Energetic Material Additive Manufacturing

Dr. Samuel Emery, NSWC-IHEODTD

CAPT VINCENT MARTINEZ COMMANDING OFFICER

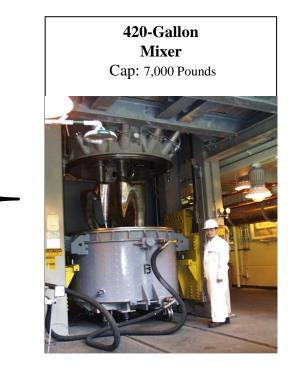
MR. ASHLEY JOHNSON TECHNICAL DIRECTOR

ERS

I.S. NAVY

Distribution Statement A. Distribution Unlimited. (IHEODTD 16-061

REVIEW: TRADITIONAL MANUFACTURING OF EXPLOSIVES

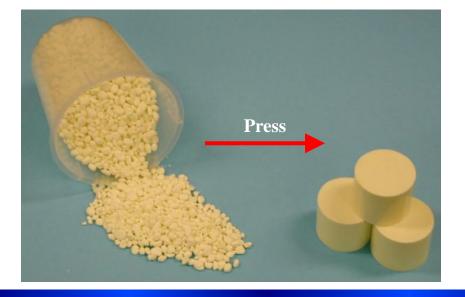

The current "state-of-the-art"

Cast-Cure Process

- Cast-Cure
 - Composite materials
 - Polymeric Binders
 - Explosives
 - Metal Fuels
 - Oxidizers
 - Curatives, Catalysts, Bonding Agents...
 - Plasticizers, Antioxidants, Stabilizers...
 - Processing Aids, Ballistic Modifiers

Melt-Cast Process

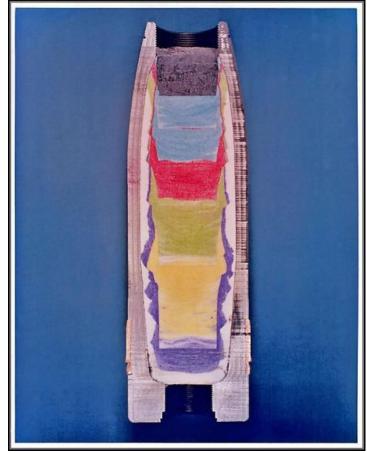
- Melt-Cast
 - Purse explosive melted in steam jacketed kettle
 - Charges are loaded by one of three main techniques:
 - Straight pour
 - Pellet Load
 - Riser Load



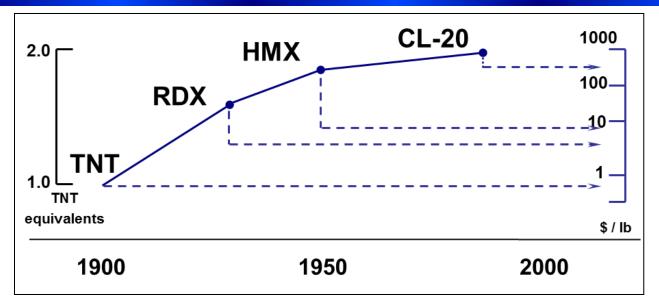
Pressed Powder Process

- Pressed Powders
 - Produce a "molding" powder
 - Explosive Molecules
 - Wax or Plastic Binder
 - Solvent
 - Press the powder into require shape or into case

Problems with Traditional Manufacturing of Explosives



- Cast-Cure
 - Settling of ingredients
 - Poor bonding of cast material to casing
 - Shrinkage and cracking
- Melt-Cast
 - Shrinkage and cracking
 - Irreversible growth
 - TNT based explosives are poor in cook-off scenarios
- Pressed
 - Not suitable for very large munitions
 - Not suitable for munitions with limited access, internal plumbing, unusual shapes


- Traditional explosive manufacturing
 - Formulations limited to production via:
 - Cast-Cure
 - Melt-Cast
 - Pressed Powders
 - Limited set of ingredients.
 - Feedstock sources limited, often single vendor or foreign sourced
- Improvements to existing technologies
 - often incremental only, difficult/costly to update large scale manufacturing plants
 - limited impact on performance or munition safety

5"/58 Projectile Showing Incremental Pressing of Explosive Fill

Need for Disruptive Technologies

- After 100 years of explosive molecule synthesis efforts...
 - We have 2x TNT with a significant cost increase per pound
 - CL-20, the top molecule, is qualified in only one DoD formulation
 - CL-20 adoption is held back by

ndian Head EOD Technology Divisio

- Money/Time to redevelop formulations for existing systems
- Lack of production of the molecule (economy of scale).
- The one formulation...? An explosive ink used in 3D printing of fuzes.

