck Lake computed versus USACE volume-area-eleva- 
tion curves. 
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Lake Sakakawea 

The computational grid is shown in Figure 8. The reservoir was discretized 
into two branches with a total of 66 segments and 31 layers. Branch one (seg- 
ments 1-55) is the mainstem portion of Lake Sakakawea and branch two (seg- 
ments 56-66) is the Little Missouri River arm of the reservoir. Cells were 5km 
long and 2m high. A comparison of computed volume-area-elevation curves 
and US ACE data is given in Figure 9. 
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Figure 9.  Lake Sakakawea computed versus USACE volume-area-elevation curves. 

Lake Oahe 

The computational grid is shown in Figure 10. The reservoir was discretized into two branches with a 
total of 47 segments and 34 layers. Branch one (segments 1-37) is the mainstem portion of Lake Oahe 
and branch two (segments 38-47) is the Cheyenne River arm of the reservoir. Cells in branch one were 
10km long and 2m high. Cells in branch two were 5 km long and 2m high. A comparison of comput- 
ed volume-area-elevation curves and USACE data is given in Figure 11. 
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Figure 10.  Lake Oahe computational grid 
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Figure 11.  Lake Oahe computed versus USACE volume-area-curves. 

Lake Francis Case 

The computational grid is shown in Figure 12. The reservoir was discretized 
into one branch with a total of 45 segments and 25 layers. Cells were 4km 
long and 2m high. A comparison of computed volume-area-elevation curves 
and USACE data is given in Figure 13. 
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Figure 12.  Lake Francis Case computational grid 
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Figure 13. Lake Francis Case computed versus USACE volume-area- 
elevation curves. 

Inflow and Outflow 

When determining which years to include for calibration, one of the first con- 
siderations is to choose years or conditions that reflect as wide a range of pool 
elevations, inflow/outflow, and meteorologic conditions as possible. The years 
1978 and 1980 had the widest range of inflow/outflow of the years that had 
sufficient water quality data for calibration. Table 2 summarizes the flows and 
residence times for each reservoir for 1978 and 1980. Inflows and outflows are 
shown in Figure 14-Figure 21. 
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Table 2.  Summary of reservoir hydrology for 1978 and 1979 

Reservoir Year Statistic Inflow cfs Outflow 
cfs 

Elevation, ft Residence Time, 
years 

Fort Peck Lake 

1978 

Min 2,291 0 2,227.5 

2.0 
Max 90,425 15,285 2,250.0 

Mean 14,971 11,671 2,241.5 

1980 

Min 32 5,789 2,234.6 

2.1 
Max 30,283 14,579 2,242.1 

Mean 8,952 10,463 2,237.8 

Lake Sakakawea 

1978 

Min 5,189 6,321 1,826.2 

0.9 
Max 120,831 39,687 1,849.5 

Mean 30,474 28,111 1,839.4 

1980 

Min 2,316 16,803 1,833.6 

1.1 
Max 44,587 29,703 1,842.1 

Mean 19,153 22,994 1,838.0 

Lake Oahe 

1978 

Min 9,473 0 1,594.8 

0.9 
Max 58,500 54,306 1,616.2 

Mean 29,064 29,768 1,608.7 

1980 

Min 5,449 0 1,596.3 

0.7 
Max 38,676 54,607 1,608.4 

Mean 22,282 35,598 1,602.7 

Lake Francis Case 

1978 

Min 8 801 1,337.8 

0.2 
Max 100,033 53,208 1,362.6 

Mean 31,235 32,453 1,363.7 

1980 

Min 10 6,297 1,338.1 

0.2 
Max 69,011 41,689 1,358.7 

Mean 25,331 25,621 1,360.3 
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Figure 14.  Fort Peck Lake 1978 inflows and outflows 
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Figure 15.  Fort Peck Lake 1980 inflows and outflows 
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Lake Sakakawea 
1978 Inflows and Outflows 
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Figure 16.  Lake Sakakawea 1978 inflows and outflows 
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Figure 17.  Lake Sakakawea 1980 inflows and outflows 
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Figure 18.  Lake Oahe 1978 inflows and outflows 
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Figure 19.  Lake Oahe 1980 inflows and outflows 
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Lake Francis Case 
1978 Inflows and Outflows 
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Figure 20.  Lake Francis Case 1978 inflows and outflows 
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Figure 21.  Lake Francis Case 1980 inflows and outflows 
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Meteorology 

CE-QUAL-W2 requires air and dew-point temperature, wind speed and direc- 
tion, and cloud cover for surface heat exchange and ice-cover computations. 
Previously, equilibrium temperatures were used in computing heat exchange 
and ice-cover. The new ice-cover algorithm employs a term-by-term solution in 
which the individual components of surface heat exchange are computed from 
the same meteorologic variables used previously in the equilibrium temperature 
computations. Hourly values for all meteorologic variables were obtained from 
first-order weather stations located in Glasgow, MT, Williston, ND, and Pierre, 
SD. Meteorologic inputs are shown in Figure 22-Figure 39. 
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Figure 22. Fort Peck Lake 1978 air/dew-point temperatures from Glas- 
gow, MT 
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Fort Peck Lake 
19B0 Air and Dew Point Temperatures 
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Figure 23.   Fort Peck Lake 1980 air/dew-point temperatures for Glas- 
gow, MT 
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Figure 24.  Fort Peck Lake 1978 wind speeds from Glasgow, MT 
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Fort Peck Lake 
1980 Wind Speed 
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Figure 25.  Fort Peck Lake 1980 wind speeds from Glasgow, MT 

Fort Peck Lake 
1978 Cloud Cover 
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Figure 26.  Fort Peck Lake 1978 cloud cover from Glasgow, MT 
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Fort Peck Lake 
1980 Cloud Cover 
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Figure 27.  Fort Peck Lake 1980 cloud cover from Glasgow, MT 
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Figure 28.    Lake Sakakawea 1978 air/dew-point temperatures from 
Williston, ND 

Chapter 2 - Input Data 23 



Lake Sakakawea 
1980 Air and Deir Point Temperatures 
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Figure 29. Lake Sakakawea 1980 air/dew-point temperatures for Will- 
iston, ND 
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Figure 30.  Lake Sakakawea 1978 wind speeds from Williston, ND 
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Figure 31.  Lake Sakakawea 1980 wind speeds from Williston, ND 
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Figure 32.  Lake Sakakawea 1978 cloud cover from Williston, ND 
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Lake Sakakawea 
1980 Cloud Cover 
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Figure 33.  Lake Sakakawea 1980 cloud cover from Williston, ND 
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Figure 34. Lake Oahe and Lake Francis Case 1978 air/dew-point temp- 
eratures from Pierre, SD 
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Lake Oahe and Lake Francis Case 
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Figure 35. Lake Oahe and Lake Francis Case 1980 air/dew-point temp- 
eratures from Pierre, SD 
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Figure 36.  Lake Oahe and Lake Francis Case 1978 wind speeds from 
Pierre, SD 
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Figure 37.  Lake Oahe and Lake Francis Case 1980 wind speeds from 
Pierre, SD 
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Figure 38.   Lake Oahe and Lake Francis Case 1978 cloud cover from 
Pierre, SD 
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Lake Oahe and Lake Francis Case 
1980 Cloud Cover 
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Figure 39. Lake Oahe and Lake Francis Case 1980 cloud cover from 
Pierre, SD 

Inflow Temperatures 

Daily inflow temperatures were determined from regressions relating observed 
inflow temperatures to equilibrium temperatures. These values were used 
during the initial calibration of the reservoirs. However, since the scenarios 
would require linking the reservoirs in series with release temperatures routed 
downstream and used as inflow boundary conditions to the lower reservoir, this 
same method was used to obtain inflow temperatures for the lower three reser- 
voirs during final calibration. The original regressed inflow temperatures were 
used for Fort Peck Lake. 

Daily average values were used for routing inflow temperatures, 
was used to route the temperatures. 

T, - T, ♦ (T„-T,)e m 
Equation (1) 

(1) 

where 

Tr = routed inflow temperature 
Te = average daily equilibrium temperature 
T0 = upstream release temperature 
Kh = coefficient of surface heat exchange 
h = average river depth over the reach 
t = travel time from upstream dam 
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Inflow temperatures are shown in Figure 40-Figure 47. 
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Figure 40.  Fort Peck Lake 1978 regressed inflow temperatures 
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Figure 41.  Fort Peck Lake 1980 regressed inflow temperatures 
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Figure 42.  Lake Sakakawea 1978 routed inflow temperatures 
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Figure 43.  Lake Sakakawea 1980 routed inflow temperatures 
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Lake Oahe 
1978 Routed Inflow Temperatures 
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Figure 44.   Lake Oahe 1978 routed inflow temperatures 
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Figure 45.  Lake Oahe 1980 routed inflow temperatures 
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Lake Francis Case 
1978 Routed Inflow Temperatures 
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Figure 46.   Lake Francis Case 1978 routed inflow temperatures 
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Figure 47.  Lake Francis Case 1980 routed inflow temperatures 
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Inflow DO 

Data were not available for inflow DO for the calibration years. The assump- 
tion was made that all inflow DO concentrations were saturated. Saturated DO 
concentrations were calculated from equation (2) in the same routing program 
used in determining inflow temperatures: 

jw>   _      7.7117-1.314« rin(Tr+45.93)l 1-- 
44.3 

5.25 

(2) 

where 

DO = dissolved oxygen concentration, mg l"1 

Tr = routed temperature, °C 
Ej = elevation at the inflow, m 

Inflow DO is shown in Figure 48-Figure 55. 
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Figure 48.  Fort Peck Lake 1978 inflow DO 
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Lake Fort Peck 
1980 Inflow DO 
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Figure 49.  Fort Peck Oahe 1980 inflow DO 
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Figure 50.  Lake Sakakawea 1978 inflow DO 
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Lake Sakakawea 
1980 Inflow DO 
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Figure 51.  Lake Sakakawea 1980 inflow DO 

Lake Oahe 
1978 Inflow DO 

14 

12 
v\                  jv 

10 v\.                                   /v/ 
« ^^Vv                  A.      J~^ 

S 
6 -                         Vv^y 

d a 6 

4 

2 

0 i         i         i         t         i        i         i        i         i         i         i         i 

Jan   Feb  Mar  Apr May  Jun   Jul Aug   Sep   Oct Nov   Dec 

Figure 52.  Lake Oahe 1978 inflow DO 
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Lake Oahe 
1980 Inflow DO 
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Figure 53.  Lake Oahe 1980 inflow DO 
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Figure 54.  Lake Francis Case 1978 inflow DO 
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Lake Francis Case 
1980 Inflow DO 
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Figure 55.   Lake Francis Case 1980 inflow DO 
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3  Calibration 

Fort Peck Lake 1978 Simulation 

Water Surface Elevations 

Computed and observed 1978 water surface elevations are shown in Figure 56. 
The net increase in storage was 12.7ft with elevations ranging from 2,227.7ft 
to 2,249.6ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 56. Fort Peck Lake 1978 computed versus observed water sur- 
face elevations at dam. 

Ice Cover 

Computed ice cover is shown in Figure 57. Ice-out was predicted on April 17. 
Reported ice-out occurred on April 18. Reported ice-in occurred on January 
14, 1979. No ice-in date was available from the 1978 simulation since the run 
did not continue into 1979. 
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Fort Peck Lake 
197B Computed Ice Cover 
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Figure 57.  Fort Peck Lake 1978 computed ice cover 

Temperature 

There are several important points to keep in mind when interpreting temper- 
ature predictions from CE-QUAL-W2. First, temperature predictions are 
averaged over the length, height, and width of a cell. Observed data represent 
temperature at a specific point in space. Also, predictions for all stations were 
output at 12 noon that may or may not be the same time of day at which mea- 
surements were taken since there was no record of when observed measure- 
ments were taken during the day. Also, meteorologic data from one station is 
applied to the entire reservoir. These caveats are most evident in discrepancies 
between predicted and observed epilimnetic temperatures when observed data 
may be taken early in the morning or late in the afternoon or when a weather 
front has moved through the reservoir at a different time than at the meteoro- 
logic station. 

Table 3 shows the values of all coefficients that affect temperature and ice 
computations. Although nearly all values were varied during the calibration, all 
values were set back to their default values for the final calibration. Also, all 
values were the same for the four reservoirs. Temperature predictions were 
most sensitive to changes in the wind sheltering coefficient. 

