
UNITED STATES NAVAL OBSERVATORY

CIRCULAR NO. 180

U.S. Naval Observatory, Washington, D. C. 20392 December 31, 2009

User’s Guide to NOVAS 3.0

by

George H. Kaplan
John A. Bangert

Jennifer L. Bartlett
Wendy K. Puatua
Alice K. B. Monet

Rev. C

iii

User ’s Guide to NOVAS 3.0
Naval Observatory Vector Astrometry Software

Table of Contents

Preface v
Errata List vii

Part I User’s Guide to NOVAS F3.0 (Fortran edition)

Introduction F-7
Citing NOVAS F-8
Abbreviations and Symbols Frequently Used F-9
Chapter 1 Astronomical Background F-11
Chapter 2 Installing NOVAS F-23
Chapter 3 Sample Calculations F-29
Chapter 4 Descriptions of Individual Subroutines F-37
Chapter 5 Equinox- and CIO-Based Paradigms Compared F-79
Appendix A Overview of How NOVAS Has Changed F-83
Appendix B List of Changes to NOVAS Subroutines from

Version F2.0 to Version F3.0 F-89
Appendix C How to Set Up the JPL Ephemerides F-97
Appendix D A Comparison of SOFA and NOVAS F-101
Appendix E List of Internal Calls F-109

Part II User’s Guide to NOVAS C3.0 (C edition)

Introduction C-7
Citing NOVAS C-8
Acknowledgements C-9
References C-9
Abbreviations and Symbols Frequently Used C-10
Chapter 1 Astronomical Background C-13
Chapter 2 Installing NOVAS C-25
Chapter 3 Sample Calculations C-33
Chapter 4 Data Structures and Functions C-41
Chapter 5 Equinox- and CIO-Based Paradigms Compared C-99
Appendix A Overview of How NOVAS Has Changed C-103
Appendix B List of Changes to Functions Between C2.0.1 and C3.0 C-109
Appendix C How to Set Up the JPL Ephemerides C-117
Appendix D A Comparison of SOFA and NOVAS C-121

Rev. A

Rev. B v

Preface

The Naval Observatory Vector Astrometry Software (NOVAS) is an integrated package of
subroutines and functions for computing various commonly needed quantities in positional
astronomy. The package can supply, in one or two subroutine or function calls, the
instantaneous coordinates of any star or planet in a variety of coordinate systems. At a lower
level, NOVAS also provides astrometric utility transformations, such as those for precession,
nutation, aberration, parallax, and gravitational deflection of light. The computations are
accurate to better than one milliarcsecond. The NOVAS library is an easy-to-use facility that
can be incorporated into data reduction programs, telescope control systems, and simulations.
The U.S. parts of The Astronomical Almanac are prepared using NOVAS.
The NOVAS 3.0 algorithms are based on a rigorous vector and matrix formulation and do
not use any spherical trigonometry. Objects inside and outside the solar system are treated
similarly. The position vectors formed and operated on by NOVAS place each object at its
relevant distance (in astronomical units, or AU) from the solar system barycenter. Objects at
unknown distance (parallax zero or undetermined) are placed on the “celestial sphere,”
herein defined to be at a radius of 1 gigaparsec (2.06 x 1014 AU).
Compared with NOVAS 2.0 of 1998, this version improves the accuracy of star and planet
position calculations (apparent places) by including several small effects not previously
implemented in the code. New convenience subroutines and functions have also been added.
NOVAS now fully implements recent International Astronomical Union (IAU) resolutions in
positional astronomy, including new reference system definitions and updated models for
precession and nutation. Kaplan et al. (1989, Astron. J., 97, 1197) describe the overall
computational strategy used by NOVAS, although many of the individual algorithms
described have been improved. The IAU Resolutions on Astronomical Reference Systems,
Time Scales, and Earth Rotation Models (Kaplan 2005; USNO Circular 1791

NOVAS 3.0 is available in two editions: Fortran and C. In identical full-accuracy
calculations using the same data sources, differences in the results from the two editions
should not exceed 6 × 10−8 arcseconds (3 × 10−13 radians) for solar system bodies and
7 × 10−10 arcseconds (3 × 10−15 radians) for stars. Both libraries may be downloaded from the

) describes the
IAU recommendations that underpin much of NOVAS 3.0, and is the basic reference for
NOVAS algorithms relating to time, Earth orientation, and the transformations between
various astronomical reference systems.

U.S. Naval Observatory (USNO) website.2

This circular consists of the user’s guides to both NOVAS editions. An electronic copy of
this circular and each individual part is available through the

USNO website.3

USNO Circular 181

 Errata and
updates will be provided there as necessary. Users may also wish to consult Nutation Series
Evaluation in NOVAS 3.0 (Kaplan 2009; 4

1 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

).

2 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas
3 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180
4 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�

 vi

 vii

Er rata List

The USNO website5

 has the most up-to-date version of USNO Circular 180 and its
component user’s guides; the electronic version of which contain corrections for all known
errata. The corrections for errata listed below have been applied to this document. More
detailed sheets to accompany printed, bound copies of the circular may also be obtained from
the website.

Rev. A vii Add page with list of errata
 F-29 Add additional instructions regarding name of executable created

from sample.f
 C-33 Add additional instructions regarding name of executable created

from sample.c
Rev. B v Correct distance for “celestial sphere” to 1 Gpc (2.06 x 1014 AU)
 vii Update errata
 F-23 Add “CIO_RA.TXT” to end of CIO_FILE.f description
 F-94 Add “The computational distance used for objects of zero

parallax has been increased to 1 Gpc (2.06 x 1014 AU).” to
description of VECTRS/CATRAN

 F-97 Italicize full sentence in Step 2
 F-98 Adjust font size in Step 5
 C-64 Remove horizontal comment delimiter
 C-114 Add “The computational distance used for objects of zero

parallax has been increased to 1 Gpc (2.06 x 1014 AU).” to
description of transform_cat and starvectors

 C-117 Italicize full sentence in Step 2
Rev. C vii Update errata
 viii Expand errata onto this page
 F-8 Reformat NOVAS citation, correct punctuation of in-line citation
 F-9 Italicize publication title
 F-11 Correct date of Kaplan reference
 F-13 Correct punctuation in first and last full paragraphs
 F-15 Keep values and units together

Correct punctuation in final partial paragraph
 F-18 Correct typographical error in second full paragraph

Update location of calendar-to-Julian-date converter in footnote
 F-19 Keep values and units together
 F-23 Delete extraneous “and,” correct name of CIO_RA.TXT file

Correct punctuation in final table entry
 F-20 Change C version to C edition, delete extraneous “second”

Correct punctuation in last full paragraph

5 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�

 viii

 F-25 Correct file name in second example
 F-31 Correct spelling of milliarcseconds in proper motion RA units
 F-33 Correct spelling of units for SKYPOS(7)
 F-35 Correct punctuation around footnote reference
 F-40 Adjust format of one argument for readability
 F-51 Correct punctuation in argument list, Change “which” to “that”
 F-61 Revise layout of TT − TDB for readability
 F-83 Correct tense of verb to call in A.2
 F-87 Correct punctuation in first full and last partial paragraphs
 F-89 Keep values and units together
 F-90 Change “&” to “and” in multiple entries for consistency

Correct punctuation in last three entries
 F-91 Correct punctuation in third entry
 F-93 Correct punctuation in an entry
 F-94 Correct punctuation in first entry
 F-95 Correct hyperlink
 F-101 Clarify description of test design in D.1

Correct plural of addendum in D.2
Clarify description of SOFA subroutine NUT06A

 C-5 List new subsections of Appendix D in Table of Contents
 C-10 Correct punctuation in two entries
 C-20 Update location of calendar-to-Julian-date converter in footnote
 C-21 Change “version(s)” to “edition(s)” twice
 C-27 Correct name of file that produces cio_ra.bin
 C-30 Correct name of file that produces cio_ra.bin
 C-35 Correct spelling of milliarcseconds in proper motion RA units

Reformat make_cat_entry example for clarity
 C-47 Correct date of Kaplan reference from “1997” to “1989”
 C-55 Correct punctuation in first two paragraphs of Discussion

Change “at observer” to “at observer’s location”
 C-69 Correct RA and Dec from “apparent” to “topocentric”
 C-88 Correct typographical error in first paragraph of discussion
 C-90 Change “which” to “that,” correct verb that follows
 C-96 Clarify use of Action = 2
 C-107 Change 2nd equ2ecl_vec to ecl2equ_vec
 C-109 Provide more accurate reference for ee_ct

Delete now extraneous footnote
 C-110 Renumber references: Wallace 2003b  Wallace 2003a and

Wallace 2003c  2003b; Correct punctuation in multiple entries
Correct verb tense and simplify symbols in last entry

 C-115 Replace original Wallace 2003a reference with Capitaine,
Wallace, and McCarthy (2003)
Renumber other Wallace 2003 entries appropriate

 App. D Expand with results of C specific comparison between NOVAS
and SOFA

Rev. C

User’s Guide
to NOVAS Version F3.0
Naval Observatory Vector Astrometry Software

Fortran Edition

George Kaplan
Jennifer Bartlett
Alice Monet
John Bangert
Wendy Puatua

Part I of USNO Circular 180

U.S. Naval Observatory
December 2009

Rev. C

F-3

User’s Guide to NOVAS Version F3.0
Naval Observatory Vector Astrometry Software For tran Edition

In this document, hyperlinks are in blue.

Table of Contents

Introduction F-7
Citing NOVAS F-8
Abbreviations and Symbols Frequently Used (Table) F-9

Chapter 1 Astronomical Background F-11
 1.1 Astronomical Coordinate Systems F-11
 1.2 Computing Observable Quantities F-14
 1.3 Time Scales for Astronomy F-17
 1.4 The Adopted Models for Precession and Nutation F-19
 1.5 A New Model for the Rotation of the Earth about its Axis F-20
 1.6 Terrestrial-Celestial Relationships F-21

Chapter 2 Installing NOVAS F-23
 2.1 List of Distribution Files (Table) F-23
 2.2 Basic Installation Procedure F-23
 2.3 Using External Solar System Ephemeris Files F-25
 2.4 Making the NOVAS External Data Files More Efficient F-26
 2.5 Do I Have to Use a CIO File? F-27
 2.6 The NOVAS Low-Accuracy Mode and the Alternative Subroutines F-27

Chapter 3 Sample Calculations F-29
 3.1 Initialization F-29
 3.2 Setting Time Arguments F-30
 3.3 Example 1—Position of a Star F-31
 3.4 Example 2—Position of the Moon F-32
 3.5 Example 3—Greenwich Sidereal Time F-34
 3.6 Example 4—Other Frequently Requested Quantities F-35

Chapter 4 Description of Individual Subroutines F-37
 NOVAS Fortran Subroutine, Function, and Entry Names (Table) F-37
 PLACE F-40
 SIDTIM F-44
 TERCEL F-45
 ZDAZ F-46
 CATRAN F-48
 GETHIP F-50
 APSTAR F-51
 TPSTAR F-52
 VPSTAR F-53

F-4

 LPSTAR F-54
 ASSTAR F-55
 APPLAN F-56
 TPPLAN F-57
 VPPLAN F-58
 LPPLAN F-59
 ASPLAN F-60
 PRECES F-61
 EQECL F-62
 CIORA F-64
 EROT F-64
 HIACC F-65
 LOACC F-65
 GETVEC F-66
 SETDT F-67
 CELPOL F-68
 ETILT F-69
 SOLSYS F-70
 IDSS F-72
 SOLSYS Version 1 F-73
 SOLSYS Version 2 F-75
 Specifications for Subroutine AUXPOS F-76
 SOLSYS Version 3 F-78

Chapter 5 Equinox- and CIO-Based Paradigms Compared F-79
 5.1 Computing Hour Angles F-79
 5.2 Other Computational Considerations F-80
 5.3 How NOVAS Implements the CIO-Based Paradigm F-81

Appendix A Overview of How NOVAS Has Changed F-83
 A.1 Important Changes in Calls F-83
 A.2 PLACE: A New General-Purpose “Place” Subroutine F-83
 A.3 New Reference Systems F-84
 A.4 New Models for Precession and Nutation F-85
 A.5 A New Model for the Rotation of the Earth about its Axis F-86
 A.6 New Features F-87
 A.7 New Terminology F-87

Appendix B List of Changes to NOVAS Subroutines from Version F2.0
 to Version F3.0 F-89
 B.1 New Subroutines F-89
 B.2 Changes to Calling Sequences F-91
 B.3 Significant Internal Changes to Code F-92
 B.4 Other Internal Code Changes F-96

F-5

Appendix C How to Set Up the JPL Ephemerides F-97
 C.1 Overview F-97
 C.2 Step-by-Step Guide F-97

Appendix D A Comparison of SOFA and NOVAS F-101
 D.1 Goal F-101
 D.2 Procedure F-101
 D.3 Results F-102
 D.4 Addendum I: NOVAS Code F-103
 D.5 Addendum II: SOFA Code F-104

Appendix E List of Internal Calls F-109

F-6

F-7

Introduction

The Naval Observatory Vector Astrometry Software (NOVAS) is a source-code library for
computing various commonly needed quantities in positional astronomy. The code exists in
two languages, Fortran and C. The Fortran version goes back to the late 1970s, but has been
updated periodically to use new, more accurate models that represent the evolving standards
of the international astronomical and geodetic communities. The C version was first
introduced in 1996 and provides the same functionality and accuracy. In full-accuracy
calculations using the same data sources, differences in the results from Fortran and C
editions of NOVAS, for the same calculation, should not exceed 6 × 10−8 arcseconds
(3 × 10−13 radians) for solar system bodies and 7 × 10−10 arcseconds (3 × 10−15 radians) for
stars.

NOVAS can provide, in one or two subroutine or function calls, the instantaneous celestial
position of any star or planet in a variety of coordinate systems. NOVAS also provides
access to all of the “building blocks” that go into such computations—single-purpose
subroutines for common astrometric algorithms, such as those for precession, nutation,
aberration, parallax, etc. NOVAS calculations are accurate at the sub-milliarcsecond level.
The NOVAS package is an easy-to-use facility that can be incorporated into data reduction
programs, telescope control systems, and simulations. NOVAS is used in the production of
the U.S. parts of The Astronomical Almanac.

The algorithms used by the NOVAS routines are based on a vector and matrix formulation
that is rigorous and consistent with recent recommendations by the International
Astronomical Union (IAU). Objects within and outside the solar system are treated similarly
and the position vectors formed and operated on by the NOVAS routines are defined within
either the Barycentric Celestial Reference System (BCRS) or the Geocentric Celestial
Reference System (GCRS), as appropriate. Both of these systems are described in IAU
resolutions passed in 2000. GCRS quantities are converted to more familiar coordinate
systems, such as the equator and equinox of date, by applying standard rotations.

Three levels of subroutines or functions are involved: basic, utility, and supervisory. Basic-
level subroutines supply the values of fundamental variables, such as the nutation angles and
the heliocentric positions of solar system bodies, for specific epochs. Utility-level
subroutines perform computations corresponding to individual physical effects or
transformations (aberration, light-bending, precession, polar motion, etc.). Supervisory-level
subroutines call the basic and utility subroutines in the proper order to compute the apparent
coordinates of stars or solar system bodies for specific dates and times. If desired, users can
interact exclusively with the supervisory-level routines and not become concerned with the
details of the geometry or physical models involved in the computation.

F-8

Previous versions of NOVAS were based on the algorithms described in Kaplan et al. (1989)
Astron. J., 97, 1197.1

USNO Circular 179

 Although the phenomena that are considered and the overall sequence
of calculations remains much the same, many of the models have been improved sub-
stantially over the last two decades in response to increased accuracy in observing
techniques. Specifically, version 3.0 of NOVAS, released in 2009 and described in this
document, implements the resolutions on astronomical reference systems and Earth rotation
models passed at the IAU General Assemblies in 1997, 2000, and 2006. An explanation of
the recent IAU resolutions can be found in Kaplan (2005), ,2

 The IAU
Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models:
Explanation and Implementation, which contains much more information on topics only
briefly touched on in this document. This version of NOVAS also improves the accuracy of
its star and planet position calculations by including several small effects not previously
implemented in the code; see, for example, Klioner (2003) Astron. J., 125, 1580. Several
new convenience functions have also been added.

Citing NOVAS

If you use NOVAS, please send us an e-mail3

 that outlines your application. This
information helps justify further improvements to NOVAS. Your comments and suggestions
are also welcome.

This user's guide constitutes Part I of USNO Circular 180 (the C guide is Part II), which may
be cited as follows:

Kaplan, G., Bangert, J., Bartlett, J., Puatua, W., & Monet, A. 2009, User’s Guide to NOVAS
3.0, USNO Circular 1804

 (Washington, DC: USNO).

In addition, we ask that you also direct your readers to the NOVAS website.5

The official reference for all previous versions of NOVAS is the 1990 software report
announcing its release, which is Kaplan, G. (1990) “NOVAS: U. S. Naval Observatory,”
Bull. AAS, 22, 930.

1 Parts were reprinted in Chapter 3 of Seidelmann (1992), Explanatory Supplement to the Astronomical
Almanac (University Science Books)
2 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
3 http://www.usno.navy.mil/help/astronomy-help
4 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180
5 The current version of NOVAS may be obtained at
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/help/astronomy-help�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas�

F-9

Abbreviations and Symbols Frequently Used

∆AT TAI – UTC (an integral number of seconds)
∆T TT – UT1
θ Earth Rotation Angle (also ERA)
A&A Astronomy and Astrophysics (journal)
AA Astronomical Applications Department of USNO
Astron. J. The Astronomical Journal
AU astronomical unit
BCRS Barycentric Celestial Reference System
Bull. AAS Bulletin of the American Astronomical Society
CIO Celestial Intermediate Origin
CIP Celestial Intermediate Pole
dec declination
EO Earth Orientation Department of USNO
ERA Earth Rotation Angle (also θ)
GCRS Geocentric Celestial Reference System
IAU International Astronomical Union
ICRS International Celestial Reference System
IERS International Earth Rotation and Reference Systems Service
ITRS International Terrestrial Reference System
J2000.0 The epoch 2000 January 1, 12h TT (JD 2451545.0 TT) at the geocenter

(“J2000.0 system” is shorthand for the celestial reference system defined by
the mean equator and equinox of J2000.0)

JD Julian date
JPL Jet Propulsion Laboratory
NOVAS Naval Observatory Vector Astrometry Software
RA right ascension
SOFA Standards of Fundamental Astronomy (software)
TAI International Atomic Time (TAI = UTC + ∆AT)
TDB Barycentric Dynamical Time
TIO Terrestrial Intermediate Origin
TT Terrestrial Time (TT = TAI + 32.184 s)
USNO U.S. Naval Observatory
UT1 Universal time that is a measure of the Earth’s rotational angle

(UT1 = TT – ∆T)
UTC Coordinated Universal Time, an atomic time scale that is the basis for

worldwide civil time (replaces Greenwich Mean Time)
WGS-84 World Geodetic System 1984
xp, yp Polar motion components; coordinates of the CIP with respect to the ITRS

Rev. C

F-10

F-11

Chapter 1 Astronomical Background

At its highest level, NOVAS computes the precise positions of selected celestial objects at
specified dates and times, as seen from a given location on or near the Earth. There are a
number of coordinate systems in which such positions can be expressed. Dates and times are
specified in several astronomical time scales, depending on the application. Users of
NOVAS should have a basic knowledge of astronomical coordinate systems and time; terms
like right ascension, declination, hour angle, ecliptic, equinox, precession, and sidereal time
should be familiar. A number of texts on fundamental astronomyfor example, Green
(1985), Spherical Astronomy (Cambridge University Press)provide the essential concepts.
For more technical descriptions of the latest international standards on reference systems,
USNO Circular 179,6

The Astronomical Almanac

 cited in the Introduction, can provide the background. Circular 179
documents the algorithms for many important calculations in NOVAS. Others are described
in the Kaplan et al. (1989) Astron. J. paper mentioned in the Introduction or in the
Explanatory Supplement to the Astronomical Almanac. In addition, two glossaries may be
useful to NOVAS users: one published in ,7

IAU Working Group on Nomenclature for Fundamental Astronomy
 and one compiled by

the .8

A very cursory overview of some of the most important aspects of the astronomical
calculations performed by NOVAS follows. In this chapter, names of subroutines relevant
to the subject being discussed are shown in [BRACKETS]. Special terms referred to in IAU
resolutions are printed in bold when first mentioned; other relevant terms with widely
accepted meanings in astronomy are initially printed in italics.

1.1 Astronomical Coordinate Systems

Astronomical coordinate systems have traditionally been based on the extension of the
Earth’s equatorial plane to infinity, along with a fiducial direction in that plane, the equinox.
The direction of the equinox is along the line of nodes where the equatorial and ecliptic
planes meet. Because the Earth’s equator and ecliptic are both in motion (the equator’s
motion is described by precession and nutation; the ecliptic’s motion is due to the Earth’s
orbital variations), an infinite number of such coordinate systems exist, each one
corresponding to the orientation of the two planes at a specific date and time. The situation is
complicated by the fact that for some purposes in the past it was convenient to consider only
precession—and to neglect nutation—in defining celestial coordinate systems, so that we can
have, for any given date and time, both a mean system (in which only precession is
considered) and a true system (in which both precession and nutation are taken into account).
Thus we have the mean system of [some] date, the true system of date, the mean system of
2000.0, etc. [PRECES, NUTATE, GCRSEQ]

6 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
7 http://asa.usno.navy.mil/SecM/Section_M.html
8 http://syrte.obspm.fr/iauWGnfa/NFA_Glossary.html

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://asa.usno.navy.mil/SecM/Section_M.html�
http://syrte.obspm.fr/iauWGnfa/NFA_Glossary.html�

F-12

Sidereal time is closely tied to the equatorial coordinate systems: one day of sidereal time is
marked by successive transits of the equinox across a specific geographic meridian, and local
sidereal time is just the apparent right ascension of stars transiting the observer’s meridian.
Like the equatorial coordinate systems, sidereal time comes in two flavors, mean and
apparent, based on, respectively, the mean and true equinox and the system of right
ascension that each defines. [SIDTIM]

In the last few decades of the 20th century, several IAU working groups led a general re-
examination of astronomical coordinate systems at a very basic level. Part of the motivation
was quite practical: most large ground-based telescopes were no longer built on equatorial
mounts, and the equatorial coordinate systems were irrelevant to increasingly important
space observations. Furthermore, the most precise fundamental measurements—those that
by their nature are most closely related to the equatorial systems—are now obtained from
Very Long Baseline Interferometry (VLBI), a radio technique that has no direct sensitivity to
the equinox. Another important consideration was the need for astronomical coordinate
systems that were part of a general relativistic framework. All of these factors were folded
into some very important resolutions passed by the IAU in 1997 and 2000, which form the
basis for the coordinate systems used in the current version of NOVAS.

These resolutions have introduced concepts and terminology that may not be familiar to
astronomers used to the traditional systems and names, which were used in the previous
versions of NOVAS. The new systems are outlined in the following paragraphs, but see
USNO Circular 1799

 for a much more complete description.

One of the resolutions passed by the IAU in 2000 defined two systems of space-time
coordinates, one for the solar system and the other for the near-Earth environment, within the
framework of General Relativity, by specifying the form of the metric tensors for each and
the 4-dimensional space-time transformation between them. The former is called the
Barycentric Celestial Reference System (BCRS) and the latter is called the Geocentric
Celestial Reference System (GCRS). The BCRS is the system appropriate for the basic
ephemerides of solar system objects and astrometric reference data on galactic and
extragalactic objects, i.e., the data in astrometric star catalogs. The GCRS is the system
appropriate for describing the rotation of the Earth, the orbits of Earth satellites, and geodetic
quantities such as instrument locations and baselines. The directions of astronomical objects
as seen from the geocenter can also be expressed in the GCRS. The analysis of precise
observations inevitably involves quantities expressed in both systems and the transformations
between them. Subroutines in NOVAS may work with BCRS vectors, GCRS vectors, or
both with appropriate conversions.

If the orientation of the BCRS axes in space is specified, the orientation of the GCRS axes
then follows from the relativistic transformation between the two systems. The orientation of
the BCRS is given by what is called the International Celestial Reference System (ICRS).
The ICRS is a triad of coordinate axes with their origin at the solar system barycenter and

9 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-13

with axis directions effectively defined by the adopted coordinates of about 200 extragalactic
radio sources observed by VLBI (listed in Section H of The Astronomical Almanac). The
abbreviations BCRS and ICRS are often used interchangeably, because the two concepts are
so closely related: the ICRS is the orientation of the BCRS; the BCRS is the metric for the
ICRS.

The extragalactic radio sources that define the ICRS orientation are assumed to have no
observable intrinsic angular motions. Thus, the ICRS is a “space-fixed” system (more
precisely, a kinematically non-rotating system) and as such it has no associated epoch—its
axes always point in the same directions with respect to distant galaxies. However, the ICRS
was set up to approximate the conventional system defined by the Earth’s mean equator and
equinox of epoch J2000.0; the alignment difference is at the 0.02-arcsecond level, which is
negligible for many applications. [FRAME]

Reference data for positional astronomy, such as the data in astrometric star catalogs (e.g.,
Hipparcos, UCAC, or 2MASS) or barycentric planetary ephemerides (e.g., JPL’s DE405) are
now specified within the ICRS; more precisely stated, they are specified within the BCRS,
with respect to the ICRS axes.

In the near-Earth environment, celestial coordinates and related quantities are expressed with
respect to the GCRS or reference systems that are derived from it. Because the orientation of
the GCRS is derived from that of the BCRS, the GCRS can be thought of as the “geocentric
ICRS.”

