

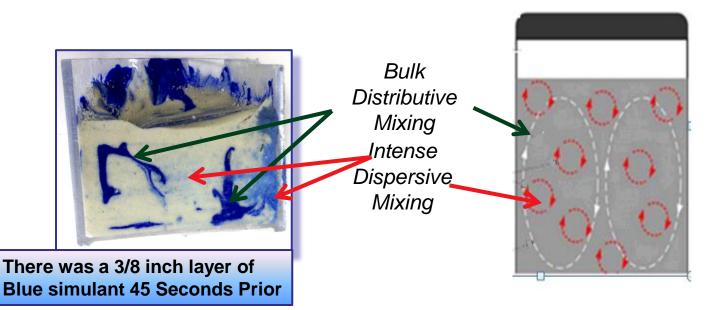
Resonant Acoustic Mixing of Cast Composite Propellant and PBXN

Presented by: Amy Luebbering

May 25, 2016

Resonant Acoustic Mixing: Shaking up the future of energetic mixing

Distribution Statement A: Approved-for Public Release, distribution unlimited.


Overview

- What is Resonant Acoustic Mixing
- RAM at NSWC IHEODTD
- Energetic mixing, PBX and Propellant
 - End item mixing
 - Physical properties
 - Mix quality
- Mix process studies
- Other formulations

Resonant Acoustic Mixing

- What is Resonant Acoustic Mixing (RAM)
 - Non-contact mixing
 - Low-frequency (approximately 60 Hz)
 - High-intensity (up to 100g)
 - Uniform & simultaneous micro-mixing

Resonant Acoustic Mixing: Shaking up the future of energetic mixing

Distribution Statement A: Approved for Public Release, distribution unlimited.

Resonant Acoustic Mixing-Benefits

- Safety: No moving parts!
- Cost Savings
 - Efficiency
 - Reduce mix/cast labor
 - Reduce cure times: overnight, ambient cure
 - Reduce cycle times
 - Reduce Footprint
 - Potential to replace larger horizontal and vertical mix facilities
 - Reduce or eliminate cure ovens

Resonant Acoustic Mixing: Shaking up the future of energetic mixing

NSWC IHEODTD RAM Overview

- Two LabRAMs (1st generation: 500g capacity) operating
 - HTPB propellant and PBX formulations
 - Mechanical properties testing
 - Mixed in end units
 - Small rocket motor and grenade
 - Both successfully test fired
- RAM-5
 - Installed
 - Have run with inert PBX simulant
 - Approval for energetic use pending possible site approval evaluation

RAM Mixing at IHEODTD

Energetic Mixing

- PBX Explosives
 - PBXN-109
 - PBXN-110
- AP Propellants
 - N-60
 - Other composite propellant
- End-unit Mixing
- Other Formulations

Smokey SAM Mixing Arrangement

End Unit Mixing Demonstrations

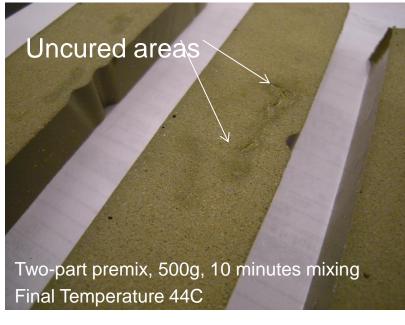
- Two-part premix method for volume considerations
- Small items mixed individually on LabRAM
- Neither item requires liner
- Grenade
 - PBXN-109
 - 3 grenades fired with production LAT
 - Passed requirements
 - Indistinguishable from production units
- Rocket Motor
 - N-60
 - 3 rocket motors fired with production LAT
 - Passed requirements
 - Indistinguishable from production units

End Unit Mixing

- Lined unit mix test; inert material mixed in lined beaker
 - Sectioned for visual inspection
 - Liner undisturbed
 - "Release coat" between liner and mix was disturbed (undesirable)
 - Ability to mix in lined container may be dependent on liner properties