Station Near Dam. Observed and computed temperature profiles are shown in 
Figure 58 and Figure 59. Computed and observed profiles were generally in 
close agreement until July 21 when the model predicted lower hypolimnetic 
temperatures than observed. The August 3 profile showed similar discrepan- 
cies. However, by August 21, the computed hypolimnetic temperatures were 
considerably warmer than the observed. Observed hypolimnetic temperatures 
show considerable cooling took place between August 3 and August 21 that the 
model did not capture. Analysis of observed air temperatures (Figure 22, page 
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Table 3.   Final values for coefficients adjusted during Fort 
Peck Lake temperature calibration 

Coefficient Value 

Horizontal eddy viscosity 1.0 mV 

Minimum vertical eddy viscosity 1.4x10-7 m2 s"1 

Horizontal eddy diffusivity 1.0 m2 s-1 

Minimum vertical eddy diffusivity 1.4 x 10-6m2s"1 

Bottom frictional resistance 70.0 mV1 

Fraction of solar radiation absorbed at the water surface 0.45 

Light extinction - water 0.40 m"1 

Fraction of solar radiation absorbed in the ice surface. 0.60 

Light extinction - ice 0.07 m-' 

Wind sheltering coefficient 1.0 

Ice albedo 0.25 

Water-to-ice heat exchange 10.0Wm'2 0C'1 

20) shows that the first significant cooling event occurred in the middle of Sep- 
tember and not between August 3 and August 21. Since the meteorological 
data drive the temperature predictions, the model could not capture the obser- 
ved changes in temperature during this time period. On September 14, the 
model significantly underpredicted the epilimnetic temperature. This is the time 
of the previously mentioned cold spell in the observed data and the model is 
responding to the colder air temperatures. By October 5, the reservoir had 
overturned. The model predicts nearly complete overturn. 
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Figure 58.   Fort Peck Lake 1978 computed versus observed temperatures at 
station near dam, January 27 - August 3 
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Figure 59.   Fort Peck Lake 1978 computed versus observed temperatures at 
station near dam, August 21 - October 5 

Station Near Hell Creek. Observed and computed temperature profiles are 
given in Figure 60 and Figure 61. Computed versus observed temperatures 
follow the same trend as temperatures at the station near the dam with the 
exception that the October 3 computed profile had undergone fall overturn 
whereas the observed profile was still stratified. Apparently, the reservoir was 
in the process of overturn in the first week of October since the October 5 
observed profile at the dam was isothermal. 
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Figure 60.   Fort Peck Lake 1978 computed versus observed temperature pro- 
files at station near Hell Creek, February 13 - August 2 
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Figure 61. Fort Peck Lake 1978 computed versus observed temperature pro- 
files at station near Hell Creek, August 19 - October 3 

Release Temperature. Computed and observed release temperatures are 
shown in Figure 62. They are in close agreement until October when the 
model predicts colder release temperatures than observed. Again, air tempera- 
tures (Figure 22, page 20) show a marked decrease at the beginning of October 

Chapter 3 - Calibration 43 



consistent with model predictions and not with observed release temperatures. 
The computed rate of increase and decrease and the maximum release tempera- 
ture are nearly identical to observed. 
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Figure 62.   Fort Peck Lake 1978 computed versus observed release tempera- 
tures. 

Dissolved Oxygen 

As previously stated, insufficient water quality data existed to model algal/nutri- 
ent/DO dynamics. Instead, a "black box" approach was used that required 
specifying a zero-order sediment and water column oxygen demand. Values 
were adjusted until a reasonable fit with observed data was obtained which best 
represented the average oxygen demand during summer stratification. Final 
values for sediment and water column oxygen demand are given in Table 4. 

Table 4.    Lake Fort Peck calibrated sediment and 
water column oxygen demand 

Station Near 
Dam. Initial 
DO concentra- 
tions were set 
at saturated 
values for the 
beginning of 
the simulation. 
As    a    result, 
predicted DO on January 27 was much greater than observed throughout the 
water column. After overturn in April, the model was in close agreement with 
observed data (Figure 63).  By July 6, observed hypolimnetic DO had decreas- 

Segment Sediment, g m2 day'1 Water Column, g m3 day'1 

1-17 0.3 0.06 

19-27 0.3 0.04-0.2 

27-33 0.3 0.01 
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ed by « 3 mgl1. Computed DO was slightly higher. The observed data for 
August 21 indicate that hypolimnetic DO had increased which is questionable. 
Computed and observed DO are in close agreement on October 5 just after 
overturn. 
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Figure 63. Fort Peck Lake 1978 computed versus observed DO at station near 
dam 

Station Near Hell Creek. Computed DO is in close agreement with observed 
until May 22 when there was a significant oxygen deficit the model did not 
capture (Figure 64 and Figure 65). This event is most likely due to a spring 
phytoplankton bloom and die-off that the formulation for DO used in this study 
would not be able to capture. By August 19, computed and observed DO were 
back in agreement. The discrepancy between computed and observed DO on 
October 3 is due to the model having predicted overturn at this station that is 
not in agreement with observed temperature data. 
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Figure 64.  Fort Peck Lake 1978 computed versus observed DO at station near 
Hell Creek, February 13 - August 24 
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Figure 65.  Fort Peck Lake 1978 computed versus observed DO at station near 
Hell Creek, October 3 

Release DO.  Computed release DO concentrations are shown in Figure 66. 
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Figure 66.  Fort Peck Lake 1978 computed release DO 

Fort Peck Lake 1980 Simulation 

Water Surface Levels 

Computed and observed 1980 water surface elevations are shown in Figure 67. 
The net decrease in storage was 6.1ft with elevations ranging from 2,235.9ft to 
2,242.0ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 67.    Fort Peck Lake 1980 computed versus observed water surface 
elevations at dam 
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Ice Cover 

Computed ice cover is shown in Figure 68. Reported ice-out was on April 18 
and computed ice-out was on April 19. Reported ice-in occurred on February 
12, 1981. No computed ice-in date was available from the 1980 simulation 
since the run did not continue into 1981. 
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Figure 68.  Fort Peck Lake 1980 computed ice cover 

Temperature 

Station Near Dam. Observed and computed temperature profiles are shown in 
Figure 69 and Figure 70. Computed and observed profiles are in close agree- 
ment until July 21 when the model predicted much lower hypolimnetic tempera- 
tures than observed. Temperatures were in closer agreement by August 11 
when the observed hypolimnetic temperatures had cooled by several degrees. 
By August 22, computed and observed temperatures were in nearly exact agree- 
ment. Between July 21 and August 22, observed hypolimnetic temperatures 
had decreased by « 8 °F. If the observed data were correct, then the most 
likely explanation for the decrease in hypolimnetic temperatures during the 
hottest part of summer is displacement of hypolimnetic water near the dam 
because of internal seiching. More evidence of this phenomena can be seen in 
both Lake Sakakawea and Lake Oahe. By October 8, the model predicts nearly 
complete overturn while the observed data show the presence of a thermocline 
near 120ft. 
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Figure 69.   Fort Peck Lake 1980 computed versus observed temperatures at 
station near Hell Creek, February 26 - August 5 
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Figure 70. Fort Peck Lake 1980 computed versus observed temperatures at 
station near Hell Creek, August 21 - October 7 

Station Near Hell Creek. Computed versus observed temperatures are shown 
in Figure 71 and Figure 72. With the exception of May 21, computed and 
observed temperatures are in reasonable agreement. The erosion of the ther- 
mocline between June 25 and July 9 was captured by the model. The model 
predicted complete overturn by October 7 while observed data still showed 
some stratification. 
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Figure 71.   Fort Peck Lake 1980 computed versus observed temperatures at 
station near dam, February 25 - August 11 
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Figure 72. Fort Peck Lake 1980 computed versus observed temperatures at 
station near dam, August 22 - October 8 

Release Temperature. Computed and observed release temperatures are 
shown in Figure 73. Computed temperatures are in close agreement with 
observations with the exception that release temperatures decreased earlier in 
the fall than observed, although not as early as in 1978. As in 1978, the rate of 
increase and decrease and maximum release temperature were nearly identical. 
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Figure 73. Fort Peck Lake 1980 computed versus observed release tempera- 
tures 

Dissolved Oxygen 

Station Near Dam. Computed versus observed DO profiles are given in 
Figure 73, Figure 74. With the exception of October 8, computed and ob- 
served profiles are in general agreement. In June and July, Fort Peck Lake 
exhibited a classic clinograde DO profile typical of dimictic, oligotrophic lakes. 
The model also reflected this pattern. The rapid decline in DO between the end 
of August and October is again most likely due to a phytoplankton bloom and 
die-off that has exerted a tremendous water column oxygen demand. The depth 
of the thermocline at this date is « 120ft and DO should be nearly saturated in 
the epilimnion as the reservoir is undergoing fall overturn. The presence of a 
significant oxygen deficit in the epilimnion suggests rapid decay or tremendous 
phytoplankton respiration. 
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Figure 74. 
dam 

Fort Peck Lake 1980 computed versus observed DO at station near 

Station Near Hell Creek. Computed and observed DO profiles are shown in 
Figure 75. As in 1978, greater discrepancies between computed and observed 
DO profiles are found at this station than at the dam suggesting that phytoplank- 
ton blooms play a more important role in determining variations in DO. With 
the exceptions of July 9 and October 7, the model captures the trends in DO at 
this station. The model does not capture the DO deficits in spring and fall. 
However, the model does predict the overall oxygen demand during summer 
stratification by predicting fairly closely the observed DO on August 21. As in 
the station near the dam, there is evidence of a large phytoplankton bloom and 
die-off on October 7 that the model cannot capture. 
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Figure 75. Fort Peck Lake 1980 computed versus observed DO at station near 
Hell Creek 

Release DO.  Computed release DO concentrations are shown in Figure 76. 
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Figure 76. Fort Peck Lake 1980 computed release DO 
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Lake Sakakawea 1978 Simulation 

Water Surface Elevations 

Computed and observed 1978 water surface elevations are shown in Figure 77. 
The net increase in storage was 24.5ft with elevations ranging from 1,825.0ft 
to 1,849.5ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 77. Lake Sakakawea 1978 computed versus observed water 
surface elevations at dam 

Ice Cover 

Computed ice cover is shown in Figure 78. Reported ice-out was on April 22 
and computed ice-out was on April 16. Reported ice-in occurred on January 
17, 1979. No ice-in date was available from the 1978 simulation since it did 
not continue into 1979. 
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Figure 78.  Lake Sakakawea 1978 computed ice cover 

Temperature 

Table 5 gives the values of all coefficients affecting temperature and ice com- 
putations. As in the Fort Peck calibration, all values except for the minimum 
vertical eddy diffusivity were reset to default values for the final calibration 
run. 

