

U2 Rocket Catapult Mechanistic Aging and Surveillance Testing

Phase I – Disassembly, Chemistry, Preliminary Structural Analysis and Preliminary Service Life Estimate

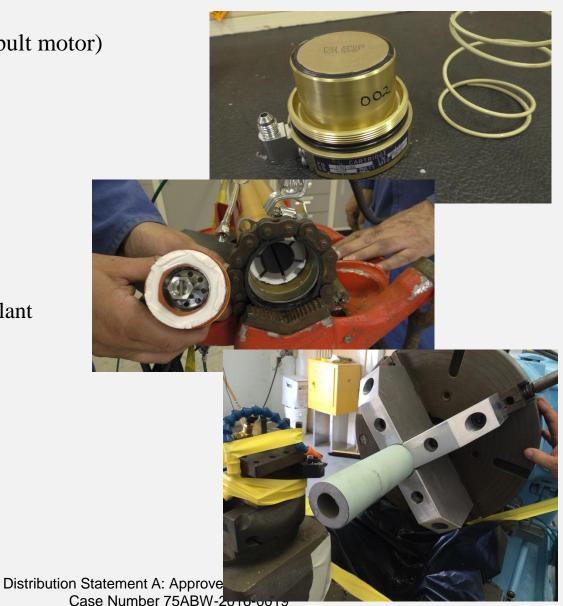
Travis Thom – CAD PAD Engineer, Hill AFB Brian Liechty – Senior PLI Structural Analyst, Orbital ATK

24 May 2016

Distribution Statement A: Approved for Public Release Case Number 75ABW-2016-0019

Testing and Analysis

- Three motors received for dissection
 - 2008 Motor used for Full Test Matrix material properties initial service life estimate.
 - 2000 and 2004 Motors used to evaluate motor-to-motor variability and also obtain information on aging chemical mechanisms by 12-month storage at elevated temperatures.

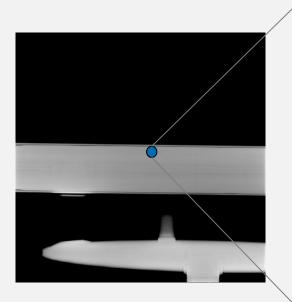

Date of Manufacture	Age at Test
2008	7
2004	11
2000	15

Disassembly-Several Components

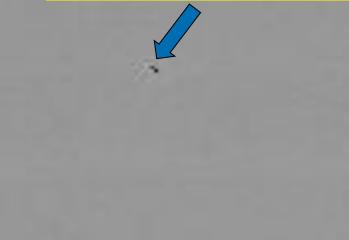
- Base Cartridge (Catapult motor)
 - > Propellant
 - \succ BKNO₃ pellets
- Head Cartridge
 - \succ BKNO₃ pellets

• Main Cartridge

Main grain propellant



NDT Inspection



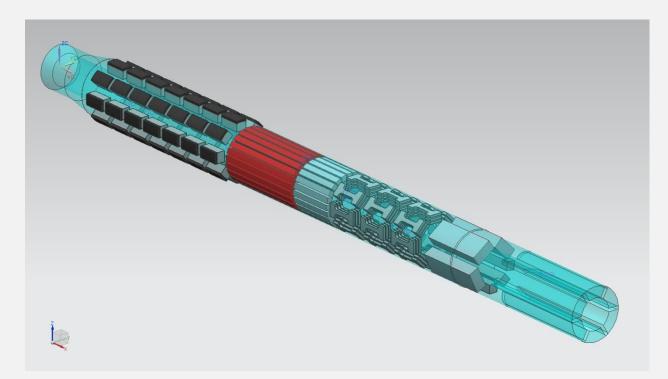
- No reportable Defects for 2000 and 2008 Motors
- 2004 Motor showed heavy and uneven liner throughout the motor with numerous voids in the propellant (Maximum dimension of voids: 0.136-inch length and 0.043-inch width)

Spherical voids most likely formed at initial casting

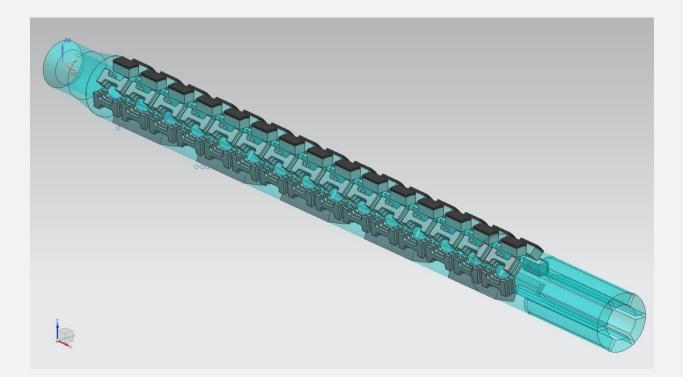
Distribution Statement A: Approved for Public Release Case Number 75ABW-2016-0019

