Lieutenant General Patrick J. O'Reilly, USA Director, Missile Defense Agency Before the Senate Armed Services Committee September 24, 2009

Good morning, Mr. Chairman, Senator McCain, and distinguished Members of the Committee. I appreciate the opportunity to testify before you today on the technical and programmatic details of the President's decision to use a Phased Adaptive Approach to enhance missile defense protection for the United States and Europe for our friends, Allies, our forward deployed forces, civilian personnel, and their families there. This new proposal would provide a more powerful missile defense capability for NATO, enhance U.S. homeland defense, and would be applicable in other theaters around the world to counter a growing ballistic missile threat, and would more adaptable to respond to threat uncertainties and developments. With the Phased Adaptive Approach, we are not scrapping or diminishing missile defense - rather we are strengthening it and delivering more capability sooner.

In 2006 the Defense Department proposed a long-range missile defense of Europe that consisted of four components: a command and control system; 10 Ground Based Interceptors (GBIs) in Poland; an X-band discrimination radar in the Czech Republic; and an X-band precision

tracking radar forward based in Southeastern Europe. Assuming a shot doctrine of two interceptors against each threat missile, the 2006 proposed missile defense architecture provided an upper-tier missile defense to intercept five Intermediate Range Ballistic Missiles (IRBMs) aimed at Europe, or it could intercept five Intercontinental Ballistic Missiles (ICBMs) aimed at the Continental United States from the Middle East. The most important component of the 2006 proposed architecture to the defense of the U.S. homeland was the forward based X-band radar in Southeastern Europe, which was to provide early and precise tracks of threat missiles from the Middle East, increasing the accuracy of the fire control instructions to our GBIs based at Fort Greely, Alaska and Vandenberg Air Force Base, California. We remain concerned about a future Iranian ICBM threat: therefore, we are retaining the forward-based X-band radar of the 2006 proposed European missile defense architecture in our new Phased Adaptive Approach proposal. We will also continue to improve our domestic GBI-based system and conduct research and development for the two-stage GBI in the near term.

Under the Phased, Adaptive Approach, we propose defending

Europe in phases starting with the area most vulnerable to today's Iranian
missile threat: southern Europe. Phase 1 would consist of Aegis ships with

Standard Missile (SM)-3 Block IA missiles deployed in the Mediterranean Sea and a forward-based sensor in southern Europe. This will provide protection across much of the southern tier of Europe against Iranian medium-range ballistic missiles.

We propose by 2015 the deployment of the SM-3 Block IB missile, which will have a greater capacity to use a network of sensors and greater ability to discriminate threat objects. Once this technology is proven in our test program these interceptors would be deployed at land- and sea-based locations and extend protection against medium-range ballistic missiles launched from the Middle East.

By 2018, the deployment of the SM-3 Block IIA missile, an interceptor with greater range currently being developed, could defend all of Europe from land- and sea-based locations. By 2020, our goal is to leverage the lightweight kill vehicle technology developed in the now terminated Multiple Kill Vehicle program to develop a higher velocity SM-3 Block IIB missile that would destroy ballistic missiles early in flight, during the ascent phase, from many hundreds of kilometers from the threat launch location. This missile would still fit on today's Aegis launch system. With that capability, two land-based SM-3 Block IIB sites could protect all of Europe. The

timelines I have presented allow for missile defense technologies to be tested and proven prior to deployment decisions.

A significant limitation of the previous European architecture was that the GBIs were used in both ICBM and IRBM defense roles. Although we have only tested the GBIs against IRBMs (ranges less than 5,000 km), it is currently our only interceptor designed against ICBMs. The earliest operational date of the 2006 proposed architecture is 2017 and more likely 2018 considering the host nation approvals that would have been required to construct the facilities. When deployed in 2017 the European based GBIs could be consumed by an attack of 5 IRBMs aimed at NATO countries, leaving no two-stage GBIs to contribute to U.S. ICBM defense. Therefore, the previously proposed European Defense architecture is insufficient to counter large raid sizes. Under the Phased, Adaptive Approach, the SM-3 Block IIB would be able to accommodate a large IRBM and ICBM missile threat and diversify the technology that we are using to counter Iranian ICBMs, providing a layered defense.