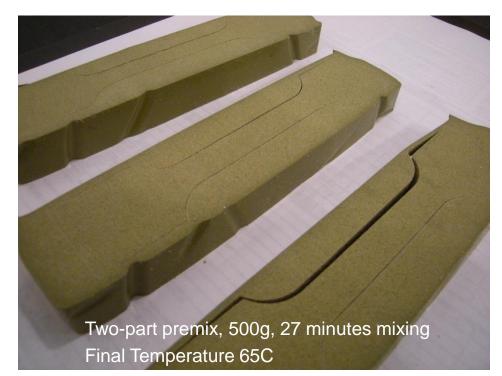
End Unit Mixing

- FY16-17 Funded Project
 - Investigate rocket motor end unit mixing
 - Liner integrity
 - Motor case durability
 - Mix geometry effects
 - Motor case and mandrel shape effect on mixing
 - "Overfill" fixture for ingredient addition
 - Successful project will demonstrate mix in case of lined motor on RAM-5



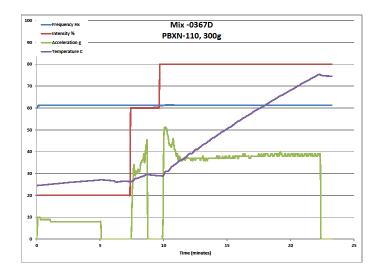
Physical Properties

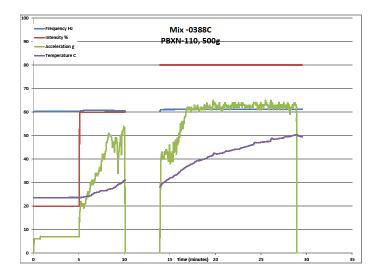
- PBXN-109
 - Two mix methods; premixes and from raw materials
 - Mechanical properties, density
- PBXN-110 Type 2
 - Mix from raw materials
 - Accelerated cure (increased catalyst level)
 - Mechanical properties, density, sensitivity, vacuum stability
- N-60
 - Mix from premixes*
 - *Settling of zinc in premix was observed
 - Mechanical properties, density
- All formulations met specification physical properties requirements, within range of historical data
 - *One N-60 sample failed density



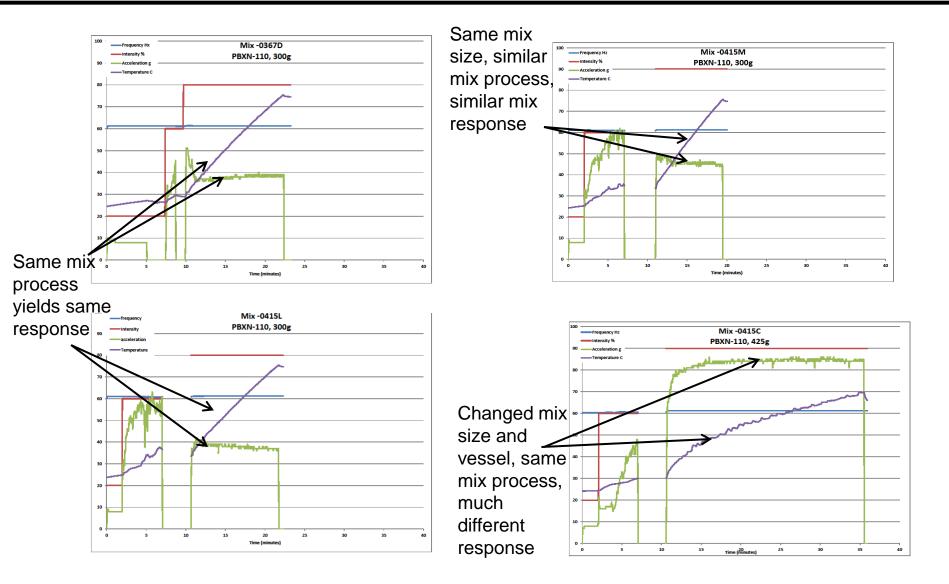
Explosive Mixing Temperature Rise vs. Mix Quality

