Defense Advanced Research Projects AgencyTagged Content List

Intelligence, Surveillance and Reconnaissance Exploitation

Portfolio of technologies for tactical and strategic situational awareness

Showing 79 results for ISR RSS
State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.
More than 7,000 spacecraft have been launched from Earth, the vast majority of which are satellites that are no longer operational. These defunct objects, now free-orbiting debris, threaten the more than 1,200 satellites that are currently operated by commercial and government entities around the globe. The number of space debris that threaten important communications, weather monitoring, navigation services and imagery satellites is growing.
Existing speech signal processing technologies are inadequate for most noisy or degraded speech signals that are important to military intelligence.
The Shared Spectrum Access for Radar and Communications (SSPARC) program seeks to improve radar and communications capabilities through spectrum sharing.
Dense constellations of low-earth-orbit (LEO) micro-satellites can provide new intelligence, surveillance, and reconnaissance (ISR) capabilities, which are persistent, survivable and available on-demand for tactical warfighting applications. The Small Satellite Sensors program seeks to explore new sensor concepts that are well-matched to the capabilities achievable in small satellites.