We have made significant advances in missile defense technologies that enable the Phased Adaptive Approach. First, the interceptors we are developing are smaller, faster and have greater on-board discrimination capability. The sea-based Aegis BMD SM-3 interceptor would provide a

very capable weapon for this particular mission due to its high acceleration, burn out velocity, proven track record (for the SM-3 IA), and our ability to rapidly increase the number of interceptors at any launch site. Since we began testing the operationally configured SM-3 Block IA missile in June 2006, we successfully intercepted the target in 8 out of the 9 times we have launched the interceptor. We are also taking a deliberate approach to the development and testing of the next generation kill vehicle for the SM-3 interceptor, the SM-3 IB, which has a more advanced seeker and a fire control system that uses external sensors as well as its ship's radar. We have already demonstrated the higher risk components of the new kill vehicle: the solid propellant Divert and Attitude Control System, new seeker, and fire control system with good results. The first test of the SM-3 IB is scheduled for the winter of 2011.

The area of greatest opportunity for increased missile defense capability involves our achievements in developing faster and more accurate Command Control, Battle Management, and Communication capabilities, which combines data from a network of many different sensors (especially sensors that track missiles in the early phases of their flight), rather than using single large radars in a region. Key to our successful intercept of the ailing satellite in February 2008 was our ability to combine

data from sensors around the world and provide a highly accurate track of the satellite to an Aegis ballistic missile defense ship and launch the modified SM-3 IA prior to the ship's radar seeing the satellite. We have had many other demonstrations of these capabilities to date, to include the most recent intercept test of the Ground-based Midcourse Defense system last December, when we combined the tracks of satellites, early warning radars, Sea Based X-band radar and forward-based radars on land and at sea to provide the GBIs with a very accurate track. Additionally, we have also demonstrated the capability of Unmanned Aerial Vehicles as highly accurate forward-based missile defense sensors in the Navy's "Stellar Daggers" series of intercept tests last spring. Tomorrow we are scheduled to launch a pair of demonstration Space Tracking and Surveillance System (STSS) satellites that will detect and track ballistic missiles over their entire flight. Over the next few years we will conduct several tests using the tracking capabilities of these STSS demonstration satellites, including the launching of an interceptor from an Aegis ship, to intercept ballistic missile targets. Finally, at our External Sensors Laboratory at Shriever Air Force Base, Colorado, we continue to develop new algorithms and combine new sensor data to achieve even more accurate tracks than any individual sensor could produce.

A more advanced variant of the SM-3 has been under development with our Japanese partners since FY 2006. This interceptor will have the range to defend all of NATO from only a few small sites. SM-3s are also more affordable than GBIs (you can buy four to seven production variants of the SM-3s, IA or IB, for the cost of one GBI). But the key attribute is that we can launch SM-3s from sea or sites on land, which gives us great flexibility in locating the interceptor launch point between the origin of the threat launch and the area we are trying to protect – a key enabler to intercepting threat missiles early in flight. One advantage of land-based SM-3s over the previous GBI missile field proposal is that they can be relocated if the direction of the threat changes rather than waiting the more than five years needed to construct a new GBI missile field.

I would note that the new Phased Adaptive Approach offers greater opportunities for our close allies, including Poland and the Czech Republic, to collaborate on the missile defense architecture—by hosting sites or providing funding or capabilities that could be linked to provide a network of missile defenses. Likewise, the radars at Armavir and Gabala could augment the proposed sensor network and that type of collaboration could perhaps be a catalyst for Russia to join countries participating in our cooperative development of missile defense technologies.

An additional advantage of the Phased Adaptive Approach is that efforts over the next several years to develop, test, and procure the sensor, command and control, and interceptor upgrades for deployment of this architecture have application in the United States and theaters other than Europe. As an example, if the land-based SM-3 is tested in Hawaii, it would also provide continuous protection of those Islands.

We are committed to fully funding this program as we prepare for the next budget submission to Congress. However, it is important that we have relief from rescissions and the flexibility to spend the unused FY 2009 RDT&E and some MILCON dollars associated with the previous European Site proposal. With relief from some of the constraints placed on our FY 2009 budget and support for redirection of some FY 2010 funds, we believe we can start work on components of this new architecture within our FY 2010 budget request.

I would note that both House and Senate authorizing committees very presciently included provisions in this year's National Defense

Authorization bill that permit the Department to use FY 2009 and FY 2010 funding for an alternative architecture once the Secretary of Defense certifies that this architecture is expected to be consistent with the direction from the North Atlantic Council, operationally effective and cost-effective,

and interoperable with other missile defense components. I believe the President's new plan meets these criteria and would strongly reinforce NATO's overall approach to missile defense.

My assessment is that executing this approach is challenging, but no more challenging than the development of other missile defense technologies. It is more adaptable, survivable, affordable, and responsive than the previous proposal, while enhancing the defense of the U.S. homeland and our European Allies. There will be setbacks, but the engineering is executable and development risks are manageable.

I look forward to discussing the specifics of the Phased, Adaptive Approach with Members and staff in this and other forums.

Thank you and I look forward to your questions.