2008 Motor- Full Test Matrix

		Pressure	Rate	Strain	Replicates at Temperature						
Test	Specimen	(psig)	(in/min)	(%)	-65°F	-30°F	0°F	75°F	110°F	130°F	165°F
Uniaxial Tensile	mini-	0	0.01		-	-	3	3	-	3	3
	dogbone	0	1		3	-	3	3	-	3	-
		1000	1		-	-	3	3	-	3	3
		1000	10		3	-	3	3	-	3	-
Birate	Mini- dogbone	0-1000	Pull to 10					bient psig, l at 10 ipm. [essurize
Bond Tensile	mini-DPT	0	0.01	10 100		-	3	3	-	3	3
		0	1		3	-	3	3	-	3	-
Bond Shear	mini lap	1000	1		-	-	3	3		3	3
bond Shear	shear	1000	10		3		3	3		3	
Relaxation			10	5.04	3	-	-	3	3	-	2
Modulus	mini-prism	0		5%	5	3	3	3	3	3	3
Density		0	NA					3			
Shore A 10 second reading (Propellant)	Motor	0	NA					5			
Shore D 5 second reading	Phenolic Liner	0			5			5			5
Shore D	Forward	Φ			5			5			5
5 second reading Burn Strand	Insulation	5 pressures						3 each pressure			
Moisture Content		0						3			
HoE (heat of Explosion, DSC)											
Propellant CTE	3" x 0.4" x 0.4"	0	NA	0	3 replicates from -65°F to 200 °F						
Chemical	Microtome	0	NA		Profile (bondline to bore)						
Mechanical	Microtensile	0	0.01		75 °F Profile (bondline to bore)						
XLD	Microtome	0	NA				Profi	le (bondline	to bore)		

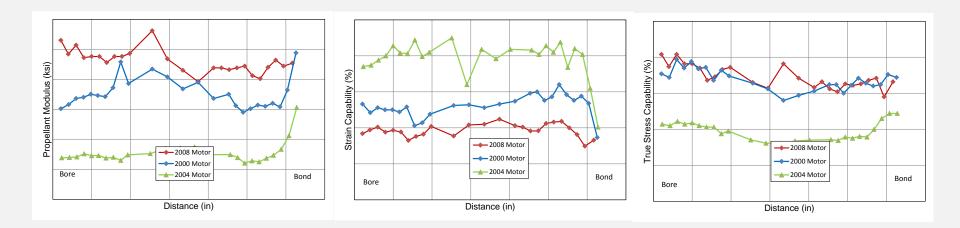


Main Grain 2008 Motor


Produce samples for full propellant characterization

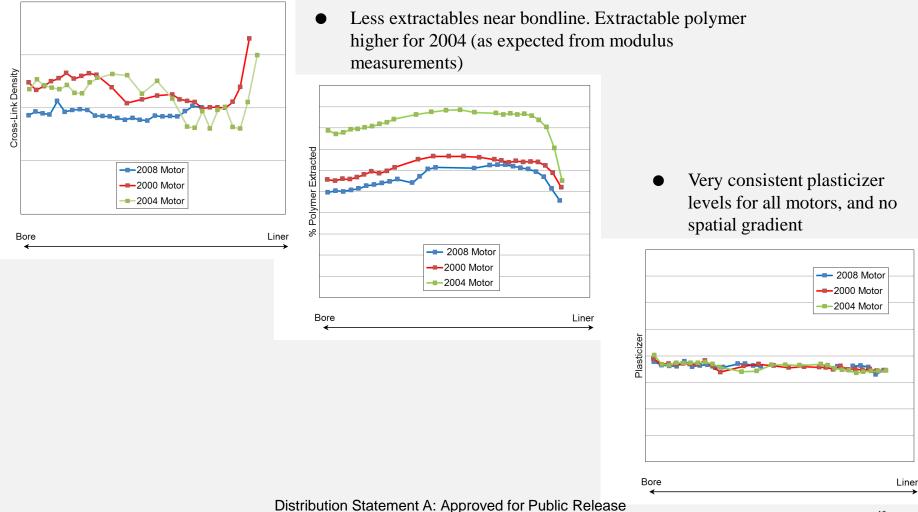
2000 and 2004 Motor

Produce samples for reduced test matrix to document motor-to-motor variation and samples to be placed into aging to determine the affect of temperature and time on binder degradation mechanism.