Besides the GCRS itself, the two reference systems most commonly used for expressing the
apparent directions of astronomical objects as seen from the Earth are the true equator and
equinox of date and the Celestial Intermediate Reference System. Both are obtained from
simple rotations of the GCRS, and in both cases, the fundamental plane is the true equator of
date. [GCRSEQ] In the new terminology, the true or instantaneous equator is the plane
orthogonal to the Celestial Intermediate Pole (CIP), which is the celestial pole defined by
the adopted precession and nutation algorithms (see section 1.4). The only difference
between these two systems is the origin of right ascension: the points on the equator where
RA = 0 are, respectively, the true equinox and the Celestial Intermediate Origin (CIO).
The CIO is a recently introduced fiducial point on the equator that rigorously defines one
rotation of the Earth (see section 1.5). [CIOLOC]

The GCRS and the two equatorial systems obtained from it have their origin at the geocenter.
For topocentric coordinates or vectors, referred to an observer at a specific location on or
near the surface of the Earth, there are analogous coordinate systems, although no semantic
distinction is usually made between them and their geocentric equivalents. In NOVAS, the
topocentric equivalent of the GCRS is referred to as the “local GCRS,” and its spatial axes
are assumed to be obtained from the GCRS by a Galilean transformation (simple shift of
origin without a change in orientation). The two topocentric equator-of-date systems are
obtained similarly.

Rev. C

F-14

Reference System for NOVAS Input Data: NOVAS now assumes that input reference data,
such as catalog star positions and proper motions, and the basic solar system ephemerides,
are provided in the ICRS (that is, within the BCRS as aligned to the ICRS axes), or at least
are consistent with it to within the data’s inherent accuracy. [PLACE, SOLSYS] The latter
case will probably apply to most FK5-compatible data specified with respect to the mean
equator and equinox of J2000.0 (the “J2000.0 system”). The distinction between the ICRS
and the J2000.0 system becomes important only when an accuracy of 0.02 arcsecond or
better is important. [FRAME] Nevertheless, because NOVAS is designed for the highest
accuracy applications, the ICRS is mentioned as the reference system of choice for many
input arguments to NOVAS subroutines.

Reference Systems for NOVAS Output Data: For output coordinates (e.g., the position of
Mars on a certain date), there are three options for the coordinate system. (The coordinates
themselves can be right ascension and declination or the components of a unit vector.) You
can request coordinates expressed in the GCRS, the equator and equinox of date, or the
Celestial Intermediate Reference System (equator and CIO of date). These coordinate
systems can be requested for either geocentric or topocentric output. [PLACE, GCRSEQ]

NOVAS can also convert topocentric right ascension and declination, with respect to the
equator and equinox of date, to local horizon coordinates, zenith distance and azimuth.
[ZDAZ] The angular shift due to atmospheric refraction can be included as an option.
Another routine is available to transform right ascension and declination to ecliptic longitude
and latitude. Still another transforms right ascension and declination to galactic longitude
and latitude. [EQECL, EQGAL]

Reference System for the Location of the Observer: The location of an Earth-based observer
is specified in NOVAS by longitude, latitude, and height with respect to the World Geodetic
System 1984 (WGS-84) reference ellipsoid. Coordinates provided by GPS (if uncorrected
for the local datum) are referred to WGS-84, which is also sometimes called the Earth-
centered Earth-fixed (ECEF) system. The International Terrestrial Reference System
(ITRS) is a geocentric rectangular coordinate system used for high-precision work. WGS-84
coordinates are functionally equivalent (within a few centimeters) to ITRS coordinates.
Thus, the geodetic positions used by NOVAS are consistent with the ITRS. [GEOPOS]

1.2 Computing Observable Quantities

NOVAS is mostly used for computing, for a selected object, the instantaneous angular
coordinates (or the equivalent unit vector components) at which it might be observed, within
one of several user-selected coordinate systems. Obviously the values of the angular
coordinates computed by NOVAS depend on the coordinate system requested, but several
phenomena can affect the observed position of a star or planet and are independent of the
coordinate system. For stars, these effects are proper motion, parallax, gravitational light
bending, aberration, and atmospheric refraction.

F-15

• Proper motion (generalized): the 3-D space motion of the star, relative to that of the
solar system barycenter, between the catalog epoch and the date of interest.
Assumed linear and computed from the catalog proper motion components, radial
velocity, and parallax. Projected onto the sky, the motion amounts to less than
1 arcsecond per year (usually much less) except for a few nearby stars. [VECTRS,
PROPMO]

• Parallax: the change in our perspective on stars in the solar neighborhood due to the
position of the Earth in its orbit. Its magnitude is (distance in parsecs)-1 and hence is
always less than 1 arcsecond. [GEOCEN]

• Gravitational light bending: the apparent deflection of the light path in the gravitational
field of the Sun and (to a much lesser extent) the other planets. Although it reaches
1.8 arcsecond at the limb of the Sun, it falls to 0.05 arcsecond 10º from the Sun and
amounts to no more than a few milliarcseconds over the hemisphere of the sky
opposite the Sun. [GRVDEF, GRVD]

• Aberration: the change in the apparent direction of light caused by the observer’s
velocity with respect to the solar system barycenter. Independent of distance, it is
equal approximately to v/c, expressed as an angle. Therefore, it can reach
21 arcseconds for observers on the surface of the Earth and somewhat more for
instruments in orbit. [ABERAT]

• Atmospheric refraction: the total angular change in the direction of the light path
through the Earth’s atmosphere; applies only to an observer on or near the surface of
the Earth. The direction of refraction is always assumed to be parallel to the local
vertical and a function only of zenith distance (although these assumptions may not
be true in all cases). At optical wavelengths, its magnitude is zero at the zenith,
about 1 arcminute at a zenith distance of 45°, and 0.5° at the horizon. Refraction is
roughly proportional to the atmospheric pressure at the observer, but it also depends
on other atmospheric parameters and the observational wavelength. [ZDAZ,
REFRAC]

The same effects are relevant to objects in the solar system, except that the proper motion
calculation is replaced by a function that retrieves the object’s barycentric position from its
ephemeris, as part of an iterative light-time calculation. [LITTIM, SOLSYS] Extragalactic
objects can be considered to be stars with zero parallax and proper motion. The star or planet
positions computed by considering all these effects obviously depend on the location of the
observer; so that an observer on the surface of the Earth will see a slightly different position
than one at the geocenter, the differences being greater for solar system objects, especially
nearby ones (reaching about 1º for the Moon).

In computing these effects, the same subroutines are used for stars and planets, because
NOVAS uses position vectors rather than directions; that is, internally, it places all objects at
their computed distance from the solar system barycenter. (Objects of unknown distance are
placed on the “NOVAS celestial sphere” at a radius of 1 Gpc = 2 × 1014 AU.) [VECTRS]
These vectors are all defined within the BCRS until the relativistic aberration calculation is

Rev. C

F-16

applied, which effectively takes an input vector in the BCRS and produces an output vector
in the GCRS.

Nomenclature: When all these effects are accounted for, we obtain star or planet coordinates
in the GCRS that reflect where the star or planet actually appears in the sky. The coordinates
can then be transformed to other reference systems if desired. We will call the results of this
process, generically, the “apparent position” or “observed position” of the object.

However, some caution with the semantics is in order, because the term apparent place has
traditionally been reserved specifically for the star or planet position we obtain by applying
all these effects (except refraction) for a geocentric observer, with the coordinates expressed
with respect to the true equator and equinox of date. For an observer on the surface of the
Earth, the corresponding term is topocentric place. If the apparent star or planet position is
instead expressed with respect to the mean equator and equinox of J2000.0, the terms used in
NOVAS have been virtual place and local place, respectively. (Although these last two
terms were suggested in the Kaplan et al. (1989) Astronomical Journal paper previously
cited, there is no evidence that they have been widely used outside of the context of
NOVAS.)

The above terminology is reflected in the names of the high-level subroutines that perform
the computations, where “AP” stands for “apparent place”, “TP” stands for “topocentric
place”, etc. [APSTAR, APPLAN, TPSTAR, TPPLAN, VPSTAR, VPPLAN, LPSTAR,
LPPLAN] In addition, there is an astrometric place calculation used for some differential
measurements; it is the same as virtual place except that light bending and aberration (and
refraction) are not computed, under the assumption that these effects are the same for all
objects within a small field of view. [ASSTAR, ASPLAN]

In response to the introduction of the new IAU-recommended coordinate systems, we must
make some adjustments and additions to the nomenclature. The mean equator and equinox
of J2000.0, considered as a geocentric system, has been replaced by the GCRS. The IAU
Working Group on Nomenclature (2003–2006) recommended that the term proper place be
used for what is called virtual place in NOVAS. With the introduction of the Celestial
Intermediate Reference System, with its right ascension origin at the CIO, we now have two
more possibilities for apparent positions, one geocentric and one topocentric. The geocentric
coordinates are called the object’s intermediate place, and right ascension measured with
respect to the CIO is called intermediate right ascension.

The complete table of nomenclature for apparent positions of various types, updated for
NOVAS 3.0, is given below.

F-17

Final Coordinate System Observer at
Geocenter

Observer near Surface
of Earth

True equator and equinox of date apparent place Topocentric place
Celestial Intermediate Reference System intermediate place [no name]

GCRS proper place or
virtual place local place

GCRS astrometric place* [no name]
*a variant of proper or virtual place, in which some calculations are omitted

The only difference between a position expressed in the Celestial Intermediate Reference
System and the same position expressed with respect to the true equator and equinox of date
is an offset in right ascension, the equation of the origins. The equation of the origins is the
angle between the equinox and the CIO, both of which lie on the instantaneous equator.
[EQXRA]

NOVAS subroutine PLACE can be used to compute all of these types of positions; the input
arguments allow you to select both the location of the observer and the coordinate system in
which the computed position is to be expressed. These selections make the nomenclature
superfluous. PLACE does not apply atmospheric refraction, but that can be added by a
subsequent call to ZDAZ. [PLACE, ZDAZ]

1.3 Time Scales for Astronomy

As explained in USNO Circular 179,10

 there are basically two kinds of time scales used in
astronomy, those that are based on the Système International (SI) second (“atomic time”) and
those that are tied to the irregular rotation of the Earth; in essence, “lab” time and
“astronomical” time, respectively. There are also theoretical time scales, not kept by any real
clocks, that are the time basis for—that is, the 4th dimension of—the BCRS and GCRS.

We almost always start with Coordinated Universal Time (UTC), which is the worldwide
basis for civil time, distributed by GPS, WWV, cell phones, TV, etc. UTC is based on SI
seconds at sea level on the rotating Earth. From UTC, one adds an integral number of (SI)
seconds to obtain International Atomic Time (TAI): TAI = UTC + ∆AT, where ∆AT is a
total count of leap seconds in UTC. (For example, for 2009, ∆AT = 34 s.) For a complete
table of ∆AT values, see the EO web site.11

 The addition of a leap second to UTC, which
increases ∆AT by 1s, is usually done, when needed, at 23:59:59 UTC on December 31 and is
announced about six months in advance.

NOVAS Time Arguments: Typically, the first input argument to most NOVAS subroutines
is the time of interest (for example, the time of an observation), expressed as a Julian date.
Julian dates are simply a convenient format for representing a date and time in any time

10 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
11 http://maia.usno.navy.mil/ser7/tai-utc.dat

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://maia.usno.navy.mil/ser7/tai-utc.dat�

F-18

scale, and are discussed below. There are two time scales that are used as the basis for most
of the Julian dates that are input arguments to the higher level NOVAS routines.

The first is Terrestrial Time (TT), which is effectively just a constant offset from TAI:
TT = TAI + 32.184s. Therefore, TT = UTC + ∆AT + 32.184s. Historically, TT is
considered continuous with the obsolete time scales Ephemeris Time (ET) and Terrestrial
Dynamical Time (TDT). It is meant to be a smooth and continuous “coordinate” time scale
independent of the rotation of the Earth.

The second time scale is Universal Time (UT1), which is based on the rotation of the Earth.
It is needed for computing sidereal time or the Earth Rotation Angle (ERA), which in turn
allows one to compute hour angles, altitude and azimuth, or other topocentric quantities.
UT1 is also obtained from UTC: UT1 = UTC + (UT1−UTC). The value of UT1−UTC is
available in a daily-interval tabulation on the IERS web site12

Bulletin B
 (data marked “P” are

predictions); IERS publishes historical values in .13

 Note that the values of
UT1−UTC often change at the millisecond level over one day. In computing the topocentric
direction of a celestial object with respect to Earth-fixed axes (e.g., altitude and azimuth),
1 arcsecond accuracy in the final angles requires to 67 ms accuracy in UT1. Since
UT1−UTC can have an absolute value up to 900 ms, it is an important correction for all but
the crudest applications; that is, in most cases it is not acceptable to approximate UT1 as
being equal to UTC.

A few of the lower level NOVAS subroutines use time arguments based on Barycentric
Dynamical Time (TDB). TDB differs from TT only by periodic variations (due mainly to
the Earth’s elliptical orbit and described by General Relativity), the largest of which has an
amplitude of 1.6 ms and a period of one year. [TIMES] The difference between the two time
scales can often be neglected in practice and this is noted in the subroutine preambles where
appropriate. TDB is equivalent to Teph, the barycentric coordinate time argument of the Jet
Propulsion Laboratory planetary and lunar ephemerides.

As previously mentioned, time is specified within NOVAS as Julian dates, which can be used
for any of the above time scales. Julian dates are a simple count of days since noon on 4713
BC January 1, so that any date in recorded human history has a positive Julian date (JD).
Over 2.4 million days have elapsed since JD 0, so that, for current dates, seven digits of
precision are taken up just by the day count; if the JD is given by a standard double-precision
floating-point number, about 9 digits are left to represent the time of day. Thus, a double-
precision floating-point JD can represent time to a precision of about 0.1 ms. In those
NOVAS routines where more precision is appropriate, the JD can be split between two input
arguments, one that carries the high-order part of the JD (e.g., the day count) and the other
that carries the low-order part (e.g., the fraction of a day). Note that for 0h (TT, UT1, or
TDB), the fractional part of the Julian date is 0.5. An online calendar-date-to-Julian-date
converter is available at the AA web site.14

12 http://maia.usno.navy.mil/ser7/mark3.out

 NOVAS has utility routines to convert between

13 http://www.iers.org/MainDisp.csl?pid=36-9
14 http://www.usno.navy.mil/USNO/astronomical-applications/data-services/cal-to-jd-conv

Rev. C

http://maia.usno.navy.mil/ser7/mark3.out�
http://www.iers.org/MainDisp.csl?pid=36-9�
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/cal-to-jd-conv�

F-19

calendar date and Julian date and vice versa. They work for any time scale; that is, their
input and output arguments should be considered to be just different ways of expressing the
same instant within the same time scale. [JULDAT, CALDAT]

The epoch J2000.0 is considered to be an event at the geocenter at Julian date 2451545.0 TT,
which is 2000 January 1, 12h TT.

The difference ∆T = TT – UT1, expressed in seconds, should be pre-specified to NOVAS for
use in subsequent calculations for a specific date. [SETDT] This is important for certain
NOVAS subroutines that need to use both TT and UT1 internally but that require only one
type of input time argument. A table of historical values of ∆T is on pages K9–K10 of The
Astronomical Almanac and more recent values and predictions can be found online at EO
web site.15

section 1.6

 Values of ∆T can also be computed from ∆T = 32.184s + ∆AT – (UT1–UTC).
For example, on 2009 January 1, ∆T = 65.7768 s, which is based on a ∆AT value of 34s and
a UT1–UTC value of +0.4071612s. More information on ∆T is given in below.

1.4 The Adopted Models for Precession and Nutation

Astronomers realized over a decade ago that the old standard models for the precession and
nutation were in need of revision. The value of the angular rate of precession in longitude
adopted by the IAU in 1976—and incorporated into the widely used precession formulation
by Lieske and collaborators—is too large by about 0.3 arcsecond per century
(3 milliarcseconds per year). The amplitudes of a number of the largest nutation components
specified in the 1980 IAU Theory of Nutation are also known to be in error by several
milliarcseconds. Both the precession and nutation errors are significant relative to current
observational capabilities.

Thus, the resolutions passed by the IAU in 2000 mandated an improvement to the precession
and nutation formulations. NOVAS 3.0 incorporates the models adopted in response to
these resolutions. [PRECES, NUTATE] The precession model is the P03 solution of
Capitaine, et al. (2003) A&A, 412, 567, as recommended by the IAU Working Group on
Precession and the Ecliptic. The final report of the working group is Hilton et al. (2006)
Celest. Mech. Dyn. Astr., 94, 351. The P03 precession model was formally adopted by the
IAU in 2006. The nutation model is taken from Mathews et al. (2002) J. Geophys. Res., 107,
B4, ETG 3. This model, referred to as the IAU 2000A nutation, consists of 1365
trigonometric terms, more than ten times the number in the previous model. [NOD,
NU2000A] Because evaluation of nutation has always been the most computationally
intensive task in NOVAS, you may notice an increase in execution time for some NOVAS
applications.

To reduce execution time, NOVAS 3.0 provides an optional low-accuracy mode in which a
truncated nutation series is used. This nutation series is specific to NOVAS and is referred to
as 2000K. [LOACC, NU2000K] It consists of the largest 488 terms in the IAU 2000A

15 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

Rev. C

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�
http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

F-20

series and provides an accuracy of about 0.1 milliarcsecond (specifically, 0.1 milliarcsecond
for Δψ and about 0.04 milliarcsecond for Δε and Δψ sin ε). There is an even shorter IAU-
approved nutation series, IAU 2000B, accurate to about 1 milliarcsecond, but this series is
currently available only in the C edition of NOVAS. More information on the
implementation of nutation in NOVAS can be found section 2.6 and in Kaplan (2009),
USNO Circular 181,16

 Nutation Series Evaluation in NOVAS 3.0.

As mentioned in section 1.1, the celestial pole described by the new precession and nutation
models (with very small observational corrections) is called the Celestial Intermediate Pole
(CIP). The true equator of date, also called the instantaneous equator or the intermediate
equator, is the plane orthogonal to the direction of the CIP. The CIP is also the rotational
pole on the surface of the Earth (see section 1.6).

1.5 A New Model for the Rotation of the Earth about its Axis

IAU resolutions passed in 2000 also dealt in a very fundamental way with how the Earth’s
spin around its axis is described. The conventional treatment is based on the equinox and
sidereal time; Greenwich (or local) sidereal time is just the Greenwich (or local) hour angle
of the equinox of date. However, the equinox is constantly moving due to precession, so that
sidereal time combines two angular motions, the Earth’s rotation and the precession of its
axis. (In the case of apparent sidereal time, nutation is also mixed in.) One rotation of the
Earth is about 8 ms longer than one mean sidereal day.

For about two decades, people who routinely deal with the most precise measurements of the
Earth’s rotation have been advocating for a change in the way it is described, and their ideas
were introduced in resolutions passed by the IAU in 2000. In this new paradigm, the
reference point on the moving celestial equator for the description of Earth rotation is called
the Celestial Intermediate Origin (CIO). Unlike the equinox, this point has no motion
along the equator at all; as the orientation of the equator changes in space due to precession
and nutation, the CIO remains on the equator but its instantaneous motion is always at right
angles to it. [CIOLOC, CIORA] Thus, loosely speaking, two transits of the CIO across a
terrestrial meridian define one rotation of the Earth. The CIO is a point on the celestial
equator near RA = 0 (in the Celestial Intermediate Reference System, it defines RA = 0), and
there is a corresponding point on the terrestrial equator near longitude = 0 called the
Terrestrial Intermediate Origin (TIO). For all astronomical purposes, the TIO can be
considered a point fixed at geodetic longitude zero on the Earth’s rotational equator.17

EROT

 In the
new paradigm, the rotation of the Earth is specified by the angle (in the instantaneous
equatorial plane) between the TIO and the CIO, which is a linear function of universal time
(UT1). This angle is called the Earth Rotation Angle (ERA) and is designated by θ.
[]

16 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181
17 The CIO and TIO are technically examples of non-rotating origins, although neither is fixed within its
respective coordinate system. However, the slow drift of the TIO, due to polar motion, with respect to standard
geodetic coordinates (the International Terrestrial Reference System, or, effectively, WGS-84) amounts to only
1.5 millimeters per century and is completely negligible for astronomical purposes.

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�

F-21

Some internal calculations in NOVAS can be performed using either the equinox or the CIO
as the fundamental fiducial point on the moving astronomical equator. The user can select
the basis for these calculations; the default is to use the equinox. The results are identical to
within a microarcsecond around the current time and the computational burden is about the
same. [EQINOX, CIOTIO]

1.6 Terrestrial-Celestial Relationships

NOVAS uses the International Terrestrial Reference System (ITRS) for specifying locations
and directions on or near the surface of the Earth. As mentioned at the end of section 1.1, the
ITRS is consistent, to within a few centimeters, with WGS-84 coordinates provided by GPS,
and it is sometimes referred to as the Earth-centered Earth-fixed system (ECEF). The ITRS
is a geocentric system with the directions of its axes defined by the coordinates of a large
number of observing stations, in a way completely analogous to the definition of the ICRS by
the coordinates of extragalactic radio sources. The ITRS z-axis is toward the north geodetic
pole and its x-axis is toward a point at longitude and latitude zero; the y-axis forms a right-
handed system with the other two axes.

Practical applications of astronomical data often require relating terrestrial coordinates to
celestial coordinates and vice versa. For example, we may want the position of a celestial
object expressed with respect to the local horizon system. [ZDAZ] Or, we may have a
vector, expressed in an Earth-fixed system, that represents some instrumental axis, and we
would like to know where that vector is pointed on the celestial sphere. NOVAS can
perform the terrestrial-to-celestial transformation or its inverse; specifically, the
transformation from the ITRS to the GCRS, or the GCRS to the ITRS. [TERCEL] These
transformations are a series of rotations that, taken together, represent the instantaneous
orientation of the Earth in space. [PRECES, NUTATE, CIOBAS, SIDTIM, EROT,
WOBBLE]

Not all aspects of the Earth’s orientation are predictable. Polar motion represents the small
shift of the geodetic north pole (the ITRS z-axis) with respect to the rotational axis (the CIP),
the largest part of which must be determined from observations. Typically, the total shift
amounts to a few tenths of an arcsecond (1-2 µrad, 10 meters) and is specified by the
parameters xp and yp. The observational determinations are designated simply as x and y,
and current values are available from IERS Bulletin A.18

EO web site
 Past values can be obtained at the

.19 USNO Circular 179 For most purposes we can set xp=x and yp=y (see 20

section 6.5.2 or the IERS Conventions 2009 section 5.5.1). Several NOVAS subroutines
require as input the xp and yp values for the date of interest, although, if the final accuracy
requirements are no better than 1 arcsecond, these values can be set to zero.

18 http://maia.usno.navy.mil/ser7/ser7.dat
19 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/daily
20 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://maia.usno.navy.mil/ser7/ser7.dat�
http://www.usno.navy.mil/USNO/earth-orientation/eo-products/daily�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-22

Section 1.3 above recommends that the value of ∆T be specified to NOVAS before
calculations are performed for a given range of dates. [SETDT] Because this value is used
in only a few internal computations where the conversion from one time scale to another is
not critical, the value of ∆T needs to be accurate to only about one second; therefore, one
value will typically apply to all dates for a given year.

Finally, the new IAU precession and nutation models are neither perfect nor complete, and
for very high accuracy applications, observational corrections are sometimes needed. These
corrections now amount to less than 1 milliarcsecond (5 nrad). These corrections are
available from the same sources as the polar motion determinations, and are designated as dX
and dY (note that the units are milliarcseconds). In the rare cases where they are needed,
they are pre-specified to NOVAS for use in subsequent calculations for a specific date.
[CELPOL]

(Return to Table of Contents)

F-23

Chapter 2 Installing NOVAS

2.1 List of Distribution Files

The list of the 14 files in the Fortran distribution21

 is given in the table below. Except for the
User’s Guide, which is in Portable Document Format (PDF), the files are all plain-text
ASCII. Files with a .f extension are Fortran source code.

NOVAS FORTRAN DISTRIBUTION FILES

File Name Contents
NOVAS_3.0_Guide.pdf User’s Guide to NOVAS F3.0 (PDF)
NOVAS_F3.0.f Standard NOVAS Fortran subroutines—Version 3.0
NOVAS_F3.0_alt.f Alternative versions of some NOVAS subroutines
NOVAS_F3.0_solsys1.f SOLSYS version 1—reads file SS_EPHEM.TXT
NOVAS_F3.0_solsys2.f SOLSYS version 2—interface to JPL ephemeris software
NOVAS_F3.0_solsys3.f SOLSYS version 3—self-contained Earth and Sun
CIO_RA.TXT Data file of CIO right ascensions as a function of time
SS_EPHEM.TXT Solar system 1-day ephemeris file read by SOLSYS version 1
checkout.f Main program for initial validation
checkout.out.1 Results file from checkout.f when SOLSYS version 1 is in use
checkout.out.3 Results file from checkout.f when SOLSYS version 3 is in use

CIO_file.f Program to create binary direct-access data file from
CIO_RA.TXT

sample.f Main program with sample code from User’s Guide, Chapter 3
sample.out Output from sample code when SOLSYS version 2 is used

2.2 Basic Installation Procedure

The main distribution file, NOVAS_F3.0.f, is the “standard” set of NOVAS F3.0
subroutines—except for subroutine SOLSYS, which is a low-level subroutine that supplies
information on the position and velocity of the Earth and other solar system bodies. Three
versions of SOLSYS are supplied as described below. (Each of the SOLSYS files is actually
a set of several interrelated subroutines.) A functional set of NOVAS subroutines includes
both the standard set of subroutines and one version of SOLSYS. We suggest you start with
SOLSYS version 3, because it is self-contained and does not require access to any data files.

The code is mostly written to the Fortran 77 standard but there are several subroutines that
have names longer than 6 characters and there are also several common constructs (now
universally supported) from later versions of Fortran. The following is written for a Unix
command-line environment, but the corresponding operations in other environments should
be obvious.

21 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/novas-fortran

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/novas-fortran�

F-24

The source code can be compiled and object files produced by typing

gfortran -c NOVAS_F3.0.f NOVAS_F3.0_solsys1.f
NOVAS_F3.0_solsys2.f NOVAS_F3.0_solsys3.f

where you can substitute for “gfortran” the name of the particular Fortran compiler you use.
The four object files that are created will have a “.o” extension rather than “.f”, but the main
part of the name will be the same as for the corresponding source code file.