- Additive Manufacturing, a working definition
 - A general term that encompasses several technologies that can create 3D objects by adding material layer by layer
- General Benefits
 - Cost Savings
 - Material Control
 - Rapid Prototyping

Why Energetic Material AM?

- Cost Savings
 - AM cost per part insensitive to number of parts produced

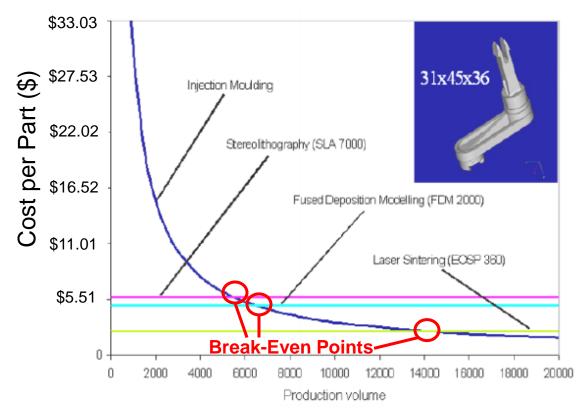
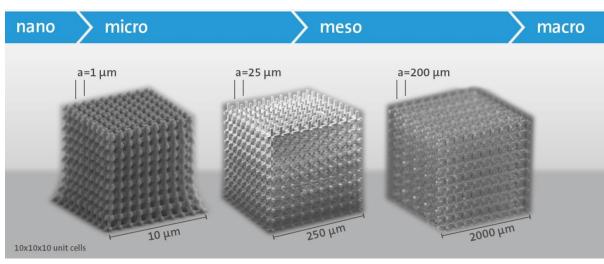
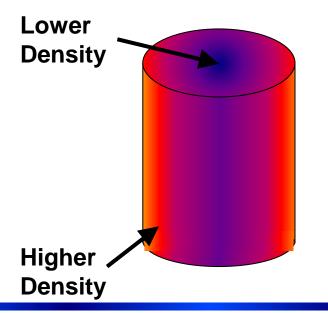



Figure 7 - Comparison of several AM methods to Injection Molding -Rapid Manufacturing Research Group at Loughborough University (UK) Study

Why Energetic Material AM?

http://www.nanoscribe.de/en/technology/additive-manufacturing/


- Precision Placement of Materials
 - Unique structures not obtainable by traditional means
 - Reduced waste

- Composition/Density Control
 - Gradients can produce unique explosive effects
 - Detonation Merging, multi-point initiation "baked in", insensitivity, etc.

Radially Density Graded Energetic

Compositional Gradients

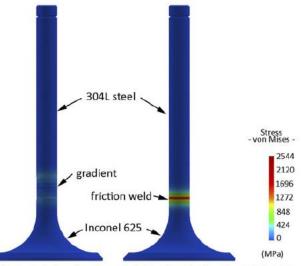
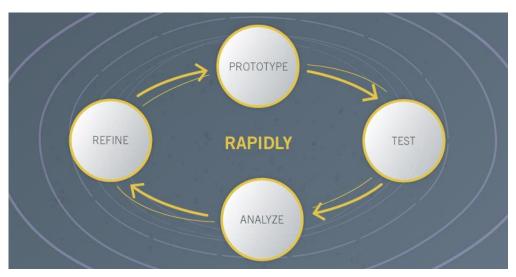
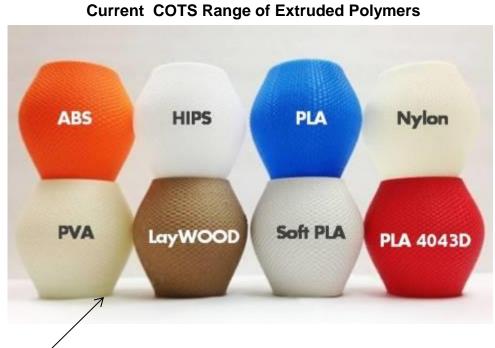