Table 5.  Final values for coefficients adjusted during Lake Sakaka- 
wea temperature calibration 

Coefficient Value 

Horizontal eddy viscosity 1.0 m2 s-1 

Minimum vertical eddy viscosity 1.4 x 10-7m2s-' 

Horizontal eddy diffusivity 1.0 m2 s-' 

Minimum vertical eddy diffusivity 1.4x10"6 m2 s-1 

Bottom frictional resistance 70.0 m" s"1 

Fraction of solar radiation absorbed at the water surface 0.45 

Light extinction - water 0.40 m"1 

Fraction of solar radiation absorbed in the ice surface 0.60 

Light extinction - ice 0.07 m"1 

Wind sheltering coefficient 1.0 

Ice albedo 0.25 

Water-to-ice heat exchange 10.0Wm2 °C1 

Station Near Dam. Observed and computed temperature profiles are shown in 
Figure 79 and Figure 80. Computed and observed profiles were generally in 
close agreement until August when profiles were taken one day apart. These 
two profiles illustrate some of the problems when calibrating water quality 
models to observed data. Although they were taken only one day apart, there is 
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a discemable difference in temperature at 100ft. The model overpredicts hypo- 
limnetic temperatures for both dates, but the difference appears to be more pro- 
nounced on August 16. On September 20, observed data indicate that the reser- 
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Figure 79. Lake Sakakawea 1978 computed versus observed tempera- 
tures at station near dam, February 14 - August 15 

voir had overturned and then restratified while the model predicts nearly com- 
plete overturn but temperatures are « 8°F higher than observed. By October 
11, the reservoir has overturned and computed and observed temperatures are 
in close agreement. Between September 20 and October 11, the observed data 
show the reservoir has heated up by «5°F. The model predicts a temperature 
decrease during this time that appears more reasonable based on air temperature 
during this period. 
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Figure 80. Lake Sakakawea 1978 computed versus observed tempera- 
tures at station near dam, September 20 - October 11 
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Station near New Town. Computed versus observed temperatures are shown 
in Figure 81 and Figure 82. Except for the profile on May 4, computed temp- 
eratures are in fairly close agreement with observed temperatures. Profiles on 
August 17 and 18 illustrate the day-to-day variability that can occur in tempera- 
ture. Computed hypolimnetic temperatures are warmer than observed while 
one day later they are colder. Observed data in September show that the reser- 
voir at this station had overturned as do the computed temperatures. 
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Figure 81. Lake Sakakawea 1978 computed versus observed tempera- 
tures at station near New Town, February - August 18 
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Figure 82. Lake Sakakawea 1978 computed versus observed tempera- 
tures at station near New Town, September 19 - October 20 
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Release Temperature. Computed versus observed release temperatures are 
shown in Figure 83. Computed release temperatures are generally in close 
agreement with observed release temperatures. The greatest discrepancies 
occur in June and July where computed temperatures are less than observed. 
As in Fort Peck Lake, the model predicts colder temperatures during the fall 
although the differences are not as pronounced. The model does not capture 
the lowest temperatures during December. 
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Figure 83.   Lake Sakakawea 1978 computed versus observed release 
temperatures 

Dissolved Oxygen 

Table 6.    Lake Sakakawea  calibrated sediment 
and water column oxygen demand 

Values for sedi- 
ment and water 
column oxygen 
demand were 
adjusted until a 
reasonable fit with 
observed data was 
obtained that best 
represented    the 
average oxygen demand during summer stratification. Although oxygen deficits 
occurred during the winter months, only a small emphasis was placed on cali- 
brating DO during the winter months. The assumption was made that the 
winter DO and temperature profiles would not have an impact on suitable fish 
habitat. 

Seg- 
ment 

Sediment, g m2 day"1 Water Column, g m3 day"1 

1-10 0.3 0.1 

11-20 0.3-0.2 0.1-0.01 

21-54 0.2 0.01 
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Station Near Dam. Computed versus observed DO concentrations are shown 
in Figure 84 and Figure 85. The February 14 observed profile shows that a 
considerable oxygen demand existed during the winter months when the reser- 
voir was under ice cover. The model did not capture the observed decrease in 
hypolimnetic DO. Apparently, there is a greater hypolimnetic oxygen demand 
during the winter months than during the summer since the minimum observed 
DO is less in February than in August. The present formulation for DO would 
not be able to account for the low DO in February. The formulation for DO 
demand in the model reduces oxygen uptake with decreasing temperatures. 
Either respiration rates are not dependent upon temperature in Lake Sakakawea 
(highly unlikely) or there is a greater concentration of organic matter during the 
winter. The remainder of the profiles are in close agreement. The clinograde 
profiles are typical of deep, oligotrophic lakes. 
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Figure 84.   Lake Sakakawea 1978 computed versus observed DO at 
station near dam, February 14 - August 16 
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Figure 85.   Lake Sakakawea 1978 computed versus observed DO at 
station near dam 

Station Near New Town. Computed versus observed DO concentrations are 
shown in Figure 86 and Figure 87. Unlike the predictions near the dam on 
February 15, the model is predicting a relatively large decrease in DO with 
depth. Computed DO concentrations are in close agreement throughout the 
remainder of the year. A greater oxygen depletion is apparent at this station 
than at the dam that is consistent with the model predictions. 
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Figure 86.   Lake Sakakawea 1978 computed versus observed DO at 
station near New Town, February 15 - August 18 
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Figure 87.   Lake Sakakawea 1978 computed versus observed DO at 
station near New Town, September 19 - October 20 

Release DO. Computed release DO concentrations are shown in Figure 88. 
As stated previously, the model did not capture the observed DO depletion 
during the winter months at the station near the dam. However, the release DO 
did show a constant decrease throughout the winter until ice-out. 
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Figure 88.  Lake Sakakawea 1980 release DO 
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Lake Sakakawea 1980 Simulation 

Water Surface Elevations 

Computed versus observed water surface elevations are shown in Figure 89. 
The net decrease in storage was 8.4ft with elevations ranging from 1,842.0ft to 
1,833.6ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 89. Lake Sakakawea 1980 computed versus observed water 
surface elevations at dam 

Ice Cover 

Computed ice cover is shown in Figure 90. Reported ice-out was on April 24 
and computed ice-out was on April 17. Reported ice-in was on January 3, 
1979. No ice-in date was available from the 1980 simulation since it did not 
continue into 1981. 
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Figure 90.  Lake Sakakawea 1980 computed ice cover 
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Figure 91. Lake Sakakawea 1980 computed versus observed tempera- 
tures at station near dam, February 1 - July 31 

Station Near Dam. Computed versus observed temperatures are shown in 
Figure 91 and Figure 92. Temperatures are generally in close agreement with 
the exception of June 3 when the model overpredicts epilimnetic temperatures 
by * 8°F. 
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Figure 92. Lake Sakakawea 1980 computed versus observed tempera- 
tures at station near dam, September 19 - October 1 

Station near New Town. Computed versus observed temperatures are shown 
in Figure 93 and Figure 94. Computed temperatures during the summer stratif- 
ication period are in fairly close agreement with observed data. Computed 
temperatures during the spring and fall are consistently higher than observed 
temperatures. 
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Figure 93. Lake Sakakawea 1980 computed versus observed tempera- 
tures at station near New Town, February 2 - July 17 
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Figure 94. Lake Sakakawea 1980 computed versus observed tempera- 
tures at station near New Town, September 11 - September 30 

Release Temperatures. Computed versus observed release temperatures are 
shown in Figure 95. Computed temperatures are in close agreement with 
observed until the beginning of October when they begin to decrease. Observed 
release temperatures do not begin to decrease until the end of October. Air 
temperatures drop rapidly at the beginning of October and the model is respon- 
ding to the drop in air temperature. 
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Figure 95.  Lake Sakakawea 1980 release temperatures 

Dissolved Oxygen 

Station Near Dam. Computed versus observed DO concentrations are shown 
in Figure 96 and Figure 97. A significant oxygen demand during the winter 
months is again evident in 1980. The April 30 observed data show a decrease 
of » 6mgl_1 from the surface to the bottom. By June 3 following spring over- 
turn, computed DO is in close agreement with observed.   The profile on July 
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14 shows almost complete agreement between computed and observed data 
while the model overpredicts hypolimnetic DO on July 2 and July 31. More 
faith was placed in the July 14 data set for two reasons. First, the observed 
data were more extensive. Second, if the July 2 observed data is correct, then 
hypolimnetic DO has increased « 2-3 mgl"1 between July 2 and July 14 (assum- 
ing that the July 14 data set is correct). There is no mechanism in the model 
that would allow the hypolimnetic DO to increase during summer stratification. 
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Figure 96. Lake Sakakawea 1980 computed versus observed DO at 
station near dam, February 1 - July 31 

On September 19, the reservoir is in the process of fall overturn. Again, if the 
more extensive data set on this date is assumed to be correct, then hypolimnetic 
DO must have increased from the end of July to the middle of September. The 
October 1 observed profile shows a significant oxygen deficit in the hypolim- 
nion even though the temperature profile on this date shows that the reservoir 
has overturned. There is no mechanism in the DO formulation that could 
account for this. 
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Figure 97. Lake Sakakawea 1980 computed versus observed DO at 
station near dam, September 19 - October 1 

Station Near New Town. Computed versus observed profiles are shown in 
Figure 98 and Figure 99. During the winter and spring, the supersaturated DO 
indicate a large algal bloom was present at the upstream station that the model 
cannot capture. DO is also consistently overpredicted during the summer. 
Water column and sediment oxygen demand could have been increased to more 
closely match the observed data, but this would affect the 1978 predictions that 
were in close agreement. The judgement was that the DO at this station was 
responding to the winter/spring algal bloom that resulted in a much higher 
oxygen demand at this station during 1980. It was assumed that this bloom was 
atypical after reviewing water quality data from other years. Therefore, values 
for water column and sediment oxygen demand were used from the 1978 simu- 
lation and were not adjusted for the 1980 data. 
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Figure 98.   Lake Sakakawea 1980 computed versus observed DO at 
station near New Town, February 2 - July 30 
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Figure 99.   Lake Sakakawea 1980 computed versus observed DO at 
Station near New Town, September 11 - September 30 

Release DO.  Computed release DO concentrations are given in Figure 100. 
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Figure 100.  Lake Sakakawea 1980 release DO 

Lake Oahe 1978 Simulation 

Water Surface Elevations 

Computed versus observed 1978 water surface elevations are shown in 
Figure 101. The net increase in storage was 21ft with elevations ranging from 
1595ft to 1616ft. Computed and observed stages were in close agreement 
throughout the year. 
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Figure 101. Lake Oahe 1978 computed versus observed water surface 
elevations at dam 

Ice Cover 

Computed ice cover is shown in Figure 102. Predicted ice-out occurred on 
April 7 while reported ice-out occurred on April 8. Reported ice-in occurred 
on January 3, 1979. No ice-in date was available from the 1978 simulation 
since the run did not continue into 1979. 
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Figure 102.  Lake Oahe 1978 computed ice cover 

Temperature 

Table 7 gives the values of all coefficients affecting temperature and ice compu- 
tations. As in the Fort Peck and Sakakawea calibrations, all values except for 
the minimum vertical eddy diffusivity were reset to default values for the final 
calibration runs. 
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Table 7.  Final values for coefficients adjusted during Lake 
Oahe temperature calibration 

Coefficient Value 

Horizontal eddy viscosity 1.0 m2 s-' 

Minimum vertical eddy viscosity 1.4 x lOWs"1 

Horizontal eddy diffusivity 1.0 m2 s"1 

Minimum vertical eddy diffusivity 1.4 x 106 m2 s"1 

Bottom frictional resistance 70.0 m* s-1 

Fraction of solar radiation absorbed at the water surface 0.45 

Light extinction - water 0.40 m1 

Fraction of solar radiation absorbed in the ice surface 0.60 

Light extinction - ice 0.07 m"1 

Wind sheltering coefficient 1.0 

Ice albedo 0.25 

Water-to-ice heat exchange 10.0W m"2 °C' 

Station near Dam. Computed versus observed temperatures are given in 
Figure 103 and Figure 104. Observed hypolimnetic temperatures exhibited an 
interesting behavior of periodically increasing and then decreasing temperatures 
throughout the summer stratification period. Although not as prevalent, this 
behavior was also observed in the 1980 data. Assuming that the data are cor- 
rect, the most likely explanation for this behavior is internal seiching due to 
winds that causes the thermocline to tilt back and forth. As the thermocline 
tilts downwards at the dam, hypolimnetic temperatures would increase. As the 
thermocline tilted upwards at the dam, hypolimnetic temperatures would de- 
crease. This is speculation, but lacking any further data, is a plausible explana- 
tion of the observed temperatures. Computed temperatures are in close agree- 
ment on July 24 and August 17 but are several degrees colder on July 14 and 
August 9. Overall, they are in good agreement with the observed data through- 
out the entire year. 
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Figure 103. Lake Oahe 1978 computed versus observed temperatures 
at station near dam, March 8 - August 9 
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Figure 104. Lake Oahe 1978 computed versus observed temperatures 
at station near dam, August 17 - October 13 
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Station near Pollack. Computed versus observed temperatures are shown in 
Figure 105. Computed temperatures capture the trends throughout the year. 
The March, April, and October computed profiles are isothermal as are the 
observed profiles. The May, July, and August profiles are slightly stratified as 
are the observed profiles. 
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Figure 105. Lake Oahe 1978 computed versus observed temperatures 
at station near Pollack 

Release Temperatures. Computed versus observed release temperatures are 
shown in Figure 106. Computed temperatures are in general agreement with 
observed. Unlike Fort Peck Lake and, to a lesser extent Lake Sakakawea, the 
computed time at which release temperatures begin to decline is in close agree- 
ment with the observed time. A much greater variability in computed release 
temperatures occurs in Lake Oahe compared to Fort Peck Lake and Lake Sa- 
kakawea most likely due to the greater variability in releases. 