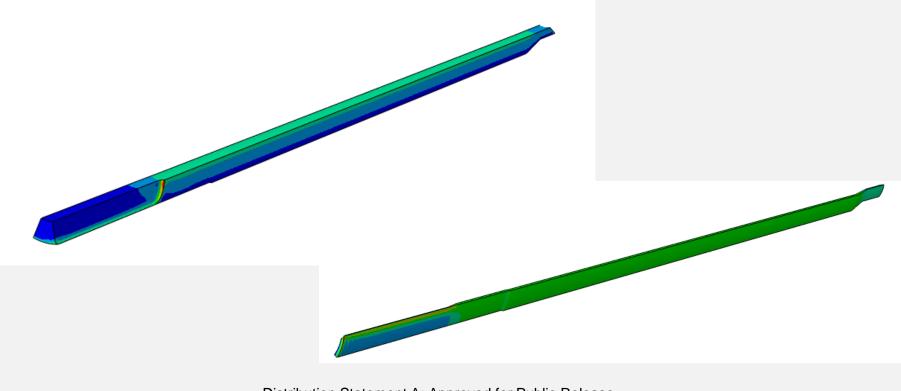
		Pressure	Rate	Strain	Replicates at Temperature						
Test	Specimen	(psig)	(in/min)	(%)	-65°F	-30°F	0°F	75°F	110°F	130°F	165°F
Uniaxial Tensile	mini-	0	0.01				3	3			
	dogbone	1000	10		-		3	3	-		-
Bond Tensile	mini-DPT										
		0	0.01		-	-		3	-		-
Bond Shear	mini lap										
	shear	1000	10			-		3		-	-
Relaxation	mini-prism	0		5%	-			3			
Modulus											
Chemical	Microtome				Profile	(bondlin	e to bo	ore)			
Mechanical	Microtensil				Profile	(bondlin	e to bo	ore)			
	e										
XLD	Microtome		Profile (bondline to bore)								
Shore A	Slab		5 readings on slab at 75°F								
10 second reading											

Motor Mechanical Properties Profile


- Hard layer is apparent at the 2004 and 2000 motor bondlines, but not in the 2008.
- 2004 Motor has softer properties compared to the other two motors.

U2 Motors Profile---- Cross-link Density

 Higher XLD at bond, expected lower 2004 XLD



Case Number 75ABW-2016-0019

Peak Stress/Strain Locations

- Peak grain strains and stresses at aft end of fin valley (near bore)
 - Persists for storage and ignition
- Peak grain-composite bond stresses at fin valleys

Storage Propellant Bore Cracking

Temperature	FS
-65	3.87
-40	4.27
75	8.94
165	88.5

Softer 2004 propellant has higher FS

Storage Propellant-Composite Bond Tensile Failure

Temperature	FS
-65	1.40
-40	1.70
75	5.59
165	70

Ignition Propellant Bore Cracking (Deviatoric Stress)

Temperature	FS	
-65	1.13	4500 psig
-40	1.44	in 0.05 seconds
75	3.60	
165	5.39	Softer 2004 propellant
		has better FS

Ignition Propellant-Composite Bond Shear Failure

Temperature	FS
-65	1.74
-40	1.81
75	2.19
165	2.38

FEMCA

Material/		Factor of				System
Component	Component Failure Mode	Safety	ASF	CF	FPF	Effects
I. Propellant S	tructural					•
	1) Bore crack initiation					
	a) High temperature (165 °F) storage	88	2	3	6	Catastrophic
	 b) Low temperature (-65 °F) storage 	3.9	2	3	6	Catastrophic
	c) High temperature(165 °F) operation	5.4	2	3	6	Catastrophic
	 d) Low temperature (-65 °F) operation 	1.1	2	1	2	Catastrophic
	Internal void crack propagation (2004)					
	motor)					
	a) High temperature (165 °F) storage		2	2	4	Catastrophic
	b) Low temperature (-65 °F) storage		2	2	4	Catastrophic
	c) High temperature(165 °F) operation		2	2	4	Catastrophic
	 d) Low temperature (-65 °F) operation 		2	2	4	Catastrophic
II. Propellant E						
	1) Ballistic performance specification					
	violation					
	 a) High temperature operation 		3	2	6	Catastrophic
	 b) Low temperature operation 		3	2	6	Catastrophic
III. Bondlines						
	 Propellant-liner-case bond failure 					
	a) High temperature (165 °F) storage	70	2	3	6	Catastrophic
	b) Low temperature (-65 °F) storage	1.4	2	1	2	Catastrophic
	 c) High temperature (165 °F) operation 	2.4	2	3	6	Catastrophic
	 d) Low temperature (-65 °F) operation 	1.7	2	2	4	Catastrophic
IV. Case (Stee						
	1) Case burst (6000 psig)					
	 a) High temperature operation 	1.53	3	3	9	Catastrophic
	 b) Low temperature operation 	1.53	3	3	9	Catastrophic
	Case rupture due to internal heating, or		2	3	6	Catastrophic
	burn-through		2	5	· ·	Catabilophic

Orbital ATK

- <u>Preliminary Service Life Estimate was provided</u> based on similarity between 2000 and 2008 motor data and positive FS
 - Lowest FS = 1.1 for bore crack at for -65 °F operation (increases to 1.4 at -40°F)
 - 8 motors, 3-7 years old successfully static tested at -65 °F (IHTR 3152)
 - 2004 motor has improved (higher) FS due to lower modulus (lower induced stresses) and nominal stress capability (increased strain capability)
 - However internal voids in 2004 motor should be analyzed for crack propagation
 - Requires addition of fracture testing
- Aging study (in process) will identify and quantify aging behavior and allow a more accurate SLE with probability of failure for each failure mode

Phase I analysis has provided an improved SLE and significantly benefited the program