IERA-RS-BR-TR-2000-0006

UNITED STATES AIR FORCE IERA

Air Force Assignment Data Analysis Report

Denny A. Reed Peter A. Lurker Erik K. Vermulen

Operational Technologies Corporation 1370 N. Fairfield Road, Suite A Beavercreek, OH 45432

Victor Caravello, Captain, USAF, BSC G. Cornell Long

20010312 022

Approved for public release;

distribution is unlimited.

February 2000

Air Force Institute for Environment, Safety and Occupational Health Risk Analysis Risk Analysis Directorate Risk Assessment Division 2513 Kennedy Circle Brooks Air Force Base TX 78235-5123

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United State Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Boyal Road, Springfield, VA 22161-2103.

VICTOR CARAVELLO, Capt, USAF, BSC Bioenvironmental Engineer

Kenneth L. Cox

KENNETH L. COX, Lt Col, USAF, MC, SFS Chief, Risk Assessment Division

REPORT DOCUMENTATION PAGE

ı

.

÷

5

Form Approved						
OMB No.	0704-0188					

.

the collection of information. Send comments regarding this b Operations and Reports, 1215 Jefferson Davis Highway, Suite 1	urden estimate or any other aspect of this collection of info 204, Arlington, VA 22202-4302, and to the Office of Managa	mation, including suggestions for reducing this o ment and Budget, Paperwork Reduction Project (0)	urden, to Washington Headquarters Services, Directorate for Information 704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DAT	ES COVERED
	February 2000		Final Report
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Air Force Assignment Data Ana	alysis Report		GS-35F-4519G
	5		T0799BG0778
			10////00//10
6. AUTHUR(S)	Index DA Dead DV Ver	11	
v. Caravello, G.C. Long, P.A.	Lurker, D.A. Reed, E.K. ver	mullen	
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Operational Technologies Corpo	oration (OpTech)		REPORT NUMBER
1370 N Eairfield Road Suite A			
Demonstrate OH 45422	L.		
Beavercreek, OH 45432			
9. SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
Air Force Institute of Environm	ent Safety and Occupational He	alth (AFIERA)	AGENCY REPORT NUMBER
Risk Analysis Directorate	- •		
Rick Assessment Division (DCD)		IERA-RS-BR-TR-2000-0006
NEA RESUSSION DIVISION (NOR	,		
2513 Kennedy Circle			
Brooks AFB, TX 78235-5123			
Approved for public release; dis	stribution is unlimited		120. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)	<u> </u>		·
Risk assessors are often forced assessments for military populat probabilistic approach to risk as officer and enlisted personnel lo	to use default, single point, ass ions and their families due to t sessments to provide site speci- poted at Air Force installations	umptions of typical durat he uncertainty of assignment fic time on station (i.e., r within the continental U	ion of exposure when performing risk ant tour lengths. This project uses a residence time) distributions for both nited States (CONUS). Five distinct
assignment dates were investiga	ted to evaluate temporal variat	ons in residence time Δ	total of 369 spreadsheets containing
722 time on station distribution	ware prepared A cross all fi-	$\frac{1000}{1000}$ in residence time. A	1005 1008 and 1000) the mass
755 time-on-station distribution	Swere prepareu. Across all IIV	d uala sels (1707, 1990,	(1 00
residence time on station was 9	15 days (2.51 years) for enliste	a personnel and 692 days	(1.50 years) for officers. This
resulted in a factor of 3.59 and	4.74 less, respectively, than the	e default value of 9 years	used by the U.S. Environmental
Protection Agency (EPA). Hur	nan health risk estimates using	a benzene inhalation exp	osure scenario in a Monte Carlo
simulation, were found to be lo	wer than the EPA mean risk es	timates by factors of appr	roximately 4 and 5 for enlisted and
officer personnel respectively			······································
orneer personner, respectively.			
14. SUBJECT TERMS	······································		15. NUMBER OF PAGES
	uration Housing Military		
Probalistic Risk Exposure Di	A CONTRACT OF A		I 90
Probalistic, Risk, Exposure, Du	aracion, riousing, williary		16 DDICE CODE
Probalistic, Risk, Exposure, Du	manon, mousing, miniary		16. PRICE CODE
Probalistic, Risk, Exposure, Du			16. PRICE CODE
Probalistic, Risk, Exposure, Du	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATIO	16. PRICE CODE
Probalistic, Risk, Exposure, Du 17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	16. PRICE CODE N 20. LIMITATION OF ABSTRACT
Probalistic, Risk, Exposure, Du 17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	16. PRICE CODE N 20. LIMITATION OF ABSTRACT

Prescribed by ANSI Std. 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94 THIS PAGE INTENTIONALLY LEFT BLANK

Page
EXECUTIVE SUMMARY1
INTRODUCTION
Background2
Current Effort
METHODS4
Initial Screening of Input Data4
Development of Time-on-Station Distributions5
Development of Dependent Age Distributions
Inclusion of Additional Data Sets6
RESULTS AND DISCUSSION
Summary Statistics9
Analysis of Time-on-Station Distributions10
Analysis of Dependent Age Distributions10
Temporal Analysis of Time on Station Distributions12
Analysis of Age, Grade, and Number of Dependents15
Probabilistic Risk Estimates15
CONCLUSIONS AND RECOMMENDATIONS
Population Mobility18
Effect of Site-Specific Data on Probabilistic Risk Estimates
Recommendations for Further Study18
REFERENCES

TABLE OF CONTENTS

APPENDIX A	Page Time on Station Distributions, Summary Statistics and
	Dependent Age Distributions for Dover AFB, EdwardsAFB, Elemendorf AFB, Maxwell AFB, and Minot AFB
APPENDIX B	Summary Statistics for Enlisted and Officer –1999
APPENDIX C	Probabilistic Risk Estimates
APPENDIX D	Data Set Analysis Process
APPENDIX E	Analysis of Additional data Sets 1987, 1990, 1995, 1999 Summary of Total Records Available, Enlisted and Officer Personnel Assigned to and Located at CONUS and PACAF Bases
APPENDIX F	List of Symbols, Abbreviations and Acronyms

.

•

LIST OF FIGURES

Figure 1. 1998 Assignment Data, Enlisted Personnel (ASCII Text)	2
Figure 2. Enlisted Data Table Imported from ASCII Text File	4
Figure 3. Sample 1998 Enlisted Assignment Data Table	5

LIST OF TABLES

Table 1.	Two-Letter Military Personnel Flight (MPF) Records in Additional Data Sets	.8
Table 2.	Best Fit Distribution Type - Gamma	11
Table 3.	Best Fit Distribution Type - Weibull	12
Table 4.	Best Fit Distribution Type - Beta	13
Table 5.	Days on Station Summary Statistics	14
Table 6.	Average Age, Grade, and Number of Dependents	15

.

PREFACE

This report was prepared by Operational Technologies Corporation (OpTech), 1370 North Fairfield Road, Suite A, Beavercreek, OH 45432 under Contract Number GS-35F-4519G, Order Number T0799BG0778. The data analysis effort was initiated on June 15, 1999 and completed by December 31, 1999 under the combined program management of Mr. Erik Vermulen and Dr. Peter Lurker. Captain Victor Caravello of the Air Force Institute for Environment, Safety and Occupational Health Risk Analysis, Environmental Sciences Branch (AFIERA/RSRE) served as contract monitor.

The senior analyst/author, Mr. Denny Reed would like to extend his appreciation for the technical assistance and direction provided by Captain Caravello and Mr. Cornell Long of AFIERA/RSRE. In addition, Master Sergeant Buckman and Technical Sergeant Tolle of the Headquarters, Air Force Materiel Command, Personnel Directorate, Data Automation and Analysis Branch (HQ AFMC/DPZD) went the extra mile in providing the Air Force-wide military personnel data in a timely matter. The technical support provided by Ms. Elaine Merrill of OpTech in carefully explaining the workings of the Crystal Ball[®] software is also gratefully acknowledged.

AIR FORCE ASSIGNMENT DATA ANALYSIS

EXECUTIVE SUMMARY

This report describes the analysis of Air Force assignment data that was performed for the Air Force Institute for Environment, Safety and Occupational Health Risk Analysis, Environmental Sciences Branch (AFIERA/RSRE), 311 Human Systems Wing, Aeronautical Systems Center, Air Force Materiel Command, Brooks Air Force Base, Texas. The data analysis described in this report was performed under Contract Number GS-35F-4519G, Delivery Order Number T0799BG0778, Task Order Number FE579006. The title of the task is "Military Housing Statistics for Risk Assessment Program Support". The primary purpose of this task was to derive time on station (i.e., residence time) distributions for both officer and enlisted personnel located at Air Force installations within the continental United States (CONUS). These distributions provide site-specific residence time data to support human health risk assessments at military (Air Force) facilities using the probabilistic (Monte Carlo) approach. Commercial off-the-shelf (COTS) software (i.e., Microsoft (MS) Access[®], MS Excel[®], and Crystal Ball[®] [Decisioneering, Version 4.0]) was used to analyze the data and prepare the electronic data deliverables.

Five distinct assignment dates were investigated to evaluate temporal variations in residence time. Both current (i.e., as of July 1999) and historical assignment data (i.e., as of September 1987, September 1990, September 1995, and June 1998), containing 1,973,214 records obtained from Headquarters Air Force Materiel Command (HQ AFMC), Wright-Patterson Air Force Base (WPAFB), Ohio was included in the analysis. Air Force personnel assigned to bases located in the pacific theatre of operations (PACAF) were also included in the analysis for the 1987, 1990, 1995, and 1999 assignment groups. A total of 369 spreadsheets containing 733 time-on-station distributions were prepared. Each spreadsheet derived from the 1987, 1990, 1995, and 1999 data also included age and grade distributions for the officer and enlisted personnel. Eighty-five (85) additional spreadsheets containing dependent age distributions were also prepared. They included all 65 stations in the 1998 data set, and the dependents at Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB from the 1987, 1990, 1995 and 1999 data sets.

Across all five data sets (1987, 1990, 1995, 1998, and 1999) the mean residence time on station was 915 days (2.51 years) for enlisted personnel and 692 days (1.90 years) for officers. The shortest time on station was one day for both officer and enlisted personnel. The maximum time on station was 11,322 days (31.02 years) for enlisted personnel and 9,861 days (27.02 years) for the officers. The 95th percentile residence time on station, calculated for the 1998 data, was 2870 days (7.86 years) for enlisted personnel and 1671 days (4.58 years) for officers. The mean residence time for enlisted and officer personnel are a factor of 3.59 and 4.74 less, respectively, than the default value of 9 years used by the U.S. Environmental Protection Agency (EPA). Similarly, the 95th percentile residence time for enlisted and officer personnel are a factor of 3.82 and 6.55 lower than the default value of 30 years that is used by the U.S. EPA. Mean human health risk estimates using a benzene inhalation exposure scenario in a Monte Carlo simulation, were found to be lower than the EPA mean risk estimates by factors of approximately 4 and 5 for enlisted and officer personnel, respectively.

INTRODUCTION

Background

The application of the probabilistic approach to risk assessments provides a significant improvement over single point estimates in evaluating exposures to hazardous substances in many instances. Application of this technique using site-specific data in risk calculations, along with the development of military-specific exposure factors to more accurately assess exposures to chemical substances at military facilities, are encompassed in a relatively new program within the Air Force called Enhanced Site-Specific Risk Assessment (ESSRA). During a recent study ("Military-Specific Exposure Factors (MSEF) Study", Lurker, et al, September 1998) human health risk estimates using a Monte Carlo analysis (Crystal Ball®) showed the highest sensitivity to the duration of exposure factor. Consequently, assignment data for United States Air Force (USAF) active duty military personnel located at installations in the continental United States (CONUS) were acquired from the Personnel Directorate at Headquarters Air Force Materiel Command (HQ AFMC/DPZD) (Buckman & Tolle, 1998). This assignment data was analyzed using commercial off-the-shelf (COTS) software to provide time-on-station (exposure duration) distributions for risk analysis using Monte Carlo simulations (Crystal Ball®, Version 4.0). A sample of the assignment data set for 1998 that was obtained in American Standard Code Information Interchange (ASCII) format for officer personnel is shown in Figure 1.

Figure 1. 1998 Assignment Data, Enlisted Personnel (ASCII Text)

NAME [@]	DAS	DEP	DEP1	DEP2	DEP3	DEP4	DEP:	5 DEP	6 DEP7	STATION	LOCATION DDI
MOBLEY STEVE	9502	I	1	1	1	1	1	1	1	MCCLELLAN AFB CA (MTC)	MCCLELLAN 1
NORMAN MICHA	9512	1	1	1	1	1	1	1	Í	EGLIN AFB FL (MTC)	EGLIN 1
PAUL NATHAN	9805		1	1	Ì	1	Ì	Ì	Ì	LACKLAND AFB TX (AETC)	LACKLAND 1
HOLDERMAN	9411	01	1	Ì	1	Ì	Ì	Ì	Ì	PETERSON AFB CO (SPC)	CHEYENNE 1
BRANSKY RAND	9403	02	M97	1 I	Í	Ì	1	Ì	Í	(CHARLESTON AFB SC (AMC)	CHARLESTO 1
PETERS GARY W	9603	04	M90	M93	F98	Ì	Ì	i	1	LAUGHLIN AFB TX (AETC)	LAUGHLIN I

@ These are not the actual names of persons listed in the data set

DAS = Date Arrived Station (year and month); DEP = Number of Dependents

DEP1 through DEP6 = (dependent child, gender and year of birth); DEP7 = (unknown code)

Station = Base of Assignment; Location = Member's Duty Area; DDI = Privacy Act Code; AFB = Air Force Base

The original data obtained during the MSEF study contained information on the arrival date (i.e., date each member arrived on station) for their current tour, their station of assignment, location of assignment, the number of dependents and the dependent's age. Because this information was received late in the study only example station specific analyses were run. The approach used in the study involved extracting data sets from the ASCII files using a Microsoft (MS) Access query, generating an MS Excel spreadsheet, obtaining descriptive statistics, plotting a frequency distribution chart, curve matching a cumulative distribution with a continuous distribution, running a simulation to obtain mean risk estimates and recording the results. The two locations selected for analysis included Wright-Patterson AFB, OH, because estimates of related data had been obtained through interviews with base housing personnel; and Cannon AFB, NM, a combat

mission oriented installation. The data, as expected, indicated that military personnel were more mobile than their civilian counterparts, with a mean time on station between 3 to 5 years.

Current Effort

The purpose of this project is to develop time-on-station distributions for all 65 of the CONUS Air Force installations where active duty Air Force officer and enlisted personnel were assigned in 1998. It is based upon the analysis of the 1998 assignment data sets obtained from HQ AFMC/DPZD in June 1998. Dependent age distributions for each of the 65 CONUS installations were also included in the tasking, along with a statistical analysis of the data and "best fit" on the basis of the chi-square goodness of fit statistic, plus normal distribution curve fits using Crystal Ball® software. Probabilistic risk estimates using a sample benzene exposure scenario for selected installations were also included for comparison of results to risk estimates where standard U.S. Environmental Protection Agency (U.S. EPA) default exposure duration was used in lieu of the time-on-station distributions.

The 1998 assignment data provided a single point in time estimate of Air Force population mobility. A modification to the original tasking was added in September 1999 to include the analysis of eight additional data sets that were obtained from HQ AFMC/DPZD on 31 July 1999. These additional data sets included both officer and enlisted personnel that were assigned to CONUS and Pacific Air Force (PACAF) installations in 1987 (circa September 1987), 1990 (circa September 1990), 1995 (circa September 1995), and 1999 (circa July 1999). Time-on-station distributions for each of the installations contained in these data sets were developed, along with their respective summary statistics, "best fit" and normal distribution curves. Age and grade distributions for both officer and enlisted personnel were also added to the spreadsheets because this additional information was included in the 1987, 1990, 1995, and 1999 data sets. An analysis of the temporal effects of time-on-station distributions across the multi-year data sets (i.e., 1987, 1990, 1995, 1998 and 1999) at Dover AFB, Edwards AFB, Elmendorf AFB (except 1998 - CONUS only), Maxwell AFB, and Minot AFB was also performed for this study.

METHODS

Initial Screening of Input Data

The 1998 ASCII files containing assignment data for officer and enlisted personnel were analyzed using COTS software (MS Access[®] and MS Excel[®]). The ASCII files were first uploaded into an Access[®] database for the initial screening/data review process (see Figure 2 for a sample of the Enlisted data table). Total time on station was calculated from the date arrived station (DAS) using 23 June 1998 as the current date of reference. A sample of the resulting Enlisted Days on Station Table is shown in Figure 3. A series of queries were performed on the resulting Enlisted Days on Station and the Officer Days on Station data tables within the database to develop time-on-station data distributions for all 65 AFBs that were identified in the data sets. Because some of the records included in the data sets that were received from HQ AFMC contained "9999" codes in the DAS field (indicating personnel assigned in the training "pipeline") the initial queries were modified to exclude these records from the data distributions. Three additional records were also excluded because their DAS field entry (2070,0, and 1150) resulted in the computation of a negative time-on-station result. Through this screening process 1873 records (out of a total of 289,295 or 0.647 percent) were excluded from the time-on-station data distributions.

ID NAME	DAS	DAYS	DEP	DEP1	DEP2	DEP3	DEP4	DEP5	DEP6	DEP7	STATION
MORF	9502										MCCLELLAN AFB MCCLELLAN
2 NORT	09512							1			EGLIN AFB FL (MT EGLIN
3 POST	E 9805					محمد موجوع مع بود مد محمد م					LACKLAND AFB T: LACKLAND
4 HOLD	E 9411		1	,				· · · · · · · · · · · · · · · · · · ·			PETERSON AFB C CHEYENNE N
5 BANK	9805							: I			DYESS AFB TX (A DYESS
6 COOk	9410		. 1								MACDILL AFB FL (MACDILL
7 RIDDL	E 9804										SHEPPARD AFB T SHEPPARD
8 LEIDN	E 9801										HOLLOMAN AFB NHOLLOMAN
9 GREE	r 9801)			,	;						FALCON AFB CO (FALCON
10 MCKE	f 9802				i 						HILL AFB UT (MTC HILL
11 BRAM	/ 9403		2	M97				: 			CHARLESTON AFI CHARLESTON
12 STOW	1 9805								No		MT HOME AFB ID MOUNT HOM
13 BELL	0006						w				KEESLER AFB MS KEESLER
14 PETTY	(9603		4	M98	M93	F98					LAUGHLIN AFB TX LAUGHLIN
15 PAGE	8710		1	1 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						•	TINKER AFB OK (TINKER
16 KETCI	- 9408		2	M93				· · · · · · · · · · · · · · · · · · ·			HOLLOMAN AFB NHOLLOMAN
17 MART	1 9608		<u>.</u>		·						EDWARDS AFB C. SAN BERNAF
18: WHITE	E 9604		i .						•	ļ	EGLIN AFB FL (MTÉGLIN

Figure 2.	Enlisted	Data	Table	Imported	from	ASCII	Text File
-----------	----------	------	-------	----------	------	-------	-----------

ID	NAME	DAS	DASDATE	STATION	LOCATION	DAYS
131482	TEMPL	9999	3/1/107	LACKLAND AFB TX (AETC	LACKLAND	690796
132675	HARRIS	9999	3/1/107	LACKLAND AFB TX (AETC	LACKLAND	690796
133574	BOYD F	9999	3/1/107	LACKLAND AFB TX (AETC	LACKLAND	690796
58894	SAUND	7005	5/1/70	TINKER AFB OK (MTC)	TINKER	10288
169612	DAVIS	7109	9/1/71	BOLLING AFB DC (AFDW)	BOLLING	9800
11842	DEITEN	7111	11/1/71	BOLLING AFB DC (AFDW)	BOLLING	9739
47665	MOSEL	7112	12/1/71	BOLLING AFB DC (AFDW)	BOLLING	9709
29997	SINE A	7202	2/1/72	BOLLING AFB DC (AFDW)	BOLLING	9647
116786	SANDS	7202	2/1/72	HANSCOM AFB MA (MTC)	HANSCOM	9647
75960	WOOD	7207	7/1/72	BOLLING AFB DC (AFDW)	FT MYER	9496
56514	CROTT	7209	9/1/72	BOLLING AFB DC (AFDW)	BOLLING	9434
71053	JAMES	7311	11/1/73	BOLLING AFB DC (AFDW)	BOLLING	9008
38118	BELL D	7403	3/1/74	TRAVIS AFB CA (AMC)	TRAVIS	8888
89401	QUEEN	7406	6/1/74	BOLLING AFB DC (AFDW)	BOLLING	8796
166577	HARRIS	7406	6/1/74	LACKLAND AFB TX (AETC	LACKLAND	8796
212707	SWAN:	7407	7/1/74	BOLLING AFB DC (AFDW)	BOLLING	8766
96856	BRUCE	7407	7/1/74	PETERSON AFB CO (SPC	PETERSON	8766
38651	SHEPE	7408	8/1/74	BOLLING AFB DC (AFDW)	BOLLING	8735
78109	LITTLE	7408	8/1/74	BOLLING AFB DC (AFDW)	BOLLING	8735

Figure 3. Sample 1998 Enlisted Assignment Data Table

An additional set of queries was performed to identify officers and enlisted personnel who were both assigned to and located at each of the 65 bases contained in the 1998 data set. This additional set of queries was necessary because approximately 7 percent of the enlisted personnel and approximately 13.3 percent of the officer personnel who were assigned to the 65 CONUS bases were actually located at another facility. The percentage of officers or enlisted personnel who were assigned to a given base, but who were actually located at a separate facility ranged from about 2 percent of assignees (e.g., Offutt AFB) to over 78 percent of assignees (e.g., Bolling AFB). The resulting data tables, Enlisted on Station and Officer on Station, contained 210,575 and 52,960 records, respectively. Records of 15,747 enlisted and 8,090 officers in the 1998 data set with residences at a separate facility were excluded from further analysis.