Poorly mixed N-60


Well mixed N-60



Explosive Mixing Temperature Rise vs. Mix Quality



Mix N110 -0388C 25 minutes total mixing Final Mix Temp 50C

Repeatability and Variability

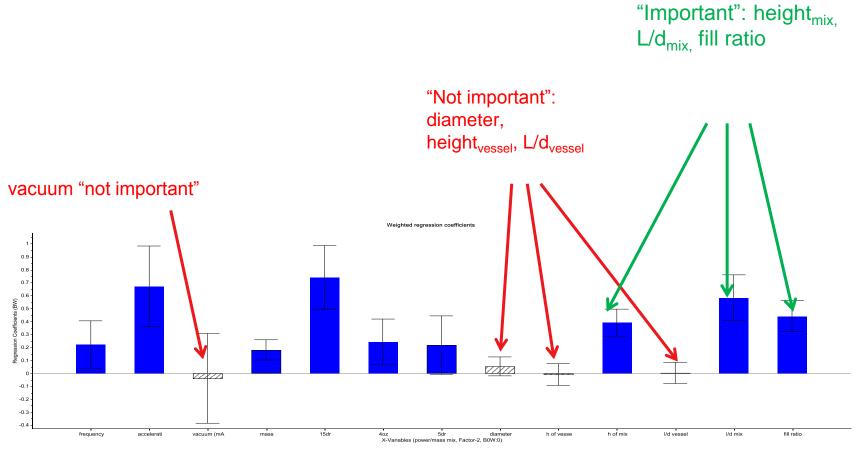
Distribution Statement A: Approved for Public Release, distribution unlimited.

Factors

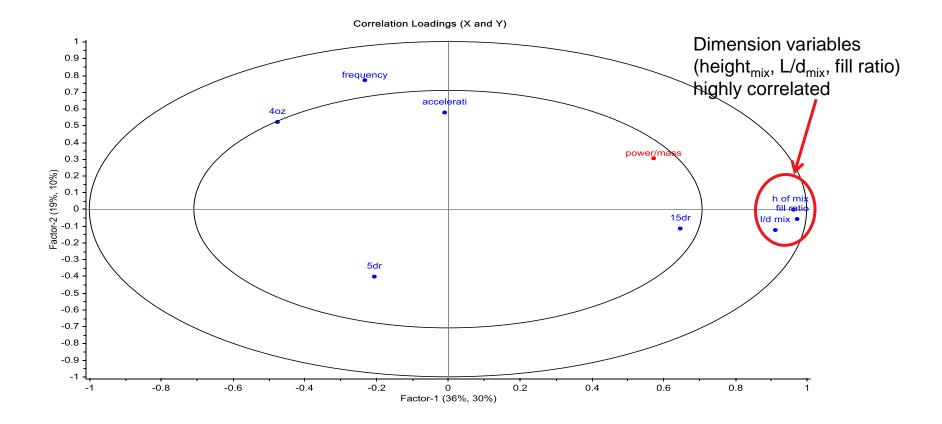
- Mix characteristics
 - Viscosity
 - Density
- Mix size/shape
 - L/D
 - Mass
- Mixer parameters
 - Intensity (Acceleration)
 - Vacuum

Responses

- Mixing Power
 - Power Equation from Resodyn
- Mixing Power/ Mass_{mix}
 - Correlates to temperature rise

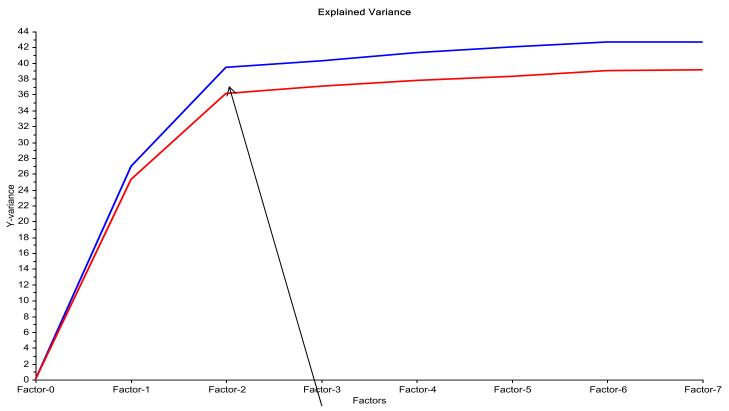

- Acceleration, L/d, Vacuum important variables
- Density, viscosity, mass not important (for range studied)
- Significant unexplained variance
- Desirable range (high power values) not described by derived model
 - Considered that higher 500g level for mass may have been poor choice (at edge of machine limits)

