



Since the beginning of time, all living creatures have been, and are still being, exposed to radiation. Nonetheless, most people are not aware that is a natural part of our environment.

When our planet was formed, radiation was present — and radiation surrounds it still. Natural radiation showers down from the distant reaches of the cosmos and continuously radiates from the rocks, soil, and water on the Earth itself.

During the last century, mankind has discovered radiation, how to use it, and how to control it. As a result, some manmade radiation has been added to the natural amounts present in our environment.

Many materials — both natural and manmade — that we come into contact with in our everyday lives are radioactive. These materials are composed of atoms that release energetic particles or

Source: NCRP Report No.160(2009)
Full report is available on the NCRP Web site at www.NCRPpublications.org

waves as they change into more stable forms. These particles and waves are referred to as *radiation*, and their emission as *radioactivity*.

This chart of the public's exposure to ionizing radiation shows that people generally receive a total annual dose of about 620 millirem. Of this total, natural sources of radiation account for about 50 percent, while man-made sources account for the remaining 50 percent.

Types of Ionizing Radiation

Radiation that has enough energy to disturb the electrical balance in the atoms of substances it passes through is called ionizing radiation. There are three basic forms of ionizing radiation.

Alpha

Alpha particles are the largest and slowest moving type of radiation. They are easily stopped by a sheet of paper or the skin Alpha particles can move through the air only a few inches before being stopped by air molecules. However, alpha radiation is dangerous to sensitive tissue inside the body.

Beta

Beta particles are much smaller and faster moving than alpha particles. Beta particles pass through paper and can travel in the air for about 10 feet. However, they can be stopped by thin shielding such as a sheet of aluminum foil.

Gamma

Gamma radiation is a type of electromagnetic wave that travels at the speed of light. It takes a thick shield of steel, lead, or concrete to stop gamma rays. X-rays and cosmic rays are similar to gamma radiation. X-rays are produced by manmade devices; cosmic rays reach Earth from outer space.

Cosmic Radiation

Terrestrial Radiation

Terrestrial sources are naturally radioactive elements in the soil and water such as uranium, radium, and thorium. Average levels of these elements are 1 pCi/q of soil.

U.S. (average)	26 mrem/year
Denver, CO	63 mrem/year
Nile Delta, Egypt	350 mrem/year
Paris, France	350 mrem/year
Kerala, India	400 mrem/year
McAlpe, Brazil	2,448 mrem/year
Pocos de Caldas,	•
Brazil	7,000 mrem/year

Buildings

Many building materials, especially granite, contain naturally radio-active elements.

U.S. Capitol Bldg	85 mrem/year
Statue of Liberty	325 mrem/year
Grand Central Sta	525 mrem/year
The Vatican	800 mrem/vear

Radon

Radon levels in buildings vary, depending on geographic location, from 0.1 to 200 pCi/liter.

Average indoor radon levels....1.5 pCi/liter Occupational working limit...100.0 pCi/liter

Radiation in the Environment

Because the radioactivity of individual samples varies, the numbers given here are approximate or represent an average. They are shown to provide a perspective for concentrations and levels of radioactivity rather than dose.

mrem = millirem pCi = picocurie

Food

Food contributes an average of 20 mrem/year, mostly from potassium-40, carbon-14, hydrogen-3, radium-226, and thorium-232.

Beer	390 pCi/liter
Tap Water	20 pCi/liter
Milk	1,400 pCi/liter
Salad Oil	4,900 pCi/liter
Whiskey	1,200 pCi/liter
Brazil Nuts	14 pCi/g
Bananas	3 pCi/g
Flour	0.14 pCi/g
Peanuts & Peanut Butter	0.12 pCi/g
Tea	0.40 pCi/g

Medical Treatment

Consumer Goods

Natural Radioactivity in Florida Phosphate Fertilizers (in pCi/gram)				
	XXXXX	XXXXX	xxxxx	
Ra-226	21.3	21.0	33.0	
U-238	20.1	58.0	6.0	
Th-230	18.9	48.0	13.0	
Th-232	0.6	1.3	0.3	

Porcelain Dentures1,500 mrem/year
(uranium)
Radioluminescent Clock<1 mrem/year
(promethium-147)
Smoke Detector0.01 mrem/year
(americium-241)

International Nuclear Weapons Test Fallout

From pre-1980 atmospheric tests average for a U.S. citizen.....1 mrem/year

References and Further Reading:

http://www.nrc.gov/about-nrc/radiation/around-us/sources.html

How Do I Get More Information?

To get more information about radiation in the environment, contact: the U.S. Army Corps of Engineers Radiological Health Physics Center of Expertise at HPTeamBaltimore@usace.army.mil or 410-962-9184