Development of Time-on-Station Distributions

The data contained in the Enlisted on Station and Officer on Station data tables were subsequently queried to develop time-on-station distributions for each of the 65 CONUS bases contained in the 1998 data sets. These distributions were imported into MS Excel[®] spreadsheets for further analysis using both MS Excel[®] and Crystal Ball[®] software. Both summary statistics (mean, median, mode, standard deviation, etc.) and distribution type (i.e., lognormal, weibull, extreme value, etc.) were computed for each distribution. In many instances, the "best fit" distribution (e.g., gamma, beta, wiebull or extreme value) was not lognornally distributed, as

anticipated for this type of data. The summary statistics for officer and enlisted personnel for each of the 65 AFBs were imported into two separate spreadsheets for comparison to the summary statistics for the total officer and enlisted data sets. The data distributions for Dover AFB, Edwards AFB, Elmendorf AFB (except 1998), Maxwell AFB, and Minot AFB, both officer and enlisted personnel, were also used as input assumptions in Crystal Ball[®] simulations to perform probabilistic risk assessments of benzene exposure scenarios for inhalation, dermal contact, and drinking water consumption. Sample copies of these distributions and their low, high, mean, standard deviation and 95th percentile time-on-station values are shown in Appendix A.

Development of Dependent Age Distributions

A MS Access[®] make table query was performed by joining the Enlisted and Enlisted on Station tables to create a new table called Enlisted Dependents on Station. This table contained the dependent data (i.e., number of dependents [DEP], and gender/birth year [DEP1], [DEP2], ...[DEP6]) for all enlisted personnel both assigned to and located at each of the 65 Military Personnel Flight (MPF) stations in the 1998 data set. Data from the DEP7 field was excluded because it contained unknown codes (e.g., 01, 02, etc.) that did not translate into dependent age information. A second make table query was performed by joining the Officers and Officer on Station tables to create a new table called Officer Dependents on Station. This table contained the dependent data (i.e., number of dependents [DEP], and gender/birth year [DEP1], [DEP2], ...[DEP6]) for all officer personnel both assigned to and located at each of the 65 MPF stations in the 1998 data set.

A series of make table queries were performed to develop DEP1 through DEP6 tables containing the dependent data from the DEP1 through DEP6 fields, using the Officer Dependents on Station and Enlisted Dependents on Station tables. The DEP1 through DEP6 tables also contained the dependent's birth year (BYEAR) and calculated age using June 1998 as a reference point. These new tables were subsequently queried to extract dependent age distributions that were imported into MS Excel spreadsheets. "Best fit" and normal distribution curves were developed from these age distributions using the distribution gallery routine contained within the Crystal Ball[®] software (see Appendix A).

Inclusion of Additional Data Sets

Eight additional data sets containing Air Force enlisted and officer assignment information for 1987, 1990, 1995, and 1999 were also obtained to develop time-on-station, age, and grade distributions. Dependent age distributions were also prepared from each of the data sets for Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB.

Each of these data sets included 16 data fields containing the following information: (1) social security account number (SSAN), (2) date of birth (DOB, by year and month), (3) date assigned station (DAS, by year and month), (4) grade (E1 through E9, coded 31 through 39 for enlisted personnel, and O1 through O10, coded 1 through 10 for officer personnel), (5) number of dependents (DEP), (6 - 11) birth year for the first through sixth dependent child, DEP1 through DEP6, (12) the LOCATION of the assignee, (13) the STATION of assignment, (14) a separation

code (if applicable), (15) their Duty Air Force Specialty Code (DAFSC), and (16) a privacy act code (DDI). These data sets were received as ASCII text files with each of the fields described above separated by a delimiter (i.e., a pipe []]). The file names and number of records in each file were as follows: enl8709 containing 417,678 records, enl9009 containing 361,791 records, enl9509 containing 300,406 records, enl9907 containing 268,983 records, off8709 containing 99,987 records, off9009 containing 92,586 records, off9509 containing 74,624 records, and off9907 containing 67,864 records.

Each of the data sets contained assignment information for all Air Force installations located within the CONUS, plus the PACAF installations located within the pacific theatre of operations. In addition, up to 29 two-letter code station identifiers were included in the data sets. Both officer and enlisted personnel who were assigned to these two-letter code stations were not included in the data analysis process because their location information indicated they were widely distributed across a relatively large number of facilities, including AFBs that were no longer active. A summary of the records in the two-letter MPF code stations is shown in Table 1.

In addition to the two-letter code assignees in each data set, several thousand additional records had to be rejected because they contained the code "9999" in the DOB (used to compute age) and/or the DAS fields. Because of the unusable nature of some of the data contained in each data set, nearly 30 percent of the 1987 records were rejected, over 25 percent of the 1990 records were rejected, and between 10 and 15 percent of the 1995 and 1999 records were rejected. A description of the data set analysis process that was used to evaluate the additional assignment data from 1987, 1990, 1995, and 1999 is provided in Appendix D. A summary of the records from the additional data sets that were available for analysis is provided in Appendix E.

7 ·

2-Ltr MPF	Total in 1	987 Data	Total in 1990 Data		Total in 1	995 Data	Total in 1999 Data		
Code	Enlisted	Officer	Enlisted	Officer	Enlisted	Officer	Enlisted	Officer	
AK	875	245	885	224	0	0	0	0	
BH	4462	976	3634	779	2	0	1	0	
BN	2878	462	2625	455	0	0	0	0	
BX	2570	409	2250	397	0	0	0	0	
CF	4606	923	4321	946	0	0	0	0	
СН	4757	893	4047	840	278	23	2	0	
СК	6012	342	3855	329	1	0	1	0	
EM	3024	342	2856	338	0	0	0	0	
FA	1	2	0	0	0	0	0	0	
GB	5131	748	3949	569	0	0	0	0	
GW	4034	815	3809	785	396	27	3	0	
HV	4484	588	3623	479	0	0	0	0	
KY	3365	529	2935	552	219	15	1	0	
LQ	0	0	1	0	1	0	1	0	
LS	3679	525	2967	517	0	0	0	0	
LW	6909	639	4571	541	1	0	1	0	
MD	3532	807	2913	642	1892	229	1	0	
ME .	4005	1849	2305	1708	0	0	0	0	
MY	3357	329	2976	338	0	0	0	0	
NV	4611	1395	3746	1227	4	0	1	0	
ОТ	1	0	0	0	0	0	0	0	
PJ	3471	457	1813	193	2	0	1	0	
PS	3757	521	3203	466	23	1	5	0	
S1	0	0	0	0	1	0	0	0	
WP	1	0	1	0	1	0	1	0	
WQ	1	0	1	0	1	0	1	0	
wv	2213	1106	933	1283	0	0	0	0	
WY	1	0	0	0	0	0	0	0	
WZ	3303	528	2975	528	0	0	0	0	
Grand Total	85040	15430	67194	14136	2822	295	20	0	

 Table 1. Two-Letter MPF Records in Additional Data Sets

RESULTS AND DISCUSSION

Using the data set analysis process described in Appendix D, 369 spreadsheets containing a total of 733 time-on-station distributions were prepared. Each spreadsheet prepared from the 1987, 1990, 1995, and 1999 data also contain age and grade distributions for the officer and enlisted personnel. Dependent age distributions were prepared for all stations in the 1998 data including five of the major commands (Air Mobility Command (AMC), Air Force Materiel Command (MTC), Air Force Space Command (SPC), Air Education and Training Command (AETC) and Air Combat Command (ACC)). Dependent age distributions were also prepared for Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB from the 1987, 1990, 1995 and 1999 data.

Summary Statistics

The results of the analysis of the 1998 assignment data produced the following summary statistics for Air Force enlisted and officer personnel, respectively:

Enlisted	Officer
30	22
10,288 (28.17 yrs.)	9,488 (25.98 yrs.)
1,033.34 (2.83 yrs.)	746.13 (2.04 yrs.)
959.35 (2.63 yrs.)	539.31 (1.48 yrs.)
2870 days (7.86 yrs.)	1671 days (4.58 yrs.)
	Enlisted 30 10,288 (28.17 yrs.) 1,033.34 (2.83 yrs.) 959.35 (2.63 yrs.) 2870 days (7.86 yrs.)

Summary statistics (minimum, maximum, mean, standard deviation, and 95th percentile time-onstation) for enlisted and officer personnel for all CONUS and PACAF installations contained in the 1999 data set are shown in Table B-1 (see Appendix B).

Analysis of all data sets provided the following summary statistics, with the mean and standard deviation averaged across the five-year groups (i.e., 1987, 1990, 1995, 1998, and 1999) for Air Force enlisted and officer personnel assigned to CONUS and PACAF facilities:

	Enlisted	Officer
Minimum Days on Station	1	1
Maximum Days on Station	11,322 (31.02 yrs)	9,861 (27.02 yrs)
Average Days on Station	915 (2.51 yrs)	692 (1.90 yrs)
Standard Deviation	879 (2.41 yrs)	563 (1.54 yrs)

A separate analysis of the time on station data for PACAF installations, as expected, showed that both enlisted and officer personnel are significantly more mobile in PACAF, with average days on station of 642 (1.76 yrs) and 491 (1.35 yrs), respectively.

Although the maximum time on station increased when the additional data is compared to the 1998 data, the increase is attributable to the 1999 data for both officer and enlisted personnel. However, both the average days on station and their respective standard deviations from the

mean decreased when the additional data is compared to the 1998 data set. This result is consistent with the anticipated trend towards longer time on stations in recent years because of reduced defense budgets containing fewer dollars for permanent change of station (PCS) assignments. It is interesting to note that an analysis of the summary statistics for five bases across all year groups, except Elmendorf AFB in 1998 (not included in the data set), confirms this general trend for the enlisted personnel, but not for the officers. A more detailed discussion of this analysis is included in Section III (Temporal Analysis of Time on Station Distributions).

Analysis of Time-on-Station Distributions

Analysis of the 65 time-on-station distributions for both officer and enlisted personnel extracted from the 1998 assignment data provided some other noteworthy findings. For example, the relatively rapid turnover of personnel at two training installations (Lackland AFB and Sheppard AFB), along with a number of long-duration assignments, resulted in a set of time-on-station data with relatively long tails that best fit a normal distribution. However, nearly 80 percent of the time-on-station distributions developed from the 1998 assignment data best fit a gamma, weibull, or beta distribution. Among the 130 time-on-station distributions, forty-eight (48) best fit a gamma distribution, 28 best fit a weibull distribution, and 27 best fit a beta distribution (shown in Tables 2, 3, and 4, respectively).

Most of the other 27 distributions best fit either an extreme value or exponential distribution. As previously mentioned, only two of the 130 time-on-station distributions best fit a normal distribution (Lackland and Sheppard enlisted), and five best fit a lognormal distribution (Bolling and Dover enlisted, and Brooks, Robbins and USAF Academy officers). In addition, nearly all distributions were positively skewed by a very small number of near career-length and career-length assignments ranging from 12 years to more than 28 years on station. Across both the enlisted and officer time-on-station data (1998) there were 5,871 records out of a total of 287,425 records (approximately 2 percent) in this category (i.e., >12 years on station). For the additional data sets, there were 9,423 records out of a total of 1,334,837 available records (approximately 0.7 percent) with time on station > 12 years. Thirty-four (34) percent of these records were identified in the 1999 data set and most (over 97 percent) were for enlisted personnel.

Analysis of Dependent Age Distributions

Nearly all of the dependent age distributions were uniform ("best fit") using the Chi-squared goodness of fit test included with the Crystal Ball[®] software. The dependent age distributions for AMC, MTC, and SPC were also uniform ("best fit"). However, the "best fit" for AETC was triangular, and it was exponential for ACC. Dependent ages ranged from less than 1 year to over 67 years and the average age was between 9 and 10 years at most installations. Analysis of the additional data sets across five installations (Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB) provided dependent ages ranging from less than 1 year to more than 84 years, with an average age of 9.4 years. Across these five bases Minot AFB had the youngest dependents (average age of 8.8 years) and Maxwell AFB had the oldest dependents (average age of 10.4 years). With two exceptions, all of the dependent age distributions were uniform (best fit). The dependent age distributions for Elmendorf AFB in the 1990 and 1995 data sets best fit a triangular distribution.

Table 2.	Best Fit	Distribution	Type -	Gamma
----------	----------	--------------	--------	-------

AltusOfficer 22 3552 569 326 413 7.04 344.12 1.88 AndrewsEnlisted 30 6696 1065 699 3993 28.65 960.08 1.31 AndrewsOfficer 22 6109 722 357 1072 15.51 469.44 1.82 BarksdaleEnlisted 30 6817 881 668 4506 27.90 768.59 1.39 BealeOfficer 53 4191 691 357 338 12.19 419.16 1.80 Davis-MonthanEnlisted 30 7578 881 334 4897 25.50 712.55 1.51 EdwardsOfficer 22 3826 660 387 529 8.80 377.62 1.97 F.E. WarrenEnlisted 30 7912 791 303 2790 29.55 921.49 1.18 F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 HanscomEnlisted 30 9647 881 426 837 27.45 820.58 1.30 HuilburtEnlisted 30 7700 760 334 3	PE
AndrewsEnlisted30 6696 1065 699 3993 28.65 960.08 1.31 AndrewsOfficer22 6109 722 357 1072 15.51 469.44 1.82 BarksdaleEnlisted30 6817 881 668 4506 27.90 768.59 1.39 BealeOfficer 53 4191 691 357 338 12.19 419.16 1.80 Davis-MonthanEnlisted 30 7578 881 334 4897 25.50 712.55 1.51 EdwardsOfficer 22 3826 660 387 529 8.80 377.62 1.97 F.E. WarrenEnlisted 30 7912 791 303 2790 29.55 921.49 1.18 F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 HanscomEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 7700 760 334	
AndrewsOfficer 22 6109 722 357 1072 15.51 469.44 1.82 BarksdaleEnlisted 30 6817 881 668 4506 27.90 768.59 1.39 BealeOfficer 53 4191 691 357 338 12.19 419.16 1.80 Davis-MonthanEnlisted 30 7578 881 334 4897 25.50 712.55 1.51 EdwardsOfficer 22 3826 660 387 529 8.80 377.62 1.97 F.E. WarrenEnlisted 30 7912 791 303 2790 29.55 921.49 1.18 F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 HanscomEnlisted 30 9647 881 426 837 27.45 820.58 1.30 HillEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 8248 943 365 6066 27.75 885.70 1.28	
BarksdaleEnlisted 30 6817 881 668 4506 27.90 768.59 1.39 BealeOfficer 53 4191 691 357 338 12.19 419.16 1.80 Davis-MonthanEnlisted 30 7578 881 334 4897 25.50 712.55 1.51 EdwardsOfficer 22 3826 660 387 529 8.80 377.62 1.97 F.E. WarrenEnlisted 30 7912 791 303 2790 29.55 921.49 1.18 F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 HanscomEnlisted 30 9647 881 426 837 27.45 820.58 1.30 HillEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 8248 943 365 6066 27.75 885.70 1.28	
BaseleOfficer534191691 357 338 12.19 419.16 1.80 Davis-MonthanEnlisted 30 7578 881 334 4897 25.50 712.55 1.51 EdwardsOfficer 22 3826 660 387 529 8.80 377.62 1.97 F.E. WarrenEnlisted 30 7912 791 303 2790 29.55 921.49 1.18 F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 4990 699 456 1481 24.60 491.72 1.71 Grand ForksEnlisted 30 7912 1004 1461 3019 27.45 820.58 1.30 HurlburtEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 8248 943 365 6066 27.75 885.70 1.28	
Davis-MonthanEnlisted307578881334489725.50712.551.51EdwardsOfficer2238266603875298.80377.621.97F.E. WarrenEnlisted307912791303279029.55921.491.18F.E. WarrenOfficer222274691357579182.58418.601.56FairchildEnlisted616940943273310356.43928.941.20FalconEnlisted304990699456148124.60491.721.71Grand ForksEnlisted30791210041461301927.60772.251.49HanscomEnlisted30964788142683727.45820.581.30HillEnlisted307700760334354328.35750.321.31HurlburtEnlisted308248943365606627.75885.701.28HurlburtCofficer534040722357113923.06465.711.74	
EdwardsOfficer2238266603875298.80377.621.97F.E. WarrenEnlisted307912791303279029.55921.491.18F.E. WarrenOfficer222274691357579182.58418.601.56FairchildEnlisted616940943273310356.43928.941.20FalconEnlisted304990699456148124.60491.721.71Grand ForksEnlisted30791210041461301927.60772.251.49HanscomEnlisted30964788142683727.45820.581.30HillEnlisted307700760334354328.35750.321.31HurlburtEnlisted308248943365606627.75885.701.28HurlburtOfficer534040722357113923.06465.711.74	
EdwardsOfficer22791303279029.55921.491.18F.E. WarrenOfficer222274691357579182.58418.601.56FairchildEnlisted616940943273310356.43928.941.20FalconEnlisted304990699456148124.60491.721.71Grand ForksEnlisted30791210041461301927.60772.251.49HanscomEnlisted30964788142683727.45820.581.30HillEnlisted307700760334354328.35750.321.31HurlburtEnlisted308248943365606627.75885.701.28HurlburtOfficer534040722357113923.06465.711.74	
F.E. WarrenOfficer 22 2274 691 357 579 182.58 418.60 1.56 FairchildEnlisted 61 6940 943 273 3103 56.43 928.94 1.20 FalconEnlisted 30 4990 699 456 1481 24.60 491.72 1.71 Grand ForksEnlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 HanscomEnlisted 30 9647 881 426 837 27.45 820.58 1.30 HillEnlisted 30 7700 760 334 3543 28.35 750.32 1.31 HurlburtEnlisted 30 8248 943 365 6066 27.75 885.70 1.28 HurlburtOfficer 53 4040 722 357 1139 23.06 465.71 1.74	
Fairchild Enlisted 61 6940 943 273 3103 56.43 928.94 1.20 Fairchild Enlisted 30 4990 699 456 1481 24.60 491.72 1.71 Grand Forks Enlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 Hanscom Enlisted 30 9647 881 426 837 27.45 820.58 1.30 Hill Enlisted 30 7700 760 334 3543 28.35 750.32 1.31 Hurlburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28	
Falcon Enlisted 30 4990 699 456 1481 24.60 491.72 1.71 Grand Forks Enlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 Hanscom Enlisted 30 9647 881 426 837 27.45 820.58 1.30 Hill Enlisted 30 7700 760 334 3543 28.35 750.32 1.31 Hurlburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28 Hurlburt Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Grand Forks Enlisted 30 7912 1004 1461 3019 27.60 772.25 1.49 Hanscom Enlisted 30 9647 881 426 837 27.45 820.58 1.30 Hill Enlisted 30 7700 760 334 3543 28.35 750.32 1.31 Hurlburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28 Hurlburt Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Hanscom Enlisted 30 9647 881 426 837 27.45 820.58 1.30 Hanscom Enlisted 30 9647 881 426 837 27.45 820.58 1.30 Hill Enlisted 30 7700 760 334 3543 28.35 750.32 1.31 Hurlburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28 Hurlburt Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Hailston Enlisted 30 7700 760 334 3543 28.35 750.32 1.31 Huilburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28 Hurlburt Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Hurlburt Enlisted 30 8248 943 365 6066 27.75 885.70 1.28 Hurlburt Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Hundburg Officer 53 4040 722 357 1139 23.06 465.71 1.74	
Kelly Officer 53 3705 691 722 686 0.00 294.71 2.50	
Kirtland Enlisted 30 6270 699 365 2886 28.80 742.26 1.24	
Langley Enlisted 30 6787 852 699 6074 29.10 829.81 1.32	
Langley Officer 53 4375 691 691 1813 0.00 304.70 2.29	1
Langley Enlisted 30 4686 668 1096 547 23.55 463.98 1.61	
Log Angeles Filisted 61 6359 821 273 466 56.43 826.38 1.18	
Los Angeles Officer 22 3979 691 691 855 0.00 315.34 2.37	
MacDill Officer 53 3644 660 660 711 0.00 231.98 2.98	;
Malmstrom Enlisted 30 8401 760 395 2974 29.55 907.69 1.16	,
Malmstrom Officer 22 3217 630 357 533 1.733.46 1.256.30 0.90	,
Mainistrom Officer 22 5211 000 000 000 000 000 000 000 000 000	,
McChord Officer 22 2944 660 722 457 6.05 418.51 1.82	
McChild Child 20 8248 852 1369 3934 29.40 837.23 1.29	,
Minot Enlisted 30 8401 760 334 3836 29.70 891.16 1.14	 }
Moody Enlisted 30 6970 699 487 3379 25.95 565.66 1.54	
Moody Officer 53 2183 538 387 427 0.00 230.43 2.61	
Mt Home Filisted 30 6390 699 730 3675 24.45 542.27 1.61	
Offutt Enlisted 30 7366 912 638 6364 28.95 880.35 1.31	1
Peterson Enlisted 30 8766 821 730 2048 29.25 713.66 1.43	5
Randolph Enlisted 30 6574 943 760 2536 28.35 782.51 1.43	5
Robins Enlisted 30 6817 852 699 3508 25.65 677.21 1.58	3
Scott Eplisted 30 6512 821 699 3708 27.90 737.80 1.44	ł
Shaw Enlisted 30 6848 791 334 4259 29.70 709.77 1.41	l
Tinker Officer 53 3582 722 357 1075 10.87 403.63 1.92	2
Travis Enlisted 30 8888 1034 1126 5882 29.25 906.10 1.36	5
Tyndall Enlisted 30 6359 821 334 2825 26.25 708.88 1.45	5
Tyndall Officer 22 4344 448 204 752 21.23 397.99 1.38	3
USAF Academy Enlisted 30 5235 699 365 1190 28.05 632.00 1.38	3
Vance Enlisted 30 3834 760 699 368 23.10 567.98 1.59)
Vance Officer 22 2487 357 83 689 20.90 361.62 1.25	5
Whiteman Enlisted 30 6300 821 212 2697 27.90 695.62 1.39)
Wright-Patterson Enlisted 30 7305 958 730 2786 25.95 833.20 1.41	l I