NOVAS is simply a group of subroutines, so there is no main (calling) program; you must
supply that. You may wish initially to use the validation program checkout.f:

gfortran checkout.f NOVAS_F3.0.o NOVAS_F3.0_solsys3.o

If successful, this will produce a working executable, a.out.

For now, make sure that the file CIO_RA.TXT is not in the working directory. If you type
a.out on the command line, the executable will run and produce an output file called
checkout.out. (On some systems, you will need to specify the path for a.out in order to
execute the program.) At the beginning of execution, you will receive two warning messages
on your display about Jupiter and Saturn not being available; these messages simply alert you
to the fact that the gravitational deflection of light subroutine cannot use Jupiter or Saturn as
deflecting bodies when SOLSYS version 3 is in use (only the Sun’s deflection is evaluated).
You should compare the results in the file checkout.out to the contents of file checkout.out.3
supplied in the distribution. The results should be identical.

You should also re-run a.out with the file CIO_RA.TXT in the working directory. When
present in the working directory, NOVAS will use this file for certain computations relating
to the Celestial Intermediate Origin; otherwise (as in the first run) NOVAS will use an
internal computational procedure for those computations. The results should be identical at
the microarcsecond level and should therefore produce no numerical differences in the output
file, although the label on the sidereal time results that reads “using internal CIO” should
change to “using external CIO”. If computational speed is a factor for your application, you
may wish to test which method is faster on your system (but read section 2.4 below before
doing so).

This setup of NOVAS—using SOLSYS version 3—will provide the positions of stars or
extragalactic objects with errors not exceeding 0.3 milliarcsecond (if your input catalog data
is that good) or the Sun with an error not exceeding 1 arcsecond. It will not provide the
positions of solar system objects other than the Sun. For more general or demanding
applications, NOVAS must use another version of SOLSYS.

F-25

2.3 Using External Solar System Ephemeris Files

If you need to compute star or radio source positions to better than 0.3 milliarcsecond, or the
positions of the Sun to better than 1 arcsecond, or the positions of solar system bodies other
than the Sun, you will have to use subroutine SOLSYS version 1 or 2, which use external
ephemeris files.

SOLSYS version 2 calls the JPL software that accesses one of the JPL “development
ephemerides” (DEnnn). If, for example, you have already installed the JPL software and file
for ephemeris DE405, the command for linking NOVAS to DE405 might be something like

gfortran myprog.f NOVAS_F3.0.o NOVAS_F3.0_solsys2.o
~/mylibs/jpl/jplsubs.o

where ~/mylibs/jpl is the directory in which you have stored the compiled JPL software, here
called jplsubs.o. The ephemeris file itself might be stored elsewhere, in a directory path
known to jplsubs; NOVAS does not access the JPL ephemeris file directly. In most
installations, the JPL software reads the file on Fortran logical unit 12. If successful, the
above command will produce a working executable, a.out.

Establishing a working copy of the JPL software and the DE405 binary files on your system
is not, unfortunately, a trivial process. The files for doing that can be obtained directly from
JPL22 Appendix C as discussed in .

If you do not have a JPL ephemeris already installed, you should try SOLSYS version 1,
which reads and interpolates the supplied ephemeris file SS_EPHEM.TXT. This file is a
formatted (ASCII) file containing the BCRS (barycentric) rectangular coordinates (in AU) of
the Sun, eight planets, Pluto, and the Moon, with records at 1-day intervals. The supplied file
contains the coordinates for the years 2000 to 2020, inclusive, taken from JPL’s DE405
ephemeris. The interpolation errors of SOLSYS version 1 are negligible (a few meters or
less) for all objects other than the Moon and Mercury; for the Moon the errors can amount to
450 meters (maximum angular error 0.3 arcsecond) and for Mercury the errors can reach 280
meters (maximum angular error 0.8 milliarcsecond). It would be straightforward to construct
a file similar to SS_EPHEM.TXT from an ephemeris other than DE405—the specifications
for the file are given in the description of SOLSYS version 1 in Chapter 4, and in the
subroutine’s prolog.

The command to link your program with NOVAS for this case would be

gfortran myprog.f NOVAS_F3.0.o NOVAS_F3.0_solsys1.o

The file SS_EPHEM.TXT (or its alias) must be in the working directory at execution time.
The file is read on Fortran logical unit 20. You can direct NOVAS to use a different file

22 http://ssd.jpl.nasa.gov/?planet_eph_export

Rev. C

http://ssd.jpl.nasa.gov/?planet_eph_export�

F-26

name or logical unit number at execution time by calling subroutine FILDEF at the start of
your program, before any other NOVAS calls.

You can re-run the test program, checkout.f, with either SOLSYS version 1 or SOLSYS
version 2 linked in. For SOLSYS version 1, or for SOLSYS version 2 when the JPL DE405
ephemeris is used, the output should be identical to the contents of checkout.out.1.

2.4 Making the NOVAS External Data Files More Efficient

As described above, NOVAS can be run without any reference to external data files by using
SOLSYS version 3 and making sure that CIO_RA.TXT is not in the working directory.
However, if either of the files SS_EPHEM.TXT (read by SOLSYS version 1) or
CIO_RA.TXT (read by CIOLOC) are used, you can eliminate some unproductive search
time by simply truncating them to include only the range of dates that are relevant for your
particular applications.

Both files are plain-text (ASCII) files that can be modified by any text editor. The first
record in each file is a header, which should remain as such (although its contents are not
used by NOVAS), but all the other records contain a Julian date and information for that
date. The records are in ascending date order. Simply trim from the beginning and ending of
those files any records for dates that you are sure you will never need (be sure to allow at
least ten extra dates on each end to allow the internal interpolation scheme to work properly).
For example, SS_EPHEM.TXT contains data for years 2000 through 2020 but you may need
only the range from 2010 to 2015. It is more important to trim off the “before” dates than it
is the “after” dates. Leave the data within your overall anticipated date range as is—that is,
do not attempt to make several groups of dates within the same file. The file that you create
must end up (after the header record) as a fixed-interval file running from the first date to the
last date with no gaps.

The file CIO_RA.TXT, which contains the right ascension of the CIO in the GCRS, contains
six centuries of data, most of which is seldom used, so trimming it down is a good idea. In
addition, you can make access to the data in CIO_RA.TXT even more efficient by converting
it to binary direct-access format. Use program CIO_file.f to do that. This program is simple
and self-contained—it does not need a link to NOVAS or anything else—and it requires no
input from you. Simply make sure that CIO_RA.TXT (as you have edited it) is in the
working directory and type

gfortran CIO_file.f

a.out

The program will create a file called CIO_RA.DA. To get NOVAS to use it instead of
CIO_RA.TXT, use the following subroutine call, before any other NOVAS call:

 CALL CIOFIL (lun, ‘CIO_RA.DA’, 2)

F-27

where lun is the Fortran logical unit number of your choice that NOVAS will use for reading
the file. You can replace the file name CIO_RA.DA with whatever name you choose for the
file; it can be a complete path (for example, /users/myaccount/novas/cio.bin) up to 40
characters long.

2.5 Do I have to Use a CIO File?

If a CIO file (either CIO_RA.TXT or CIO_RA.DA or whatever you choose to call them) is
not present when NOVAS needs to determine the location of the CIO, NOVAS will simply
revert to using an internal computation for this information. The results differ by at most
only a few microarcseconds, and those differences are reached only for dates before 1900 or
after 2200. The two approaches represent two independent algorithms for determining the
location of the CIO on the equator, and the tiny differences for dates that are several
centuries from now are of no practical consequence (see Chapter 5). There may be small
differences in execution time for the two approaches, but those timing differences are likely
to vary with the specific application—depending, for example, on the order and spread of the
dates that are processed by NOVAS. There may also be applications for which an external
file is not desirable. Because in many simple NOVAS applications, the location of the CIO
is never needed, the best scheme is probably to start without using a CIO file. If your
application’s execution time is critical, you might want to experiment to see whether using
one of the CIO files affects its performance one way or the other.

2.6 The NOVAS Low-Accuracy Mode and the Alternative Subroutines

NOVAS has a “low-accuracy” mode that can be invoked at any time by calling subroutine
LOACC (it has no arguments). In this mode, a shortened nutation series is used; evaluating
the series for nutation is usually the main computational burden in NOVAS, so using low
accuracy mode improves execution time, often noticeably. This mode can be used when the
accuracy requirements are not better than 0.1 milliarcsecond. The resulting time for Earth-
rotation computations may be reduced by about two-thirds. You can revert to high-accuracy
mode at any time by calling HIACC; high-accuracy mode is the default so it is not necessary
to call HIACC initially. In high-accuracy mode, the IAU 2000A nutation series (1,365
terms) is used; in low-accuracy mode, the NOVAS 2000K nutation series (488 terms) is
used. See section 1.4.

If your accuracy requirements are no better than about 0.05 arcsecond, you may wish to
consider using alternative versions of two NOVAS subroutines. Swapping these subroutines
can reduce the computational load for most applications considerably. The file
NOVAS_F3.0_alt.f contains alternative versions of GRVDEF and NOD. Subroutine
GRVDEF computes the gravitational deflection of light while NOD supervises the nutation
series computation. The alternative version of GRVDEF is a dummy, which does not make
any change to the input direction vector. The alternative version of NOD contains a very
short nutation series (13 terms) that is used in NOVAS low-accuracy mode. Even after
switching to the alternative version of NOD, calling LOACC is required in order to use this
13-term nutation series.

F-28

The standard version of GRVDEF should always be used if you have to compute the
positions of objects that may pass close to the Sun. The gravitational deflection can exceed
0.05 arcsecond within 10º of the Sun.

(Return to Table of Contents)

F-29

Chapter 3 Sample Calculations

The sample Fortran code discussed in this chapter can be found in the file sample.f, which is
part of the distribution; it is a main program that can be linked to the NOVAS subroutines
and executed. If you do so, leave your executable named “a.out” or name it something other
than “sample” to avoid confusion with the Unix “sample” command, e.g.

gfortran sample.f NOVAS_F3.0.o NOVAS_F3.0_solsys2.o jplsubs.o

(If you name your executable “sample,” invoke it using “./sample”.) The results, when
SOLSYS version 2 is used, are given in the file sample.out. (If SOLSYS version 1 is used,
the low-order digits of some of the results will be different, most noticeably for the Moon.)
The program checkout.f, also part of the distribution, provides other examples of NOVAS
subroutine calls.

NOVAS has a number of high-level subroutines that make it easy to obtain frequently needed
information on the positions of celestial objects, and some of these will be described below.
Before calling these subroutines, however, there are some setup calls that you might want to
use. Note that all floating-point arguments to NOVAS subroutines, input or output, are
DOUBLE PRECISION.

3.1 Initialization

CALL LOACC or CALL HIACC: Determines accuracy mode, which affects only certain
computations (most importantly, nutation) relating to the Earth’s orientation in space. The
default mode is high accuracy. Call LOACC for calculations that need not be more accurate
than 0.1 milliarcsecond, which will be the case for many practical applications. (See section
2.6 on installing alternative subroutines for even lower accuracy calculations.) The accuracy
mode stays in effect until another call to LOACC or HIACC.

CALL EQINOX or CALL CIOTIO: Determines internal computation scheme—whether the
equinox or the CIO will be used as the origin of right ascension on the moving equator within
certain NOVAS subroutines that can work either way. This call does not affect any output
options; NOVAS produces the same data using either scheme. However, it is best to call
CIOTIO if you are specifically requesting data with respect to the CIO. Equinox mode is the
default.

IEARTH, a variable, appears as an input argument in several subroutine calls shown below.
In previous versions of NOVAS, IEARTH was the value of the body identification number
for the Earth. In NOVAS 3.0, the value of this argument is not used; the argument has been
kept as a placeholder in the subroutines that previously required it (for backwards
compatibility), but it can have any integer value.

IEARTH = 3

is a logical choice.

Rev. A

F-30

3.2 Setting Time Arguments

CALL SETDT (DELTAT): Sets the value of ∆T in seconds (see sections 1.3 and 1.6) for a
group of dates to be processed, usually about a year’s worth. The value of DELTAT should
be good to the nearest second or better for the range of dates to be covered. Generally, that
will require a call to SETDT for each year of dates to be processed, with the value of
DELTAT appropriately set.

You will also have to consider how you will handle dates and times. As described in section
1.3, NOVAS uses either of two time scales, TT or UT1, as the basis for the time input
argument to its higher-level subroutines. However, you may be working with UTC,
Coordinated Universal Time. UTC is the basis for civil time systems worldwide and, because
it is distributed quite accurately by GPS, is often used as the time-tag for observations. The
key relationship is

TT = UTC + ∆AT + 32.184s
where ∆AT is an integer representing the total count of leap seconds in UTC (for example,
for 2009, ∆AT = 34s). Equivalently,

TT = TAI + 32.184s
where TAI is International Atomic Time. If you will only be dealing with the geocentric
celestial coordinates of objects, TT is all you will need.

If you will also be computing topocentric coordinates (for a specific location on the surface
of the Earth), you will also need to obtain UT1. The key relationship is

UT1 = UTC + (UT1–UTC)
where UT1–UTC is interpolated from the daily values of this quantity published by the
IERS.23

UT1 = TT – ∆T
 Alternatively,

although for this purpose, a more accurate value of ∆T (and one that is changed more often)
will be needed than is generally used for the argument of SETDT. See section 1.3 for more
information on time scales, including sources of data that can be used for the values of ∆AT,
UT1–UTC, and ∆T.

You can convert a date and time in the common format
(year/month/day/hour/minute/second) to a Julian date, which is used by NOVAS for time
arguments, by calling JULDAT. Dates and times based on UTC, TT, or UT1 (or any other
time scale) can be converted using JULDAT; the output Julian date simply has the same
basis as the input date and time. In the examples below, we will be using 2008 April 24,
10:36:18.0 UTC as the time of interest; this corresponds to a Julian date of
2454580.9441875 UTC.24

23 http://maia.usno.navy.mil/ser7/mark3.out

 We will also use a ∆AT value of 33s and a UT1–UTC value of
−0.387845s, which are appropriate for this date.

http://maia.usno.navy.mil/ser7/mark3.out�

F-31

DATA IYEAR, MONTH, IDAY, HOUR, LEAPS, UT1UTC, XP, YP /

 . 2008, 4, 24, 10.605D0, 33, -0.387845D0, -0.002D0, +0.529D0 /

So if we use

 CALL JULDAT (2008, 4, 24, 10.605D0, UTCJD)

the output argument, UTCJD, will have a value of 2454580.9441875. The next few lines of
code should be something like

 TTJD = UTCJD + (LEAPS + 32.184D0) / 86400.D0
 UT1JD = UTCJD + UT1UTC / 86400.D0
 DELTAT = 32.184D0 + LEAPS – UT1UTC
 CALL SETDT (DELTAT)

where 86400.D0 is the number of seconds in a day, and the value of DELTAT (∆T) would be
computed to be 65.571845 (seconds). If we had known the value of DELTAT (∆T) to start
with, rather than the value of UT1UTC (UT1–UTC), then the lines immediately above could
have been replaced by

 TTJD = UTCJD + (LEAPS + 32.184D0) / 86400.D0
 UT1JD = TTJD – DELTAT / 86400.D0
 CALL SETDT (DELTAT)

3.3 Example 1—Position of a Star

Suppose we have the catalog data from star FK6 1307 (Groombridge 1830) for epoch
J2000.0, expressed in the ICRS:

ICRS right ascension at J2000.0 (hours): RA2000 = 11.88299133D0
ICRS declination at J2000.0 (degrees): DC2000 = 37.71867646D0
Proper motion in RA (milliarcseconds per year): PMRA = 4003.27D0
Proper motion in dec (milliarcseconds per year): PMDEC = –5815.07D0
Parallax (milliarcseconds): PARX = 109.21D0
Radial velocity (kilometers per second): RV = –98.8D0

To obtain the apparent geocentric place of the star on our date of interest, with respect to the
equator and equinox of that date, simply call APSTAR, supplying it with the catalog
quantities:

 CALL APSTAR (TTJD, IEARTH, RA2000, DC2000, PMRA, PMDEC, PARLX, RV,
 . RA, DEC)

24 A “UTC Julian date” is something of a non sequitur, because UTC is not continuous (because of leap
seconds). Here we are simply using JULDAT with UTC input to obtain a value that allows us to compute
Julian dates in more well-behaved time scales.

Rev. C

F-32

The output coordinates, RA and DEC (hours and degrees, respectively), represent the
apparent geocentric coordinates of the star, with respect to the true equator and equinox of
date. The computation takes into account all time-dependent effects that shift the star’s
position from its catalog coordinates (except atmospheric refraction, which is location- and
weather-dependent): the star’s space motion to the date of interest, parallax due to the
Earth’s position in its orbit, gravitational light-bending in the solar system, aberration due to
the Earth’s orbital velocity, and the precession and nutation of the Earth’s axis.

Important note: Hipparcos catalog data, although expressed with respect to the ICRS, refer
to epoch 1991.25 and must be converted to epoch J2000.0 before being used as input
arguments to any NOVAS subroutine. Use subroutine GETHIP to do this. (For example, see
the code in checkout.f.) Most other modern catalogs, including the FK6 (used above),
Tycho-2, UCAC, etc., provide data for epoch J2000.0 that need no conversion.

If we want the apparent topocentric place of the star, that is, the star’s position as it would be
seen (except for refraction) from a particular location on Earth, such as off the Atlantic Coast
near Truro, Massachusetts

DATA GLON, GLAT, HT / -70.D0, 42.D0, 0.D0 /

where GLON and GLAT are the location’s geodetic longitude and latitude (degrees, with
east longitude and north latitude positive) and HT is the height of the location above sea level
(meters).

Then, the call to APSTAR should be followed by one to TPSTAR:

 CALL TPSTAR (UT1JD, GLON, GLAT, HT, RAT, DECT)

where RAT and DECT reflect the position of the star as it would be seen from that particular
location—the small differences from the geocentric coordinates RA and DEC arise mainly
from diurnal aberration. TPSTAR uses catalog data on the star from the previous call to
APSTAR.

3.4 Example 2—Position of the Moon

Obtaining the coordinates of solar system objects other than the Sun requires that SOLSYS
version 1 or 2 must be in use. Use subroutine APPLAN:

MOON = IDSS (‘MOON’)
CALL APPLAN (TTJD, MOON, IEARTH, RA, DEC, DIS)

where, again, RA and DEC are the apparent geocentric coordinates of the Moon (hours and
degrees, respectively), with respect to the true equator and equinox of date, and DIS is the
true (Euclidean) geocentric distance (AU) at time TTJD. IDSS returns the body identification
number for a solar system object based on the version of SOLSYS in use. The computation

F-33

of the angular coordinates of solar system objects takes light-time into account, along with
the other effects (light bending, aberration, precession, and nutation) that also apply to stars.

To get the topocentric celestial coordinates of the Moon, call TPPLAN immediately after
APPLAN:

 CALL TPPLAN (UT1JD, GLON, GLAT, HT, RAT, DECT, DIST)

However, there is a single subroutine, PLACE, that can be used for all types of positions of
both stars and solar system objects. In fact, APSTAR, TPSTAR, APPLAN, and TPPLAN
(and several other similar subroutines) are actually just special-purpose front-ends to
PLACE. PLACE uses three array arguments, STAR and OBSERV for input and SKYPOS
for output, dimensioned as follows:

DIMENSION STAR(6), OBSERV(6), SKYPOS(7)

as well as several scalar arguments. For the coordinates of solar system bodies, array STAR
does not need to be loaded (it is used only for stars). For observers on or near the surface of
the Earth, OBSERV should be loaded with the observer’s geodetic coordinates:

 OBSERV(1) = GLON
 OBSERV(2) = GLAT
 OBSERV(3) = HT
 OBSERV(4) = 0.D0
 OBSERV(5) = 0.D0
 OBSERV(6) = 0.D0

(If only geocentric coordinates are of interest, this array need not be loaded.) When using
PLACE to compute the topocentric positions of nearby solar system objects, it is advisable,
for high-accuracy work, to load OBSERV(4) with the value of ∆T (in seconds) for the date
requested. Otherwise, PLACE uses the value of ∆T from the last call to SETDT, which may
not be accurate for the date and time of interest. In this case, it does not matter, because we
are dealing with only a single date and a single value of ∆T, which we have provided to
SETDT.

The call to PLACE to obtain topocentric coordinates of the Moon, with respect to the true
equator and equinox of date then is

 CALL PLACE (TTJD, ‘MOON’, 1, 1, STAR, OBSERV, SKYPOS)

after which the output array will contain:

 SKYPOS(1): Unit vector x component
 SKYPOS(2): Unit vector y component
 SKYPOS(3): Unit vector z component
 SKYPOS(4): Right Ascension (hours)
 SKYPOS(5): Declination (degrees)

F-34

 SKYPOS(6): True distance (AU)
 SKYPOS(7): Radial velocity (kilometers per second)

Here, (x,y,z) is a unit vector in the apparent direction of the Moon, in the same coordinate
system as the right ascension and declination (i.e., it is exactly equivalent to the spherical
coordinates). PLACE has many options for both input and output; refer to its description in
Chapter 4 or look at the beginning of the PLACE code.

Once you have the topocentric celestial coordinates of an object, these can be transformed
into local altitude and azimuth by a call to ZDAZ. If we have used PLACE to obtain the
topocentric coordinates, we set

RAT = SKYPOS(4)
DECT = SKYPOS(5)

then

 CALL ZDAZ (UT1JD, XP, YP, GLON, GLAT, HT, RAT, DECT, IREFR,
 . ZD, AZ, RAR, DECR)

where IREFR is a refraction option (set IREFR = 0 for no refraction, or IREFR = 1 for
standard atmospheric refraction), and XP and YP are the IERS pole coordinates xp and yp for
the date of interest. (You can set XP = YP = 0.D0 if the required accuracy is not better than
1 arcsecond.) The output coordinates, ZD, AZ, RAR, and DECR, are, respectively, the
zenith distance (degrees), azimuth (degrees), right ascension (hours), and declination
(degrees). The output values of ZD, RAR, and DECR are affected by atmospheric refraction
if IREF = 1. If IREF = 0, the output right ascension and declination values are the same as
the input values. ZD and AZ are referred to the horizon system that is tangent to the Earth’s
reference ellipsoid at the observer’s location; that is, the deflection of the vertical (the local
undulation of the geoid) is not taken into account.

3.5 Example 3—Greenwich Sidereal Time

To obtain Greenwich sidereal time, call SIDTIM:

 CALL SIDTIM (UT1JD, 0.D0, K, GST)

where GST is the output sidereal time (hours): Greenwich mean sidereal time if K = 0,
Greenwich apparent sidereal time if K = 1. This subroutine and several others allow for a
“split” input UT1 Julian date—high- and low-order parts in the first two arguments—for
increased precision. Generally, the split would be at the Julian date’s decimal point, with the
day count in the first argument and the fraction of a day in the second. However, using two
arguments for the Julian date provides more precision only if the fractional part of the Julian
date has been handled separately all along. We have not done that, so here, the entire Julian
date is just placed in the first argument and the second argument is set to 0.D0.

Rev. C

F-35

To compute local sidereal time (either mean or apparent), add the longitude (east positive)
expressed in hours:

 ST = GST + GLON / 15.D0

The result may have to be reduced to the range 0 to 24 hours by statements similar to the
following:

IF (ST .GE. 24.D0) ST = ST - 24.D0
 IF (ST .LT. 0.D0) ST = ST + 24.D0

The quantity that is analogous to Greenwich apparent sidereal time in the CIO-based
paradigm is θ, the ERA. It can be computed from:

 CALL EROT (UT1JD, 0.D0, ERA)

where ERA is the Earth Rotation Angle (degrees). EROT, like SIDTIM, allows for a split
input UT1 Julian date.

See Chapter 5 for information on the difference between Greenwich apparent sidereal time
and the ERA, and how hour angles are computed in the two paradigms.

3.6 Example 4—Other Frequently Requested Quantities

In the following subroutine calls, vectors are used. Vectors are simply double-precision
arrays with a dimension of 3. Most NOVAS internal calculations are performed with vectors
and matrices. The following vectors are referred to below:

 DIMENSION POS(3), VEL(3), POSE(3), VTER(3), VCEL(3)

To obtain the barycentric or heliocentric coordinates (BCRS vectors) of a solar system body,
for example, Mars, call SOLSYS:

 CALL SOLSYS (TDBJD, IDSS(‘MARS’), K, POS, VEL, IERR)

where we can often approximate TDBJD = TTJD,25

SOLSYS

 and the output position and velocity
vectors are POS and VEL (components in AU and AU/day, respectively). For barycentric
positions, set K = 0; for heliocentric positions, set K = 1. IERR is an error flag returned,
which normally has a value of 0 if everything is OK. Each version of has a
corresponding version of IDSS, which returns the required body identification number.

25 Strictly, SOLSYS requires a TDB-based Julian date as input. TDB differs from TT by at most 1.7 ms; see
section 1.3. If this time difference is important, use subroutine TIMES to determine the difference between the
two time scales and adjust TDBJD accordingly. For the example here, neglecting the difference can lead to an
error in the position of Mars of about 50 meters.

Rev. C

F-36

If POS is a heliocentric vector, it can be transformed to the ecliptic system (fixed ecliptic of
J2000.0) by calling EQEC:

 CALL EQEC (0.D0, 0, POS, POSE)

where POSE is the output vector in the ecliptic system (same units as POS). POSE could
then easily be converted to heliocentric spherical coordinates: ecliptic longitude, ecliptic
latitude, and radius vector.

