International Electronic Machines Corporation

WISE Solutions for Transportation Safety & Security

STABILIZER LEVEL ACCURATE MEASUREMENT SYSTEM (SLAMS) WIRELESS MONITORING OF PROPELLANT STABILIZER

FOR SBIR TOPIC N111-010, CONTRACT N68335-12-C-0408

PREPARED FOR THE 11^{TH} BIENNIAL CAD/PAD TECHNICAL EXCHANGE WORKSHOP, JOINT BASE ANDREWS MAY 25, 2016

NAVAIR Public Release Distribution Statement A - Approved for Public Release, distribution is unlimited

Presentation Overview

PROBLEM AND CHALLENGES SOLUTION CONCEPT CURRENT DEVELOPMENT/RESULTS

Nature of the Problem

IEN

- PADs and CADs use highly energetic materials
 - Decomposition to NO_X can lead to runaway reaction
 - Stabilizers added to prevent NO_X buildup
 - Eventually stabilizer (and stabilizing daughter products) may be depleted
 - Cannot predict how long "eventually" is (temperature variations which produce complex changes in total stabilizer consumption rate)
- No technology currently exists to detect this *in situ*
 - Size, power, accessibility, and safety exclude all potential COTS candidates

Challenges

IEN

- Size is one of the primary constraints
 - Maximum 3" L x 1.15" W x 0.08" H (2mm thick)
 - Thickness limitation due to installation (cylindrical charge in close-fitting tube)
- Accuracy and reliability
- Intrinsic safety (no possibility of ignition)
- Data transmission assurance
- Ruggedness
- Zero Maintenance over decade-scale emplacement
- EMI

Solution Concept: SLAMS

Key Elements

- Long-term maintenance-free operation
 - No battery replacement or recharging
 - Severely space constrained
- Transmit/Receive data even from within enclosure
 - Many enclosures fully-sealed metallic screen out RF transmissions
- Sensor Development
 - Customize for target stabilizers
 - Determine sensitivity, accuracy, reliability
 - Originally FSCRs from Sandia National Laboratory
 - Now carbon nanotube sensors from Redstone based on NASA research

Low-power Node Operation Design

EN

- Operation of sensor node divided into two sections
 - Hibernation: Ultra-low power mode (~0.1µA) waking up periodically to sample and listen for download requests
 - Active mode: Data collection draws ~20mA for ~5ms (1/200th of a second); transmission comparable, time interval proportional to amount of stored data
- Total power consumption over 10 years estimated to be 9.64mA-h; 8.77mA-h consumed in hibernation mode and 0.87mA-h by the active mode.

Low-power Node Operation Design

EN

- Two separate modes of power consumption
 - Constant draw at very low current
 - Short-term periodic draw at high current.
- Select silver-oxide primary batteries
 - Can be very small, high-capacity, very low self-discharge, and inexpensive
- Accumulator Subsystem for high draw
 - Capacitor-based storage recharges between transmission/datalogging events
 - Tested and proven

Silver Oxide cell: 1.6x11mm, 33mAh, 10+year lifetime

Low-Power Node Operation Design

- Low-power subsystem performs periodic wakeup
 - Adjustable time interval
 - Clock independent of main system
 ultra low power
- External wakeup for download
 - Interrogation ping from outside triggers wakeup with no need for high-power sleep-wake cycles
- Automatically powers down after data gathering or completed download

Transmission Through Casing

- Major challenge is to transmit through casing
 - Known to be sealed metal container
 - Prevents transmission of RF at reasonable frequencies and power levels
- Need method to transmit data from sensor unit inside casing
 - Conductive metallic composition is key
 - Implies that enclosure itself may be used as antenna
 - Dependent on sufficient size for wavelength
 - Impedance match will be required for best performance
- Tested enclosure as antenna compared to bare lead (no antenna) and commercial antenna in selected 2.4GHz ISM band

Transmission Through Casing

- Testing successful
 - Transmission strength only moderately affected by orientation (+3.9dB vs +5.0 dB)
 - Significantly outperforms standard WiFi 2.4GHz antenna (at 2.0dB)
 - Verified by unattached lead (-15dB) (noise floor ~30dB)
 - Performs across entire ISM band (minimum of +13.5dB over cable)
 - Verified in later testing of through-case transmission
- Extending this approach addresses issue of larger enclosure around casing
 - Use second enclosure as receiving antenna for "relay"
- Patent Pending: Application 14/695,628

Approved for Public Release, distribution unlimited

Sensors and Sensor array

- Original: Field-Structured Chemiresistors
 - Licensable Sandia technology
 - Extremely small: Millimeter scale
 - Ultra-low power: Microwatts
- Developed new sensors
 - Tailored polymers and redesigns
 - Improved sensitivity and response time
- Reached current limits of technology
 - Could not reduce size/thickness sufficiently
 - Remaining nanoscale path would require significant additional research

Sensors and Sensor array

- New approach: Sense NO_X
 - Nitrogen oxide production inversely related to stabilizer
 - Study showed feasible method of detecting stabilizer loss
- Redstone-NASA Carbon Nanotube sensors
 - Small and low power (resistive sensors)
 - Inexpensive to produce
 - Sense target analyte directly
 - Single-analyte target means no "electronic nose" array needed

Current Conclusions/Moving Forward

- Overall functionality and practicality of SLAMS sensor node complete and proven
 - Ability to gather data at selectable and adjustable intervals; automatic wakeup/sleep for ultra-low average power; external wakeup for download or software updates
 - Solved problem of transmission through sealed casing
 - Applicable to multiple-enclosure situations
 - Limited only by size and ability to characterize enclosures
- Revised and updated sensing approach
 - NO_X sensing approach reduces size, complexity, power demand
 - Direct measurement less dependent on complex analyte interactions

Discussion/Q&A