- Focus on important variables from screening study
 - Acceleration (Intensity), L/d, Vacuum
- Viscosity and density constant
- Additional (higher) L/d Levels
 - Included other dimensional variables in analysis
 - (diameter, $height_{mix}$, $height_{vessel}$, L/d_{mix} , L/d_{vessel} , fill ratio)
- Lower mass levels
 - Avoid possible equipment limitations
 - Smaller vessels: 5 dram, 15 dram, 4 ounce



Regression Coefficients for Power/Mass (Full Model)

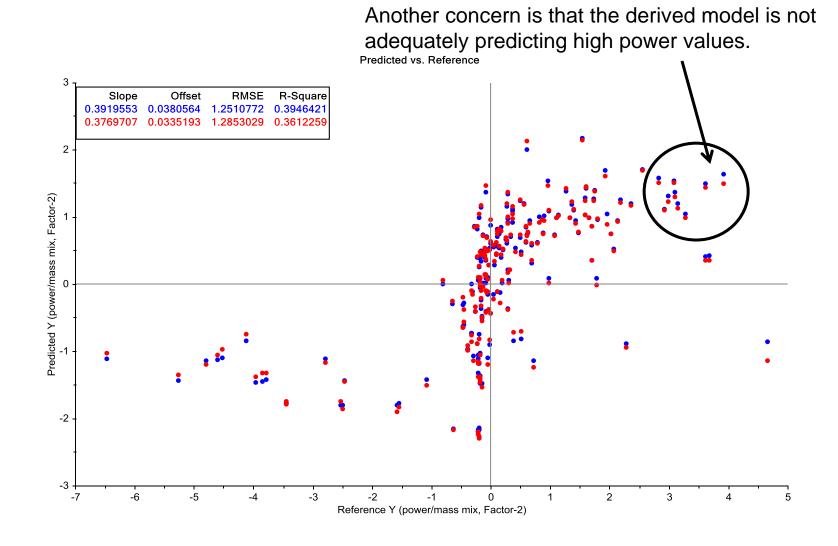
LabRAM Mix Variable Study



Correlation Loadings of Reduced Model

DISTRIBUTION A. Approved for public release: distribution unlimited.

LabRAM Mix Variable Study



A total explained variance of 40% is low, and may mean:

- There are other variables that are not included in the model
- The system has a high level of random variation normally
- A measuring tool/method that was used has a large amount of variation

LabRAM Mix Variable Study

DISTRIBUTION A. Approved for public release: distribution unlimited.

- In range studied (PBX simulant), viscosity and density of mix had negligible effect
- Vacuum and mix mass had little effect
 - Suggests we can use full vacuum w/o compromising mixing
 - Increasing mass with scale-up may not be a concern
- Geometry of mix is important
 - Diameter may not be important
 - Height of mix, L/d of mix, and/or "fill ratio" important
 - Factors to consider in scale-up to RAM-5

Other Formulations

- Pressed powder incendiary
 - 95% solids, Can be difficult to mix in traditional mixers
 - Good results on LabRAM
 - 7 minute RAM mix vs. 2 hours vertical mix
 - Burn test upcoming
- PBXN-110 Type 1
 - FY16-17 Funded Project
 - Qualification on RAM
 - PAPI curative
 - Fast and room temperature cure
 - Pot life problems in production, not currently used
 - One pint vertical mix cured in bowl
 - Same formulation on LabRAM successful mixes
 - 12 minute total mix time
 - Test results pending

- RAM Technology shows promise for energetics mixing
 - Performs well with current products
 - May solve some existing mixing problems
- Consistency in mixing when process held constant
 - More work necessary to understand how changes in process variables affect mixing
- End-unit mixing is viable
 - May not be suitable for all systems
- Accelerated cure is viable