BASE	GRADE	MIN	MAX	MEDIAN	MODE	N	LOCATION	SCALE	SHAPE
AFDW (Pentagon)	Enlisted	30	6086	791	730	1455	28.74	1,078.44	1.12
Altus	Enlisted	30	6940	791	181	1654	29.02	1,008.15	1.13
Beale	Enlisted	30	7031	730	699	2772	28.87	982.21	1.09
Buckley	Enlisted	30	4291	668	699	650	25.20	796.99	1.23
Cannon	Enlisted	30	6390	821	334	3109	27.32	1,052.92	1.24
Charleston	Enlisted	30	7335	1034	821	3486	28.82	1,345.79	1.08
Charleston	Officer	53	3918	722	722	560	36.85	831.48	1.66
Columbus	Enlisted	30	5264	791	212	564	26.89	994.48	1.13
Davis-Monthan	Officer	22	2852	691	357	808	74.19	758.30	1.52
Dover	Officer	22	2518	706.5	357	368	1.21	850.77	1.64
Edwards	Enlisted	30	6665	821	334	3063	29.77	1,084.62	1.15
Ellsworth	Enlisted	30	6390	821	303	2590	28.63	1,074.68	1.09
Falcon	Officer	53	3664	599	357	722	47.32	702.89	1.36
Hill	Officer	22	2671	630	357	581	10.46	722.59	1.58
Keesler	Officer	53	6566	722	722	911	47.78	803.30	1.34
Kelly	Enlisted	30	5752	852	730	3224	27.70	1,064.40	1.25
Laughlin	Officer	53	1818	387	357	749	50.74	434.85	1.26
Little Rock	Enlisted	30	7792	1004	699	3579	30.36	1,346.59	1.07
Luke	Officer	22	5105	479	326	704	18.59	600.15	1.23
MacDill	Enlisted	61	5874	699	699	2743	60.91	912.72	1.17
Maxwell	Officer	22	5135	387	326	1463	19.05	670.02	1.31
McClellan	Enlisted	30	6178	912	365	1761	29.21	1,238.17	1.17
Patrick	Enlisted	30	6574	912	699	1189	24.82	1,178.66	1.22
Randolph	Officer	22	4436	569	357	1664	19.21	721.79	1.30
Seymour Johnson	Enlisted	30	6086	912	303	3764	29.86	1,127.98	1.15
Seymour Johnson	Officer	22	3309	660	357	527	11.40	741.62	1.50
Vandenberg	Enlisted	30	7121	730	122	2553	29.79	963.57	0.98
Whiteman	Officer	22	3644	660	357	301	0.18	794.14	1.64

Table 3. Best Fit Distribution Type – Weibull

Temporal Analysis of Time on Station Distributions

A temporal analysis of the time-on-station data obtained from the 1987, 1990, 1995, 1998 and 1999 data sets for Dover AFB, Edwards AFB, Elmendorf AFB (except 1998), Maxwell AFB and Minot AFB was performed to evaluate the differences in the mean time on station for both enlisted and officer personnel. Summary statistics for enlisted and officer personnel for the five data sets are shown in Table 5. Although the mean time on station was highest among the enlisted personnel for the 1990-year group, generally, the mean time on station increased by approximately 125 days (0.343 years) from 1987 through 1999. A similar analysis of the mean time on station for the officer personnel shows the same peak for the 1990 group. However, the mean time on station for officers decreased by approximately 35 days (0.096 years) from 1987 through 1999. Among the five bases, enlisted personnel assigned to Dover AFB had the highest mean time on station (approximately 1350 days, or 3.7 years), and officer personnel assigned to Maxwell AFB had the lowest mean time on station (approximately 539 days, or 1.48 years). Across all year groups for the five bases, enlisted personnel, on average, remained at their assigned duty stations about one year longer than officer personnel assigned to the same stations. For the total population, enlisted personnel, on average, remained at their assigned duty stations approximately 223 days, or 0.61 years longer than their officer counterparts.

BASE	GRADE	MIN	MAX	MEDIAN	MODE	N	ALPHA	BETA	SCALE
AFDW (Pentagon)	Officer	22	5135	722	357	2973	1.97	23.25	10,372.70
Barksdale	Officer	22	4831	722	326	838	1.43	14.40	9,758.62
Columbus	Officer	22	1848	357	357	779	1.32	9.73	3,732.96
Dyess	Enlisted	30	6117	852	365	3962	1.17	12.03	12,356.34
Dyess	Officer	22	4709	691	722	721	1.53	17.26	9,512.18
Eglin	Enlisted	30	6543	912	334	6003	1.17	11.86	13,216.86
Eglin	Officer	22	3644	691	387	1250	2.15	19.68	7,360.88
Ellsworth	Officer	22	2487	691	722	354	1.69	7.16	3,817.55
Fort George Meade	Enlisted	30	6543	699	334	2079	1.23	16.64	13,216.86
Fort George Meade	Officer	53	3279	752	722	250	2.69	15.57	5,459.54
Holloman	Enlisted	30	6817	760	334	3629	1.29	17.76	13,770.34
Holloman	Officer	53	2518	691	691	421	2.21	10.01	3,814.77
Lackland	Officer	22	4770	752	387	1803	1.53	15.01	9,635.40
Luke .	Enlisted	30	6604	760	546	4553	1.34	16.97	13,340.08
Maxwell	Enlisted	61	6270	821	699	1621	1.31	14.78	12,665.40
McConnel	Enlisted	30	6725	912	1522	2144	1.21	13.47	13,584.50
McConnel	Officer	53	2549	752	326	401	1.60	3.76	2,829.39
McGuire	Officer	22	2487	691	326	632	1.41	3.83	2,698.40
Minot	Officer '	53	3279	706.5	722	646	1.78	8.30	4,295.49
Nellis	Enlisted	30	6696	791	365	5322	1.38	17.52	13,525.92
Offutt	Officer	22	5135	752	722	1573	1.89	21.00	10,372.70
Pope	Enlisted	30	6725	791	699	3841	1.18	13.63	13,584.50
Pope	Officer	53	2914	691	691	588	1.81	8.09	3,948.47
Scott	Officer	22	5105	722	357	1849	2.25	17.86	10,312.10
Sheppard	Officer	22	3370	538	722	753	1.94	15.65	5,644.75
Tinker	Enlisted	30	10288	973	334	5335	1.27	20.55	20,781.76
Vandenberg	Officer	22	4556	538	53	754	1.45	20.86	9,203.12

Table 4. Best Fit Distribution Type – Beta

<u> </u>						· · · · ·		r ····		· · · · · · · · · · · · · · · · · · ·	
	1987	1990	1995	1998	1999		1987	1990	1995	1998	1999
Enlisted		D	over AF	' B		Officers	Dover AFB				
Low	1	1	1	30	1	Low	1	1	1	22	1
High	7397	7489	8462	8523	9861	High	5540	5936	4779	2518	2860
Mean	1146	1410	1325	1466	1398	Mean	854	870	645	762	620
Std Dev	1098	1290	1367	1450	1445	Std Dev	884	843	504	476	496
95 th	3410	4090	4626	4809	4656	95 th	2937	2435	1505	1603	1713
Best Fit	Gamma	Exp.	Weibull	Lognorm	Weibull	Best Fit	Exp.	Gamma	Beta	Weibull	Beta
		Ed	wards A	FB			Edwards AFB				
Low	1	1	1	30	1	Low	1	1	1	22	1
High	6909	6574	5 9 97	6665	7030	High	3683	3349	3379	3826	4199
Mean	769	982	945	1061	1025	Mean	801	751	705	753	661
Std Dev	652	814	846	897	906	Std Dev	517	526	559	534	545
95 th	1959	2627	2869	2707	2617	95 th	1592	1735	1880	1833	1642
Best Fit	Weibull	Weibull	Gamma	Weibull	Beta	Best Fit	Extreme	Extreme	Gamma	Gamma	Beta
L		Elm	endorf A	AFB				Elm	endorf A	AFB	
Low	1	1	1	NA	1	Low	1	1	1	NA	1
High	4871	5967	7793	NA	9192	High	3349	3287	3318	NA	2678
Mean	778	1073	969	NA	941	Mean ·	675	760	670	NA	652
Std Dev	539	579	762	NA	770	Std Dev	469	579	516	NA	447
95 th	1888	2680	2454	NA	2586	95 th	1553	1894	1704	NA	1461
Best Fit	Weibull	Beta	Weibull		Beta	Best Fit	Gamma	Beta	Beta		Extreme
		Ma	axwell A	FB				M	axwell A	FB	
Low	1	1	1	61	1	Low	1	1	1	22	1
High	5662	6758	5783	6270	6635	High	5509	4779	4810	5135	5508
Mean	842	1039	937	1031	1033	Mean	462	513	450	637	633
Std Dev	722	872	826	838	893	Std Dev	568	601	530	476	523
95 th	2253	2927	2638	2618	2738	95 th	1543	1645	1461	1483	1491
Best Fit	Beta	Beta	Gamma	Beta	Beta	Best Fit	Extreme	Extreme	Exp.	Weibull	Exp.
		N	linot AF	B				N	linot AF	'B	
Low	1	1	1	30	1	Low	1	1	1	53	1
High	6605	6910	8219	8401	9618	High	3440	3196	4048	3279	2952
Mean	852	1093	879	1046	1017	Mean	674	793	713	759	612
Std Dev	810	931	9 69	1014	1028	Std Dev	482	561	593	492	459
95 th	2434	2877	3106	3088	2937	95 th	1590	1863	1926	1583	1481
Best Fit	Gamma	Weibull	Exp.	Gamma	Exp.	Best Fit	Gamma	Beta	Exp.	Beta	Extreme
maan	977 4	1110	1011	020.8	1092 8	5 Basas	603.2	737 4	642.6	582.2	635.6
Mean	0774 768 7	060 4	876 9	920.0 1033 3	928 0	Pon	680.5	738 9	655.8	746 1	640 A
	, , , , , , , , , , , , , , , , , , , ,	503.4	010.3	,000.0	520.9					740.1	0.00
stđ. dev.	687.8	895.4	743	681.2	790.4	5 Bases	596.4	629.8	547.6	492.2	528.4
Std. Dev.	718.1	876.7	902.5	959.4	937.1	Pop.	543.2	588.6	589.7	539.3	553.8

Table 5. Days on Station Summary Statistics

Analysis of Age, Grade, and Number of Dependents

The assignment data obtained for the 1987, 1990, 1995 and 1999 groups included the date of birth and grade of the enlisted and officer personnel assigned to bases in the CONUS and PACAF. In additional, all data sets included the number of dependents enlisted and officer personnel had in their households at the time the data was obtained. A summary of the average age, grade, and number of dependents for both enlisted and officer personnel contained in the data sets is presented in Table 6. As shown in the table, the average grade and number of dependents for enlisted and officer personnel remained fairly constant from 1987 through 1999. The average grade for enlisted personnel was E4 (Senior Airmen) and the average grade for officers was O3 (Captain). The number of dependents for officers was consistently higher than for enlisted personnel (2.43 vs. 2.13); however, the number of dependents for enlisted personnel peaked in 1998 at 2.31, and generally increased from 1.97 in 1987 to 2.19 in 1999. The age for both enlisted and officer personnel increase between 1987 and 1999. The increase in the average age for officers was less than 1.5 years.

Year Age			Gra	ade	No. of Dependents		
	Enlisted	Officer	Enlisted	Officer	Enlisted	Officer	
1987	27.64	34.08	E4	O3	1.97	2.46	
1990	28.71	34.39	E4	03	2.03	2.42	
1995	29.06	35.1	E4	03	2.16	2.42	
1998	NA	NA	NA	NA	2.31	2.45	
1999	29.32	35.45	E4	03	2.19	2.43	

Table 6. Average Age, Grade, and Number of Dependents

NA - Data Not Available

Probabilistic Risk Estimates

Time-on-station distributions from the 1987, 1990, 1995, 1998, and 1999 data sets for both enlisted and officer personnel assigned to Cannon AFB, New Mexico, were used to estimate human health risk for sample benzene exposure scenarios. Standard EPA default exposure factors for body weight, respiratory/ventilation rates, skin surface area, and water intake rates were used in the risk estimate calculations. However, standard EPA default values for exposure duration were replaced by the time-on-station distributions to assess the effect on probabilistic risk estimates. By running Monte Carlo simulations using Crystal Ball® software, the risk calculations for the following exposure routes were performed: inhalation of indoor air, ingestion of drinking water, and dermal contact with soil. Unit concentrations of 1 mg/m³, 1 mg/L, and 1

are commonly used to establish risk-based cleanup criteria for soil and water. Mean risk estimates derived from these simulations were compared to the mean risk estimates for the same scenarios where standard EPA default exposure duration factors were used instead of the time-on-station distributions. The run preferences selected for the Monte Carlo simulations are shown in Figure C-1, Appendix C. The probabilistic risk estimates obtained from the Monte Carlo simulations are summarized in Table C-1, Appendix C.

Inhalation of indoor air for the sample benzene exposure scenario using standard EPA default values for exposure duration resulted in a mean risk estimate of 7.36×10^{-4} . The mean risk estimate for the same scenario using the time-on-station distribution for enlisted personnel at Cannon AFB, New Mexico ranged from 1.64 X 10⁻⁴ (1987 data) to 2.33 X 10⁻⁴ (1998 data), a factor of 4.49 to 3.16 lower than the EPA estimate. Similar comparisons for the ingestion of drinking water and dermal contact with soil produced factors ranging from 4.69 to 3.39 lower risk, and 4.95 to 3.60 lower risk, respectively, for the enlisted personnel at Cannon AFB. Mean risk estimates for officer personnel assigned to Cannon AFB, compared to standard EPA estimates, were, on average, lower by factors of 5.21, 5.53, and 5.83 for the inhalation of indoor air, ingestion of drinking water, and dermal contact with soil exposure scenarios, respectively. Mean risk estimates for the officers are significantly lower than for the enlisted personnel because their mean time on station is about 30 percent lower. In all example risk estimate calculations, the lower risk estimates for Air Force personnel compared to risk estimates using standard EPA default exposure duration values is directly attributable to their lower exposure duration (i.e., time on station). The sensitivity of the mean risk estimate to the exposure duration is demonstrated in the Crystal Ball reports included in Appendix C.

Mean risk estimates for the sample benzene exposure scenarios were run by using the best fit of the time-on-station data to the distribution gallery provided within the Crystal Ball® software. Mean risk estimates were also calculated using the normal distribution fit from the Crystal Ball® gallery. Across all five year groups for the enlisted and officer personnel assigned to Cannon AFB, New Mexico, mean risk estimates using the normal distribution were higher than the mean risk estimates that were calculated using the best fit (see Table C-1, Appendix C). The difference in the mean risk estimates ranged from an increase of approximately 19 percent to more than 30 percent when the results using the best fit distribution were compared to the results using the normal distribution. Initially, an analysis of this result suggested that the difference in the mean risk estimate is directly proportional to the goodness of fit statistic. This analysis also suggested that the distribution that best fit a given set of data would always provide the lowest mean risk estimate, for a given set of data. However, further analysis indicates that mean risk estimates using the worst fitting distribution may be significantly lower than the mean risk calculated with the best fitting distribution. For example, the mean risk estimate for inhalation of indoor air using the sample benzene exposure scenario is 1.91 X 10⁻⁴ using the best fit of the time-on-station distribution (normal, chi-square = 3,337.98) for officers at the Pentagon in 1999. Using the worst fit of this distribution (Pareto, chi-square = 16,704.04) in the sample benzene exposure scenario produces a mean estimate of 7.35 X 10⁻⁵ for inhalation of indoor air risk. Among the 74 bases identified in the 1999 data set, the time-on-station distribution for enlisted personnel at Sheppard AFB, TX produced the highest chi-square value (24,667.49) for the best fit distribution (beta) in the Crystal Ball® gallery. Within this same data set, the time-on-station distribution for enlisted personnel assigned to Los Angeles AFB, CA produced the lowest chisquare value (23.5) for the best fit distribution (weibull) in the Crystal Ball® gallery. When these distributions were used in the exposure duration assumption cell for the same scenario, the mean risk estimates were 1.22×10^{-4} and 2.28×10^{-4} , respectively (see Figure C-1 and the Crystal Ball reports shown in Appendix C). As expected, this result is more reflective of the mean time-on-station for these distributions (445 days and 985 days, respectively), rather than their goodness of fit statistic. Consequently, the goodness of fit statistic does not appear to be the best indicator of the distribution that should be used in the Crystal Ball® simulation to derive the mean risk estimate.

