

Metal Additive Manufacturing Structures for CAD/PAD Applications 2016 CAD/PAD Technical Exchange Workshop

NSWC IHEODTD

DISTRIBUTION A. Approved for public release: distribution unlimited.

Metal Additive Manufacturing

- Introduction
- Metal AM Process
- Positives and Negatives of Metal AM
- Obstacles to Implementation
- Designing for AM

- ASTM F2792: "The process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies."
- This presentation will focus on one particular method of AM: metal powder bed fusion.
 - "Selective Laser Sintering", "Selective Laser Melting",
 "Direct Metal Laser Sintering", etc
 - The use of concentrated heat (typically a laser) to fuse a bed of powdered material (in our case metal) into a solid structure
 - Most popular method of metal 3D printing

Powder Bed Fusion

Source: https://www.youtube.com/watch?v=I0I-GUEQus0

DISTRIBUTION A

Example System

Laser-Based Powder Bed Fusion Metal AM

Source: NSWC IHEODTD

M2 LaserCUSING 3-D Metal Printer

Build envelope:

250 x 250 x 280 mm (x,y,z) 9.84" x 9.84" 11.02" 400 W

Laser System: Materials:

- 1. High-grade steels
- 2. Stainless steels
- 3. Cobalt-Chrome alloys
- 4. Nickel-base alloys (Inconel)
- 5. Titanium alloys (Reactive)
- 6. Aluminum alloys (Reactive)

Fabrication Process

- Model and build preparation
 - Model converted to compatible format (typically STL)
 - Part is oriented and support structure added
 - Part is sliced and converted to machine format
- Fabrication
 - Build parameters determine laser path, intensity, deposition rate, etc
 - Oxygen is removed from build chamber and part is fabricated layer by layer
- Post-processing
 - Part is excavated from powder
 - Build plate is removed via band-saw or wire EDM
 - Secondary operations finish part

Source: Google Image Search

What are the benefits?

- Create net and near-net shape parts out of metal
 - Parts created directly from 3D models
 - Solid steel parts (fully dense, no porosity)
 - Parts can be welded, machined, etc
- High level of precision
 - Tolerances dependent on melt pool size (~0.005")
- Unique geometries
 - Complex shapes
 - Internal structures
- Rapid turnaround
 - Build time based on volume and height
 - Complexity has minimum impact
- Flexibility
 - Designs can be rapidly changed

Source: Google Image Search

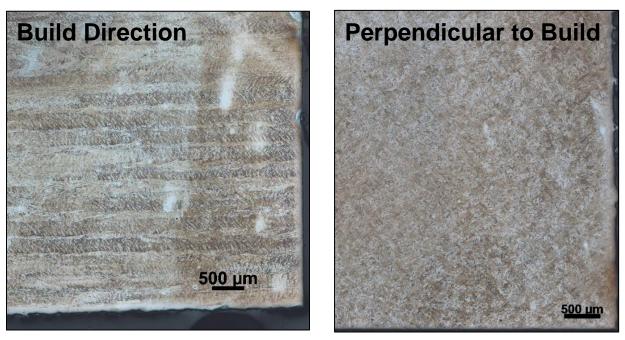
DISTRIBUTION A

What are the downsides?

- One material (monolithic structure)
- Slow build process
 - Dependent on part volume and height
 - Typical machine can process 2-20 cm³ per hour depending on material
 - Example: Four 60mm cylinders approximately 200mm tall with ~4kg/500 cm³ volume maraging tool steel required five days to build
 - Order of magnitude faster processing times with production grade machines
- Post-processing
 - Parts are effectively welded to the build plate
 - Surface finish dependent on orientation and powder
- Verification and Validation
 - Proprietary materials and parameters
 - Relationship between characteristics and build parameters still not fully understood
- Specialized design requirements

Designing for Metal AM

- No unsupported overhangs or islands
 - Minimum ~45 degree angle without support
 - Layered construction requires all of the part to be connected to the build plate at all times
 - Circular holes parallel to build plate will need to be drilled out
 - Undercuts will feature very poor surface quality
- Trapped powder
 - Need to accommodate powder removal during design and fabrication
 - Enclosed voids will have powder trapped in them
- Thermal stresses
 - Welding a bed of powder creates massive thermal stresses
 - Part warping can occur, may result in lost build
 - Heat treating may be required
 - Ideal build has similar cross-section between layers
- Post-processing
 - Must accommodate support removal and fixturing of part



Challenges to Implementation

- AM is extremely process specific
 - Machine
 - Build process parameters (hundreds of variables)
 - Part orientation
 - Number of parts on plate
 - Powder properties
- This requires a new way of thinking with respect to the technical data package (TDP)
 - Process closer to welding than machining
 - Understanding interplay between variables is crucial to deciding what must be controlled
 - End result could be TDPs hundreds of pages long
- Qualification, Certification, and Inspection
 - Ensuring that what's built in a decade still meets design intent
 - Determining criticality of parts to establish level of rigor
 - Developing inspection processes for intricate metal geometries

Example: Build Orientation

NSWC IHEODTD AM Tool Steel Micrographs

- Grain structure changes depending on build orientation
- Result is anisotropic material properties
- TDPs may need to specify orientation and process parameters

Energetic Specific Challenges

- Lack of information on AM material properties
 - Dynamic response
 - Material models for simulation
- Limited material availability
 - Alloys
 - Reactive materials
- Lack of experience explosively loading AM structures
 - Material compatibility
 - Geometry
- Lack of energetics which match the flexibility of AM
 - Low viscosity materials