Dissolved Oxygen 

Table 8.    Lake Oahe calibrated sediment and water 
column oxygen demand 

Values for 
sediment and 
water column 
oxygen dem- 
and were 
adjusted until 
a reasonable 
fit with ob- 
served data was obtained that best represented the average oxygen demand 
during summer stratification.  Table 8 shows the values used for sediment and 

Segment Sediment, g m'2 day -1 Water Column, g m"3 day"1 

1-13 0.2 0.05 

14-22 0.19-0.11 0.04-0.02 

23-43 0.1 0.02 
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Figure 106. Lake Oahe 1978 computed versus observed release tem- 
peratures 

water oxygen demand for both years of calibration. 

Station Near Dam. Computed versus observed DO concentrations are shown 
in Figure 107. Observed DO in March and April under ice cover are super- 
saturated from algal production of DO. The May profile shows close agree- 
ment between computed and observed DO just after spring overturn. The July 
and August computed profiles during summer stratification are typical clino- 
grade DO profiles and are also in close agreement with observed DO. The 
October profile does not capture the supersaturated conditions at the dam. The 
supersaturation is likely due to an algal bloom that the present formulation for 
DO cannot reproduce. 

Station Near Pollack. Computed versus observed DO concentrations are 
shown in Figure 108. With the exception of the August profile, computed DO 
is in agreement with observed DO. The increase in DO from top to bottom in 
the computed August profile must be due to an underflow bringing oxygenated 
waters to the hypolimnion since the reservoir is stratified at this station on this 
date. 
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Figure 107. Lake Oahe 1978 computed versus observed DO at station 
near dam 
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Figure 108. Lake Oahe 1978 computed versus observed DO at station 
near Pollack 

Release DO.  Computed release DO is shown in Figure 109. 
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Figure 109.  Lake Oahe 1978 release DO 

Lake Oahe 1980 Simulation 

Water Surface Elevations 

Computed versus observed water surface elevations are shown in Figure 110. 
The net decrease in storage was 11.8ft with elevations ranging from 1,596.4ft 
to 1,608.2ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 110. Lake Oahe 1980 computed versus observed water surface 
elevations 

Chapter 3 - Calibration 75 



Ice Cover 

Computed ice cover is shown in Figure 111. Ice-out was predicted on April 19 
and reported ice-out occurred on April 8. Reported ice-in occurred on January 
3, 1981. No ice-in date was available from the 1980 simulation since the run 
did not continue into 1981. 
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Figure 111.  Lake Oahe 1980 computed ice cover 

Temperature 

Station Near Dam. Computed versus observed temperatures are shown in 
Figure 112 and Figure 113. The April and May computed profiles are in close 
agreement with observed data. The observed hypolimnetic temperature in June 
is > 5°F warmer than in July possibly due to seiching. Computed tempera- 
tures are lower than observed in June, but the July and August profiles are in 
close agreement. At the start of overturn in September, the computed depth of 
the thermocline is below the observed depth. Six days later, the observed depth 
of the thermocline is deeper than the computed depth. This is an excellent 
demonstration of the variability of temperature profiles during fall overturn. 
Computed temperatures may have been in much closer agreement either one 
day earlier or later. By October 22, the model predicted complete overturn. 
Observed data showed the reservoir was slightly stratified. 
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Figure 112. Lake Oahe 1980 computed versus observed temperatures 
at station near Dam, April 22 - September 13 
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Figure 113. Lake Oahe 1980 computed versus observed temperatures 
at station near Dam, September 19 - October 22 

Station Near Pollock. Computed versus observed temperatures are shown in 
Figure 114 and Figure 115. Computed temperatures are in close agreement 
with observed throughout the year. The model correctly predicts stratified 
conditions in April and May with virtually no stratification throughout the 
summer. 
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Figure 114. Lake Oahe 1980 computed versus observed temperatures 
at station near Pollack, April 29 - August 20 
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Figure 115. Lake Oahe 1980 computed versus observed temperatures 
at station near Pollack, September 10 - October 7 

Release Temperature. Computed versus observed release temperatures are 
shown in Figure 116. Computed temperatures are in general agreement with 
observed throughout the year. Computed release temperatures showed a much 
greater variability than any of the other reservoirs which is some evidence that 
the model may be capturing some of the internal seiching suspected to occur. 

Dissolved Oxygen 

Station near Dam. Computed versus observed DO concentrations are shown 
in Figure 117. Again, the model did not reproduce the supersaturated con- 
ditions in spring that were most likely due to an algal bloom. The remainder of 
the computed profiles were in general agreement with observed data.   The 
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Figure 116.  Lake Oahe 1980 computed versus observed release tem- 
peratures 

computed profiles did not capture all of the hypolimnetic DO depletion in 
September and October. 
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Figure 117. Lake Oahe 1980 computed versus observed DO at station 
near dam 

Station Near Pollack. Computed versus observed DO concentrations are 
shown in Figure 118 and Figure 119. For reasons mentioned previously, the 
model does not capture the supersaturated conditions in April and May.   The 
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remainder of the computed profiles are in general agreement with observed 
data. 
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Figure 118. Lake Oahe 1980 computed versus observed DO at station 
near Pollack, April 29 - September 10 
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Figure 119. Lake Oahe 1980 computed versus observed DO at station 
near Pollack, October 7 
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Release DO.  Computed release DO concentrations are shown in Figure 120. 

Lake Oahe 
1980 Computed Release DO Concentrations 

15.0 ■ 

r       12.6 : -^______>^ 
1-4 ~~\     _                                                                                         **- 
bo 

|*    10.0 

i V^/ 
B1 ™ 
i 6.0 
0 
8 
a     a.6 

Jan   Fsb   Mar Apr  May  Jim   Jul   Aug  Sep   Oct   Nov  Dec 

Figure 120.  Lake Oahe 1980 computed release DO 

Lake Francis Case 1978 Simulation 

Water Surface Elevations 

Computed versus observed water surface elevations are shown in Figure 121. 
The net decrease in storage was 3ft with elevations ranging from 1337.8ft to 
1362.6ft. Differences in computed and observed stages were less than 0.5ft 
throughout the year. 
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Figure 121.  Lake Francis Case 1978 computed versus observed stag- 
es at dam 
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Ice Cover 

Computed ice cover is shown in Figure 122. Reported ice-out was on April 3 
and computed ice-out was on April 7. Reported ice-in was on December 24, 
1978 and computed ice-in was on December 17. This is the only year out of 
1978 and 1980 for all four reservoirs that reported ice-in and ice-out occurred 
during the same year. This is also the only year for all four reservoirs in which 
computed ice-in and ice-out occurred during the same year. 
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Figure 122.  Lake Francis Case 1978 computed ice cover 

Temperature 

Unlike the upper three reservoirs, inflows to Lake Francis Case play a more 
dominant role in the heat budget. Residence time in 1978 for Lake Francis 
Case was « 2 months compared to « 2 years for Fort Peck Lake, «1 year for 
Lake Sakakawea, and «1 year for Lake Oahe. As a result, Lake Francis Case 
undergoes intermittent stratification during the summer. Table 9 gives the 
values of all coefficients affecting temperature and ice computations. As in the 
other three reservoirs, all values except for the minimum eddy diffusivity were 
reset to default values for the final calibration runs. 

Station Near Dam. As mentioned previously, Lake Francis Case stratifies 
only briefly during the summer with much warmer hypolimnetic temperatures 
than the three upper reservoirs. The July 7 and 21 profiles are the only ob- 
served profiles that are stratified. These are the only times that computed 
profiles are stratified to any degree. The remainder of the observed profiles are 
essentially isothermal. Computed temperatures are in general agreement with 
observed for these dates (Figure 123 and Figure 124). 

82 Chapter 3 - Calibration 



Table 9.  Final values for coefficients adjusted during Lake 
Francis Case temperature calibration 

Coefficient Value 

Horizontal eddy viscosity 1.0 m2 s"' 

Minimum vertical eddy viscosity 1.4 x 10"7 m2 s"1 

Horizontal eddy diffusivity 1.0 m2 s-' 

Minimum vertical eddy diffusivity 1.4 x 10-6m2s-1 

Bottom frictional resistance 70.0 m* s1 

Fraction of solar radiation absorbed at the water surface 0.45 

Light extinction - water 0.4 m"1 

Fraction of solar radiation absorbed in the ice surface 0.60 

Light extinction - ice 0.07 m"1 

Wind sheltering coefficient 1.0 

Ice albedo 0.25 

Water-to-ice heat exchange 10.0 W m2 0C"1 
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Figure 123.  Lake Francis Case 1978 computed versus observed tem- 
peratures at station near dam, February 24 - August 18 
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Figure 124.   Lake Francis Case 1978 computed versus observed tem- 
peratures at station near dam, September 15 - October 11 

Station near Elm Creek. Computed versus observed temperatures are shown 
in Figure 125. With the exception of May 19, computed temperatures are in 
fairly close agreement with observed. This station shows no stratification 
during summer. 
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Figure 125.  Lake Francis Case 1978 computed versus observed tem- 
peratures at station near Elm Creek 
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Release Temperatures. Computed versus observed release temperatures are 
shown in Figure 126. Computed release temperatures are in close agreement 
until August when computed temperatures are «5°F colder than observed. 
During this time, observed in-pool temperatures at the dam are 74°F at the 
surface to 7 °F at the bottom, computed in-pool temperatures are 72.4°F from 
top to bottom, and observed release temperatures are 75°F. Since observed 
release temperatures are greater than observed in-pool temperatures, there is 
obviously some error associated with either the observed release temperatures 
or observed in-pool temperatures. In any case, the maximum difference bet- 
ween computed and observed release temperatures is 3°F. As in Fort Peck 
Lake and Lake Sakakawea, computed release temperatures begin to decrease 
earlier in the fall than observed. 
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Figure 126.   Lake Francis Case 1978 computed versus observed re- 
lease temperatures 

Dissolved Oxygen 

Table 10.  Lake Francis Case calibrated sediment and 
water column oxygen demand 

Segment Sediment, g m"3 day'1 Water Column, g m"2 day "' 

1-40 0.5 0.08 

Values for 
sediment and 
water column 
oxygen de- 
mand were 
adjusted  until 
a reasonable fit with observed data was obtained that best represented the aver- 
age oxygen demand during summer stratification. Table 10 gives the values for 
sediment and water column oxygen demand used in the 1978 and 1980 calibra- 
tions. Because of the short residence time, oxygen demand did not vary longi- 
tudinally as in the upstream reservoirs. 

Station Near Dam. Computed versus observed DO concentrations are shown in 
Figure 127 and Figure 128. Except for April 22 and October 11 when the 
observed DO was supersaturated, computed and observed DO profiles are in 
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general agreement.   During July when Lake Francis Case was stratified, com- 
puted hypolimnetic DO is in close agreement with observed. 
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Figure 127. Lake Francis Case 1978 computed versus observed DO at 
station near dam, February 24 - August 18 
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Figure 128. Lake Francis Case 1978 computed versus observed DO at 
station near dam, October 11 

Station Near Elm Creek. Computed versus observed DO concentrations are 
shown in Figure 129. Since this station does not stratify, computed DO is 
saturated throughout the year. Deviations from observed data are due to DO 
uptake under ice-cover and algal produced supersaturation. 
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Figure 129. Lake Francis Case 1978 computed versus observed DO at 
station near Elm Creek 

Release DO. Computed release DO concentrations are shown in Figure 130. 
Release DO concentration approaches 5 mg!"1 in August which is the lowest of 
the modeled reservoirs. 
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Figure 130.  Lake Francis Case 1978 release DO 
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Lake Francis Case 1980 Simulation 

Water Surface Elevations 

Computed versus observed water surface elevations are shown in Figure 131. 
Water surface level decreased by 0.4ft during 1980. Elevations ranged from 
1,338.1 ft to 1,358.7 ft. Differences in computed and observed stages were 
less than 1 ft throughout the year. 
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Figure 131. Lake Francis Case 1980 computed versus observed stag- 
es at dam 

Ice Cover 

Computed ice cover is shown in Figure 132. Reported ice-out was on April 3 
and computed ice-out was on April 19. Reported ice-in was on January 8, 
1981. No ice-in date was available from the 1980 simulation since it did not 
continue into 1981. 
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Figure 132.  Lake Francis Case 1980 computed ice cover 