FIG. 5. A finite element model showing elastic mismatch in two dissimilar metal automobile valve stems at 1000 K. The figure on the left shows a valve with a 304L stainless steel stem connected to an Inconel 625 valve via a 2.5 cm long gradient of composition. On the right, the gradient is replaced with a friction weld. The stress at the joint of the friction welded part has an approximately ten times higher stress than the compositionally graded alloy.


Source: J. Mater. Res., Vol. 29, No. 17, Sep 14, 2014

Why Energetic Material AM?

- Rapid Prototyping
 - Reduce time
 between design and
 a working prototype
 - Can incorporate cost savings and material controls


http://www.bresslergroup.com/blog/rapid-prototyping-for-user-research/

Technology Gap: Polymer Solutions

- Gap
 - Compatibility of existing energetics with current feedstock for material extruded systems
- Need to develop AM compatible melt-castable and cast-curable energetic binders for usage in Extruder 3D printers

We need to expand upon the very limited list of thermal plastics/polymers to produce energetic materials

Near Term R&D Efforts at IHEODTD

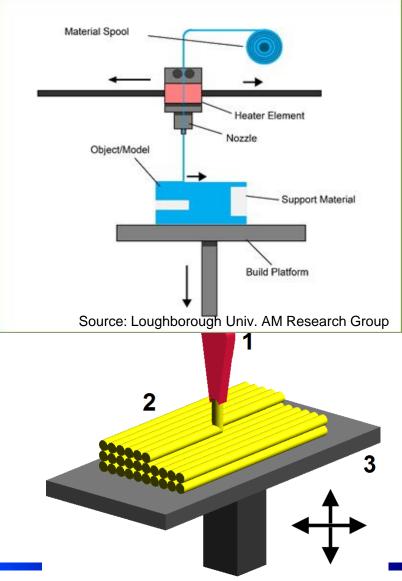
- AM compatible binders
 - Leverage existing programs to acquire COTS material extruder style printer
 - Survey existing melt/cure-castable binders for use in energetic formulations
 - Demonstrate AM compatibility with promising binders with and without inert simulant
 - Develop Safe handling procedures
 - Produce small-scale explosive test samples with down-selected binder in 3-D printer
 - Identified academic partners already making good progress in these areas
- Functional Graded Materials
 - Leverage existing programs to acquire COTS, multi-nozzle, material (ink) jet printer
 - select promising formulations that would be applicable to density and compositional grading – ex. Lakehurst fire suppression
 - Demonstrate Successful FGM characteristics and microstructural control

AM printed PBX Simulants

- AM Produced PBX Simulant
 - R45M Binder (HTPB based)
 - 88% bi-modal sized solids loading
 - Produced in collaboration with SDSMT

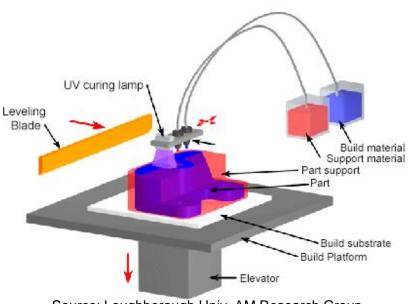
QUESTIONS?

Back-up Slides

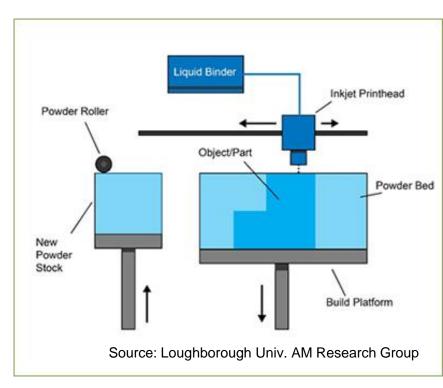


- Material Extrusion
 - Material selectively dispensed through a nozzle
 - Inexpensive, most common AM technology
 - Resolution limited by nozzle radius

