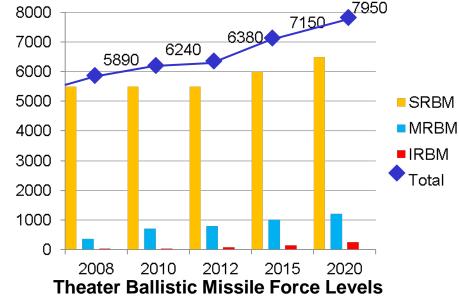


Missile Defense Agency Advanced Research Overview

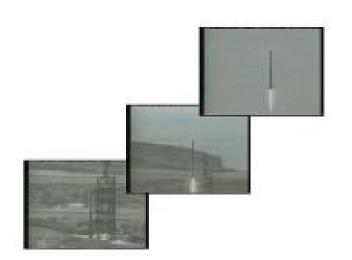
The Increasing Ballistic Missile Threat


- Increasing theater threat capabilities
 - Accuracy & Range
 - North Korea developing new IRBM
- Developing ICBM threat
 - North Korea developing KN-08 ICBM
 - Iran may be technically capable of flighttesting an ICBM by 2015
 - Space Launch Vehicles (SLV) could serve as a test beds for ICBM technologies
- Challenging Missile Defense
 - Maneuver / Salvo firings / Countermeasures

North Korean KN-08 ICBM Launcher on Parade, 2012

North Korean Mobile IRBM on Parade, 2010

Not including U.S., China, Russia or NATO


NK Taepo Dong-2 SLV Launch. 2012

Iranian Safir SLV on Launch Pad, 2011

The Increasing Ballistic Missile Threat

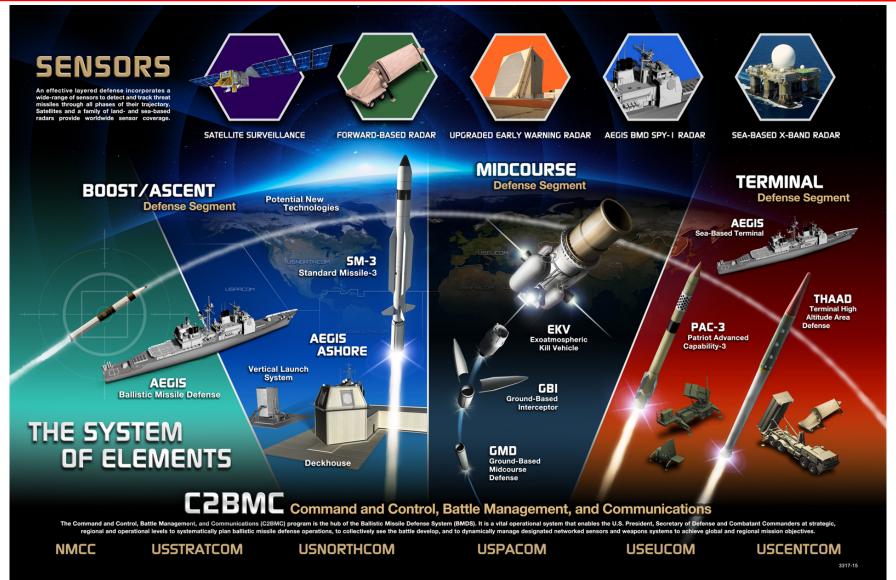
Taepo Dong-1 Launch, August 1998

North Korean Taepo Dong-2 SLV Launch, December 2012

Missile Launches in Iranian Noble Prophet III Exercise 2009

Iranian Ashura 2-stage solid MRBM launch 2012

North Korean Mobile IRBM on Parade, April 2012

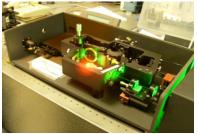

North Korean KN08 ICBM Launcher on Parade, 2012

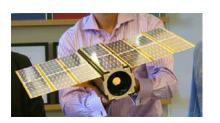
Iranian Safir SLV on launch pad, 2011

Today's Ballistic Missile Defense System

MDA Small Business Innovation Research (SBIR) / Small **Business Technology Transfer Program (STTR) Focus**

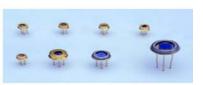
Pursue a broad range of high-risk technologies


- To search out revolutionary technologies
- Transform new technologies into actual applications for insertion into the BMDS
- Benefit from commercialization
- Technology insertion into the BMDS is critical
- 4th largest program in the Department of Defense