Temperature 

Station Near Dam. Computed versus observed temperatures are shown in 
Figure 133 and Figure 134. Computed temperatures are consistently lower than 
observed temperatures throughout the simulation by « 3-4°F with the exception 
of the profile in June. There are two possible sources of error for the under- 
prediction. Meteorologie data used in the heat exchange computations were 
obtained from Pierre, SD which is located upstream of Lake Sharpe approxim- 
ately 120 miles northwest of the dam. Another possible source of error is the 
inflow temperatures obtained from Lake Sharpe releases since the residence 
time is so short in Lake Francis Case. The problem in determining the source 
of error is that the 1978 temperature predictions are in much closer agreement 
with observed data than the 1980 simulations. In any event, the model did 
show that the reservoir was slightly stratified from March to June which is in 
agreement with observed data. By August, both computed and observed pro- 
files showed that the reservoir was very nearly isothermal. 
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Figure 133.  Lake Francis Case 1980 computed versus observed tem- 
peratures at station near dam, April 24 - August 14 
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Figure 134.  Lake Francis Case 1980 computed versus observed tem- 
peratures at station near dam, September 6 - October 9 

Station Near Elm Creek. Computed versus observed temperatures are shown 
in Figure 135. Again, the model consistently underpredicts observed tempera- 
tures. The discrepancy is even greater at this station suggesting that the most 
likely source of error in temperature predictions is the inflow temperatures. 
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Figure 135. Lake Francis Case 1980 computed versus observed tem- 
peratures at station near Elm Creek 

Release Temperature. Computed versus observed release temperatures are 
shown in Figure 136. As in 1978, computed release temperatures are consis- 
tently less than observed release temperatures starting in late July and con- 
tinuing until late December. One source of error is the previously mentioned 
underprediction of temperatures at the dam. However, there is a discrepancy in 
the observed data in that the release temperatures in August are « 2°F greater 
than the observed temperatures at the dam. For example, on August 11 the 
maximum in-pool temperature at the dam was 75 CF while the observed release 
temperature was 78.8°. 
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Figure 136. Lake Francis Case 1980 computed versus observed re- 
lease temperatures 

Dissolved Oxygen 

Station Near Dam. Computed versus observed DO concentrations are shown 
in Figure 137. With the exception of April and May when the water column 
was supersaturated, computed and observed DO profiles are in close agreement. 
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Figure 137. Lake Francis Case 1980 computed versus observed DO at 
station near dam. 
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Station Near Elm Creek. Computed versus observed DO concentrations are 
shown in Figure 138. Observed DO profiles in April and May were super- 
saturated. An oxygen deficit existed in September and October which the 
model did not capture. Computed temperatures in July and August are in 
general agreement with observed. 
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Figure 138. Lake Francis Case 1980 computed versus observed DO at 
station near Elm Creek 

Release DO.  Computed release DO concentrations are shown in Figure 139. 
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Figure 139.  Lake Francis Case 1980 computed release DO 
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4  Operational Scenarios 

As stated in the introduction, nine operational scenarios were conducted that 
encompassed a 30 year period from 1960-1990. The first 11 years consisted of 
surrogate years that were intended to represent the drought of the 1930's while 
the remainder used actual data from 1972-1990. Table 11 summarizes the nine 
operational scenarios. 

Table 11. Summary of scenarios 

Scenario Study ID Minimum Pool 
(acre-ft x 10') 

Non-Navigation Releases (cfs x 103) 

Winter                    Summer 

1 AFWQ1209 18.3 12 9 

2 AIWQ1225 18.3 12 25 

3 CFWQ1209 31.0 12 9 

4 CHWQ1218 31.0 12 18 

5 EFWQ1209 44.0 12 9 

6 EHWQ1218 44.0 12 18 

7 PFWQ1209 power series 12 9 

8 PIWQ1225 power series 12 25 

9 EVQ1 

Input Data 

Inflows 

Inflows for the surrogate years were obtained by combining the inflow and 
evaporation data with the actual depletion data for 1930-1941. The remaining 
years consisted of the actual inflow, evaporation, and depletion data. 

Fort Peck Lake. Inflows for each scenario are given in Figure 140- 
Figure 148. Although differences in inflows existed for all nine scenarios, the 
differences were not as pronounced when compared to the other three reser- 
voirs. 
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Figure 140.  Fort Peck Lake scenario 1 inflows 
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Figure 141.  Fort Peck Lake scenario 2 inflows 
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Fort Pec k Lake Inflows 
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Figure 142.  Fort Peck Lake scenario 3 inflows 
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Figure 143.  Fort Peck Lake scenario 4 inflows 
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Fort Pec k Lake Inflows 
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Figure 144.  Fort Peck Lake scenario 5 inflows 
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Figure 145.  Fort Peck Lake scenario 6 inflows 
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Fort Pec k Lake Inflows 
Scenario 7 
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Figure 146.  Fort Peck Lake scenario 7 inflows 
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Figure 147.  Fort Peck Lake scenario 8 inflows 
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Fort Peck Lake Inflows 
Scenario 9 
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Figure 148.  Fort Peck Lake scenario 9 inflows 

Lake Sakakawea. Inflows for the nine scenarios are given in Figure 149- 
Figure 157. Differences between scenarios are most obvious when comparing 
maximum and minimum flows for a given year. For example, the minimum 
inflows for years 5, 6, and 10 are much less for scenario two than for scenario 
one. 
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Figure 149.  Lake Sakakawea scenario 1 inflows 
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Lake Sakakawea Inflows 
Scenario 2 

Year 

Figure 150.  Lake Sakakawea scenario 2 inflows 
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Figure 151.  Lake Sakakawea scenario 3 inflows 
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Lake Sakakawea Inflows 
Scenario 4 
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Figure 152.  Lake Sakakawea scenario 4 inflows 
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Figure 153.  Lake Sakakawea scenario 5 inflows 
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Lake Sakakawea Inflows 
Scenario 6 

Figure 154.  Lake Sakakawea scenario 6 inflows 
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Figure 155.  Lake Sakakawea scenario 7 inflows 
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Lake Sakakawea Inflows 
Scenario 8 

Year 

Figure 156.   Lake Sakakawea scenario 8 inflows 
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Figure 157.  Lake Sakakawea scenario 9 inflows 
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Lake  Oahe. 
Figure 166. 

Inflows  for the nine scenarios  are  given in Figure   158- 

Lake Oahe Inflows 
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Figure 158.  Lake Oahe scenario 1 inflows 
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Year 

Figure 159.  Lake Oahe scenario 2 inflows 
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Lake Oahe Inflows 
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Figure 160.  Lake Oahe scenario 3 inflows 
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Figure 161.  Lake Oahe scenario 4 inflows 
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Lake Oahe Inflows 
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Figure 162.   Lake Oahe scenario 5 inflows 
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Figure 163.  Lake Oahe scenario 6 inflows 
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Lake Oahe Inflows 
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Figure 164.  Lake Oahe scenario 7 inflows 
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Figure 165.  Lake Oahe scenario 8 inflows 
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Figure 166.  Lake Oahe scenario 9 inflows 

Lake Francis Case.   Inflows for the nine scenarios are given in Figure 167- 
Figure 175. 
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Figure 167.  Lake Francis Case scenario 1 inflows 
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Lake Francis Case Inflows 
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Figure 168.  Lake Francis Case scenario 2 inflows 
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Figure 169.  Lake Francis Case scenario 3 inflows 
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Figure 170.  Lake Francis Case scenario 4 inflows 
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Figure 171.  Lake Francis Case scenario 5 inflows 
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Lake Francis Case Inflows 
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Figure 172.  Lake Francis Case scenario 6 inflows 
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Figure 173.  Lake Francis Case scenario 7 inflows 
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Lake Francis Case Inflows 
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Figure 174.   Lake Francis Case scenario 8 inflows 
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Figure 175.  Lake Francis Case scenario 9 inflows 
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Releases 

Fort Peck Lake.   Releases for the nine scenarios are given in Figure 176- 
Figure 184. 
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Figure 176.  Fort Peck Lake scenario 1 outflows 
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Figure 177.  Fort Peck Lake scenario 2 outflows 
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Fort Peck Lake Outflows 
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Figure 178.  Fort Peck Lake scenario 3 outflows 
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Figure 179.  Fort Peck Lake scenario 4 outflows 
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Fort Peck Lake Outflows 
Scenario 5 
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Figure 180.   Fort Peck Lake scenario 5 outflows 
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Figure 181.  Fort Peck Lake scenario 6 outflows 
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Fort Peck Lake Outflows 
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Figure 182.  Fort Peck Lake scenario 7 outflows 
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Figure 183.  Fort Peck Lake scenario 8 outflows 
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Fort Peck Lake Outflows 
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Figure 184.  Fort Peck Lake scenario 9 outflows 

Lake Sakakawea.   Releases for the nine scenarios are given in Figure 185- 
Figure 193. 
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Figure 185.  Lake Sakakawea scenario 1 outflows 
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Lake Sakakawea Outflows 
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Figure 186.   Lake Sakakawea scenario 2 outflows 
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Figure 187.  Lake Sakakawea scenario 3 outflows 
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Figure 188.  Lake Sakakawea scenario 4 outflows 

Lake Sakakawea Outflows 
Scenario 5 

in 
u 

3 
O 

Year 

Figure 189.  Lake Sakakawea scenario 5 outflows 
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Lake Sakakawea Outflows 
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Figure 190.  Lake Sakakawea scenario 6 outflows 
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Figure 191.  Lake Sakakawea scenario 7 outflows 
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Lake Sakakawea Outflows 
Scenario 8 
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Figure 192.   Lake Sakakawea scenario 8 outflows 

Lake Sakakawea Outflows 
Scenario 9 

3 o 

Figure 193.   Lake Sakakawea scenario 9 outflows 
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Lake Oahe.    Releases for the nine scenarios are given in Figure 194- 
Figure 202. 
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Figure 194.   Lake Oahe scenario 1 outflows 
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Figure 195.  Lake Oahe scenario 2 outflows 
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Figure 196.  Lake Oahe scenario 3 outflows 
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Figure 197.  Lake Oahe scenario 4 outflows 
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Figure 198.  Lake Oahe scenario 5 outflows 
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Figure 199.  Lake Oahe scenario 6 outflows 
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Figure 200.   Lake Oahe scenario 7 outflows 
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Figure 201.  Lake Oahe scenario 8 outflows 
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Lake Oahe Outflows 
Scenario 9 
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Figure 202.  Lake Oahe scenario 9 outflows 

Lake  Francis  Case.     Releases  for the nine  scenarios are given in 
Figure 203-Figure 211. 
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Figure 203.  Lake Francis Case scenario 1 outflows 
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Lake Francis Case Outflows 
Scenario 2 
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Figure 204.  Lake Francis Case scenario 2 outflows 

Lake Francis Case Outflows 
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Figure 205.  Lake Francis Case scenario 3 outflows 
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Lake Francis Case Outflows 
Scenario 4 
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Figure 206.  Lake Francis Case scenario 4 outflows 

Lake Francis Case Outflows 
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Figure 207.  Lake Francis Case scenario 5 outflows 
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Lake Francis Case Outflows 
Scenario 6 
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Figure 208.  Lake Francis Case scenario 6 outflows 
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Figure 209.  Lake Francis Case scenario 7 outflows 
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Lake Francis Case Outflows 
Scenario 8 
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Figure 210.  Lake Francis Case scenario 8 outflows 
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Figure 211.  Lake Francis Case scenario 9 outflows 
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Inflow Temperatures 

Fort Peck Lake.   Inflow temperatures for the nine scenarios are the same and 
are given in Figure 212. 

Fort Peck Lake Inflow Temperatures 
Scenario 1 

Year 

Figure 212.  Fort Peck Lake scenario 1 inflow temperatures 

Lake Sakakawea.    Inflow temperatures for the nine scenarios are given in 
Figure 213-Figure 221. 
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Lake Sakakawea Inflow Temperatures 
Scenario 1 
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Figure 213.  Lake Sakakawea scenario 1 inflow temperatures 

Lake Sakakawea Inflow Temperatures 
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Figure 214.  Lake Sakakawea scenario 2 inflow temperatures 
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Lake Sakakawea Inflow Temperatures 
Scenario 3 
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Figure 215.  Lake Sakakawea scenario 3 inflow temperatures 
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Figure 216.  Lake Sakakawea scenario 4 inflow temperatures 
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Lake Sakakawea Inflow Temperatures 
Scenario 5 

Figure 217.  Lake Sakakawea scenario 5 inflow temperatures 
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Figure 218.  Lake Sakakawea scenario 6 inflow temperatures 
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Lake Sakakawea Inflow Temperatures 
Scenario 7 
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Figure 219.  Lake Sakakawea scenario 7 inflow temperatures 

Lake Sakakawea Inflow Temperatures 
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Figure 220.  Lake Sakakawea scenario 8 inflow temperatures 
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Lake Sakakawea Inflow Temperatures 
Scenario 9 
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Figure 221.  Lake Sakakawea scenario 9 inflow temperatures 

Lake  Oahe.     Inflow temperatures for the nine scenarios are given in 
Figure 222-Figure 230. 
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Figure 222.  Lake Oahe scenario 1 inflow temperatures 
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Lake Oahe Inflow Temperatures 
Scenario 2 
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Figure 223.  Lake Oahe scenario 2 inflow temperatures 

Lake Oahe Inflow Temperatures 
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Figure 224.  Lake Oahe scenario 3 inflow temperatures 
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Lake Oahe Inflow Temperatures 
Scenario 4 
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Figure 225.  Lake Oahe scenario 4 inflow temperatures 

Lake Oahe Inflow Temperatures 
Scenario 5 

v a. 