The time-on-station distributions developed from the Air Force assignment data contain values that can increase to relatively large numbers but cannot fall below zero. The time-on-station values are also positively skewed with most of them near the lower limit. Consequently, these distributions were expected to be lognormal in nature. However, as discussed in Section III above, most of the time-on-station distributions derived from the Air Force assignment data were not lognormal. Despite this unexpected result, additional Monte Carlo simulations were run for the benzene inhalation exposure scenario for both the enlisted and officer personnel assigned to Cannon AFB, New Mexico with the lognormal distribution selected from the Crystal Ball® gallery. The results of this additional analysis produced mean risk estimates for the enlisted personnel that were lower than the mean risk estimates calculated for the normal distribution. Mean risk estimates for the officer personnel were either equal to or lower than the mean risk estimates calculated for the mean risk estimates calculated for the best fit and the normal distributions.

CONCLUSIONS AND RECOMMENDATIONS

Population Mobility

The mobility of military personnel can be reasonably and readily evaluated by analyzing assignment data. Analysis of this data is relatively straight forward using COTS software. Other military population statistics, such as age, grade, and duty specialties can also be readily obtained from assignment data. As demonstrated in this study, military residence time distributions can be extracted from assignment data to support site-specific human health risk estimates at military facilities.

As anticipated at the outset of this study, an analysis of Air Force assignment data shows that the military population is significantly more mobile than the general U.S. population. On average, military (Air Force) personnel relocate every 2 to 3 years, which is significantly more frequent than the 9-year average used by the U.S. EPA to represent the general U.S. population. Moreover, the 95th percentile residence time (i.e., time on station) for military personnel is a factor of 4 or more lower than the 30-year residence time used by the U.S. EPA to calculate reasonable maximum exposure (RME) estimates in human health risk assessments.

Effect of Site-Specific Data on Probabilistic Risk Estimates

The effect of site-specific data on human health risk estimates was evaluated by substituting the time-on-station distribution for enlisted personnel assigned to Cannon AFB, New Mexico for the exposure duration distribution derived from general U.S. population statistics by the U.S. EPA in a series of Monte Carlo (Crystal Ball[®]) simulations. All other exposure factors used in the risk equation (e.g., body weight and respiration rates) to estimate human health risk for an inhalation of indoor air contaminated with benzene exposure scenario were unchanged. The results of the simulation runs, using 1,000 trials, produced mean risk estimates that ranged from 1.64 X 10⁻⁴ (1987 data) to 2.33 X 10⁻⁴ (1998 data). These estimates are a factor of 4.49 to 3.16 lower than the estimate (7.36 X 10⁻⁴) obtained with the exposure duration distribution assumption used by the U.S. EPA. These significantly lower estimates of human health risk were anticipated based upon sensitivity analysis from Monte Carlo (Crystal Ball[®]) simulation runs, which show that exposure duration accounts for over 87 percent of the risk result.

Recommendations for Further Study

Some of the time-on-station distributions derived from the Air Force assignment data did not fit any of the 17 distributions included in the Crystal Ball[®] gallery very well, based upon the chisquare goodness of fit test. Although the fit routine provided with the Crystal Ball[®] software always produced a "best fit" of the time-on-station data to a distribution in the gallery, the relatively large chi-square values calculated for some of the distributions indicated that even the "best fit" was poor. This was particularly true for the time-on-station distributions at the major training centers, such as Keesler AFB, Lackland AFB, and Sheppard AFB. Probabilistic risk estimates derived from distributions that poorly fit the data may significantly over estimate or under estimate the true risk. Consequently, probabilistic risk estimates should be obtained using the most representative distribution for any given set of data. This distribution may not be either the best fit or the worst fit within the Crystal Ball® gallery, based upon a goodness of fit statistic. A more rigorous analysis of the time-on-station distributions derived from the Air Force assignment data by a senior statistician is needed to adequately address this issue. Discussions with technical experts at the U.S. EPA are also needed to select the appropriate distribution for a given set of data when probabilistic risk estimation techniques are employed.

The military (Air Force) residence time distributions derived from the assignment data obtained from HQ AFMC provide a significant step forward in the development of military-specific exposure factors to support site-specific human health risk assessment at military facilities. Other military-specific exposure factors (i.e., body weight, body surface area, inhalation rates, and daily water intake) have also been identified (Lurker, *et al*) for use in estimating human health risk at military installations. However, much work remains to be done to fill the existing data gaps. Military-specific data on food consumption, activity patterns (e.g., time spent outdoors, time spent indoors, time spent gardening, swimming, showering, etc.), life expectancy, work habits (e.g., use of protective gear) and other occupational factors (e.g., military specialty) are also needed. Further review of technical publications available within the military community and additional contacts with interested parties is needed to identify/acquire this information.

REFERENCES

Crystal Ball Version 4.0. Forecasting and Risk Analysis for Spreadsheet Users., Decisioneering Inc., 1988-1996.

EPA. EPA/600/P-95/002F. National Center for Environmental Assessment, Washington, D.C., 1997.

Microsoft Access97 Introductory Concepts and Techniques, Shelly, Cashman and Pratt, 1997.

United States Air Force Research Laboratory Technical Report. AFRL-HE-WP-TR-1998-0127, Military-Specific Exposure Factors Study. Operational Technologies Corporation. Peter A. Lurker, *et al.*, September 1998.

User's Guide for Microsoft Excel, Version 5.0. Microsoft Corporation, 1993-1994

User's Guide for Microsoft Access, Version 2.0. Relational Database Management Systems for Windows. Microsoft Corporation, 1994.

APPENDIX A

Air Force Officer and Enlisted Personnel Time on Station Distributions, Summary Statistics, And Dependent Age Distributions For Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB 1999 Data Figure A-1: Time on Station (Days) Distribution - July 1999 Dover AFB

٩.

Figure A-3: Time on Station (Days) Distribution - July 1999 Elmendorf AFB

.`

5

Figure A-4: Time on Station (Days) Distribution - July 1999 Maxwell AFB

٤

Figure A-5: Time on Station (Days) Distribution - July 1999 Minot AFB

26

!

z

Figure A-6: Officers and Enlisted Dependents Age Distribution - July 1999

Figure A-7: Officers and Enlisted Dependents Age Distribution - July 1999

Figure A-8: Officers and Enlisted Dependents Age Distribution - July 1999

ŕ

able A-1:	Dover AF	B Summary Stati	stics	Table A-2:	Edwards A]	FB Summary Sta	itistics
Enlis	ted	Dover Offi	cers	Edwards Er	listed	Edwards Of	fficers
	1398.443	Mean	620.200	Mean	1024.562	Mean	660.599
	24.539	Standard Error	24.463	Standard Error	16.605	Standard Error	23.213
	911	Median	487	Median	161	Median	546
	334	Mode	365	Mode	365	Mode	395
atio	1445.299	Standard Deviatio	495.940	Standard Deviatio	905.863	Standard Deviatio	544.891
ice 2(88889.564	Sample Variance	245956.287	Sample Variance	820587.250	Sample Variance	296906.710
	4.232	Kurtosis	1.141	Kurtosis	6.380	Kurtosis	6.686
	1.974	Skewness	1.115	Skewness	1.969	Skewness	1.913
	9860	Range	2859	Range	7029	Range	4198
	1	Minimum	1	Minimum	1	Minimum	1
	9861	Maximum	2860	Maximum	7030	Maximum	4199
	4851199	Sum	254902	Sum	3049097	Sum	363990
	3469	Count	411	Count	2976	Count	551
-3: El	mendorf A	AFB Summary St	atistics	Table A-4:	Maxwell A	FB Summary Sta	atistics
orf En	listed	Elmendorf O	fficers	Maxwell Er	nlisted	Maxwell O	fficers
	941.275	Mean	651.999	Mean	1032.705	Mean	633.107
L	9.966	Standard Error	15.369	Standard Error	21.981	Standard Error	15.651
	730	Median	638	Median	821	Median	456
	334	Mode	730	Mode	334	Mode	334

Maxwell Enlis			2,0
	sted	Maxwell U	tticers
	1032.705	Mean	633.107
rd Error	21.981	Standard Error	15.651
c	821	Median	456
	334	Mode	334
rrd Deviatio	892.882	Standard Deviatio	522.849
e Variance 7	97238.619	Sample Variance	273371.276
sis	5.517	Kurtosis	11.238
less	1.885	Skewness	2.164
	6634	Range	5507
unu	-	Minimum	1
um	6635	Maximum	5508
	1703963	Sum	706547
	1650	Count	1116

I auto M-J.		C S INTITUTION CT IN	concine
Elmendorf I	Enlisted	Elmendorf C	Officers
Mean	941.275	Mean	651.999
Standard Error	9.966	Standard Error	15.369
Median	730	Median	638
Mode	334	Mode	730
Standard Deviatio	770.332	Standard Deviatio	446.763
Sample Variance	593411.658	Sample Variance	199597.568
Kurtosis	4.823	Kurtosis	1.277
Skewness	1.595	Skewness	0.919
Range	1616	Range	2677
Minimum	1	Minimum	1
Maximum	9192	Maximum	2678
Sum	5624120	Sum	550939
Count	5975	Count	845

Table A-	5: Minot AF	B Summary Stat	istics
Minot En	listed	Minot Off	icers
Mean	1017.272	Mean	612.013
Standard Error	16.122	Standard Error	17.777
Median	669	Median	515
Mode	365	Mode	365
Standard Deviatio	1028.280	Standard Deviation	459.110
Sample Variance	1057359.304	Sample Variance	210782.326
Kurtosis	8.553	Kurtosis	1.492
Skewness	2.410	Skewness	1.086
Range	9617	Range	2951
Minimum	1	Minimum	1
Maximum	9618	Maximum	2952
Sum	4138261	Sum	408213
Count	4068	Count	667

Statistics	
Summary	
AFB	
Minot	
e A-5:	
—	

ť,

Table A-6: Time on Station (Days) Summaries

	1999		7030	1025	906	2617		4199	661	545	1642	1	23	8.9	5.3	19
FB	1998	30	6665	1061	897	2707	22	3826	753	534	1833	0.5	24.5	9.1	5.4	19
vards A]	1995	1	5997	945	846	2869		3379	705	559	1880	1	24	8.7	5.3	19
Edv	1990	1	6574	982	814	2627	1	3349	751	526	1735	3	23	10.2	5	20
	1987		6069	769	652	1959	1	3683	801	517	1592	1	23	6	5.1	19
,	1999		9861	1398	1445	4656	1	2860	620	496	1713	1	30	9.7	5.7	20
B	1998	30	8523	1466	1450	4809	22	2518	762	476	1603	0.5	28.5	9.5	5.6	20
over AF	1995	1	8462	1325	1367	4626	1	4779	645	504	1505	1	28	9.2	5.4	20
Ď	1990	1	7489	1410	1290	4090	1	5936	870	843	2435	1	24	6	5.5	20
	1987	1	7397	1146	1098	3410	1	5540	854	884	2937	1	25	9.1	5.5	19
		Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	95 th
		н	c —	s 1.	ن ب	p	0	دير د <u>ير</u>	v	ъг	s	D	o C.	•	Ч 90	٥ ا

32

J

Table A-6: Time on Station (Days) Summaries (Cont.)

ŧ,

	<u></u>		Elm	andorf /	AFR	Ì		Ma	xwell A	FB	
		1087	1000	1005		1990	1987	1990	1995	1998	1999
ш	Low	1	1	1	NA	1	1	1	1	61	1
a –	High	4871	5967	7793	NA	9192	5662	6758	5783	6270	6635
s 1.	Mean	778	1073	696	NA	941	842	1039	937	1031	1033
G 11	Std Dev	539	579	762	NA	770	722	872	826	838	893
q	95 th	1888	2680	2454	ΥN	2586	2253	2927	2638	2618	2738
			10 1 1 1 1 1 1 1 1 1 1								
0	Low	-	1	1	NA	1	1	1	1	22	1
نب نب	High	3349	3287	3318	NA	2678	5509	4779	4810	5135	5508
د <u>۱</u> ۰	Mean	675	760	670	NA	652	462	513	450	637	633
e r	Std Dev	469	579	516	ΥΥ	447	568	601	530	476	523
s	95 th	1553	1894	1704	NA	1461	1543	1645	1461	1483	1491
D	Low	1	1	1	NA	1	1	1	1	0.5	1
9 Q	High	28	84	31	NA	24	24	25	27	28.5	28
•	Mean	8.8	9.7	8.8	NA	9.3	10.6	11	10.1	9.4	10.7
4 a	Std Dev	5.4	5.6	5.3	NA	5.2	5.5	5.5	5.4	5.5	5.8
0	95 th	19	20	19	NA	19	20.5	21	20	20	21.5

		-	able A-c		UII DIALIO	un (uays	2
			V	linot AF	B		
		1987	1990	1995	1998	1999	
ы	Low	1	1	1	30	1	
c –	High	6605	6910	8219	8401	9618	
·- v	Mean	852	1093	879	1046	1017	
6 4	Std Dev	810	931	969	1014	1028	
q	95 th	2434	2877	3106	3088	2937	
0	Low	1	1		53	1	
د. د.	High	3440	3196	4048	3279	2952	
.– ა	Mean	674	793	713	759	612	
0 L	Std Dev	482	561	593	492	459	
S	95 th	1590	1863	1926	1583	1481	
D	Low	1	1	1	0.5	1	
9 G	High	24	24	27	27.5	29	
•	Mean	8.4	8.7	8.6	6	9.5	
A 90	Std Dev	5.3	5.4	5.4	5.6	5.6	
ຍ	95 th	18.6	19	19	19.6	20	

J

Table A-6: Time on Station (Days) Summaries (Cont.)

APPENDIX B

٤

Summary Statistics Time on Station (Days) Officers and Enlisted Personnel 1999

	M-C	-	1000	1094	956	2891	1	1682	678	504	1734	NSCM	-	5939	1601	948	3021	1	1960	710	568	1516
	JS I											S IIA							7			
	CLMBL	1	4898	785	726	2160	1	2221	415	339	1098	GDFK	-	11322	1083	1027	2922		2617	745	543	1758
	CHRLST	1	7700	1280	1210	3774	 1	2830	675	512	1594	GDFLW		6300	641	726	2007	-	2221	287	324	915
	CANNON	-	7427	861	787	2494	1	2191	525	369	1197	FT. G-M		8069	847	802	2372	-	3652	692	543	1633
ies	BUCKLY	-	3743	705	547	1819	1	1611	581	364	1241	FE WRN		8277	1074	1090	3348		2282	633	454	1492
ummar	BROOKS	1	6574	1027	1025	3074	1	5508	835	835	2418	FAIRCHL	1	7305	1176	1037	3164		3743	807	620	1861
tion St	BOLLING	1	10165	1189	1535	4717	1	2464	579	465	1482	ELMDRF	1	9192	941	770	2586		2678	652	447	1461
on Sta	BEALE	-	5905	913	836	2556		4564	661	608	1714	ELSWTH	1	8916	1027	970	2891	П	2556	638	485	1654
. Time	BARKS		7182	1070	941	2799	1	5204	863	742	2494	EIELSON	1	5752	869	726	2504	1	2160	545	406	1246
ble B-1	ANDRWS		8551	1255	1135	3560	1	6482	810	733	2168	EGLIN	1	8065	1132	1024	3164	1	2952	656	458	1479
Tab	ANDRSN	1	3833	478	408	1254	1	1461	334	245	750	EDWDS	1	7030	1025	906	2617	1	4199	661	545	1642
	ALTUS	1	7305	606	629	2453	1	3925	636	509	1727	DYESS	1	6178	1049	944	2891	1	5082	686	583	1795
	AFDW	1	6451	1050	906	2944	1	5447	678	563	1801	DOVER	1	9861	1398	1445	4656	1	2860	620	496	1693
		Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	95 th		Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	95 th
		Э	c — -	- s	t U	q	0 '		- u	د ۲	S S		ше	: :	- s	ب ب (סינ	0 4		- J	ບ່	L S

ł

τ 2 Ē . ٢

Table B-1. Time on Station Summaries (Cont.)

LTLRK	1	7851	1234	1220	3955		1	4321	723	531	1719	
LUGHL	-	4898	713	586	1748		1	2191	428	349	1117	
LNGLY	-	7152	1039	973	3044		1	4748	607	489	1467	
LCKLND	1	9799	762	928	2525		1	5143	799	697	2191	
KUNSN	1	5660	222	218	410		1	515	167	138	380	
KRTLD	1	6635	965	878	2738		1	6755	710	582	1703	
KELLY	1	5782	963	833	2533		1	4078	649	505	1506	
KESLER	1	11230	655	871	2380	Production Service and Constraints and the service and the ser	1	6939	714	590	1591	
KDENA	1	7608	768	589	1895		1	1826	524	347	1148	
HRBTF	1	7517	1116	1008	3134		1	4413	769	645	2150	
HOLMN	1	9404	888	783	2372		1	2556	585	441	1375	
HILL	1	8065	096	906	2738		-	3044	574	430	1308	
HICKAM	1	7517	850	702	2129		1	2525	552	395	1217	
	Low	High	Mean	Std Dev	95 th		Low	High	Mean	Std Dev	95 th	
,	ы	e —	~ v	• •	ס (0	ليس ليس	ن	U F	- ~	

-							 				
	MTHME	1	6755	885	741	2448	1	1552	551	369	1136
	MOODY	1	7335	879	746	2413	1	2464	554	402	1198
	MISAW	1	3955	718	540	1836	1	2191	533	345	1104
	MINOT	1	9618	1017	1028	2937	1	2952	612	459	1481
	MCGUR	1	10773	1111	1042	2952	1	2464	682	524	1724
	MCCNL	1	7090	1051	923	2632	1	2922	735	579	1851
	MCLLN	1	7517	1152	973	3013	-	3590	785	460	1495
	MCHRD	1	9496	1086	1051	2983	-	3317	705	569	1782
	MAXWL	1	6635	1033.	893	2738	-	5508	633	523	1491
	MLSTM	1	9799	1067	1078	3164	-	3590	628	454	1448
	MCDIL	1	8126	929	767	2500	1	4017	633	467	1349
	LUKE	1	7639	954	831	2413	1	5478	537	464	1338
	LA	1	4291	985	812	2459	-	3682	671	475	1481
		Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	05 th
		щ	a —	<u>ه</u>	т (ד נ	0	ب ب	U	Û L	- v

	-
nt.)	
es (Co	
ımmari	
tion Su	
on Sta	
l. Time	
ble B-1	
Ta	

		NELLIS	OFFUTT	OSAN	PATRK	PTRSN	POPE	RNDLPH	ROBINS	SCHRVR	SCOTT	SEYJHN	SHAW	SHPRD
ы	Low	1	1	1	1	1	1	1	1	1	1	-1	-	1
c –	High	11048	7731	4898	6939	9131	10653	6939	7182	3986	6877	6451	6300	9343
s 1.	Mean	996	1141	257	933	1025	1040	1095	1038	741	1029	1047	960	445
ن ب 	Std Dev	833	1067	293	853	954	968	942	938	625	948	977	893	679
q	95 th	2479	3271	668	2510	2662	2799	2860	2769	2028	2830	3111	2678	1907
					-									
0 '	Low	1	1	1	1	1	1	1	1	-			1	-
i	High	3103	3986	2252	2830	5539	2191	4595	4168	4017	5478	2952	4686	2525
u	Mean	604	755	251	658	674	578	582	652	642	692	600	580	573
ی ب	Std Dev	425	605	222	520	560	461	524	544	474	531	473	468	434
s s	95 th	1369	1869	693	1645	1657	1526	1542	1491	1488	1522	1480	1430	1418
		TINKER	TRAVIS	TYNDL	USAFAC	VANCE	VNDBR	WHTMN	d-W	YKOTA				
ш	Low	1	1	1	1	1		1		1				
c –	High	7335	10165	6239	11260	4108	7486	6665	7366	6969				

YKOTA	1	6969	803	654	2206	1	2586	552	389	1167
W-P	1	7366	1146	1015	3115	1	6209	767	649	1887
WHTMN	1	6665	949	800	2418	1	2191	655	498	1611
VNDBR	1	7486	925	1009	2799	1	4929	480	475	1201
VANCE	1	4108	842	743	2351	1	2586	409	375	1196
USAFAC	1	11260	776	744	2184		9861	634	899	2201
TYNDL	1	6239	977	843	2647	-	4717	507	453	1396
TRAVIS	1	10165	1228	1139	3393	-	5447	747	660	1811
TINKER	1	7335	1611	1052	3287	1	3560	672	533	1693
	Low	High	Mean	Std Dev	95 th	Low	High	Mean	Std Dev	θς th
	Э	c —	·- v	ن ب	סי ו	0	ايت ايت	. <u> </u>	ຍ -	