CALL ANGLES (POSE, ELON, ELAT)
ELON = ELON * 15.D0
R = DSQRT (POSE(1)**2 + POSE(2)**2 + POSE(3)**2)

Finally, it is sometimes useful to transform a vector from the terrestrial reference system to
the celestial reference system. The vector might represent a geographic position, a geodetic
reference line or direction, or an instrumental axis. For this transformation, the vector starts
out as an Earth-fixed vector expressed with respect to the ITRS axes. For example, the
vector toward the local vertical (orthogonal to the ellipsoid at the place of interest) is simply
(cos φ cos λ, cos φ sin λ, sin φ), where φ is the geodetic latitude and λ is the longitude. A
vector along a telescope’s polar axis would nominally point toward (0,0,1) in this system.
Any such ITRS vector can be transformed into the equivalent GCRS vector with a single call
to TERCEL:

 CALL TERCEL (UT1JD, 0.D0, XP, YP, VTER, VCEL)

where VTER is the input vector (terrestrial, ITRS) and VCEL is the equivalent output vector
(celestial, GCRS). The components of VTER can be in any units; VCEL will be in the same
units. VCEL will sweep around the celestial sphere as the Earth rotates, i.e., as UT1JD
advances. (TERCEL, like SIDTIM, allows for a split input UT1 Julian date.) Use ANGLES
to obtain VCEL’s instantaneous spherical coordinates:

 CALL ANGLES (VCEL, RA, DEC)

where RA and DEC are the GCRS right ascension and declination (hours and degrees,
respectively) of the point on the celestial sphere toward which VCEL points. At any
UT1JD, VCEL can be compared to the directions of stars computed by PLACE for the
equivalent TTJD, with LOCATN = 1 and ICOORD = 0.

(Return to Table of Contents)

F-37

Chapter 4 Descriptions of Individual Subroutines

NOVAS FORTRAN SUBROUTINE, FUNCTION, AND ENTRY NAMES

Entry Name Level Purpose
PLACE * super Computes the apparent direction of a star or solar system body, given the

time and observer’s location. Direction is expressed in one of several
selectable coordinate systems.

SIDTIM super Computes Greenwich sidereal time, either mean or apparent.
TERCEL ** super Transforms arbitrary vector in rotating Earth-fixed (ITRS) system to

space-fixed (ICRS) system. Terrestrial to celestial transformation.
ZDAZ super Transforms topocentric right ascension and declination to zenith distance

and azimuth. Optionally accounts for atmospheric refraction.
CATRAN super Transforms a star’s catalog quantities for a change of epoch and/or equator

and equinox.
GETHIP super Converts Hipparcos catalog data at epoch J1991.25 to epoch J2000.0.
APSTAR super Computes the apparent place of a star, given its catalog data.
TPSTAR super If called after APSTAR, returns topocentric place of same star, given

geodetic location of observer.
VPSTAR super Computes the virtual place of a star, given its catalog data.
LPSTAR super If called after VPSTAR, returns local place of same star, given geodetic

location of observer.
ASSTAR super Computes the astrometric place of a star, given its catalog data.
MPSTAR super Computes the ICRS/J2000.0 place of a star, given its apparent place.
APPLAN super Computes the apparent place of a planet or other solar system body.
TPPLAN super If called after APPLAN, returns topocentric place of same planet, given

geodetic location of observer.
VPPLAN super Computes the virtual place of a planet or other solar system body.
LPPLAN super If called after VPPLAN, returns local place of same planet, given geodetic

location of observer.
ASPLAN super Computes the astrometric place of a planet or other solar system body.
ABERAT util Adjusts position vector for aberration of light due to motion of Earth.
ANGLES util Converts position vector to RA and dec.
CIOBAS * util Returns orthonormal basis vectors, with respect to GCRS, of right-handed

system defined by CIP (z-direction) and CIO (x-direction).
DLIGHT * util For a star, returns difference in light-time between solar system barycenter

and observer. Or, returns the light-time from observer to point on light ray
closest to a given solar system body.

ECEQ * util Converts ecliptic position vector to equatorial position vector.
EQEC * util Converts equatorial position vector to ecliptic position vector.
EQECL * util Converts RA and dec to ecliptic longitude and latitude.
EQGAL * util Converts ICRS RA and dec to galactic longitude and latitude.
EROT * util Returns ERA (θ) for given UT1 Julian date.
FRAME * util Transforms vector between dynamical reference system (mean equator and

equinox of J2000.0) and ICRS.
GCRSEQ * util Converts GCRS RA and dec to coordinates with respect to the equator of

date (mean or true).
GEOCEN util Changes origin of coordinates from barycenter of solar system to center of

mass of Earth.

F-38

Entry Name Level Purpose

GEOPOS * util Computes geocentric position and velocity, in GCRS, of observer on or
near the surface of Earth.

GETVEC * util Retrieves last computed position on the sky as a unit vector.
GRVD * util Corrects position vector for deflection of light in gravitational field of

given body.
GRVDEF ** util Computes total gravitational deflection of light for an object due to major

solar system bodies.
LIMANG * util Determines angle of object above or below earth's limb (horizon).
LITTIM * util Computes the position of a solar system body antedated for light-time.
NUTATE util Applies nutation to position vector.
PRECES util Applies precession to position vector.
PROPMO util Updates the position vector of a star to allow for its space motion.
RADVL * util Predicts radial velocity of observed object as would be measured by

spectroscopy.
SETDT * util Allows specification of ΔT value for calculation of sidereal time, etc.
SPIN util Rotates vector by specified angle about the z-axis.
TERRA util Converts geodetic coordinates to geocentric position vector.
VECTRS util Converts a star’s RA, dec, proper motion, etc., to position and velocity

vectors.
WOBBLE util Adjusts Earth-fixed vector for polar motion.
ASTCON * basic Supplies values of astronomical constants.
CALDAT basic Computes calendar date and time, given Julian date.
CELPOL basic Allows for the specification of celestial pole offsets for high-precision

applications.
CIOFIL * basic Specifies logical unit number and file identifier of input file containing

series of CIO RA values.
CIOLOC * basic Returns location of CIO as RA with respect to either GCRS origin or true

equinox of date, given TDB Julian date.
CIORA * basic Computes true right ascension of the CIO, given TT Julian date.
CIORD * basic Returns array of Julian dates and corresponding values of RA of CIO (in

GCRS), given TDB Julian date and number of dates desired.
CIOTIO * basic Switches internal computation scheme to use CIO as origin of RA for

certain routines; best choice when requesting data with respect to CIO.
EECT2000 * basic Returns complementary terms for equation of the equinoxes.
EQINOX * basic Switches internal computation scheme to use equinox as origin of RA for

certain routines; default mode.
EQXRA * basic Computes intermediate RA of the equinox, given TDB Julian date.
ETILT basic Provides information on orientation of Earth’s axis: obliquity, nutation

parameters, etc.
FUNARG basic Computes fundamental arguments (mean elements) of the Sun and Moon.
GETDT * basic Returns current value of ∆T.
HIACC * basic Switches to high-accuracy mode for certain calculations relating to Earth

orientation; default mode.
IDSS * basic Returns body identification number, given name of solar system body, for

version of SOLSYS in use.
JULDAT basic Computes Julian date, given calendar date and time.
LOACC * basic Switches to low-accuracy mode for certain calculations relating to Earth

orientation; acceptable for applications that do not require accuracy better
than 0.1 milliarcsecond.

NOD basic Supervises the calculation of nutation parameters and provides nutation in
longitude and obliquity.

F-39

Entry Name Level Purpose
NU2000A * basic Evaluates high-accuracy nutation series (IAU 2000A model).
NU2000K * basic Evaluates low-accuracy nutation series (truncated version of IAU 2000A).
REFDAT basic Allows for the specification of weather observations, etc., for refraction

calculation.
REFRAC basic Computes atmospheric refraction in zenith distance.
SOLSYS basic Provides position and velocity vectors of a solar system body.
TIMES basic Converts Barycentric Dynamical Time (TDB) to Terrestrial Time (TT).

* New subroutine, function, or entry in NOVAS F3.0.
** Name change from NOVAS F2.0: TERCEL was PNSW; GRVDEF was SUNFLD.

Descriptions of some of the most frequently used NOVAS subroutines follow. The
comments in the source code at the beginning of each NOVAS subroutine are intended to
provide enough information for correct usage.

In the documentation that follows, arguments marked in are input arguments to the
subroutine: values for these must be supplied by the calling program. Arguments marked out
are output arguments from the subroutine: the subroutine computes and returns values for
these. Note that all floating point arguments are DOUBLE PRECISION.

F-40

PLACE

Entry: CALL PLACE (TJD, OBJECT, LOCATN, ICOORD, STAR, OBSERV,

SKYPOS)

Purpose: Computes the apparent direction of a star or solar system body at a specified

time and in a specified coordinate system.

Arguments: INTEGER LOCATN, ICOORD

DOUBLE PRECISION TJD, STAR(6), OBSERV(6), SKYPOS(7)
CHARACTER OBJECT

TJD: TT Julian date for place (in).
OBJECT: Character string identifying object of interest (in):

For a solar system body, specify the name using all upper-case
letters (‘SUN’, ‘MOON’, ‘JUPITER’, etc.), or specify the body
identification number in a 4-character string of the form
‘=nnn’, where nnn is the body identification number.
For a star, provide a blank string, the word ‘STAR’, or any
string beginning with ‘*’.

LOCATN: Code specifying location of observer (in):
LOCATN = 0 for observer at geocenter
LOCATN = 1 for observer on or near surface of the Earth
LOCATN = 2 for observer on near-Earth spacecraft

ICOORD: Code specifying coordinate system of output position (in):
ICOORD = 0 for GCRS (or “local GCRS”)
ICOORD = 1 for true equator and equinox of date
ICOORD = 2 for true equator and CIO of date (Celestial
 Intermediate Reference System)
ICOORD = 3 for ICRS astrometric coordinates, i.e., without

 light deflection or aberration
STAR: Array of catalog data for star (not referred to if solar system

body requested)(in):
STAR(1) = ICRS right ascension at J2000.0 in hours
STAR(2) = ICRS declination at J2000.0 in degrees
STAR(3) = ICRS proper motion in RA in milliarcseconds/year
STAR(4) = ICRS proper motion in dec in milliarcseconds/ year
STAR(5) = parallax in milliarcseconds
STAR(6) = radial velocity in kilometers/second
(Further star array elements are reserved for future use.)

OBSERV: Array of data specifying location of observer (in):
For LOCATN = 0, not used

Rev. C

F-41

For LOCATN = 1,
OBSERV(1) = observer’s geodetic (WGS-84) longitude (east
positive) in degrees
OBSERV(2) = observer’s geodetic (WGS-84) latitude
(north positive) in degrees
OBSERV(3) = observer’s height above Earth’s reference
ellipsoid (approximately, height above mean sea level) in
meters
OBSERV(4) = value of ∆T in seconds (∆T = TT – UT1)
OBSERV(5) = (not used, reserved for future use)
OBSERV(6) = (not used, reserved for future use)
For LOCATN = 2,
OBSERV(1) = geocentric X in km
OBSERV(2) = geocentric Y in km
OBSERV(3) = geocentric Z in km

 OBSERV(4) = geocentric X-dot in km/s
OBSERV(5) = geocentric Y-dot in km/s
OBSERV(6) = geocentric Z-dot in km/s

SKYPOS: Array of output data specifying object’s place on the sky at
time TJD, with respect to the specified output coordinate
system (out):
SKYPOS(1) = X, dimensionless
SKYPOS(2) = Y, dimensionless
SKYPOS(3) = Z, dimensionless
SKYPOS(4) = apparent, topocentric, or astrometric right
ascension in hours
SKYPOS(5) = apparent, topocentric, or astrometric declination
in degrees

 SKYPOS(6) = true (geometric, euclidian) distance to solar
system body in AU at time TJD, or 0.D0 for star

 SKYPOS(7) = radial velocity in kilometers per second
(Further SKYPOS array elements are reserved for future use.)

Discussion:

This subroutine computes the apparent direction of a star or solar system body at a
specified time and in a specified coordinate system. The algorithms used are based on
Kaplan, et al. (1989), Astron. J., 97, 1197, with some enhancements from Klioner (2003),
Astron. J., 125, 1580.

The apparent direction of a star computed by this subroutine takes into account the
star’s proper motion (linear 3-D space motion) from the catalog epoch to the date requested,
parallax, the gravitational deflection of light by solar system bodies (mostly the Sun), and
aberration. The same effects are computed for solar system bodies, except that the proper
motion calculation is replaced by an algorithm that retrieves the object’s barycentric position
from its ephemeris, as part of an iterative light-time calculation. Extragalactic objects are

Z is toward
CIO; X is

toward true
equinox

unit vector toward object

F-42

treated as stars with zero proper motion and parallax. The result in all cases is an apparent
direction expressed in the GCRS, which is optionally transformed into either of two other
output coordinate systems, as specified by argument ICOORD.

“Astrometric place” is a variant of the above calculation that is appropriate for some
types of differential measurements. Light bending and aberration are ignored under the
assumption that they are the same for all objects within a small area of the sky. Astrometric
places are expressed in the ICRS.

The observer’s location may be at the geocenter, on or near the surface of the Earth,
or in orbit around the Earth, as specified by the arguments LOCATN and OBSERV.

PLACE does not take into account atmospheric refraction (which would be
appropriate only for observers on or near the surface of the Earth), but its effect can be added
by a subsequent call to subroutine ZDAZ.

For stars, the required input data, stored in array STAR, are the standard five
astrometric quantities from a catalog, together with radial velocity if known. Any parameter
should be set to 0.D0 if its value is unknown. All catalog data used as input to this
subroutine must apply to epoch J2000.0 and be expressed with respect to the ICRS. (For
Hipparcos catalog data, see subroutine GETHIP.) Extragalactic objects should be treated as
stars, but with all input parameters set to 0.D0 except for the catalog right ascension and
declination. For solar system bodies, array STAR is not referred to; instead, the argument
OBJECT must contain the name of the body (or its identification number), from the list of
objects supported by the version of subroutine SOLSYS in use.

The values of LOCATN and ICOORD for various kinds of place are:

 LOCATN = 0, ICOORD = 0 ⇒ virtual place (= proper place
 LOCATN = 1, ICOORD = 0 ⇒ local place

)

 LOCATN = 0, ICOORD = 1 ⇒
 LOCATN = 1, ICOORD = 1 ⇒

apparent place

 LOCATN = 0, ICOORD = 2 ⇒
topocentric place

 LOCATN = 1, ICOORD = 2 ⇒ topocentric intermediate place
intermediate place

 LOCATN = 0, ICOORD = 3 ⇒
 LOCATN = 1, ICOORD = 3 ⇒ topocentric astrometric place

astrometric place

 (Only the place names underlined above are widely recognized outside of the context
of NOVAS.)

NOVAS subroutines APSTAR, TPSTAR, APPLAN, TPPLAN, etc., are now just
special-purpose front-ends to PLACE.

Important: If LOCATN = 1 (observer on or near surface of Earth), a value of ∆T in
seconds is required. The value will be taken from OBSERV(4), unless that element is 0.D0,

F-43

in which case the last value of ∆T defined by the user in a call to SETDT will be used.
Whether taken from OBSERV(4) or SETDT, the value of ∆T will be used internally for
determining the ERA (θ), needed for computing topocentric places. An error in ∆T of 1s can
result a topocentric place error of up to 0.3 arcsecond for the Moon, but proportionally less
for more distant bodies (e.g., 3 milliarcseconds for Venus at its closest). Distance errors of
up to 500 m (3 × 10-9

SKYPOS(7), the radial velocity, is the predicted radial velocity measure (z) times the
speed of light, an inherently spectroscopic quantity. For a star, it includes all effects, such as
gravitational red shift, contained in the catalog barycentric radial velocity measure, which is
assumed given in STAR(6). For a solar system body, it applies to a fictitious emitter at the
center of the observed object, assumed to be massless (no gravitational red shift), and does
not in general apply to reflected light.

 AU) can also result, independent of distance. If errors of this magnitude
are important, care needs to be taken in specifying a more accurate value of ∆T. An error in
∆T of 1s will not result in a significant error in the topocentric places of stars.

Arrays STAR and SKYPOS may be expanded in the future. Such expansion could
be provided for in the calling code by dimensioning these arrays with 20 and 10 elements,
respectively, even though elements beyond STAR(6) and SKYPOS(7) are not now referred
to in this subroutine.

(Return to subroutine entry list)

F-44

SIDTIM

Entry: CALL SIDTIM (TJDH, TJDL, K, GST)

Purpose: Computes the Greenwich sidereal time, either mean or apparent, at a specific

UT1 time.

Arguments: INTEGER K

DOUBLE PRECISION TJDH, TJDL, GST

TJDH: UT1 Julian date for sidereal time, high-order part (in).
TJDL: UT1 Julian date for sidereal time, low-order part (in).
K: Sidereal time selection code (in):

K = 0 produces Greenwich mean sidereal time
K = 1 produces Greenwich apparent sidereal

GST: Greenwich (mean or apparent) sidereal time in hours (out).

Discussion:

This subroutine computes Greenwich sidereal time, either mean (if K = 0) or apparent
(if K = 1).

The input Julian date, which must be in the UT1 time scale, may be split into two
parts to ensure the highest precision in the computation. For example, set TJDH equal to the
integral part of the Julian date and set TJDL equal to the fractional part. Generally, this will
be advantageous only if the low-order part has been treated separately within the calling
program; for example, if the time of day has been stored in its own variable(s), from which
TJDL is constructed.

For many applications the position of the split is not critical as long as the sum TJDH
+ TJDL is correct: in particular, when used with computers providing 16 decimal digits of
precision in DOUBLE PRECISION variables, this subroutine will yield values of GST
precise to about 0.1 millisecond even if TJDH contains the entire Julian date and TJDL =
0.D0.

If K = 1 (for apparent sidereal time), the output value of GST will correctly reflect the
celestial pole offset in longitude if routine CELPOL has previously been called.

(Return to subroutine entry list)

F-45

TERCEL

Entry: CALL TERCEL (TJDH, TJDL, XPOLE, YPOLE, VEC1, VEC2)

Purpose: Transforms a vector from the terrestrial system (ITRS) to the celestial system

(GCRS).

Arguments: DOUBLE PRECISION TJDH, TJDL, XPOLE, YPOLE, VEC1(3), VEC2(3)

TJDH: UT1 Julian date for transformation, high-order part (in).
TJDL: UT1 Julian date for transformation, low-order part (in).
XP: Conventionally defined xp

YP: Conventionally defined y

 coordinate of Celestial Intermediate
Pole with respect to ITRS pole, in arcseconds (in).

p

VEC1: Vector referred to ITRS axes (terrestrial system) (in).

 coordinate of Celestial Intermediate
Pole with respect to ITRS pole, in arcseconds (in).

VEC2: Vector referred to GCRS axes (celestial system) (out).

Discussion:

This subroutine rotates a vector from the terrestrial to the celestial system.
Specifically, it transforms a vector in the ITRS (a rotating Earth-fixed system) to the GCRS
(a local space-fixed system) by applying rotations for polar motion, Earth rotation, nutation,
precession, and the dynamical-to-GCRS frame tie. The input vector might represent a
cardinal direction at the observer’s position, a geodetic baseline, or some instrumental axis.
The units for the vector components are arbitrary and the output vector will have the same
units as the input vector. Geodetic coordinates in the WGS-84 system, also sometimes called
the Earth-centered Earth-fixed (ECEF) system, can be considered to be compatible with the
ITRS.

This subroutine allows for the input UT1 time to be represented as a split Julian date.
See the discussion in the description of subroutine SIDTIM.

Set XP = YP = 0.D0 to omit the polar motion rotation.

See also subroutine SETDT to set the value of ∆T (∆T = TT – UT1) to be used by this
subroutine and others.

Both TJDH and TJDL should be non-negative for normal use (TJDL = 0.D0 is OK).
A negative value of TJDH is used to invoke a special option where the output vector is
produced with respect to the equator and equinox of date, and the date for which the
transformation applies is taken from TJDL only. This special option works only in equinox
mode.

(Return to subroutine entry list)

F-46

ZDAZ

Entry: CALL ZDAZ (UJD, XP, YP, GLON, GLAT, HT, RA, DEC, IREFR,
 ZD, AZ, RAR, DECR)

Purpose: Transforms topocentric right ascension and declination to zenith distance and

azimuth; can also adjust coordinates for atmospheric refraction.

Arguments: INTEGER IREFR

DOUBLE PRECISION UJD, XP, YP, GLON, GLAT, HT, RA, DEC, ZD,
AZ, RAR, DECR

UJD: UT1 Julian date, or equivalent Greenwich apparent sidereal

time in hours, for coordinate calculation (in).
XP: Conventionally defined xp

YP: Conventionally defined y

 coordinate of Celestial Intermediate
Pole with respect to ITRS pole, in arcseconds (in).

p

GLON: Observer’s geodetic (WGS-84) longitude (east positive) in
degrees (in).

 coordinate of Celestial Intermediate
Pole with respect to ITRS pole, in arcseconds (in).

GLAT: Observer’s geodetic (WGS-84) latitude (north positive) in
degrees (in).

HT: Height of observer above the Earth’s reference ellipsoid
(approximately, height above mean sea level) in meters (in).

RA: Topocentric right ascension of object of interest, in hours,
referred to true equator and equinox of date (in).

DEC: Topocentric declination of object of interest, in degrees,
referred to true equator and equinox of date (in).

IREFR: Atmospheric refraction option (in):
IREFR = 0 omits refraction
IREFR = 1 applies refraction

ZD: Topocentric zenith distance in degrees, affected by refraction if
IREFR = 1 (out).

AZ: Topocentric azimuth (measured east from north) in degrees
(out).

RAR: Topocentric right ascension of object of interest, in hours,
referred to true equator and equinox of date, affected by
refraction if IREFR = 1 (out).

DECR: Topocentric declination of object of interest, in degrees,
referred to true equator and equinox of date, affected by
refraction if IREFR = 1 (out).

Discussion:

This subroutine takes the topocentric celestial coordinates of an object and computes
the equivalent local horizon coordinates. The subroutine uses a method that properly

F-47

accounts for polar motion, which is significant at the sub-arcsecond level. Atmospheric
refraction can be included in the transformation, and if so, refraction is applied to both kinds
of coordinates (this can be useful for telescope pointing). Refraction, when requested, is
computed by subroutine REFRAC.

RA and DEC, the input topocentric right ascension and declination, can be obtained
from PLACE (with LOCATION = 1 and ICOORD = 1), or TPSTAR or TPPLAN. UJD, the
input time argument, may be specified either as a UT1 Julian date (e.g., 2451251.299358D0)
or an hour and fraction of Greenwich apparent sidereal time (e.g., 19.184592D0). Values for
XP and YP, the coordinates of the pole, can be obtained from IERS26

In this subroutine, the directions ZD = 0.D0 (the zenith) and AZ = 0.D0 (north) are
considered fixed in the terrestrial frame. Specifically, the zenith is along the geodetic normal
(orthogonal to the ellispsoid at the observer’s position), and north is toward the ITRS pole.
Geophysical deflection of the vertical is not considered.

 Bulletins A and B,
although XP and YP can be set to 0.D0 if sub-arcsecond accuracy is not needed. (If
refraction is requested, sub-arcsecond accuracy is unlikely.) The observer’s height, HT, is
used only for refraction, that is, if IREFR = 1.

If IREFR = 0 (no refraction), then RAR = RA and DECR = DEC.

(Return to subroutine entry list)

26http://hpiers.obspm.fr

http://hpiers.obspm.fr/�

F-48

CATRAN

Entry: CALL CATRAN (IT, DATE1, RA1, DEC1, PMRA1, PMDEC1, PARX1,

RV1, DATE2, RA2, DEC2, PMRA2, PMDEC2, PARX2,
RV2)

Purpose: Transforms a star’s catalog quantities for a change of epoch and/or equator

and equinox. It can also be used to transform catalog quantities on the
dynamical equator and equinox of J2000.0 to the ICRS, or vice versa.

Arguments: INTEGER IT

DOUBLE PRECISION DATE1, RA1, DEC1, PMRA1, PMDEC1, PARX1,
RV1, DATE2,RA2,DEC2,PMRA2,PMDEC2,PARX2,RV2

IT: Transformation option (in):

IT = 1 changes epoch (same mean equator and equinox)
IT = 2 changes mean equator and equinox (same epoch)
IT = 3 changes mean equator and equinox and epoch

 IT = 4 changes mean equator and equinox of J2000.0 to ICRS
 IT = 5 changes ICRS to mean equator and equinox of J2000.0
DATE1: TT Julian date, or year, of original catalog data (the following

six arguments) (in).
RA1: Original mean right ascension in hours (in).
DEC1: Original mean declination in degrees (in).
PMRA1: Original proper motion in RA in milliarcseconds/year (in).
PMDEC1: Original proper motion in dec in milliarcseconds/year (in).
PARX1: Original parallax in milliarcseconds (in).
RV1: Original radial velocity in kilometers per second (out).
DATE2: TT Julian date, or year, for transformed output data (the

following six arguments) (in).
RA2: Transformed mean right ascension in hours (out).
DEC2: Transformed mean declination in degrees (out).
PMRA2: Transformed proper motion in RA in milliarcseconds/year

(out).
PMDEC2: Transformed proper motion in dec in milliarcseconds/year

(out).
PARX2: Transformed parallax in milliarcseconds (out).
RV2: Transformed radial velocity in kilometers/second (out).

Discussion:

Subroutine CATRAN performs various transformations on star catalog data. Only
catalog reference data, not observed quantities, should be processed by this subroutine.

F-49

For IT = 1, 2, or 3, two dates, DATE1 and DATE2, must be specified: the input data
is associated with the first date, and the output data is associated with the second date. Two
transformations are available:

IT = 1: The star’s data is updated to account for the star’s space motion between the
first and second dates, within a fixed reference system. That is, the epoch of
the data is changed, but not the equator and equinox (or other system).

IT = 2: The reference frame within which the star’s coordinates and proper motion
are expressed is rotated corresponding to precession between the first and
second dates. The star’s position in space is not changed. That is, the equator
and equinox of the data are changed, but not the epoch.

Setting IT = 3 requests both transformations, and is the most common case.

The two date arguments, DATE1 and DATE2, may be specified either as a Julian
date (e.g., 2433282.5D0) or a Julian year and fraction (e.g., 1950.0D0). (Values less than
10000.D0 are assumed to represent years.)

The IT = 1 and IT = 3 transformations are appropriate only for objects with linear (or
no) space motion; do not use them for components of binary stars. Also, this subroutine
cannot be properly used to bring data from old star catalogs into the modern system, because
old catalogs were compiled using a set of constants (in particular, the rate of precession) that
are incompatible with modern values.