20 •••'••• 1 ' ' * 
10 20 

Year 
30 

Figure 226.  Lake Oahe scenario 5 inflow temperatures 
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Lake Oahe Inflow Temperatures 
Scenario 6 
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Figure 227.  Lake Oahe scenario 6 inflow temperatures 
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Figure 228.  Lake Oahe scenario 7 inflow temperatures 
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Lake Oahe Inflow Temperatures 
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Figure 229.  Lake Oahe scenario 8 inflow temperatures 
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Figure 230.  Lake Oahe scenario 9 inflow temperatures 
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Lake Francis Case.   Inflow temperatures for the nine scenarios are given in 
Figure 231-Figure 239. 
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Figure 231.  Lake Francis Case scenario 1 inflow temperatures 
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Figure 232.  Lake Francis Case scenario 2 inflow temperatures 
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Lake Francis Case Inflow Temperatures 
Scenario 3 
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Figure 233.  Lake Francis Case scenario 3 inflow temperatures 
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Figure 234.  Lake Francis Case scenario 4 inflow temperatures 
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Lake Francis Case Inflow Temperatures 
Scenario 5 
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Figure 235.  Lake Francis Case scenario 5 inflow temperatures 

Lake Francis Case Inflow Temperatures 
Scenario 6 
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Figure 236.  Lake Francis Case scenario 6 inflow temperatures 
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Lake Francis Case Inflow Temperatures 
Scenario 7 
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Figure 237.  Lake Francis Case scenario 7 inflow temperatures 

Lake Francis Case Inflow Temperatures 
Scenario 8 

Figure 238.  Lake Francis Case scenario 8 inflow temperatures 
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Lake Francis Case Inflow Temperatures 
Scenario 9 
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Figure 239.  Lake Francis Case scenario 9 inflow temperatures 

Inflow DO 

Fort Peck Lake.  Inflow DO for the nine scenarios are the same and are given 
in Figure 240. 

Fort Peck Lake Inflow DO 
Scenario 1 

10 20 30 

Year 

Figure 240.  Fort Peck Lake scenario 1 inflow DO 
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Lake Sakakawea.   Inflow DO for the nine scenarios are given in Figure 241- 
Figure 249. 
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Figure 241.  Lake Sakakawea scenario 1 inflow DO 

Lake Sakakawea Inflow DO 
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Figure 242.  Lake Sakakawea scenario 2 inflow DO 
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Lake Sakakawea Inflow DO 
Scenario 3 
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Figure 243.   Lake Sakakawea scenario 3 inflow DO 
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Figure 244.  Lake Sakakawea scenario 4 inflow DO 
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Lake Sakakawea Inflow DO 
Scenario 5 
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Figure 245.  Lake Sakakawea scenario 5 inflow DO 
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Figure 246.   Lake Sakakawea scenario 6 inflow DO 
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Lake Sakakawea Inflow DO 
Scenario 7 
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Figure 247.  Lake Sakakawea scenario 7 inflow DO 
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Figure 248.  Lake Sakakawea scenario 8 inflow DO 
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Lake Sakakawea Inflow DO 
Scenario 9 
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Figure 249.  Lake Sakakawea scenario 9 inflow DO 

Lake Oahe.    Inflow DO for the nine scenarios are given in Figure 250- 
Figure 258 
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Figure 250.  Lake Oahe scenario 1 inflow DO 
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Lake Oahe Inflow DO 
Scenario 2 
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Figure 251.   Lake Oahe scenario 2 inflow DO 
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Figure 252.  Lake Oahe scenario 3 inflow DO 
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Lake Oahe Inflow DO 
Scenario 4 

Year 

30 

Figure 253.  Lake Oahe scenario 4 inflow DO 
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Figure 254.  Lake Oahe scenario 5 inflow DO 
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Lake Oahe Inflow DO 
Scenario 6 
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Figure 255.   Lake Oahe scenario 6 inflow DO 

Lake Oahe Inflow DO 
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Figure 256.   Lake Oahe scenario 7 inflow DO 
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Lake Oahe Inflow DO 
Scenario 8 
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Figure 257.  Lake Oahe scenario 8 inflow DO 
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Figure 258.  Lake Oahe scenario 9 inflow DO 
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Lake Francis Case. Inflow DO for the nine scenarios are given in Figure 259- 
Figure 267. 
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Figure 259.  Lake Francis Case scenario 1 inflow DO 
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Figure 260.  Lake Francis Case scenario 2 inflow DO 
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Lake Francis Case Inflow DO 
Scenario 3 
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Figure 261.  Lake Francis Case scenario 3 inflow DO 

Lake Francis Case Inflow DO 
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Figure 262.  Lake Francis Case scenario 4 inflow DO 
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Lake Francis Case Inflow DO 
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Figure 263.  Lake Francis Case scenario 5 inflow DO 

Lake Francis Case Inflow DO 
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Figure 264.  Lake Francis Case scenario 6 inflow DO 
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Lake Francis Case Inflow DO 
Scenario 7 
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Figure 265.  Lake Francis Case scenario 7 inflow DO 
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Figure 266.  Lake Francis Case scenario 8 inflow DO 
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Lake Francis Case Inflow DO 
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Figure 267.  Lake Francis Case scenario 9 inflow DO 
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Scenarios 

Fort Peck Lake 

Water Surface Elevations. Water surface elevations for the nine scenarios are 
given in Figure 268-Figure 276. CE-QUAL-W2 predictions are in close agree- 
ment with LRS results. 

Fort Peck Lake Scenario 1 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 268.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 1 
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Fort Peck Lake Scenario 2 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 269.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 2 

Fort Peck Lake Scenario 3 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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:igure 270.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
jlevations for scenario 3 
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Fort Peck Lake Scenario 4 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 271.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 4 

Fort Peck Lake Scenario 5 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 272.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 5 
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Fbrt Peck Lake Scenario 6 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 273.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 6 

Fbrt Peck Lake Scenario 7 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 274.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 7 
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Fort Peck Lake Scenario 8 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 275.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 8 

Fort Peck Lake Scenario 9 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 276.   Fort Peck Lake LRS versus CE-QUAL-W2 water surface 
elevations for scenario 9 
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Release Temperatures. Release temperatures for the nine scenarios are given 
in Figure 277-Figure 285. Release temperatures are indicative of the tempera- 
ture regime in the reservoir and can be used to identify which scenarios provide 
the most coldwater habitat. Scenarios one and two result in the highest release 
temperatures which is consistent with the water surface elevations that are the 
lowest of the nine scenarios. 

Fbrt Peck Lake Scenario 1 
Release Temperatures 
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Figure 277.   Fort Peck Lake computed release temperatures for scen- 
ario 1 
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R>rt Peck Lake Scenario 2 
Release Temperatures 
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Figure 278.   Fort Peck Lake computed release temperatures for scen- 
ario 2 

Fort Peck Lake Scenario 3 
Release Temperatures 
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Figure 279.   Fort Peck Lake computed release temperatures for scen- 
ario 3 
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Port Peck Lake Scenario 4 
Release Temperatures 
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Figure 280.   Fort Peck Lake computed release temperatures for scen- 
ario 4 

R>rt Peck Lake Scenario 5 
Release Temperatures 
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Figure 281.   Fort Peck Lake computed release temperatures for scen- 
ario 5 
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Fbrt Peck Lake Scenario 6 
Release Temperatures 

BO r 

70   - 
fa 

30 
10 15 30 

Scenario Year 
25 30 

Figure 282.   Fort Peck Lake computed release temperatures for scen- 
ario 6 

Fbrt Peck Lake Scenario 7 
Release Temperatures 
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Figure 283.   Fort Peck Lake computed release temperatures for scen- 
ario 7 
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Fbrt Peck Lake Scenario 8 
Release Temperatures 
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Figure 284.   Fort Peck Lake computed release temperatures for scen- 
ario 8 

Fbrt Peck Lake Scenario 9 
Release Temperatures 
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Figure 285.   Fort Peck Lake computed release temperatures for scen- 
ario 9 
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Release DO.   Release DO concentrations for the nine scenarios are given in 
Figure 286-Figure 294. 

Fort Peck Lake Scenario 1 
Release DO 
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Figure 286.  Fort Peck Lake release DO concentrations for scenario 1 

Fbrt Peck Lake Scenario 2 
Release DO 
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Figure 287.  Fort Peck Lake release DO concentrations for scenario 2 
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Fort Peck Lake Scenario 3 
Release DO 
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Figure 288.  Fort Peck Lake release DO concentrations for scenario 3 

Fort Peck Lake Scenario 4 
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Figure 289.  Fort Peck Lake release DO concentrations for scenario 4 
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Fort Peck Lake Scenario 5 
Release DO 
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Figure 290.  Fort Peck Lake release DO concentrations for scenario 5 

Fort Peck Lake Scenario 6 
Release DO 
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Figure 291.  Fort Peck Lake release DO concentrations for scenario 6 
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Fbrt Peck Lake Scenario 7 
Release DO 

SO r- 

C3 
* 

»5    15 - 

E 
f   10 Iflflffl^^ 

D
is

so
lv

ed
 ;l ' I > ' 1 1 | |  ' ' | 1 1 ' 1 1 1 '  1 11 1  ' ' '  ' | 1  1 

i                i                i                i                i                i 

0                   5                  10                 15                 20                 25                 30 

Scenario Year 

Figure 292.  Fort Peck Lake release DO concentrations for scenario 7 

Jbrt Peck Lake Scenario 8 
Release DO 
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Figure 293.   Fort Peck Lake release DO concentrations for scenario 8 
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Fort Peck Lake Scenario 9 
Release DO 

20 

•^   15 

SO ttflWfM Wl 
D

is
so

lv
ed

 

5 
   

   
   

   
   

   
   

W
 

■| i i ' ' 1 M i '    1 ' '    ' i '    ' i 1 1 ' M 

i           i           i           i           i 

1 ' • 

( )                   5                  10                 15                 20                 25 
Scenario Year 

30 

Figure 294.  Fort Peck Lake release DO concentrations for scenario 9 

Lake Sakakawea 

Water Surface Elevations. Water surface elevations for the nine scenarios are 
given in Figure 295-Figure 303. 
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Lake Sakakawea Scenario 1 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 295.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 1 

Lake Sakakawea Scenario 2 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 296.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 2 
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Lake Sakakawea Scenario 3 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 297.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 3 

Lake Sakakawea Scenario 4 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 298.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 4 
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Lake Sakakawea Scenario 5 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 299.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 5 

Lake Sakakawea Scenario 6 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 300.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 6 
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Lake Sakakawea Scenario 7 
LRS versus CE-QUAL-W2 Water Surface Elevations 

1860 

.x.         ¥.&&         & at               fc 4  *        ** «• 

1840 w\  J./'^NV^ 
£ 

:^ Hw?Sr        *   v           ** 
■ft   1820 
O 

1 £    1800 
i-H 

"« 

1780 

i        i       i       i       i        i 
iiou               - ■  

0                  5                 10                15                20               25               30 
Scenario Year 

Figure 301.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 7 

Lake Sakakawea Scenario 8 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 302.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 8 
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Lake Sakakawea Scenario 9 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 303.  Lake Sakakawea LRS versus CE-QUAL-W2 water surface 
elevations for scenario 9 

Release Temperature. Release temperatures for the nine scenarios are given in 
Figure 304-Figure 312. 