List of Abbreviations Used in Table B-1

÷,

LUKE MCDIL

MLSTM MAXWL MacDill Air Force Base Malmstrom Air Force Base

Maxwell Air Force Base

AFDW	Air Force Department in Washington, D.C.	MCHRD	McChord Air Force Base
ALTUS	Altus Air Force Base	MCLLN	McClellan Air Force Base
ANDRSN	Andersen Air Force Base	MCCNL	McConnell Air Force Base
ANDRWS	Andrews Air Force Base	MCGUR	McGuire Air Force Base
BARKS	Barksdale Air Force Base	MINOT	Minot Air Force Base
BEALE	Beale Air Force Base	MISAW	Misawa Air Force Base
BOLLING	Bolling Air Force Base	MOODY	Moody Air Force Base
BROOKS	Brooks Air Force Base	MTHME	Mt. Home Air Force Base
BUCKLY	Buckley Air Force Base	NELLIS	Nellis Air Force Base
CANNON	Cannon Air Force Base	OFFUTT	Offutt Air Force Base
CHRLST	Charleston Air Force Base	OSAN	Osan Air Force Base
CLMBUS	Colombus Air Force Base	PATRK	Patrick Air Force Base
D-M .	Davis Monthan Air Force Base	PTRSN	Peterson Air Force Base
DOVER	Dover Air Force Base	POPE	Pope Air Force Base
DYESS	Dyess Air Force Base	RNDLPH	Randolph Air Force Base
EDWDS	Edwards Air Force Base	ROBINS	Robins Air Force Base
EGLIN	Eglin Air Force Base	SCHRVR	Schriever Air Force Base
EIELSON	Eielson Air Force Base	SCOTT	Scott Air Force Base
ELSWTH	Ellsworth Air Force Base	SEYJHN	Seymour Johnson Air Force Base
ELMDRF	Elmendorf Air Force Base	SHAW	Shaw Air Force Base
FAIRCHL	Fairchild Air Force Base	SHPRD	Sheppard Air Force Base
FE WRN	Francis E. Warren Air Force Base	TINKER	Tinker Air Force Base
FT. G-M	Fort George Meade	TRAVIS	Travis Air Force Base
GDFLW	Goodfellow Air Force Base	TYNDL	Tyndall Air Force Base
GDFKS	Grand Forks Air Force Base	USAFAC	USAF Academy
HANSCM	Hanscom Air Force Base	VANCE	Vance Air Force Base
HICKAM	Hickam Air Force Base	VNDBR	Vandenberg Air Force Base
HILL	Hill Air Force Base	WHTMN	Whiteman Air Force Base
HOLMN	Holloman Air Force Base	W-P	Wright-Patterson Air Force Base
HRBTF	Hurlburt Field	YKOTA	Yokota Air Force Base
KDENA	Kadena Air Force Base		
KESLER	Keesler Air Force Base		
KELLY	Kelly Air Force Base		
KRTLD	Kirtland Air Force Base	-	
KUNSN	Kunsan Air Force Base		
LCKLND	Lackland Air Force Base		
LNGLY	Langley Air Force Base		
LUGHL	Laughlin Air Force Base		
LTLRK	Little Rock Air Force Base		
LA	Los Angles Air Force Base		
LUKE	Luke Air Force Base		

·

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

Probabilistic Risk Estimates – Cannon AFB, NM Mean Risk Estimates for Benzene Exposure Scenarios For 1987, 1990, 1995, 1998, and 1999 Time-on-station Distributions

> Frequency Chart for: Dermal Contact With Soil

Crystal Ball Reports Inhalation of Indoor Air Risk (Cannon AFB Enl) Groundwater Ingestion Risk (Cannon AFB Enl) Dermal Contact With Soil Risk (Cannon AFB Enl) Benzene Inhal. Risk-Sheppard Enl. (worst fit) Benzene Inhal. Risk-Los Angeles Enl. (best fit) Figure C-1: Crystal Ball Run Preferences

	Irials	Speed Dptions	~	<u>Trials</u> <u>Speed</u> <u>M</u> acros	\$] >
Run Preferences	Bandom Nimher Generation	Iv Use Same Sequence of Aandom Numbe Initial Seed Value: Sampling Method Iv Monte Carlo Iv Monte Size for Correlation and Latin Hypercube:	Run Preferences	Run Options V Sensitivity <u>Analysis</u> T Turn Off Correlations T <u>B</u> etain Unsorted Trials Reset Assumption Cells © Original <u>V</u> alues C <u>E</u> stimated Means	
×	i ang Sila Maria Sila Sila	<u>Sampling</u> Spee <u>d</u> <u>M</u> acros Options	<u> </u>	Irials Sampling Macros Options	< <u> </u>
Run Preferences	и и с ааааа с аааааа с аааааа	Maximum Number of Trials: [1000] Stopping Criteria [7] Stop on Calculation <u>Error</u> [7] Stop <u>W</u> hen Mean Std. Errors are Less Than: 0.00	Run Preferences	Burst Mode V Use Burst Mode When Able Burst Amount: Minimize While Running © Nothing C <u>A</u> II Spreadsheets (faster) C Microsoft <u>Excel</u> (fastest)	C Suppress Eorecast Windows

Probabilistic Risk Estimates, Cannon AFB, NM Table C-1

Exposure Duration (time on station - days) Mean Risk Estimates - Benzene Exposure Scenario

Z	SO	Minimum	Maximum	Mean	000. 000.						1
	3556	-	4567	729	9 578	3 1.64E-04	2.01E-04	1.54E-05	1.85E-05	7.11E-08	8.50E-08
	418	-	2038	59;	3 412	2 1.39E-04	1.55E-04	1.28E-05	1.43E-05	5.90E-08	6.61E-08
	3744	-	4748	80	5 749	9 2.00E-04	2.44E-04	1.84E-05	2.21E-05	8.48E-08	1.01E-07
	463	~~	2222	56(3 452	2 1.16E-04	1.57E-04	1.08E-05	1.43E-05	5.07E-08	6.60E-08
	4568	£	6452	84(5 719	9 1.93E-04	2.44E-04	1.78E-05	2.23E-05	8.16E-08	1.02E-07
	477	~	3591	75	1 522	2 1.73E-04	1.96E-04	1.61E-05	1.81E-05	7.32E-08	8.37E-08
	3109	30	6390	101	0 80(0 2.33E-04	2.82E-04	2.13E-05	2.60E-05	9.77E-08	1.17E-07
	354	53	2822	67	5 41(0 1.57E-04	1.72E-04	1.44E-05	1.59E-05	6.71E-08	7.34E-08
	2893	· ·	7427	86	1 78	7 1.99E-04	2.59E-04	1.81E-05	2.35E-05	8.29E-08	1.07E-07
	297	Ţ	2191	25	5 36	9 1.22E-04	1.38E-04	1.12E-05	1.27E-05	5.20E-08	5.88E-08

Gwl - Groundwater Ingestion IoIA - Inhalation of Indoor Air

3.52E-07

7.22E-05

7.36E-04

EPA Risk Estimate with Standard Default Exposure Factors

DCS - Dermal Contact with Soil

Norm - Normal Distribution Fit w/in Crystal Ball Distribution Gallery NOS - Number of Personnel Assigned on Station Best - Best Fit w/in Crystal Ball Distribution Gallery

Figure C-2

Dermal Contact With Soil Risk, Benzene Exposure Scenario Using Standard EPA Default Exposure Factors Except with Time-on-Station Distribution for Cannon AFB Enlisted and Officer Personnel, 1987

Crystal Ball Report Simulation started on 10/7/99 at 11:37:03 Simulation stopped on 10/7/99 at 11:37:21

Forecast: Inhalation of Indoor Air - Cannon AFB (E

Summary:

Display Range is from 0.00E+0 to 8.00E-4
Entire Range is from 3.65E-6 to 1.77E-3
After 1,000 Trials, the Std. Error of the Mean is 6.72E-6

Statistics:	<u>Value</u>
Trids	1000
Mean	2.26E-04
Median	1.59E-04
Mode	
Standard Deviation	2.12E-04
Variance	4.51E-08
Skewness	2.20E+00
<u>Kurtosis</u>	1.04E+01
Coeff. of Variability	9.38E-01
Range Minimum	3.65E-06
Range Maximum	1.77E-03
Range Width	1.76E-03
Mean Std. Error	6.72E-06

Forecast: Inhatation of Indoor Air - Cannon AFB (E (cont'd)

Percentiles:

<u>Percentile</u>	Value
0.0%	3.65E-06
2.5%	1.64E-05
5.0%	2.33E-05
50.0%	1.59E-04
95.0%	6.32E-04
97.5%	7.99E-04
100.0%	1.77E-03

End of Forecast

Cell: C23

Assumptions

Assumption	: Boay weigh	11 (Kg) - EPA adult	males
Logna	rmd distributi	ion with parameter	s:

Mean	78.50
Standard Dev.	13.50

Selected range is from 0.00 to +Infinity Mean value in simulation was 78.21

Assumption: Inhototion rate indoor (m^3/day) (EPA)

Lognarmal distribution with parameters:	
Mean	16.15
Standard Dev.	6.26

Selected range is from 5.40 to 64.95 Mean value in simulation was 16.15

Assumption: Exposure Duration (yr)

Weibull distribution with	h parameters:
Location	27.32
Scale	1,052.92
Shape	1.236289091

Selected range is from 27.32 to 6,390.00 Mean value in simulation was 994.10

Assumption: A4

Weibull distribution with	n parameters:
Location	27.32
Scale	1,052.92
Shape	1.236289091

Selected range is from 27.32 to 6,390.00 Mean value in simulation was 1,013.13

End of Assumptions

(inhai-epa.XLS)Sheet1 - Cell: C11

(inhal-epa.XLS)Sheet1 - Cell: C9

(CANNON.XLS)Sheet1 - Cell: A4

Crystal Ball Report Simulation started on 10/7/99 at 11:42:25 Simulation stopped on 10/7/99 at 11:42:43

Summary:	
----------	--

Display Range is from 0.00E+0 to 7.00E-5 unitless Entire Range is from 3.64E-7 to 1.13E-4 unitless After 1,000 Trials, the Std. Error of the Mean is 5.75E-7

Statistics:	Value
Trids	1000
Mean	2.14E-05
Median	1.64E-05
Mode	
Standard Deviation	1.82E-05
Variance	3.31E-10
Skewness	1.62E+00
Kurtosis	6.19E+00
Coeff. of Variability	8.51E-01
Range Minimum	3.64E-07
Range Maximum	1.13E-04
Range Width	1.13E-04
Mean Std. Error	5.75E-07

Percentiles:

<u>Percentile</u>	<u>unitless</u>
<u>,</u> 0.0%	3.64E-07
[°] 2.5%	1.78E-06
5.0%	2.37E-06
50.0%	1.64E-05
95.0%	5.74E-05
97.5%	7.10E-05
100.0%	1.13E-04

End of Forecast

Cell: C23

<u>Assumptions</u>

Assumption: Body Weight (kg) - (EPA adult)

Lognormal distribution with parameters:	
Mean	78.50
Standard Dev.	13.50

Selected range is from 0.00 to +Infinity Mean value in simulation was 78.22

Assumption: Ingestion Rate of Water (I/day) - Milita

Normal distribution with parameters:	
Mean	1.50
Standard Dev.	0.30

Selected range is from -Infinity to +Infinity Mean value in simulation was 1.50

Assumption: Exposure Duration (yr)

	Weibull distribution	with parameters:
·	Location	27.32
	Scale	1,052.92
	Shape	1.236289091

Selected range is from 27.32 to 6,390.00 Mean value in simulation was 1,003.91

Assumption: A4

Weibull distribution with parameters:			
Location	27.32		
Scale	1,052.92		
Shape	1.236289091		

1

Selected range is from 27.32 to 6,390.00 Mean value in simulation was 1,009.29

End of Assumptions

(GW-EPA.XLS)Sheet1 - Cell: C8

(GW-EPA.XLS)Sheet1 - Cell: C11

(GW-EPA.XLS)Sheet1 - Cell: C9

(CANNON.XLS)Sheet1 - Cell: A4

Crystal Ball Report Simulation started on 10/7/99 at 11:45:35 Simulation stopped on 10/7/99 at 11:45:54

Summary:
Display Range is from 0.00E+0 to 3.50E-7 unitless
Entire Range is from 2.34E-9 to 5.32E-7 unitless
After 1,000 Trials, the Std. Error of the Mean is 2.71E-9

Statistics:	Value
Trids	1000
Mean	1.03E-07
Median	7.91E-08
Mode .	
Standard Deviation	8.56E-08
Varianœ	7.34E-15
Skewness	1.44E+00
Kurtosis	5.19E+00
Coeff. of Variability	8.34E-01
Range Minimum	2.34E-09
Range Maximum	5.32E-07
Range Width	5.30E-07
Mean Std. Error	2.71E-09

Forecast: Dermal Contact With Skin - Cannon (E) (cont'd)

Percentiles:

<u>Perœntile</u>	<u>unitless</u>
· 0.0%	2.34E-09
2.5%	* 7.77E-09
5.0%	1.16E-08
50.0%	7.91E-08
95.0%	2.89E-07
97.5%	3.24E-07
100.0%	5.32E-07

End of Forecast

Cell: C23

Assumptions

Assumption: Body Weight (kg) - (EPA adult)			(DERM.XLS)
Lognormal distribution with parameters:	:		Body Weight (hg) - (EPA adel)
Mean	78.50		
Standard Dev.	13.50		
Selected range is from 0.00 to +Infinity Mean value in simulation was 78.07			4E36 8705 8774 4042
Correlated with: Skin Surface Area (cm^2) - EPA (C	11)	0.95	
Assumption: Skin Surface Area (cm^2) - EPA	A		(DERM.XLS)SI
Custom distribution with parameters:			Rela
Continuous range	0.42	to	0.44 (
Continuous range	0.44	to	0.49 (
Continuous range	0.49	to	0.54 (
Continuous range	0.54	to	0.57 (
Total Relative Probability			. (
Mean value in simulation was 0.49			
Correlated with:			
Body Weight (kg) - (EPA adult) (C8))	0.95	
Skin Bert	400 Arms (201*2)- 5P		
Assumption: Exposure Duration (yr)			(DERM.XLS)
Weibull distribution with parameters:			
Location	27.32		
Scale 1,	052.92		
Shape 1.2362	289091		
Selected range is from 27.32 to 6,390.00	D		

Assumption: Exposure Duration (yr) (cont'd)

Mean value in simulation was 1,027.36

Sheet1 - Cell: C8

heet1 - Cell: C11

Relative Prob.		
0.44	0.100000	
0.49	0.350000	
0.54	0.350000	
0.57	0.100000	
	0.900000	

Sheet1 - Cell: C9

(DERM.XLS)Sheet1 - Cell: C9

(CANNON.XLS)Sheet1 - Cell: A4

۶

Assumption: A4

Weibull distribution with	n parameters:
Location	27.32
Scale	1,052.92
Shape	1.236289091

Selected range is from 27.32 to 6,390.00 Mean value in simulation was 1,011.32

End of Assumptions

Figure C-6

Benzene Indoor Inhalation Risk Estimate Simulation Worst "Best Fit" vs. Best "Best Fit" of Time-on-Station Distribution Trials

Best "Best Fit"

Crystal Ball Report

Simulation started on 12/28/99 at 11:02:51 Simulation stopped on 12/28/99 at 11:02:58

Forecast: Benzene Inhal. Risk-Sheppard Enl.

Cell: C23

Summary:

Display Range is from 0.00E+0 to 7.00E-4 unitless Entire Range is from 5.71E-8 to 1.49E-3 unitless After 1,000 Trids, the Std. Error of the Mean is 6.05E-6

Statistics:	<u>Value</u>
Trids	1000
Mean	1.22E-04
Median	4.88E-05
Mode	
Standard Deviation	1.91E-04
Variance	3.66E-08
Skewness	2.99E+00
Kurtosis	1.41E+01
Coeff. of Variability	1.56E+00
Range Minimum	5.71E-08
Range Maximum	1.50E-03
Range Width	1.50E-03
Mean Std. Error	6.05E-06

Percentiles:

<u>Percentile</u>	<u>unitless</u>
0.0%	5.71E-08
2.5%	3.57E-07
5.0%	8.37E-07
50.0%	4.88E-05
95.0%	4.95E-04
97.5%	7.52E-04
100.0%	1.50E-03

Frequency Counts:

Frequency:					
	<u>Group</u>	<u>Start Value</u>	End Value	Prob.	Freq.
•		-Infinity	0.00E+00	0.000000	0
	1	0.00E+00	7.00E-06	0.222000	222
	2	7.00E-06	1.40E-05	0.078000	78
	3	1.40E-05	2.10E-05	0.051000	51
	4	2.10E-05	2.80E-05	0.037000	37
	5	2.80E-05	3.50E-05	0.041000	41
	6	3.50E-05	4.20E-05	0.039000	39
	7	4.20E-05	4.90E-05	0.033000	33
	8	4.90E-05	5.60E-05	0.028000	28
	9	5.60E-05	6.30E-05	0.023000	23
	10	6.30E-05	7.00E-05	0.019000	19
	11	7.00E-05	7.70E-05	0.024000	24
	12	7.70E-05	8.40E-05	0.020000	20
	13	8.40E-05	9.10E-05	0.020000	20
	14	9.10E-05	9.80E-05	0.022000	22
	15	9.80E-05	1.05E-04	0.014000	14
	16	1.05E-04	1.12E-04	0.017000	17
	17	1.12E-04	1.19E-04	0.011000	11
	18	1.19E-04	1.26E-04	0.006000	6
	19	1.26E-04	1.33E-04	0.013000	13
	20	1.33E-04	1.40E-04	0.012000	12
	21	1.40E-04	1.47E-04	0.015000	15
	22	1.47E-04	1.54E-04	0.014000	14
	23	1.54E-04	1.61E-04	0.012000	12
	24	1.61E-04	1.68E-04	0.011000	11
	25	1.68E-04	1.75E-04	0.008000	8
	26	1.75E-04	1.82E-04	0.008000	8
	27	1.82E-04	1.89E-04	0.003000	3
	28	1.89E-04	1.96E-04	0.008000	8

r

<u>Group</u>	<u>Start Value</u>	End Value	Prob.	<u>Freq.</u>
29	1.96E-04	2.03E-04	0.001000	1
30	2.03E-04	2.10E-04	0.005000	5
31	2.10E-04	2.17E-04	0.009000	9
32	2.17E-∕04	2.24E-04	0.002000	2
33	2.24E-04	2.31E-04	0.008000	8
34	2.31E-04	2.38E-04	0.012000	12
35	2.38E-04	2.45E-04	0.003000	3
36	2.45E-04	2.52E-04	0.011000	11
37	2.52E-04	2.59E-04	0.005000	5
38	2.59E-04	2.66E-04	0.005000	5
39	2.66E-04	2.73E-04	0.004000	4
40	2.73E-04	2.80E-04	0.002000	2
41	2.80E-04	2.87E-04	0.004000	4
42	2.87E-04	2.94E-04	0.002000	2
43	2.94E-04	3.01E-04	0.006000	6
44	3.01E-04	3.08E-04	0.003000	3
45	3.08E-04	3.15E-04	0.008000	8
46	3.15E-04	3.22E-04	0.002000	2
47	3.22E-04	3.29E-04	0.003000	3
48	3.29E-04	3.36E-04	0.001000	1
49	3.36E-04	3.43E-04	0.003000	3
50	3.43E-04	3.50E-04	0.002000	2
51	3.50E-04	3.57E-04	0.003000	3
52	3.57E-04	3.64E-04	0.002000	2
53	3.64E-04	3.71E-04	0.005000	5
54	3.71E-04	3.78E-04	0.002000	2
55	3.78E-04	3.85E-04	0.003000	3
56	3.85E-04	3.92E-04	0.003000	3
57	3.92E-04	3.99E-04	0.003000	3
58	3.99E-04	4.06E-04	0.000000	0
59	4.06E-04	4.13E-04	0.003000	3
60	4.13E-04	4.20E-04	0.004000	4
61	4.20E-04	4.27E-04	0.001000	1
62	4.27E-04	4.34E-04	0.001000	1
63	4.34E-04	4.41E-04	0.000000	0
64	4.41E-04	4.48E-04	0.002000	2
65	4.48E-04	4.55E-04	0.002000	2
66	4.55E-04	4.62E-04	0.001000	1
67	4.62E-04	4.69E-04	0.000000	0
68	4.69E-04	4.76E-04	0.001000	1
69	4.76E-04	4.83E-04	0.001000	1
70	4.83E-04	4.90E-04	0.001000	1

	<u>Group</u>	<u>Start Value</u>	End Value	Prob.	Frea.
	71	4.90E-04	4.97E-04	0.002000	2
	72	4.97E-04	5.04E-04	0.000000	0
	73	5.04E-04	5.11E-04	0.000000	0
	74	5.11E-04	5.18E-04	0.002000	2
	75	5.18E-04	5.25E-04	0.001000	1
	76	5.25E-04	5.32E-04	0.003000	3
	77	5.32E-04	5.39E-04	0.000000	0
	78	5.39E-04	5.46E-04	0.001000	1
	79	5.46E-04	5.53E-04	0.000000	0
	80	5.53E-04	5.60E-04	0.000000	0
	81	5.60E-04	5.67E-04	0.001000	1
	82	5.67E-04	5.74E-04	0.000000	0
	83	5.74E-04	5.81E-04	0.000000	0
	84	5.81E-04	5.88E-04	0.003000	3
	85	5.88E-04	5.95E-04	0.002000	2
	86	5.95E-04	6.02E-04	0.000000	Ō
	87	6.02E-04	6.09E-04	0.000000	Ō
	88	6.09E-04	6.16E-04	0.002000	2
	89	6.16E-04	6.23E-04	0.000000	0
	90	6.23E-04	6.30E-04	0.000000	Ō
	91	6.30E-04	6.37E-04	0.000000	0
	92	6.37E-04	6.44E-04	0.001000	ī
	93	6.44E-04	6.51E-04	0.000000	0
	94	6.51E-04	6.58E-04	0.000000	0
	95	6.58E-04	6.65E-04	0.000000	0
	96	6.65E-04	6.72E-04	0.001000	1
	97	6.72E-04	6.79E-04	0.000000	0
	98	6.79E-04	6.86E-04	0.002000	2
	99	6.86E-04	6.93E-04	0.001000	1
	100	6.93E-04	7.00E-04	0.001000	1
		7.00E-04	+Infinity	0.029000	29
Totd:				1.000000	1000
Cumulative:					
	Group	<u>Start Value</u>	<u>End Value</u>	Prob.	Frea.
		-Infinity	0.00E+00	0.000000	0
	1	0.00E+00	7.00E-06	0.222000	222
	2	7.00E-06	1.40E-05	0.300000	300
	3	1.40E-05	2.10E-05	0.351000	351
	4	2.10E-05	2.80E-05	0.388000	388
	5	2.80E-05	3.50E-05	0.429000	429
	6	3.50E-05	4.20E-05	0.468000	468

ŧ

.