The IT = 2 and IT = 3 transformations involve the dynamical system, that is, the
moving mean equator and equinox. The mean equator and equinox of J2000.0 was the most
common reference system for modern astrometric catalog data before the ICRS was
introduced in 1998. Now, catalog data is usually referred to the ICRS, which is a reference
system fixed with respect to distant extragalactic objects, not defined by any Earth motions
and with no associated date. The IT = 4 transformation is used to convert catalog quantities
from the mean equator and equinox of J2000.0 (the “J2000.0 system”) to the ICRS. The IT =
5 transformation is the opposite. The arguments DATE1 and DATE2 are ignored for these
transformations.

Subroutine FRAME can be used to transform vectors from the J2000.0 system to the
ICRS or vice versa.

 See subroutine GETHIP for transforming Hipparcos catalog data to epoch J2000.0.

(Return to subroutine entry list)

F-50

GETHIP

Entry: CALL GETHIP (RAH, DECH, PMRAH, PMDECH, PARXH, RVH,
 RA2, DEC2, PMRA2, PMDEC2, PARX2, RV2)

Purpose: Converts Hipparcos catalog data at epoch J1991.25 to epoch J2000.0.

Arguments: DOUBLE PRECISION RAH, DECH, PMRAH, PMDECH, PARXH, RVH,

RA2, DEC2, PMRA2, PMDEC2, PARX2, RV2

RAH: Hipparcos right ascension in degrees (in).
DECH: Hipparcos declination in degrees (in).
PMRAH: Hipparcos proper motion in milliarcseconds/year (in).
PMDECH: Hipparcos proper motion in declination in milliarcseconds/

year (in).
PARXH: Hipparcos parallax in milliarcseconds (in).
RVH: Radial velocity at Hipparcos epoch in kilometers/second (in).
RA2: ICRS right ascension at J2000.0 in hours (out).
DEC2: ICRS declination at J2000.0 in degrees (out).
PMRA2: ICRS proper motion in RA at J2000.0 in milliarcseconds/year

(out).
PMDEC2: ICRS proper motion in dec at J2000.0 in millarcseconds/year

(out).
PARX2: Parallax at J2000.0 in milliarcseconds (out).
RV2: Radial velocity at J2000.0 in kilometers per second (out).

Discussion:

This subroutine takes Hipparcos catalog data, which is published for epoch J1991.25,
and transforms it to epoch J2000.0 for use with NOVAS subroutines such as PLACE,
APSTAR, TPSTAR, VPSTAR, etc. Note that the Hipparcos (input) right ascension is
expressed in degrees, as in the catalog, while the J2000.0 (output) right ascension is given in
hours, compatible with other NOVAS subroutines. Subroutine CATRAN (with IT = 1) is
called internally to perform the epoch transformation. The reference frame for both input
and output is the ICRS.

This subroutine should be used only for Hipparcos stars with linear space motion.

Radial velocity (RVH) is not given in the Hipparcos catalog and must be obtained
from another source. If a value is not known, set RVH = 0.D0. The radial velocity is
important for only a small number of nearby, high-proper-motion stars.

(Return to subroutine entry list)

F-51

APSTAR

Entry: CALL APSTAR (TJD, N, RAI, DECI, PMRA, PMDEC, PARLAX,

RADVEL, RA, DEC)

Purpose: Computes the apparent place of a star at a specific time, given its position,

proper motion, and other catalog data (at epoch J2000.0, with respect to
ICRS).

Arguments: INTEGER N

DOUBLE PRECISION TJD, RAI, DECI, PMRA, PMDEC, PARLAX,
RADVEL, RA, DEC

TJD: TT Julian date for apparent place (in).
N: Any integer. Formerly, the body identification number for the

Earth—now just a place holder, no longer used (in).
RAI: ICRS right ascension of star at J2000.0 in hours (in).
DECI: ICRS declination of star at J2000.0 in degrees (in).
PMRA: ICRS proper motion in RA at J2000.0 in milliarcseconds/year

(in).
PMDEC: ICRS proper motion in dec at J2000.0 in milliarcseconds/year

(in).
PARLAX: Parallax in milliarcseconds (in).
RADVEL: Radial velocity in kilometers/second (in).
RA: Apparent right ascension of star at time TJD, in hours, referred

to the true equator and equinox of date (out).
DEC: Apparent declination of star at time TJD, in degrees, referred to

the true equator and equinox of date (out).

Discussion:

This subroutine computes the apparent place of a star for time TJD. The word “star”
as used here refers to any object outside the solar system. For extragalactic objects, the input
arguments PMRA, PMDEC, PARLAX, and RADVEL should be set to 0.D0. These input
arguments should also be set to 0.D0 if the corresponding data are unknown or zero within
the errors of measurement.

Efficiency is maximized when successive calls to APSTAR have the same value for
TJD, since many quantities that are functions only of time are thereby saved and reused.

APSTAR works by calling PLACE with LOCATN = 0 and ICOORD = 1.

(Return to subroutine entry list)

Rev. C

F-52

TPSTAR

Entry: CALL TPSTAR (UJD, GLON, GLAT, HT, RA, DEC)

Purpose: Computes the topocentric place of a star at a specific time and observer

location, using data from a previous call to subroutine APSTAR.

Arguments: DOUBLE PRECISION UJD, GLON, GLAT, HT, RA, DEC

UJD: UT1 Julian date, or the equivalent Greenwich apparent sidereal
time in hours, for topocentric place (in).

GLON: Observer’s geodetic (WGS-84) longitude (east positive) in
degrees (in).

GLAT: Observer’s geodetic (WGS-84) latitude (north positive) in
degrees (in).

HT: Observer’s height above the Earth’s reference ellipsoid
(approximately, height above mean sea level) in meters.

RA: Topocentric right ascension of star at time UJD, in hours,
referred to the true equator and equinox of date (out).

DEC: Topocentric declination of star at time UJD, in degrees,
referred to the true equator and equinox of date (out).

Discussion:

This routine computes the topocentric place of a star (neglecting atmospheric
refraction) for the location specified by the arguments GLON, GLAT, and HT, for time UJD.
TPSTAR assumes that APSTAR has been previously called; it uses data from the previous
APSTAR call in its computation. In particular, all information on the star is obtained from
the prior APSTAR call.

The UT1 epoch that is specified here in argument UJD must correspond to the TT
epoch previously supplied to APSTAR in its argument TJD. That is, the same instant must be
specified for APSTAR in the TT time scale and for TPSTAR in the UT1 time scale. (The
difference TT – UT1 is currently of order one minute.) Note that TPSTAR allows the value
of the Greenwich apparent sidereal time, in hours, equivalent to the UT1 epoch, to be
specified in the argument UJD instead of the UT1 Julian date.

Atmospheric refraction can be subsequently applied to RA and DEC by subroutine
ZDAZ.

TPSTAR works by calling PLACE with LOCATN = 1 and ICOORD = 1.

(Return to subroutine entry list)

F-53

VPSTAR

Entry: CALL VPSTAR (TJD, N, RAI, DECI, PMRA, PMDEC, PARLAX,

RADVEL, RA, DEC)

Purpose: Computes the virtual place (proper place) of a star at a specific time, given its

position, proper motion, and other catalog data (at epoch J2000.0, with respect
to ICRS).

Arguments: INTEGER N

DOUBLE PRECISION TJD, RAI, DECI, PMRA, PMDEC, PARLAX,
RADVEL, RA, DEC

TJD: TT Julian date for virtual place (in).
N: Any integer. Formerly, the body identification number for the

Earth — now just a place holder, no longer used (in).
RAI: ICRS right ascension of star at J2000.0 in hours (in).
DECI: ICRS declination of star at J2000.0 in degrees (in).
PMRA: ICRS proper motion in RA at J2000.0 in milliarcseconds/year

(in).
PMDEC: ICRS proper motion in dec at J2000.0 in milliarcseconds/year

(in).
PARLAX: Parallax in milliarcseconds (in).
RADVEL: Radial velocity in kilometers/second (in).
RA: Virtual (or proper) right ascension of star at time TJD, in hours,

referred to the GCRS (out).
DEC: Virtual (or proper) declination of star at time TJD, in degrees,

referred to the GCRS (out).

Discussion:

See the discussion for subroutine APSTAR. Subroutine VPSTAR is identical to
APSTAR in input arguments and use. Here, however, the output arguments provide the
virtual place (also called the proper place) of the star. The virtual place (proper place) is
essentially the apparent place expressed in the GCRS.

VPSTAR works by calling PLACE with LOCATN = 0 and ICOORD = 0.

(Return to subroutine entry list)

F-54

LPSTAR

Entry: CALL LPSTAR (UJD, GLON, GLAT, HT, RA, DEC)

Purpose: Computes the local place of a star at a specific time and observer location,

using data from a previous call to subroutine VPSTAR.

Arguments: DOUBLE PRECISION UJD, GLON, GLAT, HT, RA, DEC

UJD: UT1 Julian date, or the equivalent Greenwich apparent sidereal
time in hours, for local place (in).

GLON: Observer’s geodetic (WGS-84) longitude (east positive) in
degrees (in).

GLAT: Observer’s geodetic (WGS-84) latitude (north positive) in
degrees (in).

HT: Observer’s height above the Earth's reference ellipsoid
(approximately, height above mean sea level) in meters.

RA: Local right ascension of star at time UJD, in hours, referred to
the mean equator and equinox of J2000.0 (out).

DEC: Local declination of star at time UJD, in degrees, referred to
the mean equator and equinox of J2000.0 (out).

Discussion:

See the discussion for TPSTAR. LPSTAR is identical to TPSTAR in input arguments
and use. Here, however, it is subroutine VPSTAR that must have been previously called and
here the output arguments provide the local place of the star. The local place is essentially
the topocentric place expressed in the “local GCRS”.

 LPSTAR works by calling PLACE with LOCATN = 1 and ICOORD = 0.

(Return to subroutine entry list)

F-55

ASSTAR

Entry: CALL ASSTAR (TJD, N, RAI, DECI, PMRA, PMDEC, PARLAX,

RADVEL, RA, DEC)

Purpose: Computes the astrometric place of a star at a specific time, given its position,

proper motion, and other catalog data (at epoch J2000.0, with respect to
ICRS).

Arguments: INTEGER N

DOUBLE PRECISION TJD, RAI, DECI, PMRA, PMDEC, PARLAX,
RADVEL, RA, DEC

TJD: TT Julian date for astrometric place (in).
N: Any integer. Formerly, the body identification number for the

Earth — now just a place holder, no longer used (in).
RAI: ICRS right ascension of star at J2000.0 in hours (in).
DECI: ICRS declination of star at J2000.0 in degrees (in).
PMRA: ICRS proper motion in RA at J2000.0 in milliarcseconds/year

(in).
PMDEC: ICRS proper motion in dec at J2000.0 in milliarcseconds/year

(in).
PARLAX: Parallax in milliarcseconds (in).
RADVEL: Radial velocity in kilometers per second (in).
RA: Astrometric right ascension of star at time TJD, in hours,

referred to the ICRS (out).
DEC: Astrometric declination of star at time TJD, in degrees, referred

to the ICRS (out).

Discussion:

See the discussion for subroutine APSTAR. Subroutine ASSTAR is identical to
APSTAR in input arguments and use. Here, however, the output arguments provide the
astrometric place of the star in the ICRS.

ASSTAR works by calling PLACE with LOCATN = 0 and ICOORD = 3.

(Return to subroutine entry list)

F-56

APPLAN

Entry: CALL APPLAN (TJD, L, N, RA, DEC, DIS)

Purpose: Computes the apparent place of a planet or other solar system body at a

specific time, using the barycentric ephemeris provided by subroutine
SOLSYS.

Arguments: INTEGER L,N

DOUBLE PRECISION TJD, RA, DEC, DIS

TJD: TT Julian date for apparent place (in).
L: Body identification number for the planet or other body whose

apparent place is desired; see argument M of subroutine
SOLSYS (in).

N: Any integer. Formerly, the body identification number for the
Earth — now just a place holder, no longer used (in).

RA: Apparent right ascension of body L at time TJD, in hours,
referred to the true equator and equinox of date (out).

DEC: Apparent declination of body L at time TJD, in degrees,
referred to the true equator and equinox of date (out).

DIS: True geometric distance between body L and the Earth at time
TJD, in AU (out).

Discussion:

This subroutine computes the apparent place of a planet or other solar system body.
Your choice of the version of subroutine SOLSYS in use determines the source of the body’s
barycentric rectangular coordinates used in the calculation. The value of input argument L,
which identifies the planet or other solar system body of interest, must correspond to
argument M of SOLSYS. The value of L can be obtained from a call to IDSS, e.g., L =
IDSS (‘SUN’).

Efficiency is maximized when successive calls to APPLAN have the same value for
TJD, because many quantities that are functions only of time are thereby saved and reused.

APPLAN works by calling PLACE with LOCATN = 0 and ICOORD = 1.

(Return to subroutine entry list)

F-57

TPPLAN

Entry: CALL TPPLAN (UJD, GLON, GLAT, HT, RA, DEC, DIS)

Purpose: Computes the topocentric place of a planet or other solar system body at a

specific time and observer location, using data from a previous call to
subroutine APPLAN.

Arguments: DOUBLE PRECISION UJD, GLON, GLAT, HT, RA, DEC, DIS

UJD: UT1 Julian date, or the equivalent Greenwich apparent sidereal
time in hours, for topocentric place (in).

GLON: Observer’s geodetic (WGS-84) longitude (east positive) in
degrees (in).

GLAT: Observer’s geodetic (WGS-84) latitude (north positive) in
degrees (in).

HT: Observer’s height above the Earth’s reference ellipsoid
(approximately, height above mean sea level) in meters.

RA: Topocentric right ascension of body at time UJD, in hours,
referred to the true equator and equinox of date (out).

DEC: Topocentric declination of body at time UJD, in degrees,
referred to the true equator and equinox of date (out).

DIS: True geometric distance between body and observer at time
UJD, in AU (out).

Discussion:

This routine computes the topocentric place of a planet or other solar system body
(neglecting atmospheric refraction) for the location specified by the arguments GLON,
GLAT, and HT, for the time specified by the argument UJD. TPPLAN assumes that
APPLAN has been previously called; it uses data from the previous APPLAN call in its
computation. In particular, the solar system body is identified and its ephemeris is obtained
in the prior APPLAN call.

The UT1 epoch that is specified here in argument UJD must correspond to the TT
epoch previously supplied to APPLAN in its argument TJD. That is, the same instant must
be specified for APPLAN in the TT time scale and for TPPLAN in the UT1 time scale. (The
difference TT – UT1 is currently of order one minute.) Note that TPPLAN allows the value
of the Greenwich apparent sidereal time, in hours, equivalent to the UT1 epoch, to be
specified in the argument UJD instead of the UT1 Julian date.

Atmospheric refraction can be applied to RA and DEC by subroutine ZDAZ.

TPPLAN works by calling PLACE with LOCATN = 1 and ICOORD = 1.
 (Return to subroutine entry list)

F-58

VPPLAN

Entry: CALL VPPLAN (TJD, L, N, RA, DEC, DIS)

Purpose: Computes the virtual place (proper place) of a planet or other solar system

body at a specific time, using the barycentric ephemeris provided by
subroutine SOLSYS.

Arguments: INTEGER L, N

DOUBLE PRECISION TJD, RA, DEC, DIS

TJD: TT Julian date for virtual place (in).
L: Body identification number for the planet or other body whose

virtual place is desired; see argument M of subroutine
SOLSYS (in).

N: Any integer. Formerly, the body identification number for the
Earth — now just a place holder, no longer used (in).

RA: Virtual (proper) right ascension of body L at time TJD, in
hours, referred to the GCRS (out).

DEC: Virtual (proper) declination of body L at time TJD, in degrees,
referred to the GCRS (out).

DIS: True geometric distance between body L and the Earth at time
TJD, in AU (out).

Discussion:

See the discussion for subroutine APPLAN. Subroutine VPPLAN is identical to
APPLAN in input arguments and use. Here, however, the output arguments provide the
virtual place (also called the proper place) of the planet. The virtual place (proper place) is
essentially the apparent place expressed in the GCRS.

VPPLAN works by calling PLACE with LOCATN = 0 and ICOORD = 0.

 (Return to subroutine entry list)

F-59

LPPLAN

Entry: CALL LPPLAN (UJD, GLON, GLAT, HT, RA, DEC, DIS)

Purpose: Computes the local place of a planet or other solar system body at a specific

time and observer location, using data from a previous call to subroutine
VPPLAN.

Arguments: DOUBLE PRECISION UJD, GLON, GLAT, HT, RA, DEC, DIS

UJD: UT1 Julian date, or the equivalent Greenwich apparent sidereal
time in hours, for local place (in).

GLON: Observer’s geodetic (WGS-84) longitude (east positive) in
degrees (in).

GLAT: Observer’s geodetic (WGS-84) latitude (north positive) in
degrees (in).

HT: Observer’s height above the Earth's reference ellipsoid
(approximately, height above mean sea level) in meters.

RA: Local right ascension of body at time UJD, in hours, referred to
the local GCRS (out).

DEC: Local declination of body at time UJD, in degrees, referred to
the local GCRS (out).

DIS: True geometric distance between body and observer at time
UJD, in AU (out).

Discussion:

See the discussion for TPPLAN. LPPLAN is identical to TPPLAN in input arguments
and use. Here, however, it is subroutine VPPLAN that must have been previously called and
here the output arguments provide the local place of the planet. The local place is essentially
the topocentric place expressed in the “local GCRS”.

LPPLAN works by calling PLACE with LOCATN = 1 and ICOORD = 1.

(Return to subroutine entry list)

F-60

ASPLAN

Entry: CALL ASPLAN (TJD, L, N, RA, DEC, DIS)

Purpose: Computes the astrometric place of a planet or other solar system body at a

specific time, using the barycentric ephemeris provided by subroutine
SOLSYS.

Arguments: INTEGER L, N

DOUBLE PRECISION TJD, RA, DEC, DIS

TJD: TT Julian date for astrometric place (in).
L: Body identification number for the planet or other body whose

virtual place is desired; see argument M of subroutine
SOLSYS (in).

N: Any integer. Formerly, the body identification number for the
Earth — now just a place holder, no longer used (in).

RA: Astrometric right ascension of body L at time TJD, in hours,
referred to the ICRS (out).

DEC: Astrometric declination of body L at time TJD, in degrees,
referred to the ICRS (out).

DIS: True geometric distance between body L and the Earth at time
TJD, in AU (out).

Discussion:

See the discussion for subroutine APPLAN. Subroutine ASPLAN is identical to
APPLAN in input arguments and use. Here, however, the output arguments provide the
astrometric place of the planet in the ICRS.

ASPLAN works by calling PLACE with LOCATN = 0 and ICOORD = 3.

(Return to subroutine entry list)

F-61

PRECES

Entry: CALL PRECES (TJD1, POS1, TJD2, POS2)

Purpose: Precesses a position vector from the mean equator and equinox of an arbitrary

date to the mean equator and equinox of J2000.0, or vice versa.

Arguments: DOUBLE PRECISION TJD1, POS1(3), TJD2, POS2(3)

TJD1: TDB (or TT) Julian date of the first equatorial system (in).
POS1: Position vector in the first equatorial system (mean equator and

equinox of TJD1); units and origin arbitrary (in).
TJD2: TDB (or TT) Julian date of the second equatorial system (in).
POS2: Position vector in the second equatorial system (mean equator

and equinox of TJD2); units and origin same as POS1 (out).

Discussion:

This subroutine precesses the input position vector, POS1, from the equator and
equinox of TJD1 to the equator and equinox of TJD2; the resulting vector is POS2.

One of the two input Julian dates must be standard epoch J2000.0—either TJD1 or
TJD2 must be 2451545.0D0 exactly. To precess a vector from one arbitrary date to another,
call PRECES twice, using J2000.0 as the “middle” date. That is, in the first call, TJD1 =
first Julian date, and TJD2 = 2451545.0D0; in the second call, TJD1 = 2451545.0D0, and
TJD2 = second Julian date.

Formally, the current precession algorithm is a function of Barycentric Dynamical
Time (TDB), but using TT as the basis for the input Julian dates results in a maximum error
of only about 3 × 10-9 arcseconds, which is totally negligible. Standard epoch J2000.0,
although formally defined in the TT time scale, is the same in the TT and TDB time scales to
the precision given by double-precision Julian dates: at J2000.0,
TT – TDB ≈ 10-4 second ≈ 10-9

day.

(Return to subroutine entry list)

Rev. C

F-62

EQECL

Entry: CALL EQECL (TJD, ICOORD, RA, DEC, ELON, ELAT)

Purpose: Converts right ascension and declination to ecliptic longitude and latitude.

Arguments: INTEGER ICOORD
 DOUBLE PRECISION TJD, RA, DEC, ELON, ELAT

TJD: TDB (or TT) Julian date of equator, equinox, and ecliptic used
for coordinates (in).

ICOORD: Coordinate system selection (in):
 ICOORD = 0: Mean equator and equinox of date
 ICOORD = 1: True equator and equinox of date
RA: Right ascension in hours, referred to selected equator and

equinox of date (in).
DEC: Declination in degrees, referred to selected equator and

equinox of date (in).
ELON: Ecliptic longitude in degrees, referred to the ecliptic and

selected equinox of date (out).
ELAT: Ecliptic latitude in degrees, referred to the ecliptic of date (out).

Discussion:

This subroutine converts the equatorial position of an object into the equivalent
ecliptic position: equatorial coordinates, RA and DEC, are converted to ecliptic coordinates,
ELON and ELAT. This subroutine can be used for any kind of barycentric or geocentric
coordinates—the conversion involves a simple rotation and should be regarded as just
formalism. As in subroutine PRECES, the input Julian date can be based on either the TDB
or TT time scales, with negligible resulting error.

RA and DEC can be expressed with respect to either the mean equator and equinox of
date TJD (if ICOORD = 0) or the true equator and equinox of date TJD (if ICOORD = 1).

The representation of the ecliptic used for celestial coordinates is a smoothly moving
mean plane described as part of the precession development. However, the mean and true
equators intersect this ecliptic at different points. Therefore, the equinox, which serves as the
origin of ecliptic longitude as well as the origin of right ascension, is different in the two
cases. ELON will be expressed with respect to the same equinox as RA.

 If TJD = 0.D0 and ICOORD = 0, the subroutine assumes RA and DEC are expressed
with respect to the ICRS and provides ELON and ELAT with respect to the ecliptic and
mean equinox of J2000.0.

F-63

See subroutines EQEC and ECEQ for the conversion of vectors between equatorial
and ecliptic systems.

(Return to subroutine entry list)

F-64

CIORA

Entry: CALL CIORA (TJD, RACIO)

Purpose: Provides the right ascension of the Celestial Intermediate Origin (CIO).

Argument: DOUBLE PRECISION TJD, RACIO

TJD: TT Julian date for CIO right ascension (in).
RACIO: Right ascension of the CIO, in hours (+ or –), with respect to

the true equinox of date (out).
Discussion:

 This call supplies the true right ascension of the Celestial Intermediate Origin (CIO).
RACIO = – (equation of the origins) =

RACIO =Greenwich apparent sidereal time – ERA
where all quantities are expressed in hours.

EROT

Entry: CALL EROT (TJDH, TJDL, THETA)

Purpose: Provides the Earth Rotation Angle (ERA), θ.

Argument: DOUBLE PRECISION TJDH, TJDL, THETA

TJDH: UT1 Julian date for ERA, high-order part (in).
TJDL: UT1 Julian date for ERA, low-order part (in).
THETA: ERA in degrees (out).

Discussion:

 This call supplies the ERA, θ, which is the geocentric angle, in the instantaneous
equatorial plane (true equator), between the directions toward the Terrestrial Intermediate
Origin (TIO) and the Celestial Intermediate Origin (CIO).

 This subroutine allows for the input UT1 time to be represented as a split Julian date.
See the discussion in the description of subroutine SIDTIM.

(Return to subroutine entry list)

F-65

HIACC

Entry: CALL HIACC

Purpose: Specifies that Earth orientation calculations are to be performed at full (IAU

standard) accuracy.

Arguments: (None)

Discussion:

 This routine instructs NOVAS to perform Earth orientation calculations, in particular,
the evaluation of the nutation series and the equation of the equinoxes, at full accuracy
according to recommended IAU models. This is the default; normally it would only be
necessary to call HIACC to resume full accuracy calculations after a call to LOACC.

LOACC

Entry: CALL LOACC

Purpose: Specifies that Earth orientation calculations are to be performed at reduced

accuracy.

Arguments: (None)

Discussion:

 This routine instructs NOVAS to perform Earth orientation calculations, in particular
the evaluation of the nutation series and the equation of the equinoxes, at reduced accuracy.
Even at reduced accuracy, the calculations are good to 0.1 milliarcsecond or better if the
standard set of NOVAS subroutines is used. The reduced accuracy mode will provide
noticeably faster performance for many types of calculations while still providing overall
angular accuracy that is adequate for most applications. To resume full accuracy
calculations, call HIACC.

 If the alternative version of subroutine NOD is in use (see installation instructions in
section 2.6), a call to LOACC will result in a significant improvement in performance (up to
a factor of 100 for some calculations), although angular errors of up to 0.05 arcsecond may
arise.

(Return to subroutine entry list)

F-66

GETVEC

Entry: CALL GETVEC (UVEC)

Purpose: Provides the unit vector corresponding to the last-computed object

coordinates.

Argument: DOUBLE PRECISION UVEC(3)

UVEC: Unit vector corresponding to last-computed object position,

expressed in same reference system as the scalar coordinates
(out).

Discussion:

 This call supplies the unit vector that corresponds to the last object position computed
by any NOVAS subroutine. It provides a simple way to obtain the vector that is equivalent
to a pair of spherical coordinates, for example, right ascension and declination. It would
normally be used following a call to one of the NOVAS subroutines that return only scalar
results (APSTAR, APPLAN, EQECL, etc.). The reference system in which the vector is
expressed is the same as for the previously calculated spherical coordinates.