Advanced Battery Technology

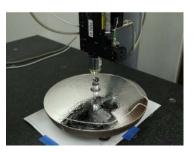
Seeker Technology

High Energy Laser


Nanosat Technology Demonstrations

Multi Static Radar **Technology**

Lightweight Composite


Ultra Sensitive Detector **Focal Plane Arrays**

Ruggedized **Electronics**

Advanced IMU **Technology**

Rad-hardened Mirror Technology

Representative Technology Topics

Space and Sensor Technology

Advanced Cognition Processing and Algorithms for Improved Identification

System Communications

Command and Control **Human-to Machine Interface**

Improved Track Accuracy for Missile Engagements

Open Framework Planner with Embedded Training

Improvements in Spacecraft **Manufacturing Efficiency**

Innovative Antenna Arrays Enabling Continuous Interceptor Communications

Directed Energy Technology

Power Sources and Thermal Management for High Energy Lasers

High Power Optical Fibers

Quick Recovery High Energy Diodes

Ultra low SWaP Diode Pump Modules

Large Stroke, High Spatial Bandwidth, Deformable Mirrors

Light Weight, Dampened **Optical Benches**

Optics & Coatings for Alkali Environments

Interceptor **Technology**

Interceptor Thermal Protection Systems

Lethality Enhancements

Multi-Object Payload Deployment

Advanced Reserve Battery Technologies

MENS IMU Solutions for Missile Defense **Applications**

Lithium Oxyhalide Battery Separator Material

High Temperature Material Manufacturing **Improvements**

Future BMDS Concept Development

Expand Digital, Constructive, and HWIL **Tools**

Aerospace Vehicle Target Tracking and Discrimination

Radar Interferometric **Processing for EMG**

Radiation Hardened Mirror & **Focal Plane Array Technology**

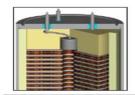
Low Light Short Wave Infrared Focal Plane Arrays

Innovative Ways to Shorten System Level Simulation Integration Time

Rapid Innovation Fund (RIF) Program

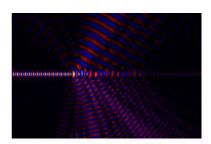
Established under FY11 Defense Authorization Act (Section 1073)

- A competitive, merit-based program
- Accelerate fielding of innovative technologies into military systems
- Typically, all MDA RIF projects are a SBIR Phase II follow-on
- Prioritization is given to small business


Key Requirements:

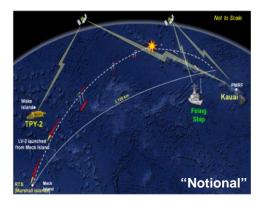
- Satisfy an operational or national security need
- Accelerate or enhance military capability
- Reduce
 - Technical risk
 - Cost: Development, acquisition, sustainment, or lifecycle
- Improve timeliness and quality of test and evaluation outcome
- Provide approach for use by an acquisition program
- Typical award length 24 months
- Award values up to \$3M

Insulator Material for **Propulsion Systems**


Advanced Insulation for Thermal Batteries

University Engagement

Technical Objectives


- Fund relevant, advanced research and development at domestic universities and academic institutions
- Exploit breakthroughs in science to offer robust technical improvements to BMDS
- Build portfolio of revolutionary technology to support and enhance BMDS
- Develop holistic partnerships
- Educate future scientists and engineers

Optical Signal Processor Technology

Field Programmable Gate Array Technology

Data Fusion and Tracking Algorithms

Advanced Command and Control Algorithms

High Energy Laser Technology

Propulsion Technology

BAA Programs

Missile Defense Science & Technology Advanced Research

- Open continuously for proposals from universities
 - Broad Agency Announcement (http://www.fbo.gov)
- Research topics revised annually
- MDA is seeking strategic alliances with universities
- Two year base period with one year option
 - Base period \$400,000
 - Option year \$200,000

Advanced Technology Innovation Broad Agency Announcement

- Open continuously to university and commercial vendors
- Contract value not limited
- Link: http://www.mda.mil/business/advanced_research.html

What is a Broad Agency Announcement (BAA)

- A competitive research and development contracting approach in the form of a general agency announcement:
 - Identifies areas of research interest
 - Includes criteria for selecting proposals
 - Solicits participation from all offers capable of satisfying the Government need
- Primary objective is to encourage participation by science and technology firms and educational institutions in meeting general research and development goals for innovative ideas and approaches
- Meet full and open competition requirements "The Competition in Contracting Act of 1984"
- Evaluates proposals based on peer or scientific reviews against individual merits rather than against each other

BAA: Source Selection

- MDA receives white paper
- Evaluation team evaluates and makes recommendations for award based on a peer or scientific review process IAW with FAR 35.016(d) and (e)
- Technical evaluator(s) uses criteria IAW the BAA to score white paper
 - Technical merit
 - Capabilities
 - Management
- BAA Selection Official makes selections based on the evaluation criteria IAW the BAA, MDA funding and technology priorities

For More Information

www.mda.mil

- Missile Defense News, Images, Videos, Fact Sheets
- BMDS Overview, BMD Basics
- MDA Business Opportunities (http://www.mda.mil/business/advanced_research.html)
- DoD SBIR/STTR website: https://sbir.defensebusiness.org
- SBA SBIR/STTR website: https://www.sbir.gov

To Contact MDA

- SBIR / STTR 256-955-2020 sbirsttr@mda.mil
- University / BAA 256-450-3800 Advanced Research@mda.mil
- Commercialization 256-450-5343 SBIR-PhaseIII@mda.mil