-

Group	<u>Start Value</u>	<u>End Value</u>	<u>Prob.</u>	<u>Frea.</u>
7	4.20E-05	4.90E-05	0.501000	501
8	4.90E-05	5.60E-05	0.529000	529
9	5.60E-05	6.30E-05	0.552000	552
10	6.30E-05	7.00E-05	0.571000	571
11	7.00E-05	7.70E-05	0.595000	595
12	7.70E-05	8.40E-05	0.615000	615
13	8.40E-05	9.10E-05	0.635000	635
14	9.10E-05	9.80E-05	0.657000	657
15	9.80E-05	1.05E-04	0.671000	671
16	1.05E-04	1.12E-04	0.688000	688
17	1.12E-04	1.19E-04	0.699000	699
18	1.19E-04	1.26E-04	0.705000	705
19	1.26E-04	1.33E-04	0.718000	718
20	1.33E-04	1.40E-04	0.730000	730
21	1.40E-04	1.47E-04	0.745000	745
22	1.47E-04	1.54E-04	0.759000	759
23	1.54E-04	1.61E-04	0.771000	771
24	1.61E-04	1.68E-04	0.782000	782
25	1.68E-04	1.75E-04	0.790000	790
26	1.75E-04	1.82E-04	0.798000	798
27	1.82E-04	1.89E-04	0.801000	801
28	1.89E-04	1.96E-04	0.809000	809
29	1.96E-04	2.03E-04	0.810000	810
30	2.03E-04	2.10E-04	0.815000	815
31	2.10E-04	2.17E-04	0.824000	824
32	2.17E-04	2.24E-04	0.826000	826
33	2.24E-04	2.31E-04	0.834000	834
34	2.31E-04	2.38E-04	0.846000	846
35	2.38E-04	2.45E-04	0.849000	849
36	2.45E-04	2.52E-04	0.860000	860
37	2.52E-04	2.59E-04	0.865000	865
38	2.59E-04	2.66E-04	0.870000	870
39	2.66E-04	2.73E-04	0.874000	874
40	2.73E-04	2.80E-04	0.876000	876
41	2.80E-04	2.87E-04	0.880000	880
42	2.87E-04	2.94E-04	0.882000	882
43	2.94E-04	3.01E-04	0.888000	888
44	3.01E-04	3.08E-04	0.891000	891
45	3.08E-04	3.15E-04	0.899000	899
46	3.15E-04	3.22E-04	0.901000	901
47	3.22E-04	3.29E-04	0.904000	904
48	3.29E-04	3.36E-04	0.905000	905

.

.

<u>Group</u>	tart Value	End Value	<u>Prob.</u>	<u>Freq.</u>
49	3.36E-04	3.43E-04	0.908000	9 08
50	3.43E-04	3.50E-04	0.910000	910
51	3.50E-04	3.57E-04	0.913000	913
52	3.57E-04	3.64E-04	0.915000	915
53	3.64E-04	3.71E-04	0.920000	920
54	3.71E-04	3.78E-04	0.922000	922
55	3.78E-04	3.85E-04	0.925000	925
56	3.85E-04	3.92E-04	0.928000	928
57	3.92E-04	3.99E-04	0.931000	931
58	3.99E-04	4.06E-04	0.931000	931
59	4.06E-04	4.13E-04	0.934000	934
60	4.13E-04	4.20E-04	0.938000	938
61	4.20E-04	4.27E-04	0.939000	939
62	4.27E-04	4.34E-04	0.940000	940
63	4.34E-04	4.41E-04	0.940000	940
64	4.41E-04	4.48E-04	0.942000	942
65	4.48E-04	4.55E-04	0.944000	944
66	4.55E-04	4 62E-04	0.945000	945
67	4.62E-04	4 69F-04	0.945000	945
68	4 69E-04	4.00L 04	0.946000	946
69	4 76E-04	4.83E-04	0.947000	947
70	4.83E-04	4.90E-04	0.948000	948
71	4 90E-04	4 97F-04	0.950000	950
72	4.97E-04	5.04F-04	0.950000	950
73	5.04E-04	5.11E-04	0.950000	950
74	5.11E-04	5.18E-04	0.952000	952
75	5.18E-04	5.25E-04	0.953000	953
76	5.25E-04	5.32E-04	0.956000	956
77	5.32E-04	5.39E-04	0.956000	956
78	5.39E-04	5.46E-04	0.957000	957
79	5.46E-04	5.53E-04	0.957000	957
80	5.53E-04	5.60E-04	0.957000	957
81	5.60E-04	5.67E-04	0.958000	958
82	5.67E-04	5.74E-04	0.958000	958
83	5.74E-04	5.81E-04	0.958000	958
84	5.81E-04	5.88E-04	0.961000	961
85	5.88E-04	5.95E-04	0.963000	963
86	5.95E-04	6.02E-04	0.963000	963
87	6.02E-04	6.09E-04	0.963000	963
88	6.09E-04	6.16E-04	0.965000	965
89	6.16E-04	6.23E-04	0.965000	965
90	6.23E-04	6.30E-04	0.965000	965
91	6.30E-04	6.37E-04	0.965000	965
92	6.37E-04	6.44E-04	0.966000	966
93	6.44E-04	6.51E-04	0.966000	966
94	6.51E-04	6.58E-04	0.966000	966
95	6.58E-04	6.65E-04	0.966000	966
96	6.65E-04	6.72E-04	0.967000	967
97	6.72E-04	6.79E-04	0.967000	967
98	6.79E-04	6.86E-04	0.969000	969
99	6.86E-04	6.93E-04	0.970000	970
100	6.93E-04	7.00E-04	0.971000	971
	7.00E-04	+Infinity	1.000000	1000

End of Forecast

Assumptions

Assumption: Body Weight (kg) - EPA adult males

Lognormal distribution with parameters:	
Mean	78.50
Standard Dev.	13.50

Selected range is from 0.00 to +Infinity Mean value in simulation was 78.63

Assumption: Inhalation rate indoor (m^3/day) (EPA)

Lognormal distribution with parameters:	
Mean	16.15
Standard Dev.	6.26

Selected range is from 5.40 to 64.95 Mean value in simulation was 16.26

Assumption: Exposure Duration (yr)

Beta distribution with parameters:	
Alpha	0.40
Beta	16.42
Scale	18,872.86

Selected range is from 1.00 to 9,343.00 Mean value in simulation was 540.36

Assumption: A4

Beta distribution with parameters:	
Alpha	0.40
Beta	16.42
Scole	18,872,86

Selected range is from 1.00 to 9,343.00 Mean value in simulation was 505.20

٢.,

End of Assumptions

(inhal-epa.XLS)Sheet1 - Cell: C8

(inhal-epa.XLS)Sheet1 - Cell: C11

(inhal-epa.XLS)Sheet] - Cell: C9

(SHEPPARD_99.xls)Sheet1 - Cell: A4

Crystal Ball Report Simulation started on 12/28/99 at 11:09:27 Simulation stopped on 12/28/99 at 11:09:31

Forecast: Benzene Inhal. Risk-Los Angeles Enl.

Cell: C23

S	u	m	m	a	V :
~	~	•••			

Display Range is from 0.00E+0 to 8.00E-4 unitless
Entire Range is from 2.83E-7 to 1.75E-3 unitless
After 1,000 Trids, the Std. Error of the Mean is 6.91E-6

Statistics:	Value
Trids	1000
Mean	2.28E-04
Median	1.68E-04
Mode	
Standard Deviation	2.18E-04
Variance	4.77E-08
Skewness	2.07E+00
Kurtosis	9.60E+00
Coeff. of Variability	9.59E-01
Range Minimum	2.83E-07
Range Maximum	1.75E-03
Range Width	1.75E-03
Mean Std. Error	6.91E-06

Forecast: Benzene Inhal. Risk-Los Angeles Enl. (cont'd)

Percentiles:

<u>Percentile</u>	<u>unitless</u>
0.0%	2.83E-07
2.5%	1.01E-05
5.0%	1.77E-05
50.0%	1.68E-04
95.0%	6.67E-04
97.5%	7.95E-04
100.0%	1.75E-03

Frequency Counts:

f

Frequency:					
	Group	<u>Start Value</u>	End Value	Prob.	Freq.
		-Infinity	0.00E+00	0.000000	0
	1	0.00E+00	. 8.00E-06	0.018000	18
	2	8.00E-06	1.60E-05	0.026000	26
	3	1.60E-05	2.40E-05	0.026000	26
	4	2.40E-05	3.20E-05	0.024000	24
	5	3.20E-05	4.00E-05	0.035000	35
	6	4.00E-05	4.80E-05	0.038000	38
	7	4.80E-05	5.60E-05	0.036000	36
	8	5.60E-05	6.40E-05	0.022000	22
	9	6.40E-05	7.20E-05	0.023000	23
	10	7.20E-05	8.00E-05	0.028000	28
	11	8.00E-05	8.80E-05	0.034000	34
	12	8.80E-05	9.60E-05	0.023000	23
	13	9.60E-05	1.04E-04	0.016000	16
	14	1.04E-04	1.12E-04	0.022000	22
	15	1.12E-04	1.20E-04	0.020000	20
	16	1.20E-04	1.28E-04	0.017000	17
	17	1.28E-04	1.36E-04	0.019000	19
	18	1.36E-04	1.44E-04	0.024000	24
	19	1.44E-04	1.52E-04	0.014000	14
	20	1.52E-04	1.60E-04	0.018000	18
	21	1.60E-04	1.68E-04	0.015000	15
	22	1.68E-04	1.76E-04	0.023000	23
	23	1.76E-04	1.84E-04	0.024000	24
	24	1.84E-04	1.92E-04	0.017000	17
	25	1.92E-04	2.00E-04	0.013000	13
	26	2.00E-04	2.08E-04	0.014000	14
	27	2.08E-04	2.16E-04	0.016000	16
	28	2.16E-04	2.24E-04	0.013000	13

Crown	Charth) /ale a	F 1.77	. .	-
<u>900p</u>		End Value	Prob.	Freq.
29	2.24E-04	2.32E-U4	0.011000	11
20	2.32E-04	2.40E-04	0.011000	
20	2.40E-04	2.48E-04	0.021000	21
১∠ ১১	2.48E-04	2.56E-04	0.014000	14
33	2.56E-04	2.64E-04	0.013000	13
34	2.64E-04	2./2E-04	0.010000	10
35	2.72E-04	2.80E-04	0.010000	10
30	2.80E-04	2.88E-04	0.012000	12
37	2.88E-04	2.96E-04	0.011000	11
38	2.96E-04	3.04E-04	0.008000	8
39	3.04E-04	3.12E-04	0.006000	6
40	3.12E-04	3.20E-04	0.011000	11
41	3.20E-04	3.28E-04	0.013000	13
42	3.28E-04	3.36E-04	0.003000	3
43	3.36E-04	3.44E-04	0.009000	9
44	3.44E-04	3.52E-04	0.007000	7
45	3.52E-04	3.60E-04	0.008000	8
46	3.60E-04	3.68E-04	0.011000	11
47	3.68E-04	3.76E-04	0.013000	13
48	3.76E-04	3.84E-04	0.011000	11
49	3.84E-04	3.92E-04	0.004000	4
50	3.92E-04	4.00E-04	0.005000	5
51	4.00E-04	4.08E-04	0.006000	6
52	4.08E-04	4.16E-04	0.007000	7
53	4.16E-04	4.24E-04	0.008000	8
54	4.24E-04	4.32E-04	0.009000	9
55	4.32E-04	4.40E-04	0.003000	3
56	4.40E-04	4.48E-04	0.003000	3
57	4.48E-04	4.56E-04	0.003000	3
58	4.56E-04	4.64E-04	0.003000	3
59	4.64E-04	4.72E-04	0.004000	۵
60	4.72E-04	4.80E-04	0.008000	8
61	4.80E-04	4.88E-04	0.002000	2
62	4.88E-04	4.96E-04	0.005000	5
63	4.96E-04	5.04E-04	0.002000	2
64	5.04E-04	5.12E-04	0.001000	1
65	5.12E-04	5.20F-04	0.000000	'n
66	5.20E-04	5.28E-04	0.003000	3
67	5.28E-04	5.36E-04	0.002000	2
68	5.36E-04	5.44E-04	0.003000	3
69	5.44E-04	5.52F-04	0.005000	5
70	5.52E-04	5.60E-04	0.095000	5

η

,
Forecast: Benzene Inhal. Risk-Los Angeles Enl. (cont'd)