Lake Sakakawea Scenario 1 
Release Temperatures 
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Figure 304.  Lake Sakakawea release temperatures for scenario 1 
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Lake Sakakawea Scenario 2 
Release Temperatures 
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Figure 305.  Lake Sakakawea release temperatures for scenario 2 

Lake Sakakawea Scenario 3 
Release Temperatures 
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Figure 306.  Lake Sakakawea release temperatures for scenario 3 
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Lake Sakakawea Scenario 4 
Release Temperatures 
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Figure 307.  Lake Sakakawea release temperatures for scenario 4 

Lake Sakakawea Scenario 5 
Release Temperatures 

80 r 

70   - 
fc 

30 
10 IS 20 

Scenario Year 
25 so 

Figure 308.  Lake Sakakawea release temperatures for scenario 5 
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Lake Sakakawea Scenario 6 
Release Temperatures 
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Figure 309.  Lake Sakakawea release temperatures for scenario 6 

Lake Sakakawea Scenario 7 
Release Temperatures 
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Figure 310.  Lake Sakakawea release temperatures for scenario 7 
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Lake Sakakawea Scenario 8 
Release Temperatures 
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Figure 311.  Lake Sakakawea release temperatures for scenario 8 

Lake Sakakawea Scenario 9 
Release Temperatures 
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Figure 312.   Lake Sakakawea release temperatures for scenario 9 

Chapter 4 - Operational Scenarios 183 



Release DO.   Release DO concentrations for the nine scenarios are given in 
Figure 313-Figure 321. 
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Figure 313. Lake Sakakawea release DO concentrations for scenario 1 
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Lake Sakakawea Scenario 2 
Release DO 
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Figure 314. Lake Sakakawea release DO concentrations for scenario 2 

Lake Sakakawea Scenario 3 
Release DO 
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Figure 315. Lake Sakakawea release DO concentrations for scenario 3 

Chapter 4 - Operational Scenarios                                                                                            185 



Lake Sakakawea Scenario 4 
Release DO 
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Figure 316. Lake Sakakawea release DO concentrations for scenario 4 

Lake Sakakawea Scenario 5 
Release DO 
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Figure 317. Lake Sakakawea release DO concentrations for scenario 5 
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Lake Sakakawea Scenario 6 
Release DO 
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Figure 318. Lake Sakakawea release DO concentrations for scenario 6 

Lake Sakakawea Scenario 7 
Release DO 
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Figure 319. Lake Sakakawea release DO concentrations for scenario 7 
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Lake Sakakawea Scenario 8 
Release DO 
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Figure 320. Lake Sakakawea release DO concentrations for scenario 8 

Lake Sakakawea Scenario 9 
Release DO 
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Figure 321. Lake Sakakawea release DO concentrations for scenario 9 
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Lake Oahe 

Water Surface Elevations. Water surface elevations for the nine scenarios are 
given in Figure 322-Figure 330. 

Lake Oahe Scenario 1 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 322.  Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 1 
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Lake Oahe Scenario 2 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 323. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 2 

Lake Oahe Scenario 3 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 324.  Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 3 
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Lake Oahe Scenario 4 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 325. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 4 

Lake Oahe Scenario 5 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 326. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva 
tions for scenario 5 
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Lake Oahe Scenario 6 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 327. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 6 

Lake Oahe Scenario 7 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 328. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 7 
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Lake Oahe Scenario 8 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 329.  Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 8 

1650 

1625 

a leoo 
c 
o 
3    1575 

cd 
t> 

3    1550 

1525 

1500 

Lake Oahe Scenario 9 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 330. Lake Oahe LRS versus CE-QUAL-W2 water surface eleva- 
tions for scenario 9 

Release Temperature. Release temperatures for the nine scenarios are given in 
Figure 331-Figure 339. 
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Lake Oahe Scenario 1 
Release Temperatures 
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Figure 331.  Lake Oahe release temperatures for scenario 1 

Lake Oahe Scenario 2 
Release Temperatures 
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Figure 332.  Lake Oahe release temperatures for scenario 2 

194 Chapter 4 - Operational Scenarios 



Lake Oahe Scenario 3 
Release Temperatures 
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Figure 333. Lake Oahe release temperatures for scenario 3 

Lake Oahe Scenario 4 
Release Temperatures 
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Figure 334 Lake Oahe release temperatures for scenario 4 
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Lake Oahe Scenario 5 
Release Temperatures 

60  r- 

70   - 

¥         \        1    II     \\    1 r <D                         II                ' 
i ■ °: 
£      : 

• UvUyuuuuyuUui, 

iililiiiiii 
uvuuuuuuuuuuyuuu* 

JU                -  — ■  
0                   5                  10                 15                 20                 25                 30 

Scenario Year 

Figure 335.  Lake Oahe release temperatures for scenario 5 

Lake Oahe Scenario 6 
Release Temperatures 
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Figure 336.  Lake Oahe release temperatures for scenario 6 
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Lake Oahe Scenario 7 
Release Temperatures 
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Figure 337.  Lake Oahe release temperatures for scenario 7 

Lake Oahe Scenario 8 
Release Temperatures 
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Figure 338.  Lake Oahe release temperatures for scenario 8 
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Lake Oahe Scenario 9 
Release Temperatures 
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Figure 339.   Lake Oahe release temperatures for scenario 9 

Release DO.   Release DO concentrations for the nine scenarios are given in 
Figure 340-Figure 348. 

Lake Oahe Scenario 1 
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Figure 340. Lake Oahe release DO concentrations for scenario 1 
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Lake Oahe Scenario 2 
Release DO 
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Figure 341.  Lake Oahe release DO concentrations for scenario 2 

Lake Oahe Scenario 3 
Release DO 
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Figure 342.  Lake Oahe release DO concentrations for scenario 3 
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Lake Oahe Scenario 4 
Release DO 
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Figure 343.  Lake Oahe release DO concentrations for scenario 4 
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• ■ 

Release DO . 
20 

CO 
* 

•^   15 
00 

• 

S 
I10 WMM&m www Ail 

D
is

so
lv

ed
 

1                    1                    1                    1                    1 1 

( )                   5                  10                 15                 20                25 30 

Scenario Year 

Figure 344.  Lake Oahe release DO concentrations for scenario 5 
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Lake Oahe Scenario 6 
Release DO 
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Figure 345.  Lake Oahe release DO concentrations for scenario 6 

Lake Oahe Scenario 7 
Release DO 
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Figure 346.  Lake Oahe release DO concentrations for scenario 7 

Chapter 4 - Operational Scenarios 201 



Lake Oahe Scenario 8 
Release DO 
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Figure 347.  Lake Oahe release DO concentrations for scenario 8 

Lake Oahe Scenario 9 
Release DO 
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Figure 348.  Lake Oahe release DO concentrations for scenario 9 

Lake Francis Case 

Water Surface Elevations. Water surface elevations for the nine scenarios are 
given in Figure 349-Figure 357. 
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Lake Francis Case Scenario 1 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 349. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 1 

Lake Francis Case Scenario 2 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 350. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 2 
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Lake Francis Case Scenario 3 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 351. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 3 

Lake Francis Case Scenario 4 
LRS versus CE-QUAL-'W2 Water Surface Elevations 
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Figure 352. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 4 
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Lake Francis Case Scenario 5 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 353. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 5 

Lake Francis Case Scenario 6 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 354. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 6 
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Lake Francis Case Scenario 7 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 355. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 7 

Lake Francis Case Scenario 8 
LRS versus CE-QUAL-W2 Water Surface Elevations 
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Figure 356. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 8 
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Lake Francis Case Scenario 9 
LRS versus CE-QUAL-"W2 Water Surface Elevations 
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Figure 357. Lake Francis Case LRS versus CE-QUAL-W2 water surface 
elevations for scenario 9 

Release Temperature.  Release temperatures for the nine scenarios are given 
in Figure 358-Figure 366. 

Lake Irancis Case Scenario 1 
Release Temperatures 
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Figure 358.  Lake Francis Case release temperatures for scenario 1 
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Lake Francis Case Scenario 2 
Release Temperatures 
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Figure 359.  Lake Francis Case release temperatures for scenario 2 

Lake Francis Case Scenario 3 
Release Temperatures 
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Figure 360.  Lake Francis Case release temperatures for scenario 3 
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Lake Francis Case Scenario 4 
Release Temperatures 
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Figure 361.  Lake Francis Case release temperatures for scenario 4 

Lake Francis Case Scenario 5 
Release Temperatures 
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Figure 362.  Lake Francis Case release temperatures for scenario 5 
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Lake Brands Case Scenario 6 
Release Temperatures 
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Figure 363.  Lake Francis Case release temperatures for scenario 6 

Lake Francis Case Scenario 7 
Release Temperatures 
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Figure 364.  Lake Francis Case release temperatures for scenario 7 
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Lake Francis Case Scenario 8 
Release Temperatures 
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Figure 365.  Lake Francis Case release temperatures for scenario 8 

Lake Francis Case Scenario 9 
Release Temperatures 
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Figure 366.  Lake Francis Case release temperatures for scenario 9 

Release DO.  Release DO concentrations for the nine scenarios are given in 
Figure 367-Figure 375. 
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Lake Elands Case Scenario 1 
Release DO 
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Figure 367.  Lake Francis Case release DO for scenario 1 

Lake Francis Case Scenario 2 
Release DO 
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Figure 368.  Lake Francis Case release DO for scenario 2 
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Lake Francis Case Scenario 3 
Release DO 
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Figure 369.  Lake Francis Case release DO for scenario 3 

Lake Francis Case Scenario 4 
Release DO 
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Figure 370.  Lake Francis Case release DO for scenario 4 
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Lake Francis Case Scenario 5 
Release DO 
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Figure 371.  Lake Francis Case release DO for scenario 5 

Lake Francis Case Scenario 6 
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Figure 372.   Lake Francis Case release DO for scenario 6 

214 Chapter 4 - Operational Scenarios 



Lake Francis Case Scenario 7 
Release DO 
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Figure 373.   Lake Francis Case release DO for scenario 7 

Lake Francis Case Scenario 8 
Release DO 
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Figure 374.  Lake Francis Case release DO for scenario 8 
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Figure 375.   Lake Francis Case release DO for scenario 9 
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5 Suitable Habitat Regressions 

The volume of suitable cold water fish habitat in each reservoir was calculated 
from reservoir water temperature and dissolved oxygen concentrations genera- 
ted during the 30 year scenario model runs. Regression equations were then 
developed for each reservoir and month to correlate the suitable cold water fish 
habitat to reservoir stage and discharge. Using the SAS statistical analysis 
software, multiple linear regressions were conducted by month in which suitable 
habitat was the dependent variable and stage, stage squared, and discharge were 
the independent variables. Other independent variables were tried including 
stage cubed and discharge squared but they did not add significantly to the R2 

value. Results were best during the winter months and declined during summer 
as the water temperatures increased. The poorest correlations usually occurred 
in October during overturn. 