(Return to subroutine entry list)

F-67

SETDT

Entry: CALL SETDT (DELTAT)

Purpose: Specifies the value of ∆T = TT – UT1 for subsequent internal use by NOVAS

subroutines.

Argument: DOUBLE PRECISION DELTAT

 DELTAT: Value of ∆T in seconds (in).

Discussion:

 This routine allows for the specification of ∆T, the difference in seconds between the
TT and UT1 time scales, to be used by NOVAS in subsequent calculations. The value of ∆T
that you specify by a call to SETDT will be used by various NOVAS subroutines until you
explicitly change it by another call.

 Generally, the value of DELTAT needs to be accurate to only about one second,
which means that a single call can be used for about a year’s span of dates. The only
exception is for the computation of accurate topocentric positions of bodies in the inner solar
system (especially the Moon); see the note on this in the description of subroutine PLACE.

(Return to subroutine entry list)

F-68

CELPOL

Entry: CALL CELPOL (TJD, ITYPE, DPOLE1, DPOLE2)

Purpose: Allows for the specification of celestial pole offsets for high-precision

applications.

Arguments: INTEGER ITYPE
 DOUBLE PRECISION TJD, DPOLE1, DPOLE2

 TJD: TDB or TT Julian date for celestial pole offset values (in).
 ITYPE: Type of pole offsets (in):
 ITYPE = 1: dψ and dε (ecliptic angles)
 ITYPE = 2: dX and dY (GCRS angles)

DPOLE1: Pole offset 1 (dψ or dX) in milliarcseconds (in).
DPOLE2: Pole offset 2 (dε or dY) in milliarcseconds (in).

Discussion:

This routine is actually an entry point into subroutine ETILT that allows for the
specification of celestial pole offsets for very high precision applications. The offsets
describe the observed position of the Celestial Intermediate Pole (CIP) with respect to the
position computed from the standard precession and nutation models. The offsets are
subsequently applied as corrections to the nutation in longitude and nutation in obliquity
within ETILT. Thus, ETILT’s output arguments OBLT, EQEQ, DPSI, and DEPS will be
affected. Because other NOVAS subroutines, such as SIDTIM, call ETILT to obtain data
related to the Earth’s orientation in space, the celestial pole offsets specified here are
propagated through the data that the various NOVAS subroutines provide.

Daily values of the celestial pole offsets are published, for example, in IERS27
Bulletins A and B. The celestial pole offsets effectively correct for errors or incompleteness
in the standard precession or nutation models. If you use CELPOL, make sure it is called
before any other routines for a given date. Values of the pole offsets that you specify by a
call to CELPOL will be used by ETILT until you explicitly change them.

Important

: For compatibility with the NOVAS version 3.0 precession and nutation
models, specify ITYPE = 2 and use only IERS dX and dY values with respect to “IAU
2000A” (sometimes labeled “IAU 2000”). These pole offset values will generally not exceed
0.5 milliarcsecond and therefore CELPOL would need to be called only when very high
accuracy is required.

(Return to subroutine entry list)

27 http://www.iers.org/MainDisp.csl?pid=36-9

http://www.iers.org/MainDisp.csl?pid=36-9�

F-69

ETILT

Entry: CALL ETILT (TJD, OBLM, OBLT, EQEQ, DPSI, DEPS)

Purpose: Computes quantities related to the orientation of the Earth’s rotation axis at a

given time.

Arguments: DOUBLE PRECISION TJD, OBLM, OBLT, EQEQ, DPSI, DEPS

TJD: TDB (or TT) Julian date for requested data (in).
OBLM: Mean obliquity of the ecliptic at time TJD, in degrees (out).
OBLT: True obliquity of the ecliptic at time TJD, in degrees (out).
EQEQ: Equation of the equinoxes at time TJD, in time seconds (out).
DPSI: Nutation in longitude at time TJD, in arcseconds (out).
DEPS: Nutation in obliquity at time TJD, in arcseconds (out).

Discussion:

This subroutine computes various quantities related to the orientation of the Earth’s
rotation axis (vector toward Celestial Intermediate Pole) with respect to the ecliptic plane at a
specific time. The computation involves a call to subroutine NOD to evaluate the nutation
series.

The output values of the last four arguments will correctly reflect the celestial pole
offsets if routine CELPOL has previously been called.

(Return to subroutine entry list)

F-70

SOLSYS

Entry: CALL SOLSYS (TJD,M,K, POS,VEL,IERR)

Purpose: Provides the position and velocity vectors of a planet or other solar system

body at a specific time. The origin of coordinates may be either the
barycenter of the solar system or the center of mass of the Sun.

Arguments: INTEGER M, K, IERR

DOUBLE PRECISION TJD, POS(3), VEL(3)

TJD: TDB Julian date for planet position and velocity (in).
M: Body identification number for the planet or other solar system

body whose position and velocity are desired (in).
K: Origin selection code (in):

K = 0 for origin at solar system barycenter
K = 1 for origin at center of mass of Sun

POS: ICRS position vector of body M at time TJD, in AU (out).
VEL: ICRS velocity vector of body M at time TJD, in AU/day (out).
IERR: Return code (out)

IERR = 0 is normal exit, everything OK
IERR = 1 means TJD before first possible date
IERR = 2 means TJD after last possible date
IERR = 3 means some other problem, e.g., invalid value for
M, etc.

Discussion:

This subroutine supplies values for the components of the position vector POS and
velocity vector VEL for body M at time TJD. The vectors computed by SOLSYS are
expressed with respect to ICRS axes, in the BCRS metric. The vectors are barycentric if K =
0 and heliocentric if K = 1.

There are several versions of SOLSYS, each with its own internal logic. Some use
internally stored data or series expansions; others refer to external data files. Additional
documentation (see below) is usually required for the proper use of each version. You are, of
course, free to supply your own version(s), providing that the arguments conform to the
above specifications.

The values of the body identification number, M, will in general differ from one
SOLSYS version to another; consult the documentation for the specific version in use.
Usually, M = 1 refers to Mercury, M = 2 refers to Venus, M = 3 refers to the Earth, etc., but
the identification numbers for bodies such as the Sun or Moon differ across implementations.
Furthermore, some versions of SOLSYS support only a subset of the major solar system

F-71

bodies. The minimum requirement is support for the Sun and Earth. Here, “Earth” refers to
the geocenter and not the Earth/Moon barycenter.

Each version of SOLSYS is packaged together with a function called IDSS, which
provides the body identification number, given a solar system body’s name; for example, M
= IDSS (‘MARS’). See the description of IDSS immediately following.

If you supply your own version of SOLSYS, you must also supply a corresponding
version of IDSS.

Some versions of SOLSYS support “split” Julian dates across successive calls. That
is, they recognize –1.D0 ≤ TJD ≤ 1.D0 as representing a fraction of a day that is to be paired
with the integral part of the Julian date from a preceding call. This allows the fraction of the
day to be specified to much greater precision than is possible in a single call. For example,
suppose you call SOLSYS with TJD equal to d1+f1, an ordinary Julian date—d1 is the Julian
day count and f1 is the fraction of a day. If the time of day needs to be specified more
precisely (equivalent to better than 0.1 millisecond), you can simply make a second call to
SOLSYS with TJD equal to the fraction of a day f2; without the day count included in TJD,
f2 can be given to much more precision than f1. In the second call, SOLSYS would interpret
the Julian date that you want as d1+f2, with the extra precision in f2 preserved. (It does not
matter whether the fractions f1 and f2 are similar.) If you continue to call SOLSYS with
fractional TJD values (f3, f4, …), it will interpret them in the same way (paired with the same
integer day number d1

) until you again set TJD to be a full Julian date. You can test whether
the version of SOLSYS in use supports this option: if IDSS (‘JD’) equals 2, the split Julian
date option is supported, otherwise not.

Documentation follows for the following versions of SOLSYS:

Version 1 reads 1-day planetary coordinate file
Version 2 provides interface to JPL ephemeris software
Version 3 evaluates self-contained Earth and Sun

 (Return to subroutine entry list)

Example of split Julian dates: Suppose IDSS(‘JD’) = 2, indicating that the version of SOLSYS in
use supports split Julian dates in successive calls. Then, in the following sequence of calls, the
requested Julian date is interpreted as shown:
 Effective Julian date of data returned:
CALL SOLSYS (2462387.1234567D0, …) 2462387.1234567
CALL SOLSYS (0.98765432109876543D0, …) 2462387.98765432109876543
CALL SOLSYS (0.6624965422153D0, …) 2462387.6624965422153
CALL SOLSYS (2471932.7892D0, …) 2471932.7892
CALL SOLSYS (–0.1D0, …) 2471931.9

However, if IDSS(‘JD’) = 1, the split Julian date option is not supported. In that case, in the second,
third, and fifth calls above, the TJD values would be interpreted as complete Julian dates, which
would correspond to calendar dates in early 4713 B.C. This would in most cases lead to an IERR
= 1 return.

F-72

Integer Function
IDSS

Entry: IDSS (NAME)

Purpose: Returns value of the body identification number for the named solar system

body.

Argument: CHARACTER*(*) NAME

 NAME: Name of solar system body, in all capital letters (in).

Function
Value Out: INTEGER IDSS

Value of the body identification number for solar system body named, or
-9999 if the body is not supported or the name cannot be recognized.

Discussion:

 This function provides the body identification number for the named body, for use as
an argument to NOVAS subroutines such as SOLSYS, APPLAN, etc. The body name
should be all caps and can be any length; most versions of this subroutine use only the first
three or four letters.

 A version of this function is supplied with each version of subroutine SOLSYS.
SOLSYS defines the body identification numbers to be used.

 If NAME is ‘JD’, the returned function value indicates whether the version of
SOLSYS in use supports split Julian dates in successive calls. In this case, a value of 1
indicates that split Julian dates are not supported, and a value of 2 indicates that they are
supported.

(Return to subroutine entry list)

F-73

SOLSYS Version 1

This version of SOLSYS reads and interpolates a formatted file of planetary
coordinates at one-day intervals. This ephemeris file must have the following characteristics:

The first record in the file is a header record of no specific format. The header is
followed by data records. Each data record must be formatted (plain-text ASCII) and must
contain the barycentric (BCRS) rectangular coordinates of the Sun and planets for a specific
date. The coordinates are given in AU, with respect to the ICRS axes. The data records must
be at 1-day intervals of TDB, with dates increasing. The format for each data record is (
F10.2, n(3F16.12)), where n is the number of bodies with coordinates in the file (data for at
least the Sun and Earth must be given, so n must be at least 2). The order of quantities in the
data records is:

 (1) TDB Julian date
 (2) Sun X
 (3) Sun Y
 (4) Sun Z
 (5) First planet X
 (6) First planet Y
 (7) First planet Z
 (8) Second planet X
 (9) Second planet Y
 :
 etc.

The Sun’s coordinates must always be given first in the record. The body identification
numbers will be M = 0 for the Sun, M = 1 for the first planet, M = 2 for the second planet,
etc. The Earth (geocenter, not the Earth-Moon barycenter) must be one of the planets.

 This version of SOLSYS reads the ephemeris file, converts the barycentric
coordinates to heliocentric coordinates if required, computes velocities, and performs the
necessary interpolation (7-point Lagrangian interpolation) to supply the correct position and
velocity vector components for any arbitrary value of the time argument TJD. TJD values
must, of course, be confined to within the span of time represented by the coordinate file.
The file-positioning logic in this version is such that values of TJD may, in successive calls
to this subroutine, be in any order; but efficiency is maximized if the TJD values are in
ascending order in successive calls.

 A one-day ephemeris file named SS_EPHEM.TXT, conforming to these
specifications, is provided as part of the NOVAS Fortran distribution. The file contains the

F-74

coordinates of 11 bodies (Sun, eight planets, Pluto, and the Moon), taken from the JPL
DE405 ephemeris, and covers years 2000 to 2020, inclusive (see sections 2.3 and 2.4). The
file is read on Fortran logical unit 20. The body identification numbers to be used with it
are: Sun, M=0; Mercury, M=1; Venus, M=2; Earth, M=3; Mars, M=4; Jupiter, M=5; Saturn,
M=6; Uranus, M=7; Neptune, M=8; Pluto, M=9; Moon, M=10. (Use function IDSS to
obtain these numbers.)

 The interpolation errors for most bodies are less than 1 meter in position and 1
millimeter per second in velocity. The maximum interpolation error of the Earth’s position
can reach 6 meters. These errors are all negligible. For Mercury, however, the
interpolation errors in position and velocity can reach 280 m and 10 mm/s, respectively; and
for the Moon, the errors can reach 480 m and 18 mm/s. The position errors for Mercury and
the Moon can affect angular coordinates computed by NOVAS by as much as 0.0008
arcsecond for Mercury and 0.3 arcsecond for the Moon, although typical errors will be much
less (the average error is about 1/6 the maximum error). Since these errors are due to
interpolation, they will be similar even if another ephemeris file is used.

 You are free to supply your own ephemeris file as long as it conforms to the above
specifications. You can change the file name, unit number on which it is read, number of
bodies in each record, and the format used to read each record by calling subroutine FILDEF,
which is packaged with SOLSYS version 1 (see code). If you change the ephemeris file,
you may also have to modify function IDSS.

 SOLSYS version 1 does not support split Julian dates in successive calls.

 SOLSYS version 1 has an additional error code: IERR = 4 means that there was a
problem opening the ephemeris file.

(Return to subroutine entry list)

F-75

SOLSYS Version 2

This version of SOLSYS reads a planetary/lunar ephemeris file from the Jet
Propulsion Laboratory and supplies barycentric or heliocentric positions and velocities. This
version calls JPL subroutines CONST and DPLEPH, which in turn call several other JPL
routines. It is the JPL subroutines that read, decode, and evaluate the ephemeris data;
SOLSYS version 2 simply provides a “front end” for the JPL ephemerides. You are
responsible for obtaining both the JPL ephemeris file and the corresponding JPL subroutines
(see Appendix C). This version requires the JPL package of 1997, which supports the JPL
planetary/lunar ephemerides28

The body identification numbers to be used with this version are: Sun, M=10;
Mercury, M=1; Venus, M=2; Earth, M=3; Mars, M=4; Jupiter, M=5; Saturn, M=6; Uranus,
M=7; Neptune, M=8; Pluto, M=9; Moon, M=11. (Use function

 DE200, DE405, and DE406. DE405 and DE406 provide
ICRS compatibility.

IDSS to obtain these
numbers.)

Body identification numbers outside the range 1–11 will result in a call from
SOLSYS to subroutine AUXPOS. AUXPOS is meant to supply positions of “auxiliary”
solar system bodies, such as asteroids or comets. A dummy version of AUXPOS is provided,
but you can substitute a working version of your own. This would allow you to obtain, for
example, apparent places of these other bodies simply by using a body identification number
outside the range 1–11 when calling subroutines such as PLACE or APPLAN. The
specifications for AUXPOS are given below. If this is of no interest, just leave the dummy
version of AUXPOS in place.

SOLSYS version 2 supports split Julian dates in successive calls. If you supply a
working version of AUXPOS, it does not need to support split Julian dates.

(Return to subroutine entry list)

28 The current version of JPL planetary/lunar ephemerides and accompanying software is available at
http://ssd.jpl.nasa.gov/?planet_eph_export

http://ssd.jpl.nasa.gov/?planet_eph_export�
http://ssd.jpl.nasa.gov/?planet_eph_export�

F-76

Specifications for Subroutine
AUXPOS

User-supplied subroutine called by SOLSYS version 2
(dummy version is provided)

Entry: CALL AUXPOS (TJD, M, K, POS, VEL, JERR)

Purpose: Provides the position and velocity vectors of a planet, asteroid, comet, or other

solar system body at a specific time. The origin of coordinates may be either
the barycenter of the solar system or the center of mass of the Sun. Called
from SOLSYS version 2 when the body identification number passed to
SOLSYS is outside the range 1–11.

Arguments: INTEGER M, K, JERR

DOUBLE PRECISION TJD, POS(3), VEL(3)

TJD: TDB Julian date for auxiliary body position and velocity (in).
M: Body identification number for the auxiliary body whose

position and velocity are required (in).
K: Origin selection code (in):

K = 0 sets origin at solar system barycenter
K = 1 sets origin at center of mass of Sun

POS: ICRS position vector of body M at time TJD, in AU (out).
VEL: ICRS velocity vector of body M at time TJD, in AU/day (out).
JERR: Return code (out):

IERR = 0 is normal exit, everything OK
IERR = 1 means TJD before first possible date
IERR = 2 means TJD after last possible date
IERR = 3 means some other problem, e.g., invalid value for M,
etc.

Discussion:

This subroutine can be used to provide the positions of asteroids, comets, trans-
neptunian objects, or even spacecraft. It can also be used to provide an alternative to the JPL
ephemeris for any of the major planets. Because AUXPOS is called only from SOLSYS
version 2 (when necessary), use of AUXPOS is transparent to supervisory-level NOVAS
subroutines.

 The values of the arguments TJD, M, and K passed to this routine are identical to
those passed to SOLSYS. However, this routine will be called only when M < 1 or M > 11.
Subroutine AUXPOS should be coded in such a way that it can efficiently supply the vectors
POS and VEL for random values of TJD, since the values of TJD in successive calls to
AUXPOS will not necessarily be in ascending order. AUXPOS does not need to support
split Julian dates in successive calls.

F-77

The supervisory-level NOVAS subroutines that call SOLSYS, such as PLACE or
APPLAN, require velocity information only for the Earth. Positions of solar system bodies
required by NOVAS subroutines are all barycentric. Therefore, although the argument list
for AUXPOS is given above in its most general form, for calls originating from within
NOVAS (via SOLSYS), K = 0 and POS is the only vector that needs to be returned.

The internal logic of this routine is entirely your choice. The components of the
vectors POS and VEL may be read in from an external file, calculated internally from orbital
elements, computed from the evaluation of Fourier or Chebyshev series, interpolated from an
internally stored array, or obtained in any other way. You can also assign values of M
(outside the range 1–11) to specific objects as you like.

If you supply you own version of AUXPOS, you might consider also replacing the
version of IDSS that is packaged with SOLSYS version 2 so that IDSS could supply the body
identification numbers for all the bodies that are supported by SOLSYS and AUXPOS.

(Return to subroutine entry list)

F-78

SOLSYS Version 3

This version of SOLSYS provides the position and velocity of the Earth or Sun
without reference to any external data file. The heliocentric position and velocity of the Earth
are computed by evaluating a trigonometric series that is a truncated and modified version of
Newcomb’s Theory of the Sun. When barycentric positions and velocities are required, a
number of additional approximations are involved; therefore, barycentric positions and
velocities computed by this version of SOLSYS are less accurate than heliocentric positions
and velocities. This version of SOLSYS produces data within the following error limits
(compared to the JPL DE405 ephemeris) for dates within two centuries of J2000.0:

 Earth heliocentric positions: 650 km
 Earth heliocentric velocities: 0.2 m/s
 Earth barycentric positions: 5000 km
 Earth barycentric velocities: 0.4 m/s

 The maximum errors in the Sun’s barycentric position and velocity are similar to
those of the Earth, although of course the Sun’s heliocentric position and velocity are
identically zero.

When this version of SOLSYS is used in the computation of the apparent place of the
Sun, it will contribute not more than 1 arcsecond error (usually less than 0.5 arcsecond error).
When this version of SOLSYS is used in the computation of apparent places of stars, it will
contribute not more than 0.3-milliarcsecond error.

The errors in positions and velocities from this version of SOLSYS will increase
gradually outside of the four-century span, centered on J2000.0, for which it was optimized.
This version of SOLSYS will return IERR = 1 for Julian dates prior to 2340000.5 (August
1694) and IERR =2 for Julian dates after 2560000.5 (December 2296).

This version of SOLSYS does not support split Julian dates in successive calls.

This version of SOLSYS calls subroutine PRECES, and certain expressions in the
SOLSYS algorithm have been adjusted to conform to the IAU 2006 precession.

The body identification numbers to be used with this version are: Sun, M=0 or M=1;
and Earth, M=2 or M=3.

 (Return to subroutine entry list)

(Return to Table of Contents)

F-79

Chapter 5 Equinox- and CIO-Based Paradigms Compared

5.1 Computing Hour Angles

The equinox- and CIO-based celestial reference systems are part of two computational
schemes for accounting for the Earth’s instantaneous orientation with respect to the stars.
These two methods represent the same phenomena (as they obviously must) but in slightly
different order. The overall matrix that embodies, for a given instant, the terrestrial-to-
celestial (ITRS-ICRS) transformation is the same for both schemes. Therefore, the value of
observable quantities will not be affected by the choice of which paradigm is used for the
computations.

Therefore, in NOVAS, quantities such as declination and hour angle, which are in principle
measurable angles, should have the same values regardless of the way in which they are
computed. Since both the equinox-based and CIO-based paradigms are based on the
instantaneous (true) equator of date—the plane orthogonal to the Celestial Intermediate Pole
(CIP)—declinations are, in fact, completely unaffected.

How are hour angles of celestial objects computed in the old and new paradigms? Assume
that we are considering Greenwich hour angles, that is, hour angles measured from the
meridian of geodetic longitude zero (the X-Z plane of the ITRS), without polar motion. In
the equinox-based scheme, we compute the topocentric place of the object of interest with
respect to the true equator and equinox of date. Then we compute Greenwich apparent
sidereal time and subtract the object’s apparent right ascension to form the hour angle. In the
CIO-based scheme, we compute the object’s topocentric place with respect to the true
equator and CIO of date. To form the hour angle, we compute the ERA and subtract the
CIO-based right ascension (also called the intermediate right ascension). The two results
should be identical.

The following table summarizes the two equivalent procedures for hour angle and the
NOVAS subroutines that would be used for each, assuming that polar motion is neglected.
The procedures outlined here provide the Greenwich hour angle (GHA) of a star; only the
first step would be different for a solar system body.

F-80

 Equinox-Based Method CIO-Based Method
Use
subroutine

APSTAR followed by TPSTAR
 — or —
PLACE with OBJECT = ′STAR′,
LOCATN = 1, and ICOORD = 1

PLACE with OBJECT = ′STAR′,
LOCATN = 1, and ICOORD = 2

… to obtain RA and DEC
topocentric right ascension and
declination of the star with respect to
the true equator and equinox of date
(in hours and degrees, respectively)

RA and DEC
topocentric right ascension and
declination of the star with
respect to the true equator and
CIO of date (in hours and
degrees, respectively)

Then use
subroutine

SIDTIM with K = 1 EROT

… to obtain GST
Greenwich apparent sidereal time
(in hours)

THETA
Earth Rotation Angle, θ
(in degrees)

Compute
Greenwich
hour angle

GHA = GST – RA
(in hours)

GHA = THETA / 15.D0 – RA
(in hours)

The computed GHA may have to be reduced to the range −12h to +12h. Subroutines
APSTAR and PLACE require time arguments in the TT time scale, while TPSTAR,
SIDTIM, and EROT require time arguments in the UT1 time scale. The two procedures
should yield the same value of GHA to within a microarcsecond around the present time and
identical values for DEC. To obtain the local hour angle in either method, simply add to the
GHA the observer’s longitude (east positive) in appropriate units.

The common notion of hour angle becomes somewhat problematic when polar motion is
taken into account, because what we usually regard as the Greenwich (or observer’s)
meridian—a plane of constant geodetic longitude—is not, in general, parallel to an hour
circle on the celestial sphere when the geodetic pole and the CIP are not coincident. See the
discussion in section 6.5.4 of USNO Circular 179.29

5.2 Other Computational Considerations

Two high-level NOVAS subroutines that involve Earth rotation, SIDTIM and TERCEL, can
perform their internal calculations using either the equinox-based paradigm or the CIO-based
paradigm. As previously mentioned, SIDTIM computes sidereal time. TERCEL performs
the terrestrial-to-celestial transformation. (Note: ZDAZ is indirectly involved because it
calls TERCEL.) The method used within either routine is selected by a prior call to either
EQINOX or CIOTIO (without any arguments), which remains in effect until changed by the

29 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-81

opposite call. Because there is no external difference in how SIDTIM or TERCEL are used,
and the two computational paradigms yield answers that are consistent within a few micro-
arcseconds over many centuries, there is seldom a practical basis for a choice. However, the
equinox method is much more efficient if mean sidereal time is to be computed. The
equinox-based paradigm is the default, that is, it is used unless CIOTIO has been called.
That will, of course, be the case for any existing programs that are not updated to make this
choice explicit.

Finally, another of the new Earth-rotation-related subroutines is worth mentioning. For a
given TT Julian date, CIORA provides the right ascension of the CIO with respect to the true
equinox of date. With a sign reversal, this quantity is the equation of the origins, the direction
of the true equinox measured in the equator eastward (+) from the CIO. Because the equinox
and CIO are simply different right ascension origins on the instantaneous equator, CIORA
provides the angular difference between the origins of these two systems. The equation of
the origins is also the difference, expressed as an angle, between the ERA and Greenwich
apparent sidereal time.

5.3 How NOVAS Implements the CIO-Based Paradigm

The equinox-based paradigm is, of course, the historical basis for NOVAS. One of its key
pieces is the precession algorithm (implemented by PRECES), which uses the equinox as its
azimuthal coordinate; that is, it transforms celestial coordinates from the mean equator and
equinox of one date to the mean equator and equinox of another date. Even though the
recommended precession formulation has been replaced twice over the last half-century, this
aspect of it has remained unchanged. Another key piece is the algorithm for sidereal time
(implemented by SIDTIM), which is based on a sidereal day that is defined by successive
transits of the equinox. The sidereal time formula must always be matched to the precession
algorithm, since mean sidereal time must account for the precession of the equinox in right
ascension; this has been consistently done in NOVAS.

To use the CIO-based paradigm, we must know where the CIO is in some well-defined
coordinate system. Unlike the equinox, the CIO is not defined by static geometry but by its
motion, so its position at any time is given by the result of an integral that has been evaluated
either analytically or numerically. In NOVAS, both results are available: the position of the
CIO can be taken from an external file that is the output of a numerical integration, or it can
be obtained from an analytical expression for the equation of the origins (see sections 6.5.1.1
and 6.5.1.2 of USNO Circular 17930

).