*

, 1

Ì

Ti 5.60E-04 5.68E-04 0.002000 2 72 5.68E-04 5.76E-04 0.002000 6 73 5.76E-04 5.84E-04 0.001000 1 74 5.84E-04 6.00E-04 0.001000 1 75 5.92E-04 6.00E-04 6.00E-04 0.001000 1 77 6.00E-04 6.38E-04 0.001000 1 77 6.00E-04 6.38E-04 0.001000 1 79 6.24E-04 6.32E-04 0.002000 2 81 6.40E-04 6.40E-04 0.003000 3 83 6.56E-04 6.56E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.002000 2 86 6.80E-04 7.00200 2 89 7.04E-04 0.002000 2 89 7.04E-04 7.20E-04 7.20E-04 0.000000 1 92<		Group	Start Value	End Value	Prob	Free
72 5.66E-04 5.76E-04 5.76E-04 0.000000 6 73 5.76E-04 5.84E-04 0.001000 1 74 5.84E-04 5.92E-04 0.001000 1 75 5.92E-04 6.00E-04 0.000000 0 76 6.00E-04 6.08E-04 0.001000 1 77 6.08E-04 6.16E-04 0.002000 2 78 6.16E-04 6.32E-04 0.001000 1 79 6.24E-04 6.32E-04 0.002000 2 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.32E-04 0.003000 3 84 6.4E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 3 84 6.6E-04 7.02E-04 0.003000 3 85 6.72E-04 7.02E-04 0.003000 3 90 7.12E-04 7.28E-04 0.001000 <		71	5.60F-04	5 68F-04	0.002000	2
73 5.76E-04 5.84E-04 0.001000 1 74 5.84E-04 5.92E-04 0.001000 1 75 5.92E-04 6.00E-04 0.001000 1 76 6.00E-04 6.16E-04 0.001000 1 77 6.08E-04 6.16E-04 0.001000 1 79 6.24E-04 6.32E-04 0.001000 1 80 6.32E-04 6.40E-04 0.003000 3 81 6.40E-04 6.56E-04 0.003000 3 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.68E-04 0.003000 3 84 6.64E-04 6.32E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 3 86 6.80E-04 7.04E-04 0.003000 3 87 6.88E-04 7.04E-04 0.003000 3 90 7.12E-04 7.28E-04 0.003000 3		72	5.68F-04	5 76F-04	0.002000	6
74 5.84E-04 5.02E-04 0.001000 1 75 5.92E-04 6.00E-04 0.001000 0 76 6.00E-04 6.08E-04 0.001000 1 77 6.08E-04 6.16E-04 0.002000 2 78 6.16E-04 6.32E-04 0.001000 1 79 6.24E-04 6.32E-04 0.002000 2 80 6.32E-04 6.46E-04 0.002000 2 81 6.40E-04 6.46E-04 0.002000 2 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.68E-04 0.003000 3 84 6.64E-04 6.22E-04 0.003000 3 85 6.72E-04 6.80E-04 0.002000 0 86 6.80E-04 7.04E-04 0.002000 2 87 6.88E-04 7.02E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3		73	5.76E-04	5 8/F-0/	0.000000	1
75 5.92E-04 6.02E-04 6.002-04 0.000000 0 76 6.00E-04 6.16E-04 0.001000 1 77 6.08E-04 6.16E-04 0.001000 1 78 6.16E-04 6.32E-04 0.001000 1 79 6.24E-04 6.32E-04 0.001000 1 80 6.32E-04 6.40E-04 0.004000 4 81 6.40E-04 6.64E-04 0.003000 3 82 6.48E-04 6.52E-04 0.003000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 3 86 6.80E-04 7.04E-04 0.003000 3 87 6.88E-04 7.04E-04 0.003000 3 90 7.12E-04 7.28E-04 0.001000 1 92 7.28E-04 7.48E-04 0.001000		74	5 84F-04	5 02F-04	0.001000	1
76 5.00E-04 6.08E-04 0.001000 1 77 6.08E-04 6.16E-04 0.001000 1 78 6.16E-04 6.24E-04 0.001000 1 79 6.24E-04 6.32E-04 0.001000 1 80 6.32E-04 6.40E-04 0.001000 1 80 6.32E-04 6.40E-04 0.002000 2 81 6.40E-04 6.48E-04 0.003000 3 83 6.56E-04 6.48E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.002000 2 86 6.80E-04 7.04E-04 0.002000 2 87 6.88E-04 7.04E-04 0.002000 2 88 6.96E-04 7.04E-04 0.002000 2 89 7.04E-04 7.28E-04 0.003000 3 90 7.12E-04 7.36E-04 0.001000 1		75	5 92F-04		0.001000	, 0
17 6.08E-04 6.16E-04 0.001000 1 78 6.16E-04 6.24E-04 0.001000 1 79 6.24E-04 6.32E-04 0.001000 1 80 6.32E-04 6.40E-04 0.002000 2 82 6.48E-04 6.56E-04 0.002000 2 82 6.48E-04 6.56E-04 0.003000 3 84 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.000000 0 85 6.72E-04 6.80E-04 0.000000 0 86 6.80E-04 7.04E-04 0.002000 2 89 7.04E-04 7.12E-04 0.002000 2 89 7.04E-04 7.20E-04 0.001000 1 92 7.28E-04 7.36E-04 0.001000 1 93 7.36E-04 7.48E-04 0.001000 1 94 7.44E-04 7.22E-04 0.001000 1		76	6 00E-04	6.08E-04	0.000000	1
78 6.16E-04 6.24E-04 0.002000 1 79 6.24E-04 6.32E-04 0.001000 1 80 6.32E-04 6.40E-04 0.002000 2 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.56E-04 0.003000 3 84 6.4E-04 6.56E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 3 86 6.80E-04 6.88E-04 0.003000 0 87 6.88E-04 6.96E-04 0.003000 3 86 6.48E-04 7.20E-04 0.002000 2 89 7.04E-04 7.2E-04 0.003000 3 90 7.12E-04 7.28E-04 0.001000 1 92 7.28E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.001000 1 94 7.48E-04 7.68E-04 0.001000 1 <t< td=""><td></td><td>77</td><td>6 08E-04</td><td>6 16E-04</td><td>0.001000</td><td>י ס</td></t<>		77	6 08E-04	6 16E-04	0.001000	י ס
79 6.24E-04 6.32E-04 6.001000 1 80 6.32E-04 6.40E-04 0.004000 4 81 6.40E-04 6.48E-04 0.003000 3 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.000000 0 86 6.80E-04 6.96E-04 0.000000 0 87 6.88E-04 6.96E-04 0.000000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.001000 1 92 7.28E-04 7.36E-04 0.001000 1 92 7.28E-04 7.60E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1		78	6 16E-04	6.70E-04	0.002000	2
80 6.32E-04 6.40E-04 6.40E-04 6.001000 4 81 6.40E-04 6.40E-04 6.40E-04 0.003000 3 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 0 85 6.72E-04 6.80E-04 0.000000 0 86 6.80E-04 6.80E-04 0.000000 0 87 6.88E-04 7.04E-04 0.000000 3 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.36E-04 0.001000 1 92 7.28E-04 7.60E-04 0.000000 0 93 7.36E-04 7.60E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 97 7.68E-04 7.76E-04		70	6 24E-04	6 32E-04	0.001000	1
80 0.302104 0.402104 0.402100 2 81 6.40E-04 6.48E-04 0.003000 3 82 6.48E-04 6.56E-04 0.003000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.000000 0 86 6.80E-04 6.88E-04 0.000000 0 87 6.88E-04 6.96E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.36E-04 0.001000 1 92 7.28E-04 7.36E-04 0.001000 1 93 7.36E-04 7.68E-04 0.001000 1 94 7.4E-04 7.52E-04 0.001000 1 97 7.68E-04 7.84E-04 0.002000 2 <		80	6 325-04	6 ADE 04	0.001000	1
81 6.48E-04 6.56E-04 0.002000 2 82 6.48E-04 6.56E-04 0.002000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.88E-04 0.000000 0 86 6.80E-04 6.88E-04 0.000000 2 87 6.88E-04 6.96E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 1 92 7.28E-04 7.36E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.68E-04 0.001000 1 97 7.68E-04 7.92E-04 0.003000 3		81	6 AOE 04	6.40E-04	0.004000	4
0.2 0.46E-04 0.46E-04 0.63E-04 0.003000 3 83 6.56E-04 6.64E-04 0.003000 3 84 6.64E-04 6.80E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 0 86 6.80E-04 6.88E-04 0.000000 0 87 6.88E-04 7.04E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.48E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.28E-04 0.002000 2 99 7.84E-04 7.92E-04 0.002000		82	6.40E-04	0.402-04	0.002000	2
84 6.64E-04 6.72E-04 0.003000 3 85 6.72E-04 6.80E-04 0.003000 0 86 6.80E-04 6.88E-04 0.000000 0 87 6.88E-04 6.96E-04 0.003000 3 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.28E-04 0.003000 0 92 7.28E-04 7.36E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.6E-04 0.001000 1 94 7.44E-04 7.5E-04 0.001000 1 95 7.52E-04 7.68E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.92E-04 0.001000 1 99 7.84E-04 7.92E-04 0.001000 1 <t< td=""><td></td><td>83</td><td>6.40E-04</td><td>0.00E-04 6.64E.04</td><td>0.003000</td><td>ა ა</td></t<>		83	6.40E-04	0.00E-04 6.64E.04	0.003000	ა ა
B4 0.04E-04 0.000000 3 85 6.72E-04 6.80E-04 0.000000 0 86 6.80E-04 6.88E-04 0.000000 0 87 6.88E-04 6.96E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.28E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.001000 1 97 7.68E-04 7.60E-04 0.001000 1 98 7.76E-04 7.84E-04 0.001000 1 98 7.76E-04 7.84E-04 0.001000 1 98 7.76E-04 8.00E-04 0.001000 1 99 7.84E-04 7.92E-04 8.00E-06 0.018000 18		84	6.50E-04	0.04E-04	0.003000	3
353 6.722-04 0.00000 0 86 6.80E-04 6.88E-04 0.00000 0 87 6.88E-04 6.96E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.28E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.60E-04 0.000000 1 97 7.68E-04 7.68E-04 0.001000 1 97 7.68E-04 7.92E-04 0.001000 1 98 7.76E-04 7.92E-04 0.001000 1 98 7.76E-04 7.92E-04 0.001000 1 99 7.84E-04 7.92E-04 0.000000 0 100		95	6 725 04	0./2E-04	0.003000	3
303 6.80E-04 6.88E-04 0.000000 0 87 6.88E-04 6.96E-04 0.005000 2 88 6.96E-04 7.04E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 0 91 7.20E-04 7.36E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.92E-04 0.003000 3 100 7.92E-04 8.00E-04 0.001000 1 99 7.84E-04 7.92E-04 0.0001000 1 100 7.92E-04 8.00E-06 0.018000 18		20	0.72E-04 6 90E 04	0.0UE-U4	0.000000	0
37 0.036E-04 0.90E-04 0.003000 3 88 6.96E-04 7.04E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.28E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.92E-04 0.003000 3 100 7.92E-04 8.00E-04 1.0002000 25 99 7.84E-04 7.92E-04 0.001000 1 8.00E-04 +Infinity 0.025000 25 1.00 7.92E-04 8.00E-06 0.018000 18		97		0.00E-U4	0.000000	U
68 6.96E-04 7.04E-04 0.002000 2 89 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 0 91 7.20E-04 7.28E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.000000 0 94 7.44E-04 7.52E-04 0.001000 1 94 7.44E-04 7.52E-04 0.001000 1 95 7.52E-04 7.66E-04 0.001000 1 96 7.60E-04 7.6E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.92E-04 8.00E-04 1.000000 000 100 7.92E-04 8.00E-04 +Infinity 0.025000 25 Totd: - - 1.000000 1000 1 2 8.00E-06 1.60E-0		0/	0.00E-U4	0.90E-U4	0.005000	5
org 7.04E-04 7.12E-04 0.003000 3 90 7.12E-04 7.20E-04 0.003000 3 91 7.20E-04 7.28E-04 0.001000 1 92 7.28E-04 7.36E-04 0.000000 0 93 7.36E-04 7.44E-04 0.001000 1 94 7.44E-04 7.52E-04 0.000000 0 95 7.52E-04 7.60E-04 0.001000 1 96 7.60E-04 7.68E-04 0.001000 1 97 7.68E-04 7.76E-04 0.001000 1 98 7.76E-04 7.84E-04 0.002000 2 99 7.84E-04 7.92E-04 8.00E-04 0.001000 1 100 7.92E-04 8.00E-04 0.001000 1 100 7.92E-04 8.00E-04 0.001000 1 100 7.92E-04 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000		00	0.90E-04	7.04E-04	0.002000	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09	7.04E-04	7.12E-U4	0.003000	3
91 $7.20E-04$ $7.28E-04$ 0.001000 192 $7.28E-04$ $7.36E-04$ 0.000000 093 $7.36E-04$ $7.44E-04$ 0.001000 194 $7.44E-04$ $7.52E-04$ 0.000000 095 $7.52E-04$ $7.60E-04$ 0.000000 096 $7.60E-04$ $7.68E-04$ 0.001000 197 $7.68E-04$ $7.76E-04$ 0.001000 198 $7.76E-04$ $7.92E-04$ 0.002000 299 $7.84E-04$ $7.92E-04$ 0.001000 1 $8.00E-04$ $+1nfinity$ 0.025000 25Totd: 1.000000 1000 1000Curnulative:Curnulative:41 $0.00E+00$ $8.00E-04$ $1.60E-05$ $0.00E+00$		90	7.12E-04	7.2UE-U4	0.003000	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		91	7.20E-04	7.28E-04	0.001000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		92	7.28E-04	7.36E-04	0.000000	0
94 $7.44E-04$ $7.52E-04$ 0.000000 0 95 $7.52E-04$ $7.60E-04$ 0.000000 0 96 $7.60E-04$ $7.68E-04$ 0.001000 1 97 $7.68E-04$ $7.76E-04$ 0.002000 2 98 $7.76E-04$ $7.84E-04$ 0.002000 2 99 $7.84E-04$ $7.92E-04$ 0.001000 1 100 $7.92E-04$ $8.00E-04$ 0.001000 1 $8.00E-04$ 1.000000 1 1.000000 1000 Cumulative:Cumulative:Cumulative: $\frac{9}{1000E+00}$ $\frac{8.00E-06}{1.60E-05}$ 0.044000 1 $0.00E+00$ $8.00E-06$ $1.60E-05$ 0.044000 1 $0.00E+05$ $3.20E-05$ 0.070000 70 4 $2.40E-05$ $3.20E-05$ 0.094000 94 5 $3.20E-05$ $4.00E-05$ 0.167000 167		93	7.36E-04	7.44E-04	0.001000	1
95 $7.52E-04$ $7.60E-04$ 0.000000 0 96 $7.60E-04$ $7.68E-04$ 0.001000 1 97 $7.68E-04$ $7.76E-04$ 0.001000 1 98 $7.76E-04$ $7.84E-04$ 0.002000 2 99 $7.84E-04$ $7.92E-04$ 0.003000 3 100 $7.92E-04$ $8.00E-04$ 0.001000 1 100 $7.92E-04$ $8.00E-04$ 0.001000 1 100 $7.92E-04$ $8.00E-04$ 0.001000 1 0.002000 25 1.00000 1000 Cumulative:End ValueProb.FreqInfinity $0.00E+00$ $8.00E-06$ $0.00E+00$ $8.00E-06$ $1.60E-05$ $2.40E-05$ $3.20E-05$ 0.02400 99 $7.64E-04$ $7.92E-04$ $8.00E-04$ 1.000000 100 $7.92E-04$ $8.00E-04$ 1.000000 1000000 1.000000 1.000000 1.000000 $0.00E+00$ $8.00E-06$ $1.60E-05$ $2.40E-05$ $3.20E-05$ $4.00E-05$ 0.16700		94	7.44E-04	7.52E-04	0.000000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		95	7.52E-04	7.60E-04	0.000000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		90	7.60E-04	7.68E-04	0.001000	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		97	7.68E-04	7.76E-04	0.001000	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		98	7.76E-04	7.84E-04	0.002000	2
100 7.92E-04 8.00E-04 0.001000 1 8.00E-04 +Infinity 0.025000 25 Totd: 1.000000 1000 Cumulative: End Value Prob. Freq. -Infinity 0.00E+00 0.000000 0 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.167000 129 6 4.00E-05 4.80E-05 0.167000 167		99	7.84E-04	7.92E-04	0.003000	3
8.00E-04 +Infinity 0.025000 25 Totd: 1.000000 1000 Qumulative: End Value Prob. Freq. Group Start Value End Value Prob. Freq. -Infinity 0.00E+00 0.000000 0 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.167000 129 6 4.00E-05 4.80E-05 0.167000 167		100	7.92E-04	8.00E-04	0.001000	1
I ord: 1.000000 1000 Qumulative: End Value Prob. Freq. -Infinity 0.00E+00 0.000000 0 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167	~		8.00E-04	+Infinity	0.025000	25
Group Start Value -Infinity End Value 0.00E+00 Prob. 0.000000 Freq. Freq. 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167	Totd:				1.000000	1000
Group Start Value -Infinity End Value Prob. Freq. -Infinity 0.00E+00 0.000000 0 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167	Cumulative:					
-Infinity 0.00E+00 0.00000 0 1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167		Group	<u>Start Value</u>	End Value	<u>Prob.</u>	Freq.
1 0.00E+00 8.00E-06 0.018000 18 2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167			-Infinity	0.00E+00	0.000000	0
2 8.00E-06 1.60E-05 0.044000 44 3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167		1	0.00E+00	8.00E-06	0.018000	18
3 1.60E-05 2.40E-05 0.070000 70 4 2.40E-05 3.20E-05 0.094000 94 5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167		2	8.00E-06	1.60E-05	0.044000	44
42.40E-053.20E-050.0940009453.20E-054.00E-050.12900012964.00E-054.80E-050.167000167		3	1.60E-05	2.40E-05	0.070000	70
5 3.20E-05 4.00E-05 0.129000 129 6 4.00E-05 4.80E-05 0.167000 167		4	2.40E-05	3.20E-05	0.094000	94
6 4.00E-05 4.80E-05 0.167000 167		5	3.20E-05	4.00E-05	0.129000	129
		6	4.00E-05	4.80E-05	0.167000	167

Forecast: Benzene Inhal. Risk-Los Angeles Enl. (cont'd)

.

<u>Group tart Value</u>	<u>End Value</u>	<u>Prob.</u>	<u>Freq.</u>
7 4.80E-05	5.60E-05	0.203000	203
8 5.60E-05	6.40E-05	0.225000	225
9 6.40E-05	7.20E-05	0.248000	248
10 7.20E-05	8.00E-05	0.276000	276
11 8.00E-05	8.80E-05	0.310000	310
12 8.80E-05	9.60E-05	0.333000	333
13 9.60E-05	1.04E-04	0.349000	349
14 1.04E-04	1.12E-04	0.371000	371
15 1.12E-04	1.20E-04	0.391000	391
16 1.20E-04	1.28E-04	0.408000	408
17 1.28E-04	1.36E-04	0.427000	427
18 1.36E-04	1.44E-04	0.451000	451
19 1.44E-04	1.52E-04	0.465000	465
20 1.52E-04	1.60E-04	0.483000	483
21 1.60E-04	1.68E-04	0.498000	498
22 1.68E-04	1.76E-04	0.521000	521
23 1.76E-04	1.84E-04	0.545000	545
24 1.84E-04	1.92E-04	0.562000	562
25 1.92E-04	2.00E-04	0.575000	575
26 2.00E-04	2.08E-04	0.589000	589
27 2.08E-04	2.16E-04	0.605000	605
28 2.16E-04	2.24E-04	0.618000	618
29 2.24E-04	2.32E-04	0.629000	629
30 2.32E-04	2.40E-04	0.640000	640
31 2.40E-04	2.48E-04	0.661000	661
32 2.48E-04	2.56E-04	0.675000	675
33 2.56E-04	2.64E-04	0.688000	688
34 2.64E-04	2.72E-04	0.698000	698
35 2.72E-04	2.80E-04	0.708000	708
36 2.80E-04	2.88E-04	0.720000	720
37 2.88E-04	2.96E-04	0.731000	731
38 2.96E-04	3.04E-04	0.739000	739
39 3.04E-04	3.12E-04	0.745000	745
40 3.12E-04	3.20E-04	0.756000	756
41 3.20E-04	3.28E-04	0.769000	769
42 3.28E-04	3.36E-04	0.772000	772
43 3.36E-04	3.44E-04	0.781000	781
44 3.44E-04	3.52E-04	0.788000	788
45 3.52E-04	3.60E-04	0.796000	796
46 3.60E-04	3.68E-04	0.807000	807
47 3.68E-04	3.76E-04	0.820000	820
48 3.76E-04	3.84E-04	0.831000	831
49 3.84E-04	3.92E-04	0.835000	835
50 3.92E-04	4.00E-04	0.840000	840
51 4.00E-04	4.08E-04	0.846000	846
52 4.08E-04	4.16E-04	0.853000	853
53 4.16E-04	4.24E-04	0.861000	861

Forecast: Benzene Inhal. Risk-Los Angeles Enl. (cont'd)

ŧ

Cell: C23

<u>Group</u>	tart Value	End Value	<u>Prob.</u>	<u>Freq.</u>
54	4.24E-04	4.32E-04	0.870000	870
55	4.32E-04	4.40E-04	0.873000	873
56	4.40E-04	4.48E-04	0.876000	876
57	4.48E-04	4.56E-04	0.879000	879
58	4.56E-04	4.64E-04	0.882000	882
59	4.64E-04	4.72E-04	0.886000	886
60	4.72E-04	4.80E-04	0.894000	894
61	4.80E-04	4.88E-04	0.896000	896
62	4.88E-04	4.96E-04	0.901000	901
63	4.96E-04	5.04E-04	0.903000	903
64	5.04E-04	5.12E-04	0.904000	904
65	5.12E-04	5.20E-04	0.904000	904
66	5.20E-04	5.28E-04	0.907000	907
67	5.28E-04	5.36E-04	0.909000	909
68	5.36E-04	5.44E-04	0.912000	912
69	5.44E-04	5.52E-04	0.917000	917
70	5.52E-04	5.60E-04	0.922000	922
71	5.60E-04	5.68E-04	0.924000	924
72	5.68E-04	5.76E-04	0.930000	930
73	5.76E-04	5.84E-04	0.931000	931
. 74	5.84E-04	5.92E-04	0.932000	932
75	5.92E-04	6.00E-04	0.932000	932
76	6.00E-04	6.08E-04	0.933000	933
77	6.08E-04	6.16E-04	0.935000	935
78	6.16E-04	6.24E-04	0.936000	936
79	6.24E-04	6.32E-04	0.937000	937
80	6.32E-04	6.40E-04	0.941000	941
81	6.40E-04	6.48E-04	0.943000	943
82	6.48E-04	6.56E-04	0.946000	946
83	6.56E-04	6.64E-04	0.949000	949
84	6.64E-04	6.72E-04	0.952000	952
85	6.72E-04	6.80E-04	0.952000	952
86	6.80E-04	6.88E-04	0.952000	952
87	6.88E-04	6.96E-04	0.957000	957
88	6.96E-04	7.04E-04	0.959000	959
89	7.04E-04	7.12E-04	0.962000	962
90	7.12E-04	7.20E-04	0.965000	965
91	7.20E-04	7.28E-04	0.966000	966
92	7.28E-04	7.36E-04	0.966000	966
93	7.36E-04	7.44E-04	0.967000	967
94	7.44E-04	7.52E-04	0.967000	967
95	7.52E-04	7.60E-04	0.967000	967
96	7.60E-04	7.68E-04	0.968000	968
97	7.68E-04	7.76E-04	0.969000	969
98	7.76E-04	7.84E-04	0.971000	971
99	7.84E-04	7.92E-04	0.974000	974
100	7.92E-04	8.00E-04	0.975000	975
	8.00E-04	+Infinity	1.000000	1000

End of Forecast

1

Assumptions

Assumption: Body Weight (kg) - EPA adult males

Lognormal distribution with parameters:	
Mean	78.50
Standard Dev.	13.50

Selected range is from 0.00 to +Infinity Mean value in simulation was 78.53

Assumption: Inhatation rate indoor (m^3/day) (EPA)

Lognormal distribution with parameters:	
Mean	16.15
Standard Dev.	6.26

Selected range is from 5.40 to 64.95 Mean value in simulation was 16.55

Assumption: Exposure Duration (yr)

Weibull distribution wi	th parameters:
Location	-7.12
Scale	1,060.30
Shape	1.227423799

Selected range is from 1.00 to 4,291.00 Mean value in simulation was 966.51

Assumption: A4

Weibull distribution wit	h parameters:
Location	-7.12
Scale	1,060.30
Shape	1.227423799

Selected range is from 1.00 to 4,291.00 Mean value in simulation was 929.80

End of Assumptions

(inhal-epa.XLS)Sheet1 - Cell: C11

(inhai-epa.XLS)Sheet1 - Cell: C9

(LOS_ANGELES_99.xls)Sheet1 - Cell: A4

APPENDIX D

Data Set Analysis Process

DATA SET ANALYSIS PROCESS

STEP 1

A MS Access data table matching the input data set was created. For example, the 1987 input data sets (Enl8709 and Off8709 ASCII text files) contained the following fields: SSAN, DOB, DAS, GRADE, DEP, DEP1, DEP2, DEP3, DEP4, DEP5, DEP6, LOCATION, STATION, SEPARATE, DAFSC, DDI. Each of these fields was separated in the text file by a delimiter (i.e., | ["pipe"]). For the 1987 data analysis, the following data table format was used:

~ 1 1 4/			
SSAN	Text	9 characters	(Social Security Account Number)
DOB	Number	Long Integer	(Date of Birth, yearmonth – YYMM)
DAS	Number	Long Integer	(Date Arrived Station, YYMM)
GRADE	Number	Long Integer	(Grade, 31-39 enlisted; O1-O10 officer)
DEP	Number	Long Integer	(Number of Dependents)
DEP1	Number	Long Integer	(First Dependent, birth year)
DEP2	Number	Long Integer	(Second Dependent, birth year)
DEP3	Number	Long Integer	(Third Dependent, birth year)
DEP4	Number	Long Integer	(Fourth Dependent, birth year)
DEP5	Number	Long Integer	(Fifth Dependent, birth year)
DEP6	Number	Long Integer	(Sixth Dependent, birth year)
LOCATION	Text	30 characters	(Where member works)
STATION	Text	30 characters	(Base of Assignment)
SEPARATE	Text	10 characters	(code assigned by AFPC)
DAFSC	Text	12 characters	(Duty Air Force Specialty Code)
DDI	Number	Long Integer	(Data Identifier – privacy act)

STEP 2

The data table described above was saved using a designator appropriate for the input data set (e.g., for the 1987 data set the table was saved as ENLIST_87).