Fort Peck Lake 

Regression results are summarized in Table 12. Plots of stage and discharge 
versus suitable coldwater fish habitat are shown in Figure 376-Figure 387. 
These plots do not include the stage squared variable that was included in the 
regressions. However, they do give some insight into how well the regressions 
are predicting suitable fish habitat. In the figures, the gridded plane is the 
predicted regression plane and the points represent model predictions of suitable 
habitat. The vertical lines connected to the points are used to indicate the 
location above or below and the distance to the regression plane. 
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Table 12.    Fort Peck Lake suitable habitat regression coefficients 
and statistics 

Month Intercept Discharge Stage Stage2 R2 Pr > F 

January 1.33 x 1014 3.30 x 107 -4.15 x 10" 3.24 x 10s 0.998 0.0 

February 1.29 x 1014 4.17 x 107 -4.03 x 10" 3.15 x 108 0.997 0.0001 

March 1.48 x 1014 0.84 x 107 -4.60 x 10" 3.56 x 108 0.995 0.0001 

April 1.47 x 1014 -8.25 x 107 -4.56 x 10" 3.53 x 10s 0.716 0.0001 

May 1.16 x 1014 3.21 x 107 -3.64 x 10" 2.86 x 10" 0.992 0.0001 

June 1.43 x 10" -1.67 x 107 -4.45 x 10" 3.47 x 108 0.995 0.0001 

July 2.57 x 1014 4.33 x 107 -7.83 x 10" 5.96 x 10" 0.797 0.0001 

August 1.11 x 1014 -6.21 x 107 -3.40 x 10" 2.62 x 108 0.894 0.0001 

September 1.16x 10'4 -12.3 x 107 -3.54 x 10" 2.70 x 108 0.833 0.0001 

October -1.67x 1014 4.06 x 107 4.85 x 10" -3.52 x 108 0.260 0.0001 

November 0.91 x 1014 5.79 x 107 -2.91 x 10" 2.32 x 108 0.983 0.0001 

December 1.18x 1014 4.61 x 107 -3.71 x 10" 2.91 x 108 0.999 0.0 
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Figure 376.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for January 
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Fort Peck Lake 
February Suitable Habitat 
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Figure 377.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for February 

Fort Peck Lake 
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Figure 378.    Fort Peck Lake plot of stage-discharge versus suitable i 

habitat for March 
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Fort Peck Lake 
April Suitable Habitat 

Figure 379.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for April 

Fort Peck Lake 
May Suitable Habitat 

Figure 380.   Fort Peck Lake plot of stage-discharge versus suitable 
habitat for May 
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Fort Peck Lake 
June Suitable Habitat 

Figure 381.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for June 

Fort Peck Lake 
July Suitable Habitat 

Figure 382.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for July 
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Fort Peck Lake 
August Suitable Habitat 

Figure 383.   Fort Peck Lake plot of stage-discharge versus suitable 
habitat for August 

Fort Peck Lake 
September Suitable Habitat 
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Figure 384.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for September 
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Fort Peck Lake 
October Suitable Habitat 

Figure 385.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for October 

Fort Peck Lake 
November Suitable Habitat 

Figure 386.   Fort Peck Lake plot of stage-discharge versus suitable 
habitat for November 
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Figure 387.    Fort Peck Lake plot of stage-discharge versus suitable 
habitat for December 

Lake Sakakawea 

Regression results are summarized in Table 12.   Plots of stage and discharge 
are shown in Figure 388-Figure 399. 
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Table 13.   Lake Sakakawea suitable habitat regression coefficients 
and statistics 

Month Intercept Discharge Stage Stage2 R2 Pr > F 

January 1.91 x 10" 3.72 x 107 -7.21 x 10" 6.81 x 10" 0.999 0.0 

February 1.96 x 10" 3.50 x 107 -7.39 x 10" 6.97 x 10" 0.999 0.0 

March 2.03 x 10" 3.16 x 107 -7.61 x 10" 7.14 x 10s 0.994 0.0001 

April 2.18 x 10" -3.98 x 107 -8.14 x 10" 7.63 x 10" 0.667 0.0001 

May 1.73x10" 0.32 x 107 -6.55 x 10" 6.20 x 10» 0.993 0.0001 

June 2.20 x 10" -0.54 x 107 -8.27 x 10" 7.78 x 108 0.990 0.0001 

July 5.13 x 10" 0.02 x 107 -10.9 x 10" 17.2 x 10" 0.601 0.0001 

August 1.95 x 10" -3.85 x 107 -7.16 x 10" 6.58 x 10s 0.839 0.0001 

September 1.50 x 10" -6.16 x 107 -3.54 x 10" 2.70 x 108 0.833 0.0001 

October 1.06 x 10" 0.61 x 107 -3.91 x 10" 3.60 x 10" 0.243 0.0001 

November 1.45 x 10" 2.12 x 107 -5.53 x 10" 5.27 x 10s 0.927 0.0001 

December 1.91 x 10" 2.49 x 107 -7.20 x 10" 6.79 x 108 0.998 0.0 

Lake Sakakawea 
January Suitable Habitat 

Figure 388.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for January 
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Lake Sakakawea 
February Suitable Habitat 

Figure 389.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for February 

Lake Sakakawea 
March Suitable Habitat 

Figure 390.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for March 
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Lake Sakakawea 
April Suitable Habitat 

Figure 391.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for April 

Lake Sakakawea 
May Suitable Habitat 

Figure 392.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for May 
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Lake Sakakawea 
June Suitable Habitat 

Figure 393.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for June 

Lake Sakakawea 
July Suitable Habitat 
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Figure 394.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for July 
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Lake Sakakawea 
August Suitable Habitat 

Figure 395.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for August 

Lake Sakakawea 
September Suitable Habitat 

Figure 396.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for September 
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Lake Sakakawea 
October Suitable Habitat 

Figure 397.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for October 

Lake Sakakawea 
November Suitable Habitat 

Figure 398.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for November 
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Lake Sakakawea 
December Suitable Habitat 

Figure 399.   Lake Sakakawea plot of stage-discharge versus suitable 
habitat for December 

Lake Oahe 

Regression results are summarized in Table 14.   Plots of stage and discharge 
versus suitable habitat are given in Figure 400-Figure 411. 
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Table 14. 
statistics 

Lake Oahe suitable habitat regression coefficients and 

Month Intercept Discharge Stage Stage2 R2 Pr > F 

January 2.36 x 10" 3.17 x 107 -10.0 x 10" 10.7 x 108 0.989 0.0001 

February 2.33 x 10" 1.73 x 107 -9.89 x 10" 10.5 x 108 0.986 0.0001 

March 2.14 x 10" 1.74 x 107 -9.09 x 10" 9.68 x 10s 0.982 0.0001 

April 2.07 x 10" -14.1 x 107 -8.82 x 10" 9.41 x 108 0.618 0.0001 

May 0.40 x 10" 2.61 x 107 -1.94X 10" 2.32 x 10s 0.852 0.0001 

June 1.47 x 10" 5.16 x 107 -6.40 x 10" 6.96 x 108 0.935 0.0001 

July 2.01 x 10" 2.90 x 107 -8.47 x 10" 8.95 x 108 0.581 0.0001 

August 0.71 x 10" 1.50 x 107 -3.05 x 10" 3.28 x 10" 0.738 0.0001 

September 0.45 x 10" 0.91 x 107 -1.93x 10" 2.08 x 10" 0.681 0.0001 

October 0.21 x 10" 4.49 x 107 -0.94 x 10" 1.05 x 108 0.546 0.0001 

November 0.58 x 10" 3.02 x 107 -2.64 x 10" 2.99 x 108 0.421 0.0001 

December 1.82 x 10" -1.02x 107 -7.84 x 10" 8.43 x 108 0.616 0.0001 

Lake Oahe 
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Figure 400.  Lake Oahe plot of stage-discharge versus suitable habitat 
for January 
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Lake Oahe 
February Suitable Habitat 
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Figure 401.  Lake Oahe plot of stage-discharge versus suitable habitat 
for February 

Lake Oahe 
March Suitable Habitat 

Figure 402. 
for March 

Lake Oahe plot of stage-discharge versus suitable habitat 
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LakeOahe 
April Suitable Habitat 

Figure 403. 
for April 

Lake Oahe plot of stage-discharge versus suitable habitat 

Lake Oahe 
May Suitable Habitat 

Figure 404.  Lake Oahe plot of stage-discharge versus suitable habitat 
for May 
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LakeOahe 
June Suitable Habitat 
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Figure 405.  Lake Oahe plot of stage-discharge versus suitable habitat 
for June 

Lake Oahe 
July Suitable Habitat 
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Figure 406.  Lake Oahe plot of stage-discharge versus suitable habitat 
for July 
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Lake Oahe 
August Suitable Habitat 

Figure 407. 
for August 

Lake Oahe plot of stage-discharge versus suitable habitat 

Lake Oahe 
September Suitable Habitat 

Figure 408.  Lake Oahe plot of stage-discharge versus suitable habitat 
for September 
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Lake Oahe 
October Suitable Habitat 

Figure 409.  Lake Oahe plot of stage-discharge versus suitable habitat 
for October 
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Figure 410.  Lake Oahe plot of stage-discharge versus suitable habitat 
for November 
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Lake Oahe 
December Suitable Habitat 

Figure 411.  Lake Oahe plot of stage-discharge versus suitable habitat 
for December 

Lake Francis Case 

Regression results are summarized in Table 15. Plots of stage and discharge 
versus suitable habitat are shown in Figure 412-Figure 422. Regressions for 
Lake Francis Case were the poorest of the four reservoirs due to intermittent 
stratification during the summer. 
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Table 15.  Lake Francis Case suitable habitat regression coefficients 
and statistics 

Month Intercept Discharge Stage Stage2 R2 Pr > F 

January -0.28 x 1014 1.12x 107 1.21 x 10" -1.31 x 10" 0.992 0.0001 

February -3.26 x 1014 -0.75 x 107 15.66 x 10" -18.7 x 10s 0.965 0.0001 

March 8.45 x 1014 -0.92 x 107 -41.05X 10" 49.85 x 10" 0.673 0.0001 

April -4.67 x 1014 -2.76 x 107 22.50 x 10" -27.1 x 108 0.124 0.0001 

May -0.93 x 1014 -0.04 x 107 4.43 x 10" -5.23 x 108 0.865 0.0001 

June 1.22 x 1014 1.28x107 -6.01 x 10" 7.39 x 108 0.272 0.0001 

July 0.82 x 10" -1.22x 107 -4.02 x 10" 4.93 x 10" 0.078 0.0002 

August 1.63 x 1014 -0.68 x 107 -7.94 x 10" 9.64 x 108 0.170 0.0001 

September 1.35 x 10" -3.70 x 103 -6.54 x 108 7.94 x 105 0.074 0.0004 

October -0.22 x 10" 1.56 x 107 1.07 x 10" -1.30x 10" 0.260 0.0001 

November 1.22 x 10" 0.90 x 107 -6.00 x 10" 7.37 x 108 0.033 0.0456 

December 0.99 x 10" -0.72 x 107 -4.89 x 10" 6.05 x 108 0.467 0.0001 

Figure 412.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for January 
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Lake Francis Case 
February Suitable Habitat 

Figure 413.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for February 

Lake Francis Case 
March Suitable Habitat 

Figure 414.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for March 

240 Chapter 5 - Suitable Habitat Regressions 



Lake Francis Case 
April Suitable Habitat 

Figure 415.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for April 

Lake Francis Case 
May Suitable Habitat 

Figure 416.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for May 
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Lake Francis Case 
June Suitable Habitat 

Figure 417.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for June 

Lake Francis Case. 
July Suitable Habitat 

•&- 

Figure 418.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for July 

242 Chapter 5 - Suitable Habitat Regressions 



Lake Francis Case 
August Suitable Habitat 

Figure 419.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for August 

Lake Francis Case 
September Suitable Habitat 

Figure 420.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for September 
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Lake Francis Case 
October Suitable Habitat 

Figure 421.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for October 

Lake Francis Case 
November Suitable Habitat 

Figure 422.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for November 
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Lake Francis Case 
December Suitable Habitat 

Figure 423.  Lake Francis Case plot of stage-discharge versus suitable 
habitat for December 
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6   Summary   and    Recommen- 
dations 

CE-QUAL-W2 accurately reproduced observed temperature dynamics including 
in-pool and release temperatures in the four reservoirs modeled. All coef- 
ficients affecting temperature were the same among the reservoirs. The model 
reproduced the major patterns of long-term DO dynamics through a gross 
sediment and water column oxygen demand without explicitly modeling algal/- 
nutrient/DO interactions. As a result, model predictions during scenario runs 
represent only how physical factors affect DO and do not include the effects of 
reservoir operations on algal/nutrient dynamics and their effects on DO. To 
include algal/nutrient effects would require at least one year's worth of detailed 
algal/nutrient data for each reservoir that were not and could not be made 
available during the time frame of this study. 

Results from nine 30-year scenarios were used to determine monthly suitable 
coldwater fish habitat (volume of water > 5 mg l1 DO and < 15 °C) for each 
month of the year. Results were then used to generate monthly regression 
relationships relating end-of-month stages and monthly discharges to suitable 
coldwater fish habitat. Suitable coldwater fish habitat was strongly correlated to 
stages which is intuitively obvious - higher stages result in larger volumes of 
water in the reservoir. However, the regression relationships developed during 
this study will allow MRD to quickly quantify the monthly habitat volumes for 
future scenarios of their choosing. Monthly volumes of coldwater fish habitat 
can now be objectively determined without the need to run the model for ad- 
ditional scenarios. 

CE-QUAL-W2 is an extremely powerful tool to aid in addressing reservoir 
water quality management issues. The present implementation does not include 
algal/nutrient/DO interactions because of a lack of sufficient data to characterize 
these interactions in the model. However, a large portion of the work involved 
in setting up the complete model for the four reservoirs in this study has been 
completed. Steps should be taken to obtain a suitable database that can be used 
to calibrate the entire suite of water quality algorithms in the model. It is 
almost a certainty that water quality issues will remain important in the future. 
A fully calibrated water quality model for each of the reservoirs will allow 
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management to quickly address future water quality issues based on state-of-the- 
art environmental engineering practices. 
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