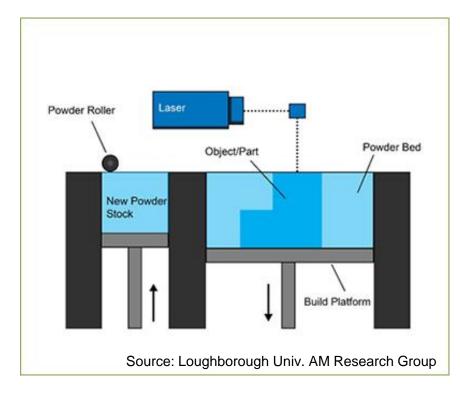
Most Common Form:

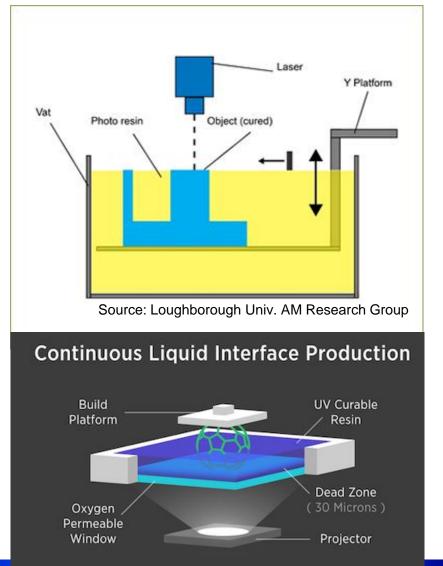

- Fused Deposition Modeling (FDM)
 - Plastic or metal filaments as feedstock.
 - Many commercial vendors
 - Stratsys, 3DSystems, etc.
 - Used at the CRIP
 - Requires post processing

- Material Jetting
 - Photopolymer droplets selectively deposited and UV cured
 - Multiple print heads can simultaneously produces multiple materials in final product
 - PolyJet Connex3 system has 82 Heads for 82 different materials.
 - High accuracy and resolution
 - Limited to photopolymers and some waxes

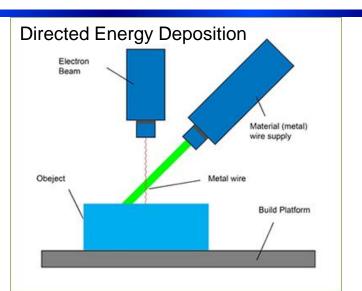


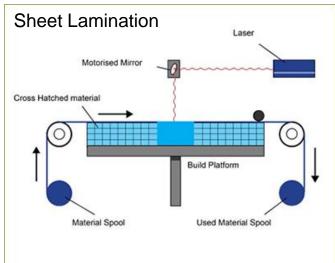
Source: Loughborough Univ. AM Research Group


- Binder Jetting
 - Liquid binder is selectively deposited to bind powder/granular materials into a structure.
 - Wide range of materials: metals, powders, and ceramics
 - High speed, but not good for structural parts
 - Post-processing required for hardening
 - Example of Binder Jetting


- Powder Bed Fusion
 - Thermal energy selectively fuses regions of a powder bed
 - Uses a laser or electron beam
 - Can use metals or polymer powders
 - Inexpensive, but slow
 - Examples
 - Direct Metal Laser Sintering (DMLS)
 - Electron Beam Melting (EBM)
 - Selective Heat Sintering (SHS)
 - Selective Laser Melting (SLM)
 - Selective Laser Sintering (SLS)

- Vat Photopolymerization
 - Liquid Photopolymer in a vat is selectively cured by light
 - High print accuracy
 - Fast
 - Limited material range (photoresins)
 - Novel: Continuous Liquid Interface Production (CLIP)
 - <u>CLIP Video</u>


Source: Carbon3D


Other AM Technologies

- Directed Energy Deposition
 - Thermal energy fuses materials by melting as they are being deposited
 - Limited to metals
- Sheet Lamination
 - Sheets of material bonded to form an object.
 - Limited to Paper, Plastics, some sheet metals

Source: Loughborough Univ. AM Research Group