STEP 3

Steps 1 and 2 were repeated to create an input table for the officer data set (e.g., for the 1987 data set the table was saved as OFFICER_87).

STEP 4

The ASCII text files (e.g., Enl8709, and Off8709) were imported into the MS Access data tables (i.e., into ENLIST_87 from the Enl8709 data set and into OFFICER_87 from the Off8709 data set). The import feature in MS Access in located in the File menu under "Get External Data".

STEP 5

A Make Table Query was performed on the MS Access data tables prepared under STEP 4 to develop Enlist_YY_on_Station and Officer_YY_on_Station data tables to support the data analysis using the following input fields:

SSAN – same as input table

BIRTHDATE, using the expression: BIRTHDATE:DateSerial(Left\$([Input Table]![DOB],2),Right\$([Input Table]![DOB],2),1) Note: Input Table for 1987 data is ENLIST_87 or OFFICER_87

DATEARRIVE, using the expression: DATEARRIVE:DateSerial(Left\$([Input Table]![DAS],2),Right\$([Input Table]![DAS],2),1)

AGE, using the expression: AGE:DateDiff("d", [BIRTHDATE], [Benchmark Date])/365 Note: the benchmark date is the download date for the input data set (e.g., 09/01/87 for the Enl8709 and Off8709 ASCII text files)

DOS (for days on station), using the expression: DOS:DateDiff("d", [DATEARRIVE], [Benchmark Date])

GRADE – same as input table

LOCATION - same as input table

STATION – same as input table

DAFSC – same as input table

DAS (date arrived station) – same as input table. Note: the Criteria for this field is set to <>9999 to exclude "pipeline" personnel who do not have a date arrived station (i.e., their DAS field is coded 9999)

STEP 6

A query was performed on the tables developed under STEP 5 for the following fields: SSAN, BIRTHDATE, DATEARRIVE, AGE, DOS, GRADE, LOCATION, STATION, DAFSC, DAS. For example, in the Criteria field for LOCATION "ALTUS" was entered and for the STATION field "ALTUS*" was entered (**Note:** the asterisk is a wildcard that instructs the search routine to "look" for any character string that contains ALTUS). In this example, all enlisted or all officer personnel who are both assigned to and located at ALTUS AFB were included in the query. Enlisted or officer personnel who are assigned to ALTUS, but actually located elsewhere (i.e., not at ALTUS AFB) were excluded in the query.

STEP 7

The DOS, AGE, and GRADE columns created by the query performed in STEP 6 on the Enlist_YY_on_Station and Officer_YY_on_Station tables were imported into an MS Excel spreadsheet for each base identified in the 1987 data set as described in STEPS 8 through 10 below.

STEP 8

The DOS column from the enlisted table query was selected and copied into memory, then pasted into the first column (column A) of sheet 1 in a workbook. Cell A1 containing the DOS label was changed to BASE Enlisted. The entire column was sorted in descending order to place the longest days on station data in cell A2 and the shortest days on station at the end of the column (say column A4041 for BASE X). The lower end of the column was inspected for 0 days on station results. If an individual was assigned on the Benchmark Date (e.g., 09/01/87 for the 0987 data set) the DOS result was set to zero. All 0 days were converted to 1 day on station in the spreadsheet. Cells A2 and A3 were selected and moved down using the Insert (cells), move cells down menu. The formula "=MAX(A4:A end of data)" was inserted in cell A2 to display the maximum days on station for BASE Enlisted, and the formula "=MIN(A4:A end of data)" was inserted in cell A3 to display the minimum days on station for BASE Enlisted. The label,

"Time on Station (Days) Distribution – Month and year (of input data, e.g., September 1987) was entered into cell D1 and Maximum and Minimum were entered into cells D2 and D3, respectively.

STEP 9

The AGE column from the enlisted table query was selected and copied into memory, then pasted into the first column (column A) of sheet 2 of the same workbook described under STEP 8 above. Cell A1 containing the AGE label was changed to BASE Enlisted. The entire column was first sorted in ascending order to look for negative ages. If the date of birth (DOB) in the input data was before 1 January 1930, the algorithm used to convert the BIRTHDATE into AGE (i.e., DateDiff Function) produced a negative age. All negative ages found in the AGE column were manually converted into an age by inspecting the BIRTHDATE field in the query. For example, a BIRTHDATE of 6/1/29 resulted in an AGE of -41.778082192 in the query. The actual age for this BIRTHDATE, using the Benchmark Date of 09/01/87, is 58.25 years. After all negative ages were manually converted to actual ages, the AGE column was resorted in descending order to place the oldest person in cell A2 and the youngest person in cell A end of data. Cells A2 and A3 were selected and moved down using the Insert (cells), move cells down menu. The formula "=MAX(A4:A end of data)" was inserted in cell A2 to display the oldest individual for BASE Enlisted, and the formula "=MIN(A4:A end of data)" was inserted in cell A3 to display the youngest individual for BASE Enlisted. The label, "Age Distribution - Month and year (of input data, e.g., September 1987) was entered into cell D1 and Oldest and Youngest were entered into cells D2 and D3, respectively.

STEP 10

The GRADE column from the enlisted table query was selected and copied into memory, then pasted into the first column (column A) of sheet 3 of the same workbook described under STEP 8 above. Cell A1 containing the GRADE label was changed to BASE Enlisted. The entire column was selected and sorted in descending order to place the highest grade in cell A2 and the lowest grade in cell A end of data. Cells A2 and A3 were selected and moved down using the Insert (cells), move cells down menu. The formula "=MAX(A4:A end of data)" was inserted in cell A2 to display the highest grade for BASE Enlisted, and the formula "=MIN(A4:A end of data)" was inserted in cell A3 to display the lowest grade for BASE Enlisted. The label, "Grade Distribution – Month and year (of input data, e.g., September 1987) was entered into cell D1 and Highest and Lowest were entered into cells D2 and D3, respectively.

STEP 11

The DOS, AGE, and GRADE data from the officer table query were entered into the same BASE worksheet in column B using the same process described under STEPS 8 through 10 above. However, BASE Officers labels were used in cell B1 for sheets 1 through 3 in the same BASE workbook.

STEP 12

Descriptive statistics for days on station (DOS) for both enlisted and officer personnel assigned to each base were prepared as sheet 4 in each workbook using the Tools, Data Analysis menu in MS Excel. Two sets of summary statistics, one for enlisted personnel and one for the officers assigned to each base, were prepared. Note: the formulas contained in either cell A2 or

A3 were displayed by clicking on one of these cells. The total number of values in the days on station distribution for the enlisted personnel assigned to a base (e.g., 1438 for AFDW, Air Force Department in Washington, D.C.) was used for entry into the input range for the descriptive statistics computations. Similarly, clicking on either cell B2 or cell B3 provided the input range for the officer days on station distribution.

STEP 13

Best fit and normal distribution graphics for both the enlisted and officer days on station distributions in each workbook were developed using the fit distribution gallery routine contained in Crystal Ball. For example, to fit the days on station distribution data for enlisted personnel assigned to the Pentagon the AFDW_87 spreadsheet was opened in Crystal Ball. Clicking on cell A2 or A3 provided the range of values (e.g., A4 through A1441) contained in the distribution. A single value cell (e.g., cell A4) was selected (Crystal Ball will only accept single value cells for the fit distribution gallery routine) and the define assumption toolbar or Cell, Define Assumption menu was selected to bring up the distribution gallery and the fit routine. In the location of data submenu, the Active Worksheet is selected (default) and the Range window activated for input. For the example above, the range A2: A1441 was entered and the NEXT button was selected. This brought up the Fit to Which Distributions and Ranking Method window. By selecting the All Continuous Distributions and Chi-Square Test, clicking on the Show Comparison Chart and Goodness-of-Fit Statistics, and selecting the OK button, the fit routine was run through all continuous distributions in the library that fit the data. The first fit displayed was the best fit based upon the lowest Chi-Square value. In most cases, the best fit for the days on station distributions were not normal or lognormal, but fit weibull, beta, gamma, or extreme value distributions. Consequently, a second fit of the data was performed and the NEXT DISTRIBUTION button was repeatedly selected until the normal distribution fit from the gallery was displayed.

STEP 14

When the best fit graphic was provided by the fit distribution gallery routine in Crystal Ball, the print screen key was pressed to place the image in memory. The Paint software package was run to paste the graphic image into a picture that could be selectively "cut", copied, and pasted onto sheet 1 of the BASE spreadsheet (e.g., into cell D6 on sheet 1 of the AFDW_87 workbook). Each graphic, that is the best fit and normal distribution for both enlisted and officer days on station, was subsequently "cut", copied, and pasted onto each BASE spreadsheet. Note: similar fit distribution graphics for the age and grade distributions for Dover AFB, Edwards AFB, Elmendorf AFB, Maxwell AFB, and Minot AFB across all available data sets were also incorporated into their respective spreadsheets.

Figure D-1. Enlisted and Officer Data Tables 1987 Data Set

¥

🔍 Microsoft Access – [EN	ILIST_87 : Table]
Elle Edit. View Insert	Tools Window Help
Field Name	Data Type Description
<u>80</u> 10	AutoNumber
SSAN	Text
DOB	Number
DAS	Number
GRADE	Number
DEP	Number
DEPI	Number
DEP2	Number
DEP3	Number
DEP4	Number
DEP5	Number
DEP6	
	lext
STATION	lext
DAFCC	Text
	NUMDEr
	Field Properties
MICRUSUIT ACCESS - IU	FILEK 8/ . Table
File Edit View Insert	Tools Window Help
	と 自己 ジック ジナチャ ピート 回名・2

ll II		
	Field Name	Data Type Description
81	ID	AutoNumber
	SSAN	Text
	DOB	Number
\$2)."	DAS	Number
63%	GRADE	Text
	DEP	Number
	DEP1	Number
	DEP2	Number
	DEP3	Number
	DEP4	Number
	DEP5	Number
	DEP6	Number
	LOCATION	Text
	STATION	Text
	SEPARATE	Text
63	DAFSC	Text
187	DDI	Number
	DATEARRIVE	Date/Time
		Field Properties

APPENDIX E

Analysis of Additional Data Sets 1987, 1990, 1995, and 1999 Summary of Total Records Available Enlisted and Officer Personnel Assigned to and Located at CONUS And PACAF Bases

ANALYSIS OF ADDITIONAL DATA Table E-1

	Total		Records R	ejected		Total	%
1987 Data Set	Records	DAS=9999	DOB=9999	2-ltr MPF	NAAS	Available	Used
Enlisted	417,678	1995	10	85040	37,779	292,854	70.1148
Officer	99,987	3421	118	15430	10,426	70,592	70.6012
1990 Data Set							
Enlisted	361,791	1098	4	67194	24964	268,531	74.2227
Officer	92,586	549	36	14136	9873	67,992	73.4366
1995 Data Set							
Enlisted	300,406	640	4	2822	26218	270,722	90.1187
Officer	74,624	534	495	295	9871	63,429	84.9981
1999 Data Set							
Enlisted	268,983	813	4	20	24949	243,197	90.4135
Officer	67,864	1342	157	0	8845	57,520	84.7578
Totals	1,683,919	10,392	828	184,937	152,925	1,334,837	

DAS - Date Assigned Station (coded YYMM)

DOB - Date of Birth (coded YYMM)

NAAS - Not at Assigned Station (located at satellite facility) Two-Letter Military Personnel Flight (MPF) Codes

ÿ

	Number	Assigned	by Year -	Enlisted		Number	Assigned	by Year -	Officer
Air Force Base	1987	1990	1995	1999		1987	1990	1995	1999
Pentagon	1441	1491	1574	1549		3302	3127	3161	3083
Altus	3352	2953	3050	1683		463	409	405	413
Andersen	3713	2331	2031	1834		385	168	220	211
Andrews	4493	4288	4501	4005		1613	1481	1174	1074
Barksdale	5600	4957	5005	4686		1078	1045	879	799
Beale	3996	3211	3035	2908		597	512	388	351
Bolling	1256	1204	1285	1467		328	307	312	395
Brooks	1178	1129	1216	1057		518	519	656	479
Buckley	0	0	0	732		0	0	0	101
Cannon	3559	3747	4571	2986		421	466	480	300
Charleston	3835	3463	4011	3384		550	573	639	631
Columbus	1976	920	830	571		886	896	506	872
Davis-Monthan	4899	4653	5249	4836		697	605	897	810
Dover	4521	4030	3955	3472		416	409	483	414
Dyess	4997	4483	4342	4024		928	765	712	744
Edwards	3865	3793	3681	2979		775	771	635	554
Eglin	7854	7193	6806	5985		1886	1636	1453	1213
Eielson	3132	2986	2656	2603 .		346	363	239	267
Ellsworth	5959	5662	3555	2783		996	1054	501	377
Elmendorf	5903	5397	6148	5978		851	892	827	848
F.E. Warren	3509	3005	3223	2921		661	637	634	595
Fairchild	3985	3679	3734	2993		651	653	686	497
Ft George Meade	1958	1862	2325	2278		334	300	328	234
Goodfellow	1790	1650	1837	1644		292	222	322	300
Grand Forks	4761	4205	4183	2506		706	742	836	421
Hanscom	1074	1022	918	814		1160	1090	813	633
Hickam	3709	3358	2707	2581		980	895	709	677
Hill	4630	4280	4056	3654	_	695	671	641	593
Holloman	5591	4198	4286	3552		759	632	514	414
Hurlburt Field	4183	4616	6606	6271		622	763	1098	1197
Kadena	8617	6860	6864	6283		812	710	748	720
Keesler	9345	7387	6714	6022		1180	1231	1001	922
Kelly	1600	3285	3959	3249		445	823	798	618
Kirtland	3366	3175	3165	2899		1364	1190	1322	1125
Kunsan	2907	2785	2579	2401		257	247	246	254
Lackland	7243	5655	6881	6814		1783	1812	1968	1863
Langley	6861	7149	6703	6625		2201	2075	2034	1853
Laughlin	1968	908	786	560		910	987	486	816
Little Rock	4758	3961	3877	3737		905	719	708	660

Table E-2. Air Force Personnel Assigned to and Located at Listed Air Force Bases

1

ţ,

a -

\$

	Number Assigned by Year - Enlisted				1	Number	Number Assigned by Year - Officer		
Air Force Base	1987	1990	1995	1999		1987	1990	1995	1999
Los Angeles	489	506	549	449		1249	1339	1130	834
Luke	5011	4743	4983	4807		654	707	700	726
MacDill	4252	4504	2306	2826		777	890	581	721
Malmstrom	3371	3556	3725	3082		580	670	660	535
Maxwell	1672	1577	1759	1653		1502	1440	1594	1119
McChord	4662	3341	3597	3005		639	498	555	442
McClellan	2837	2416	2385	1326		480	414	452	222
McConnell	2691	2729	2647	2277		355	381	518	412
McGuire	4355	3929	4541	4039		703	619	806	672
Minot	5367	4402	4664	4071		932	840	761 ·	670
Misawa	3566	3505	3602	3205		320	312	333	335
Moody	1518	2830	3430	3579		273	346	431	434
Mt. Home	3597	3037	3343	3852		435	399	402	519
Nellis	8486	7484	6720	5489		1081	874	856	795
Offutt	9353	9024	7003	6143		3582	3163	1797	1448
Osan	5226	5150	5100	5017		667	589	584	641
Patrick	2429	1904	1952	1096		350	283	492	357
Peterson	1619	2020	2186	1989		739	1227	1228	1079
Pope	3622	3351	4100	3989		653	581	557	644
Randolph	3791	3569	3195	2655		1627	1551	1884	1828
Reese	1809	806	644	0		866	926	459	0
Robins	3482	3224	3496	3797		770	745	823	846
Schriever	0	0	0	1449		0	0	0	712
Scott	4730	4440	4355	3773		2405	2163	2117	1678
Seymour-Johnson	4202	4121	4421	3840		617	581	576	557
Shaw	5431	4821	4929	4456		989	870	713	627
Sheppard	5891	5614	6619	6885		896	888	811	806
Tinker	6215	5533	6268	5265		1575	1481	1345	1089
Travis	6933	6340	7160	5907		1224	1238	1619	1341
Tyndall	3013	3753	4131	2947		834	778	812	823
USAF Academy	1855	1818	1598	1329		1195	1164	1396	1324
Vance	447	414	419	423		831	919	460	748
Vandenberg	3163	2700	2674	2627		810	712	752	783
Whiteman	2781	2729	2875	2970		480	476	325	310
Wright-Patterson	4196	4179	3358	2880		5363	5075	4045	2767
Yokota	3622	3747	3300	2990		602	672	612	564
Totals	294,839	270,521	272,717	245,196		72,579	69,982	65,424	59,519

.

.

Table E-2. Air Force Personnel Assigned to and Located at Listed Air Force Bases (Cont.)

↓ ↓

• • • •

APPENDIX F

List of Symbols, Abbreviations and Acronyms

3

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

=

ACC	Air Combat Command					
AFB	Air Force Base					
AFIERA/RSRE	Air Force Institute for Environment, Safety and Occupational Health Risk					
	Analysis, Environmental Sciences Branch					
AFMC	Air Force Materiel Command					
AMC	Air Mobility Command					
ASCII	American Standard Code Information Interchange					
BYEAR	Birth Year					
CONUS	Continental United States					
COTS	Commercial Off-The-Shelf					
DAFSC	Duty Air Force Specialty Code					
DAS	Date Arrived Station					
DDI	Privacy Act Code					
DEP	Dependent					
DOB	Date Of Birth					
E	Enlisted					
E4	Senior Airmen					
E5	Staff Sergeant					
EPA	U.S. Environmental Protection Agency					
ESSRA	Enhanced Site-Specific Risk Assessment					
HQ AFMC	Headquarters Air Force Materiel Command					
HQ AFMC/DPZD	Headquarters, Air Force Materiel Command, Data Automation and					
	Analysis Branch					
mg/kg	Milligram per Kilogram					
mg/L	Milligram per Liter					
mg/m ³	Milligram per Cubic Meter					
MPF	Military Personnel Flight					
MS	Microsoft					
MSEF	Military-Specific Exposure Factors					
MTC	Air Force Materiel Command					
0	Officer					
03	Captain					
04	Major					
OpTech	Operational Technologies Corporation					
PACAF	Pacific Air Force					
PCS	Permanent Change Of Station					
SPC	Air Force Space Command					
SSAN	Social Security Account Number					
USAF	United States Air Force					