The NOVAS implementation of the CIO-based Earth rotation paradigm for a given date is
based on the construction of the Celestial Intermediate Reference System for that date, using
vectors toward the Celestial Intermediate Pole (CIP) and the Celestial Intermediate Origin
(CIO). These two directions define, respectively, the z-axis and x-axis of the celestial
intermediate system. The direction toward the CIP in the GCRS can be computed by passing

30 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-82

the vector (0,0,1) through subroutines NUTATE, PRECES, and FRAME in succession.
Given the direction of the CIP, the other piece of required information is the location of the
CIO for the same date, which is provided by CIOLOC, described below. The basis vectors
of the intermediate system, with respect to the GCRS, are computed by CIOBAS (see section
6.5.1 of USNO Circular 179 for the algorithms). Having these basis vectors available allows
NOVAS to easily transform any vector in the GCRS to the intermediate system. The only
other quantity used in the CIO-based paradigm is the ERA, which is trivial to compute and
provided by EROT.

Subroutine CIOLOC obtains the location of the CIO for a given date in one of two ways, and
an output argument, K, indicates which way was used. If an external file of CIO right
ascension values is available (nominally called CIO_RA.TXT and located in the current
directory) then CIOLOC will provide the GCRS right ascension of the CIO, and will set K to
1. If this file is not available, then CIOLOC will provide the true right ascension of the CIO
(the arc on the instantaneous equator from the equinox to the CIO), obtained from a series
expansion, and will set K to 2. CIOBAS can work with either coordinate of the CIO. The
two methods are equivalent within several microarcseconds over six centuries centered on
the year 2000 (it is not clear which is more correct).

To do the hard work, CIOLOC calls either CIORD (for K = 1) or EQXRA (for K = 2).
CIOLOC always initially calls CIORD to see if the external file of CIO right ascensions is
present. If it is, CIORD reads and interpolates the file, which is the output from a numerical
integration covering years 1700 to 2300 and directly provides the right ascension of the CIO
in the GCRS. You can specify the path/name of this file, its type (sequential or direct-
access), and the logical unit number on which it is to be read, by using a call to CIOFIL,
which must precede any CIO-based computation. If you don’t call CIOFIL, CIORD will
look for a formatted sequential file named CIO_RA.TXT in the current directory (folder)
and, if present, will read it on logical unit 24. A copy of CIO_RA.TXT (7.5 Mbytes) is
provided as part of the NOVAS Fortran distribution, along with a utility program called
CIO_file.f to convert it to a binary direct-access file (2.9 Mbytes) if desired (see sections 2.2,
2.4, and 2.5).

If the file is not present, then CIOLOC calls EQXRA to evaluate the equation of the origins
from a closed-form expression that includes the evaluation of nutation in longitude, a lengthy
series of trigonometric terms. The result locates the CIO with respect to the equinox on the
instantaneous equator.

Note that at no point does NOVAS use the CIO locator, s, which is described in IERS
documents and The Astronomical Almanac.

(Return to Table of Contents)

F-83

Appendix A Overview of How NOVAS Has Changed

A detailed list of the changes in the NOVAS Fortran code from the previous version (F2.0 of
1998) is given in Appendix B. The following paragraphs are meant to provide some
perspective on these changes for people who are already familiar with NOVAS. Most of the
modifications have been made in response to resolutions passed by the IAU in 2000 and
2006 that recommended new models for fundamental astronomy, within a new conceptual
framework. To the greatest extent possible, the calling sequences for the highest-level (and
most used) functions from the previous versions of NOVAS have been preserved—but there
are a few important exceptions. There are many new calls.

A.1 Important Changes in Calls

Probably the most important change to existing NOVAS calls is the change of proper motion
and parallax units in the calls to APSTAR, VPSTAR, and ASSTAR, CATRAN, and
GETHIP, all of which deal with star positions. The units have been changed as follows:

 proper motion in RA: from seconds of RA/century to milliarcseconds/ year
 proper motion in dec: from arcseconds per century to milliarcseconds/year
 parallax: from arcseconds to milliarcseconds

These changes have been made to conform to the units used in most modern star catalogs
(e.g., Hipparcos, Tycho-2, or the FK6), which in turn follow from the observational
techniques now used in the construction of such catalogs. Obviously, star data previously
used with NOVAS must either be replaced or transformed. The transformation equations
from “old” to “new” units are as follows:

 PMRNEW = PMROLD * 150.D0 * DCOS (DEC0 * DEGRAD) ; proper motion, RA
 PMDNEW = PMDOLD * 10.D0 ; proper motion, dec
 PAXNEW = PAXOLD * 1000.D0 ; parallax

where DEC0 is the catalog declination (J2000.0 or ICRS) of the star in degrees and
DEGRAD is the degrees-to-radians conversion factor (0.01745329…).

The other major change to a high-level subroutine is that PNSW has been renamed to
TERCEL (it carries out the terrestrial-to-celestial transformation), with a change to the time
argument. All other changes to existing NOVAS calls involve lower-level routines not
frequently invoked by most users; these are detailed in Appendix B.

A.2 PLACE: A New General-Purpose “Place” Subroutine

All computational code to compute apparent, topocentric, virtual, astrometric, etc., places of
stars or planets has now been consolidated into a single new subroutine called PLACE. The
familiar calls to APSTAR, APPLAN, TPSTAR, etc., still work as before but are now just

Rev. C

F-84

“front-ends” to PLACE. This change eliminated much duplicate code and also provides
more flexibility and possible future additions (such as binary star orbits or nonlinear terms in
proper motion). PLACE can also provide star or planet positions within the Celestial
Intermediate Reference System that is part of the new paradigm for Earth rotation
calculations (see below). PLACE provides its output position both in spherical coordinates
(right ascension, declination, and, for solar system bodies, geometric distance) and as a unit
vector. PLACE also provides radial velocity. PLACE accepts the specification of solar
system bodies by name, e.g., ‘MARS’, ‘SATURN’, or ‘SUN’, thus increasing the readability
of code. You may want to consider changing your calls to APSTAR, APPLAN, etc., to the
equivalent calls to PLACE.

A.3 New Reference Systems

The IAU resolutions of 2000 defined several new reference systems for fundamental
astronomy. These are described in section 1.1 of this document and in Chapters 1, 3, and 6
of USNO Circular 179.31

 Briefly, they are:

Barycentric Celestial Reference System (BCRS) – Replaces the barycentric
system based on the mean equator and equinox of J2000.0. Used for data
tabulated in astrometric catalogs and fundamental solar system ephemerides.

Geocentric Celestial Reference System (GCRS) – Replaces the geocentric
system based on the mean equator and equinox of J2000.0. Used for geocentric
apparent positions of celestial objects, measurements and coordinates in the
near-Earth environment, and artificial Earth satellite ephemerides.

The BCRS and GCRS are nearly parallel systems, related by a relativistic
transformation.

International Celestial Reference System (ICRS) – The name applied to the
orientation of the axes of the BCRS, based on the adopted coordinates of
several hundred extragalactic radio sources that are assumed to have no net
systematic motion. The resulting orientation is close to, but not exactly aligned
with the mean equator and equinox of J2000.0. The ICRS is a “space-fixed”
(kinematically non-rotating) system.

Because of their close relationship, the abbreviations “BCRS” and “ICRS” are
often used interchangeably.

Celestial Intermediate Reference System – A system for geocentric apparent
positions of stars and planets based on the true (instantaneous) equator of date
and a zero point of right ascension at the Celestial Intermediate Origin (CIO)
(see section A.5).

31 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-85

The geocentric system based on the true equator and equinox of date is also still
used for geocentric apparent positions of stars and planets.

These reference systems are now used for the input and output arguments to NOVAS
subroutines.

For example, NOVAS now assumes that input reference data, such as catalog star positions
and proper motions, and the basic solar system ephemerides, are provided in the ICRS (that
is, within the BCRS as aligned to the ICRS axes), or at least are consistent with it to within
the data’s inherent accuracy. The distinction between the ICRS and the system defined by the
mean equator and equinox of J2000.0 (the “J2000.0 system”) becomes important only when
an accuracy of 0.02 arcsecond or better is needed. Nevertheless, because NOVAS is
designed for the highest accuracy applications, you will now see the ICRS mentioned as the
reference system of choice for many input arguments to NOVAS subroutines.

Because the ICRS axes are not precisely aligned to those of the J2000.0 system, there is a
new subroutine called FRAME to transform vectors between the two systems. This
transformation is a very small fixed rotation. FRAME is used for both barycentric vectors
(BCRS to or from the barycentric J2000.0 system) and geocentric vectors (GCRS to or from
the geocentric J2000.0 system). FRAME is called many times, in both directions, within the
NOVAS code. It is needed because precession (and nutation) can properly be applied only to
vectors in a real equatorial system; vectors in the GCRS (geocentric ICRS) must be
transformed, via FRAME, to the J2000.0 system before PRECES is used. If your code only
interacts with the highest-level NOVAS subroutines, all this is transparent to you. However,
if you use PRECES within your own code, you should precede it by a call to FRAME (with
the middle argument K > 0) if your input vector is expressed in the GCRS, that is, if it is
derived from an input source based on the ICRS.

Output data from many of the supervisory-level NOVAS subroutines can be expressed in the
GCRS or either of two equator-of-date systems, the true equator and equinox of date, or the
Celestial Intermediate Reference System. The latter two systems differ only in their right
ascension origins, and in the new paradigm they are understood to be derived from the GCRS
by applying a few rotations.

A.4 New Models for Precession and Nutation

As described in section 1.4, new models for both precession and nutation have been adopted
by the IAU and have been incorporated into NOVAS. Although the underlying
developments for these effects are different than in NOVAS 2.0, from a programming point
of view, little has changed. The subroutines that directly involve precession and nutation —
PRECES, NUTATE, ETILT, NOD, and SIDTIM—work the same as before, but with
slightly different results. It should be noted that the new nutation model has more than ten
times the number of trigonometric terms than the previous model. Since evaluation of

F-86

nutation has always been the most computationally intensive task in NOVAS, you may
notice an increase in execution time for some NOVAS applications.

However, that extra computation time can be reduced: Earth-rotation calculations can be per-
formed in either high- or low-accuracy mode. A call to either HIACC or LOACC (without
arguments) sets the accuracy, which remains in effect until changed. High-accuracy mode is
the default, with the various models evaluated at the few-microarcsecond level. For nutation,
for example, this means that a 1365-term trigonometric series is evaluated for each unique
date. Neither the models nor current observations are accurate at this level; however, so
much of the increased computational burden is unproductive. A call to LOACC sets the
Earth rotation computations (and only those computations) in NOVAS to an accuracy of
0.1 milliarcsecond. The computation time for these calculations is, thereby, reduced by
about two-thirds.

A.5 New Model for the Rotation of the Earth about its Axis

IAU resolutions passed in 2000 established a new geometric paradigm for how we describe
the Earth’s spin around its axis. Both the old and new paradigms are based on the
instantaneous (true) equator of date, but they use different fiducial points on the equator as
the origin of right ascension, and different time-like quantities (actually, time-dependent
angles) to describe the rotation of the Earth. As described in section 1.4 and Chapter 5, the
conventional scheme is based on the equinox and sidereal time; in the new paradigm, the
reference point is called the Celestial Intermediate Origin (CIO) and the time-like quantity is
called the ERA. A more complete explanation of the new concepts, along with the
algorithms used with them, can be found in Chapter 6 of USNO Circular 179.32

NOVAS 3.0 implements both the equinox- and CIO-based computational schemes.
Implementing the CIO-based paradigm has required the addition of many new subroutines,
along with new code added to existing subroutines. First, subroutine PLACE is coded to
provide output right ascensions with respect to either the equinox or the CIO. Subroutine
GCRSEQ can similarly convert GCRS right ascensions and declinations to their equatorial
equivalents (for a given date), with output right ascensions measured with respect to either
zero point. CIORA provides the angle between the two zero points, that is, the difference
between the two right ascension systems. Subroutines CIOLOC, CIOBAS, and CIORD
provide lower-level support to these computations. Subroutine EROT computes the ERA for
any instant.

Two high-level NOVAS subroutines that involve Earth rotation, SIDTIM and TERCEL (the
latter replaces the old PNSW), have been re-coded to perform their internal calculations
using either the equinox-based or CIO-based paradigm. The method used is selected by a
prior call to either EQINOX or CIOTIO (without arguments), which remains in effect until
changed. The equinox-based paradigm is the default, that is, it is used unless CIOTIO has
been called.

32 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-87

A.6 New Features

Subroutines have been added to NOVAS that provide new functionality and convenience:

PLACE: A new general-purpose apparent place subroutine (see section A.2).

IDSS: An integer function that returns a solar system body’s identification number (which is
used in various NOVAS subroutine calls), given the body’s name as a character string. For
example, IDSS(‘MARS’) usually equals 4. Because IDSS is a function, it can be referred to
within calls to other NOVAS subroutines, e.g.,

 CALL APPLAN (TTJD,IDSS(‘JUPITER’),IDSS(‘EARTH’),RAJUP,DECJUP,DISJUP)

(If you supply your own version of subroutine SOLSYS, you must also now supply a
corresponding version of IDSS.)

GETVEC: A subroutine that returns the last NOVAS-computed celestial position (apparent
or astrometric place, etc.) as a unit vector. The vector is expressed in the same reference
system as the previously supplied spherical coordinates.

EQECL: Converts right ascension and declination to ecliptic longitude and latitude. Also,
EQEC and ECEQ convert vectors from an equatorial to an ecliptic basis and vice versa,
respectively.

EQGAL: Converts ICRS right ascension and declination to galactic longitude and latitude.

GCRSEQ: Converts GCRS (geocentric ICRS) right ascension and declination to one of the
equatorial systems of date.

ASTCON: Supplies the value of an astronomical constant, given its name as a character
string. The values of all fundamental astronomical constants used by NOVAS are stored
within this subroutine and nowhere else. The names of the constants available and the units
used for each are listed in the subroutine’s preamble. For example,
CALL ASTCON (‘ERAD’,1.D0,RADIUS) returns, in argument RADIUS, the value of the
equatorial radius of the Earth in meters.

A.7 New Terminology

Not surprisingly, the IAU resolutions on reference systems and Earth rotation have required
some new terminology, and an IAU Working Group on Nomenclature for Fundamental
Astronomy was established for the 2003–2006 triennium to sort it all out. New terms and
abbreviations now appear in comment statements in many of the NOVAS subroutines,
including the preambles where the input and output arguments are described. The most

F-88

important terms are described in Chapter 1 of this document and further information can be
found in USNO Circular 179.33

(Return to Table of Contents)

33 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

F-89

Appendix B List of Changes to NOVAS Subroutines from
Version F2.0 to Version F3.0

B.1 New Subroutines

NU2000A – from IERS (Wallace), evaluates IAU 2000A nutation series (nutation only).
NU2000K – modification of NU2000A, evaluates truncated version of full IAU 2000 A.

More accurate than IAU 2000 B series. Also uses a consistent set of expressions for the
fundamental arguments, those of Simon et al. (1994). Accuracy: about
0.1 milliarcsecond for Δψ, about 0.04 milliarcsecond for Δε and Δψ sin ε.

EECT2000 – from IERS (Wallace), evaluates 34-term series for “complementary terms” in
equation of the equinoxes. Uses new function ANMP from same source to normalize
angles in the range of –π ≤ angle ≤ +π.

EROT – evaluates the ERA, θ.
FRAME – sets up frame tie matrix and transforms vector from dynamical mean J2000.0

system to ICRS, or vice versa. FRAME implements a first-order matrix with second-
order corrections to the diagonal elements, patterned after what is given in the Hilton and
Hohenkerk (2004) A&A paper. Given the smallness of the angles involved and their
uncertainties, this is quite adequate.

PLACE – New, general-purpose subroutine for computing apparent, topocentric, virtual,
astrometric, etc., places of stars and planets. All substantive code for performing these
calculations has been moved from APSTAR, TPSTAR, APPLAN, etc., into PLACE. In
the call to PLACE, the object requested is specified by name, using a character
argument, e.g., ‘SUN’, ‘MOON’, ‘JUPITER’, ‘STAR’, etc. The type of place requested
is specified by two input codes, one indicating the location of the observer and the other
indicating the coordinate system of the output positions. APSTAR, TPSTAR,
APPLAN, etc., now are just “front-ends” to PLACE.

SETVEC – stores the last-computed celestial position vector.
GETVEC – allows the user to retrieve the last-computed celestial position as a unit vector.
IDSS – returns the body identification number of a specified solar system body, to be used in

calls to SOLSYS, APSTAR, APPLAN, etc. Actually a FUNCTION. The solar system
body is specified by its name (all upper case letters) in the character variable that is the
single input argument. For example, IDSS(‘EARTH’) = 3 (usually). A version of IDSS
must now be packaged with each version of SOLSYS.

ASTCON – provides values of astronomical constants.
SETDT – allows user specification of ΔT (= TT – UT1) value in seconds. The ΔT value set

here is used both in SIDTIM and TERCEL and, in certain circumstances, in PLACE.
GETDT – retrieves ΔT value (in days) previously specified via SETDT (in seconds).

Rev. C

F-90

GCRSEQ – transforms GCRS RA and dec to RA and dec on mean or true equator of date.
For true equator of date, either the true equinox or the CIO can be specified as the origin
of right ascension.

EQECL – converts equatorial RA and dec to ecliptic longitude and latitude.
EQEC – converts an equatorial position vector to an ecliptic position vector.
ECEQ – converts an ecliptic position vector to an equatorial position vector.
EQGAL – converts ICRS RA and dec to galactic longitude and latitude.
DLIGHT – evaluates the difference in light-time to a star between the solar system

barycenter and the Earth.
GRVDEF – replacement for SUNFLD that supervises the evaluation of gravitational

deflection of light due to the Sun, Jupiter, and other solar system bodies. Calls new
subroutine GRVD to do the deflection calculation for each body.

GEOPOS – called from PLACE to compute the geocentric position and velocity vectors of
an observer on or above the surface of the Earth.

LITTIM – called from PLACE to antedate the position of a solar system body for light-time.
LIMANG – evaluates where an observed object is with respect to the Earth’s limb (horizon),

given the geocentric position vectors of the observer and the object. PLACE calls
LIMANG for the topocentric cases in deciding whether to include the gravitational
deflection of light due to the Earth itself.

CIORA – returns the value of the true right ascension of the CIO for a given TDB Julian
date.

CIOLOC − returns the right ascension of the CIO at a given TDB Julian date, either with
respect to the GCRS or the true equator and equinox of date.

CIORD − called from CIOLOC, reads and returns a set of values of the GCRS right
ascension of the CIO, near a given TDB Julian date, from an external file (either
formatted sequential or binary direct-access).

CIOFIL – allows the specification of the external file of CIO right ascensions that CIORD
reads.

CIOBAS − returns orthonormal basis vectors for Celestial Intermediate Reference System
with respect to the GCRS. Requires previous call to CIOLOC.

EQXRA − returns the value of the equation of the origins, i.e., the right ascension of the
equinox in the Celestial Intermediate Reference System, from an analytical expression.
The equation of the origins is the arc on the true equator of date from the CIO to the
equinox, measured positively to the east.

RADVL – called from PLACE to compute the radial velocity of observed object with respect
to the observer.

SETMOD – sets method/accuracy mode for Earth-rotation calculations.
GETMOD – retrieves method/accuracy mode for Earth-rotation calculations.
EQINOX – specifies that equinox-based method is to be used for Earth-rotation calculations.

Rev. C

F-91

CIOTIO – specifies that the CIO-based method is to be used for Earth rotation calculations.
HIACC – specifies that high-accuracy (~1 μas) algorithms are to be used for Earth rotation

calculations.
LOACC – specifies that low-accuracy (~0.1 milliarcsecond) algorithms are to be used for

Earth-rotation calculations.
RESUME – reverts to method/accuracy mode used prior to latest change (by one of the

above subroutines).

B.2 Changes to Calling Sequences

APSTAR, VPSTAR, ASSTAR, CATRAN, GETHIP, VECTRS – proper motion units (in

both RA and dec) changed to milliarcseconds per year (proper motion in RA includes
cos δ factor), parallax units changed to milliarcseconds.

TPSTAR, TPPLAN, LPSTAR, LPPLAN – the user’s option to specify the input time
argument as apparent sidereal time in hours is now discouraged; specifying the
corresponding UT1 Julian date is now recommended. Sidereal time input is still
supported but might not be in future NOVAS releases.

PRECES, CATRAN – one of the input epochs must now be 2451545.0 (J2000.0). Can no
longer do two arbitrary epochs (the new precession expressions are not as flexible as
Newcomb’s or Lieske’s).

CATRAN – has two new transformation options: IT = 4 rotates data from the mean equator
and equinox of J2000.0 to the ICRS and IT = 5 does the opposite rotation.

WOBBLE – Julian date argument added.
PNSW – name changed to TERCEL (TERrestrial-to-CELestial transformation). Input

argument changed to UT1 Julian date in a pair of double-precision words.
CELPOL – input corrections to pole position can now be either (dX, dY) or (dψ, dε), the

choice specified by a new input argument. Units must now be in milliarcseconds. A
Julian date is also now required input.

SPIN – no longer specifically associated with sidereal time. Now applies a rotation about the
current z-axis, with angle expressed in degrees.

SUNFLD – replaced by GRVDEF, a more general subroutine that evaluates the gravitational
deflection of light due to several solar system bodies.

SOLSYS version 2 – can accept a split Julian date if provided in two successive calls; see
description in section B.3.

SOLSYS version 3 – M=10 now provides coordinates of the Earth, not the Sun; other values
of M unaffected.

Rev. C

F-92

All of the high-level subroutines (PLACE, APSTAR, APPLAN, etc.) now assume that they
are working with ICRS data; this goes for the input RA, dec, and proper motion
components for the star routines, and the position and velocity vectors obtained from
SOLSYS (e.g., from DE405) in both the star and planet routines. VPSTAR, LPSTAR,
VPPLAN, LPPLAN, ASSTAR, ASPLAN, and MPSTAR produce output positions in
the GCRS or ICRS.

B.3 Significant Internal Changes to Code

Common error conditions will now generate error messages sent to unit=* (standard output,

usually the terminal screen). Each error message always begins with the name of the
subroutine that produced it and is a plain-English description of the problem.

All subroutines that need astronomical constants now call ASTCON to obtain the values they
need on their first call. Those values are SAVEd for use on subsequent calls. Those
values are:

SPEED OF LIGHT IN METERS/SECOND — A DEFINING PHYSICAL CONSTANT:
 c = 299,792,458
 LIGHT-TIME FOR ONE ASTRONOMICAL UNIT IN TDB SECONDS, FROM DE405:
 a(sec) = 499.0047838061
 SPEED OF LIGHT IN AU/DAY:
 c(AU/day) = 86400 / a(sec)
 LENGTH OF ASTRONOMICAL UNIT IN METERS:
 a = a(sec) × c
HELIOCENTRIC GRAVITATIONAL CONSTANT IN METERS3/SECOND2, FROM DE405:

 GS = 1.32712440017987 × 1020
 GEOCENTRIC GRAVITATIONAL CONSTANT IN METERS3/SECOND2, FROM DE405:

 GM = 3.98600433 × 1014
 EQUATORIAL RADIUS OF EARTH IN METERS, FROM IERS CONVENTIONS (2003):

 r⊕ = 6,378,136.6
FLATTENING FACTOR OF EARTH, FROM IERS CONVENTIONS (2003):
 f = 1 / 298.25642
NOMINAL MEAN ROTATIONAL ANGULAR VELOCITY OF EARTH, IN
RADIANS/SECOND, FROM IERS CONVENTIONS (2003):
 ω = 7.2921150 × 10-5

 RECIPROCAL MASSES (SUN MASS/BODY MASS) FOR SOLAR SYSTEM BODIES
 SUN = 1
 MOON = 27,068,700.387534
 MERCURY = 6,023,600
 VENUS = 408,523.71
 EARTH = 332,946.050895
 MARS = 3,098,708
 JUPITER = 1,047.3486
 SATURN = 3,497.898

F-93

 URANUS = 22,902.98
 NEPTUNE = 19,412.24
 PLUTO = 135,200,000
 EARTH-MOON BARYCENTER = 328,900.561400

DE405 values are used for many of these, which are in TDB (Teph) units. NOVAS
output is practically insensitive to changes in low-order digits of the above constants;
they are mostly used for relatively small corrections, such as the gravitational deflection
of light. Probably the light-time for 1 AU is the most important, because it is used for
the light-time correction. The constants that really matter in NOVAS are the
coefficients to the series expansions in the individual subroutines, i.e., the constants that
are embedded in the models for precession, nutation, etc.

APSTAR, TPSTAR, APPLAN, TPPLAN, VPSTAR, LPSTAR, VPPLAN, LPPLAN,
ASSTAR, ASPLAN – now are simply “front-ends” to specific calls to PLACE. All
substantive apparent place calculations of various kinds are now done only in PLACE.
The following changes in the basic algorithms were made:

 (1) Calls to FRAME were added in appropriate places to transform between the ICRS
and the dynamical system.

 (2) In updating a star’s position for proper motion, the epoch of interest is now corrected
for the difference in light-time between the solar system barycenter (the reference point
for the input catalog data) and the Earth itself. (This affects only stars with the greatest
proper motions, and then only at the 0.1-milliarcsecond level). Uses the new subroutine
DLIGHT to compute the epoch offset.

 (3) The “Doppler factor,” k, is included in the computation of stars’ space motion
vectors (see note on VECTRS).

 (4) Modifications were made related to the change in gravitational deflection algorithms
from SUNFLD to the more-general GRVDEF (see note on GRVDEF).

 (5) Code has been introduced that allows a place to be expressed in the Celestial
Intermediate Reference System (equator of date with CIO as right ascension origin).

 (6) Code has been added that allows the input of an observer’s instantaneous geocentric
position and velocity vectors (with respect to the true equator and equinox of date) for a
topocentric place calculation; this is included to support satellite observations.

TERCEL, SOLSYS – calls to FRAME added at appropriate places. (In SOLSYS, the call to
FRAME is commented out for DE405 and later JPL ephemerides, since DE405 is in
ICRS.)

CATRAN, GETHIP, VECTRS – code adjusted for new proper motion and parallax units.
CATRAN – code added to call FRAME for new IT = 4 and IT = 5 options that rotate data

between dynamical J2000.0 system and ICRS.

Rev. C

F-94

VECTRS, CATRAN – 1/(sin(parallax)) now used to compute distance rather than 1/parallax;
an inconsequential change, just to make the expression formally correct. Also, the
“Doppler Factor,” k, mentioned in the Hipparcos documentation and other papers, is
now applied in computing the space-motion vector. The change in the units of proper
motion and parallax is also implemented here. The computational distance used for
objects of zero parallax has been increased to 1 Gpc (2.06 x 1014 AU).

SIDTIM – returns value of sidereal time, either mean or apparent. Internally can work by
either of two methods, set by previous call to SETMOD, EQINOX, or CIOTIO:
 Equinox-based method: Evaluates expression for mean sidereal time given in Capitaine

et al. (2003), A&A, 412, 567, eq. (42). The ERA, θ, is obtained from EROT. For
apparent sidereal time, the equation of the equinoxes, including the “complementary
terms”, is obtained from ETILT.

 CIO-based method: Obtains sidereal time from eq. (6) given in Kaplan (2003) in IAU
XXV, Joint Discussion 16: The International Celestial Reference System, Maintenance
and Future Realizations (USNO), p. 196. That equation is based on the position of the
true equinox of date in the Celestial Intermediate Reference System, the basis of which
is obtained from CIOBAS. The ERA, θ, is obtained from EROT. Mean sidereal time,
when requested, is obtained by subtracting the equation of the equinoxes, obtained from
ETILT.

 In either method, SIDTIM/EROT evaluates θ using the input UT1 epoch, but other
components of sidereal time are evaluated using TDB (set equal to TT), with TT = UT1
+ ΔT. Default value is ΔT = 64 sec, applicable at or near 2000; for highest precision
applications, ΔT value can be set via prior call to SETDT.

TERCEL – performs the terrestrial-to-celestial transformation on a given vector, i.e., the total
rotation from the ITRS to the ICRS. Internally can work by either of two methods, set
by previous call to SETMOD, EQINOX, or CIOTIO:

 Equinox-based method: Evaluates the old-style transformation as per previous
subroutine PNSW, but with a call to FRAME added at the end to put final vector in
ICRS. Uses apparent sidereal time, obtained from SIDTIM.

 CIO-based method: Performs the transformation of eq. (4) given in Kaplan (2003)
(reference above), based on the Celestial Intermediate Reference System. The
orthonormal basis of the system is obtained from CIOBAS and the ERA, θ, is obtained
from EROT.

 In either method, the “fast angle” (rotation about z axis) is evaluated using the input UT1
epoch, but other components of the transformation are evaluated using TDB (set equal to
TT), with TT=UT1+ΔT. Default value is ΔT=64 sec, applicable at or near 2000; for
highest precision applications, ΔT value can be set via prior call to SETDT.

ETILT – now evaluates a more complete series for the complementary terms in the equation
of the equinoxes (formerly just the two largest terms). Internally works in either high- or
low-accuracy mode, set by previous call to SETMOD, HIACC, or LOACC:

 High-accuracy mode: Obtains the sum of the terms from IERS function EECT2000.
 Low-accuracy mode: Obtains the sum of the terms from a 9-term internal series.

Rev. C

F-95

 ETILT uses the expression for the mean obliquity from the P03 precession formulation.
PRECES – now evaluates precession-angle polynomials for the IAU 2006 precession model

(also called P03). Some code changes made to ensure reversibility of transformation
(to/from J2000.0).

NOD – now just calls either of the nutation subroutines, NU2000A (from the IERS) or
NU2000K (a reduced-accuracy version of NU2000A), to do the hard work; does not
contain nutation series itself. Which nutation subroutine is called depends on whether
high-accuracy or low-accuracy mode has been chosen for Earth rotation calculations (see
new subroutines SETMOD, LOACC, HIACC).

FUNARG – now evaluates expressions for the fundamental solar and lunar arguments from
Simon et al. (1994), A&A, 282, 663. However, IERS subroutine NU2000A, that
evaluates the full nutation series, develops its fundamental arguments internally (a mixed
bag of expressions).

WOBBLE – very tiny (inconsequential for most applications) rotation about z axis added to
matrix to correct ITRS longitude origin to TIO, using recently published approximation
to TIO longitude as a function of time (which required the new time argument added to
this subroutine). Essentially, this changes W rotation to W'. Also changed matrix
element expressions from first-order approximations to exact expressions for increased
precision.

ZDAZ – improved algorithm for refraction geometry implemented.
SOLSYS version 1 – ephemeris file that is read has been changed to formatted (ASCII); the

coordinates in the file must now be barycentric, with respect to the ICRS axes; and the
interpolation is now 7-point Lagrangian. The code has also been considerably cleaned
up.

SOLSYS version 2 – call to the JPL ephemeris-access routine has been changed from the
single-argument JD call to the double-argument JD call; that is, from PLEPH to
DPLEPH. SOLSYS now splits the integral part of the input Julian date from the
fractional part and sends these to DPLEPH separately. The result is the same as a call to
PLEPH with the JD in one piece. But there is now code such that if, in a subsequent call
to SOLSYS, the JD is between −1 and +1, SOLSYS will interpret it as a fraction of a
day to be used with the integral part of the JD from the previous call. This scheme
ensures that there is no effect on existing applications that directly call SOLSYS, but it
provides a higher-precision option if two calls in succession are used in this way. (The
way to test whether any version of SOLSYS can use split JDs is to check whether the
value of IDSS(‘JD’) is 1 or 2, with 2 meaning that Julian dates can be split between
successive calls.)

SOLSYS version 3 – adjustments for IAU 2006 precession; more sophisticated (and
accurate) conversion from heliocentric to barycentric coordinates.

Rev. C

F-96

B.4 Other Internal Code Changes

Many minor changes have been made in the code. Obviously many of the comment
statements had to be revised, and others added, too numerous to try to list. Some of the code
is now more Fortran-77-like and less Fortran-66-like, especially in the subroutines in which
other changes had to be made; but a uniform scrub was not done. NOVAS still has plenty of
ancient-looking code, it’s still all-caps, and there are still some GO TOs. On the other hand,
since NOVAS is mostly computational, flowing top-to-bottom within each subroutine,
without any complicated logic, it hardly matters.

Some variable names were changed. For example, the variable PI in some subroutines was
used for the parallax and not the mathematical constant π=3.14159…, which could be
confusing. In these cases, the parallax variable name is now PX. The input (catalog) RA and
dec for many subroutines had been named RAM and DECM, the M indicating “mean;” these
are now RAI and DECI, the I indicating “ICRS.” Many similar trivial changes have been
made.

(Return to Table of Contents)

F-97

Appendix C How to Set Up the JPL Ephemerides

C.1 Overview

As described elsewhere in this document, NOVAS requires access to a high-accuracy solar
system ephemeris in order to compute places of solar-system bodies and the highest-accuracy
star places. High-accuracy solar system ephemerides are now being produced by groups in
the U. S., France, and Russia. NOVAS directly supports only the “development
ephemerides,” typically designated as “DEnnn,” produced by the JPL in the U.S. In NOVAS,
SOLSYS version 2 provides access to these ephemerides. This version of SOLSYS is simply
a front-end to JPL-provided software, which reads and interpolates a binary, direct-access
ephemeris file. The binary ephemeris file is created from ASCII data files and software
supplied by JPL. The JPL software must be tailored for your specific computer architecture.

This appendix describes how to set up the binary ephemeris file and the JPL software that
reads it on your system. After this has been successfully done, the JPL software must be
linked into any NOVAS application that uses SOLSYS version 2. The procedures outlined
below worked on an Intel-based Mac OS X system using the open-source gfortran compiler
and JPL software available in February 2009. The resulting binary, direct-access ephemeris
file was successfully transferred to and used on other Intel-based computers running
Microsoft Windows XP and Linux. Thus, our procedures are tailored for computers
containing Intel processors; this includes many systems running Microsoft Windows, Mac
OS X, and Linux. Providing specific procedures for all combinations of computer processors,
operating systems, and compilers is beyond the scope of this User’s Guide. Furthermore, the
procedures in the appendix are intended simply as a guide; USNO cannot provide technical
support regarding the JPL software.

C.2 Step-by-Step Guide

Step 1: Connect to the JPL ftp site. All the files needed to install the JPL ephemerides are
available via anonymous ftp from ssd.jpl.nasa.gov. This can be accomplished through most
modern Web browsers by typing:
ftp://ssd.jpl.nasa.gov
in the address (URL) field. When connected, go to the pub/eph/planets/ directory.

Step 2: Download the JPL software, ASCII ephemeris files, and corresponding test data file.
Follow the “CONTENTS TO BE RETRIEVED BY THE USER” instructions in the file
README.txt, which is also available as a webpage.34

34 http://ssd.jpl.nasa.gov/?planet_eph_export

 We recommend following the
instructions for “non-UNIX users” regardless of your computer’s operating system. Our
experience at USNO has been that the installation process is more a function of your
computer’s processor (hardware) than its operating system. The test data file, testpo.xxx, may
be found in both the same directory as the ASCII ephemeris files and in the separate test data
directory.

Rev. B

ftp://ssd.jpl.nasa.gov/�
http://ssd.jpl.nasa.gov/?planet_eph_export�

F-98

The characters used to terminate lines, the end-of-line codes, vary among operating systems.
Some systems use carriage returns (CR), some use line feeds (LF), and some use both. The
end-of-line codes may not be properly translated between operating systems when files are
copied from one system to another, depending on how the files are transferred and on what
options are invoked. If you have trouble reading or using any of the files downloaded from
JPL, check the encoding to ensure it is appropriate to your system.

Step 3: Configure the asc2eph.f file provided by JPL. For computer systems with Intel
processors, select (uncomment) the following statement at the beginning of the program:
PARAMETER (NRECL = 4)

Step 4: Split the testeph.f file provided by JPL into two files: jplsubs.f and testeph.f. The
first new file, jplsubs.f, should contain JPL subroutines FSIZER3, PLEPH (including
ENTRY DPLEPH), INTERP, SPLIT, STATE, and CONST extracted from the original JPL
test program. The second revised file, testeph.f, should contain only the main program and no
subroutines. JPL subroutines FSIZER1 and FSIZER2 will not be needed and are not retained
in either file.

The creation of the new file, jplsubs.f, is advantageous for the long-term use of the JPL
subroutines and binary ephemeris files with NOVAS. The new file contains no extraneous
material and is named descriptively.

Step 5: Configure the new jplsubs.f file.
a) For computer systems with Intel processors, in SUBROUTINE FSIZER3 of

jplsubs.f, uncomment and set
NRECL=4

b) In SUBROUTINE FSIZER3 of jplsubs.f, identify the binary ephemeris file to be
used by setting
NAMFIL= 'JPLEPH'
You may wish to specify a more complete file name including the appropriate
directories, such as
NAMFIL= '/users/mystuff/ephem/JPLEPH'
to avoid having to keep an alias to this binary file in all your working directories.

c) In SUBROUTINE FSIZER3 of jplsubs.f, set KSIZE to the correct value for the
specific ephemeris being used (see the comments in the code); e.g., set
KSIZE = 2036

d) In SUBROUTINE STATE of jplsubs.f, select (uncomment)

for DE405.

CALL FSIZER3(NRECL,KSIZE,NRFILE,NAMFIL)
leaving the lines containing CALL FSIZER1 and CALL FSIZER2

Step 6: Compile and create executables.

 as comments.

a) Create executable application asc2eph by compiling and linking file asc2eph.f.
b) Create executable application testeph by compiling and linking files testeph.f and

jplsubs.f.

Rev. B

F-99

NOTE for Windows systems: Some Fortran compilers may produce
files with an “.exe” extension, i.e., asc2eph.exe and testeph.exe. If so,
ignore the “.exe” extension when using those applications in the
following steps.

Step 7: Concatenate the ASCII data files and convert the concatenated file to binary form.
Follow the instructions in the “ASCII to BINARY (for non-UNIX users)” section of the
usrguide file, which is located in the pub/eph/planets directory. The resulting binary
ephemeris file will be named JPLEPH, or whatever name you specified in Step 5b.

Step 8: Test the binary ephemeris file. Follow the instructions in the “TESTING THE BINARY
FILE” section of the usrguide file, which is located in the pub/eph/planets. You should
have already downloaded the appropriate test data file in Step 2.

Step 9: Use the binary ephemeris file with NOVAS. After successfully completing the test,
compile and link NOVAS subroutine SOLSYS version 2 (NOVAS_F3.0_solsys2.f) and the
JPL subroutines contained in jplsubs.f with the remaining relevant parts of NOVAS and your
application code. Unless you specified otherwise in Step 5b, the binary JPL ephemeris file, or
an alias to it, should reside in the same directory as your executable application.

(Return to Table of Contents)

F-100

F-101

Appendix D A Comparison of SOFA and NOVAS

The Standards of Fundamental Astronomy (SOFA)35

Generally, NOVAS is independent of SOFA, although there are two IERS routines in
NOVAS that have code identical to their SOFA counterparts: NU2000A, which evaluates
the full 1365-term IAU 2000A nutation series, is the same as iau_NUT00A in SOFA; and
function EECT2000, which evaluates the “complementary terms” in the equation of the
equinoxes, is the same as iau_EECT00 in SOFA.

 library is the official collection of
approved software for positional astronomy, operating under the auspices of IAU Division 1
(Fundamental Astronomy). There are both Fortran and C versions. An international SOFA
Reviewing Board manages the collection.

In the document SOFA Tools for Earth Attitude, also known as the “SOFA Cookbook”, there
are several examples of the transformation between terrestrial and celestial coordinate
systems. Here we look at how one of those examples plays out in both SOFA and NOVAS.

D.1 Goal

These tests were designed to compare the transformation from the celestial to terrestrial
reference systems, GCRS to ITRS, using the IAU 2000A/2006 models for precession and
nutation. Specifically, we used NOVAS_F3.0g.f (the “g” beta version of NOVAS 3.0
Fortran) with mode = 0, which specifies the use of the CIO-based method at full accuracy.
With SOFA, we used the example in the SOFA Cookbook titled “IAU 2006/2000A, CIO
based, using classical angles.” The goal was to verify that these (mostly) independent
software systems produced results that agree at a level that is at least an order of magnitude
better than the best observational results.

D.2 Procedure

The test programs for NOVAS and SOFA follow as Addenda I and II, respectively. The
input parameters, which were taken from the SOFA Cookbook, were as follows:

UT1 = 2400000.5 + 54195.4999991658 days
∆T = 65.25607389 s (SOFA does not use ∆T; this is the difference between the TT

and UT1 Julian dates in the SOFA example, expressed in
seconds)

Polar coordinates: XP = 0.0349282, YP = 0.4833163 arcseconds

CIP offsets: DX = 0.1725, DY = –0.265 milliarcseconds

The SOFA subroutine iau_NUT06A includes small corrections to the nutation series arising
from the P03 precession that are not used in the NOVAS calculations. The corrections
amount to only a few microarcseconds (µas) for current dates.

35 http://www.iausofa.org/index.html

Rev. C

http://www.iausofa.org/index.html�

F-102

A series of tests were done, with and without corrections for polar motion, precession and
nutation, and the P03 correction in SOFA, and the resulting rotation matrices were compared.

NOVAS does not directly produce an overall GCRS-to-ITRS rotation matrix as SOFA does.
The NOVAS rotation matrix was constructed simply by passing the three vectors (1,0,0),
(0,1,0), and (0,0,1) in succession through subroutine TERCEL.

D.3 Results

Initially, the rotation matrices differed by about 3 µas, which was almost entirely a rotation
about the z-axis and was larger than expected. This discrepancy was traced to the way the
UT1 Julian date was divided into two parts, which is necessitated because of the high
precision that was needed. The best agreement with the SOFA results is obtained when the
UT1 Julian date in the NOVAS program is expressed as

2400000.5 + 54195.4999991658…

That is, it was necessary to split the UT1 Julian date for NOVAS in exactly the same place as
in the SOFA example.

Using this representation of UT1, the following results were obtained:

Polar Motion CIP Offsets P03 Corrections CIO_RA file /
EQINOX mode

Difference
(µas)

No No No No 0.25814
No No Yes No 1.6752
No Yes Yes No 1.6728
Yes Yes Yes No 1.6735
Yes Yes No No 0.28679
Yes Yes No CIO_RA file 0.34369
Yes Yes No EQINOX mode 0.28644

The table shows that the latest Fortran releases of NOVAS and SOFA agree at the sub-
microarcsecond level in the transformation between the celestial and terrestrial reference
systems when the same Earth orientation parameters and conventions are used. In this case,
including the P03 corrections in the SOFA nutation adds a discrepancy on the order of 1.4
µas. Inclusion of the CIP offsets and polar motion does not significantly add to the
differences in the two formulations, as long as the parameters used are identical in the two
cases. Use of the external CIO_RA file in the NOVAS calculation adds about 0.05 µas to the
difference for the above case, while using equinox mode for the NOVAS computations does
not have a significant effect on the results.

Alice Monet
George Kaplan
27 Feb 2009

F-103

D.4 Addendum I: NOVAS Code

PROGRAM terceltest

C-----Transform vectors from ITRS to GCRS

 DOUBLE PRECISION tjdh, tjdl, xp, yp, delt, vec1(3),
 . vec2(3), tjd, dx, dy
 INTEGER num, mode

 DATA delt /65.25607389d0/, num / 0 /
 CALL setdt (delt)

 dx = +0.1750d0
 dy = -0.2259d0
C dy = 0d0
C dx = 0d0

C-----Open the input file of Julian dates,CIO coords,ITRS vector

 OPEN (UNIT = 15, FILE = 'tercel-test-input.dat',
 . STATUS = 'OLD', ACCESS = 'SEQUENTIAL')

 10 READ (15,*, END = 20) num, tjdh, tjdl, xp, yp, vec1

C----- Set transformation method, accuracy level, and UT1-UTC.

 tjd = tjdh + tjdl

 CALL celpol (tjd,2,dx,dy)
C CALL ciotio
 CALL eqinox
 CALL hiacc

C----- Rotate vec1 from ITRS to GCRS = vec2

 CALL TERCEL(tjdh,tjdl,xp,yp,vec1,vec2)
 WRITE (*,101) num, vec2
 GO TO 10
 20 CONTINUE

 101 FORMAT (i1,3(4x,f20.17))

 STOP
 END

F-104

D.5 Addendum II: SOFA Code

* SOFA examples

 IMPLICIT NONE

* Arcseconds to radians
 DOUBLE PRECISION AS2R
 PARAMETER (AS2R = 4.848136811095359935899141D-6)

* 2Pi
 DOUBLE PRECISION D2PI
 PARAMETER (D2PI = 6.283185307179586476925287D0)

 CHARACTER PM
 INTEGER IY, IM, ID, IH, MIN, J
 INTEGER IHMSF(4)
 DOUBLE PRECISION SEC, XP, YP, DUT1,
 : DDP80, DDE80, DX00, DY00, DX06, DY06,
 : DJMJD0, DATE, TIME, UTC, DAT,
 : TAI, TT, TUT, UT1, RP(3,3), DP80, DE80,
 : DPSI, DEPS, EPSA, RN(3,3), RNPB(3,3),
 : EE, GST, RC2TI(3,3), RPOM(3,3),
 : RC2IT(3,3), X, Y, S,
 : RC2I(3,3), ERA, DP00, DE00, RB(3,3),
 : RPB(3,3), V1(3), V2(3), DDP00, DDE00
 DOUBLE PRECISION R1(3,3), R2(3,3), R3(3,3), R4(3,3), R5(3,3)
 DOUBLE PRECISION iau_OBL80, iau_EQEQ94, iau_ANP, iau_GMST82,
 : iau_ERA00, iau_SP00, iau_EE00, iau_GMST00,
 : iau_S06,TERMAT(3,3), TERTRANS(3,3),
 : SOFMAT(3,3), SOFTRANS(3,3)
 DOUBLE PRECISION DROT, DJMJDATE, UTHI, UTLO
C.....
 OPEN (UNIT = 16, FILE = 'tercel_matrix', STATUS = 'OLD',
 . ACCESS = 'SEQUENTIAL')
 READ (16,90) TERMAT
 90 FORMAT (1x, 3e24.12)
 WRITE (*,'(3(f20.15))') TERMAT
C
 OPEN (UNIT = 17, FILE = 'sofa_matrix', STATUS = 'OLD',
 . ACCESS = 'SEQUENTIAL')
 READ (17,95) SOFMAT
 95 FORMAT (1x, 3f24.17)
C WRITE (*,'(3(f20.15))') SOFMAT
C.....
* UTC.
 IY = 2007
 IM = 4
 ID = 5
 IH = 12
 MIN = 0
 SEC = 0D0
 WRITE (*, '(1X,''date'',I6.4,2(''/'',I2.2))') IY, IM, ID
 WRITE (*, '(1X,''time'',I4,I3,F5.1,'' UTC'')') IH, MIN, SEC

F-105

* Polar motion (arcsec->radians).
 XP = 0.0349282D0 * AS2R
 YP = 0.4833163D0 * AS2R
 WRITE (*, '(/1X,''X_p ='',SP,F13.9,'' arcsec'')') XP/AS2R
 WRITE (*, '(1X,''Y_p ='',SP,F13.9,'' arcsec'')') YP/AS2R

* UT1-UTC (s).
 DUT1 = -0.072073685D0
 WRITE (*, '(/1X,''UT1-UTC ='',SP,F16.12,'' s'')') DUT1

* Nutation corrections wrt IAU 1976/1980 (mas->radians).
 DDP80 = -55.0655D0 * AS2R/1000D0
 DDE80 = -6.3580D0 * AS2R/1000D0
 WRITE (*, '(/1X,''dDpsi (1980) ='',SP,F13.9,'' arcsec'')')
 : DDP80 / AS2R
 WRITE (*, '(1X,''dDeps (1980) ='',SP,F13.9,'' arcsec'')')
 : DDE80 / AS2R

* CIP offsets wrt IAU 2000A (mas->radians).
 DX00 = 0.1725D0 * AS2R/1000D0
 DY00 = -0.2650D0 * AS2R/1000D0
 WRITE (*, '(/1X,''dX (2000) ='',SP,F13.9,'' arcsec'')')
 : DX00 / AS2R
 WRITE (*, '(1X,''dY (2000) ='',SP,F13.9,'' arcsec'')')
 : DY00 / AS2R

* CIP offsets wrt IAU 2006/2000A (mas->radians).
 DX06 = 0.1750D0 * AS2R/1000D0
 DY06 = -0.2259D0 * AS2R/1000D0
C DX06 = 0d0
C DY06 = 0d0 * AS2R/1000D0
 WRITE (*, '(/1X,''dX (2006) ='',SP,F13.9,'' arcsec'')')
 : DX06 / AS2R
 WRITE (*, '(1X,''dY (2006) ='',SP,F13.9,'' arcsec'')')
 : DY06 / AS2R

* TT (MJD).
 CALL iau_CAL2JD (IY, IM, ID, DJMJD0, DATE, J)
 TIME = (60D0*(60D0*DBLE(IH) + DBLE(MIN)) + SEC) / 86400D0
 UTC = DATE + TIME
 CALL iau_DAT (IY, IM, ID, TIME, DAT, J)
 TAI = UTC + DAT/86400D0
 TT = TAI + 32.184D0/86400D0
 WRITE (*, '(/1X,''TT = 2400000.5 +'',F22.15)') TT

* UT1.
 TUT = TIME + DUT1/86400D0
 UT1 = DATE + TUT
 WRITE (*, '(/1X,''UT1 = 2400000.5 +'',F22.15)') UT1
* =========================
* IAU 2006/2000A, CIO-based
* =========================

 WRITE (*, '(/1X,'' =========================''' //

F-106

 : '/1X,''4) IAU 2006/2000A, CIO-based''' //
 : '/1X,'' ========================='')')

* CIP and CIO, IAU 2006/2000A.

C-----Report inputs to CIP calculation

 CALL iau_XYS06A (DJMJD0, TT, X, Y, S)

* Add CIP corrections.
 X = X + DX06
 Y = Y + DY06

* Report CIP and s.
 WRITE (*, '(/1X,''X ='',SP,F22.15)') X/AS2R
 WRITE (*, '(1X,''Y ='',SP,F22.15)') Y/AS2R
 WRITE (*, '(1X,''s ='',SP,F13.9,'' arcsec'')') S/AS2R

* GCRS to CIRS matrix.
 CALL iau_C2IXYS (X, Y, S, RC2I)

C WRITE (*,*) 'X,Y,S/AS2R: ',X, Y, S/AS2R

* Report.
 CALL REPMAT ('NPB matrix, CIO-based (RC2I)', RC2I)

* Earth rotation angle.
C
C----- Set TUT to the value used in Tercel

 WRITE (*,*) 'DJMJD0, DATE, TUT: ', DJMJD0, DATE, TUT

C DJMJDATE = 2400000.5d0
C TUT = 54195.4999991658d0
C UTHI = 2454195.0d0
C UTLO = 0.99999916581146d0
C
 ERA = iau_ERA00 (DJMJD0, DATE+TUT)

C ERA = iau_ERA00 (UTHI, UTLO)
C ERA = iau_ERA00 (DJMJD0+DATE, TUT)

 WRITE (*, '(1X)')
 WRITE (*, '(1X,''ERA ='',F19.16,'' rad'')') ERA
 WRITE (*, '(1X,'' ='',F16.12,'' deg'')') ERA*360D0/D2PI
 CALL iau_D2TF (9, ERA/D2PI, PM, IHMSF)
 WRITE (*, '(1X,'' ='',3I3.2,''.'',I9.9)') IHMSF

* Form celestial-terrestrial matrix (no polar motion yet).
 CALL iau_CR (RC2I, RC2TI)
 CALL iau_RZ (ERA, RC2TI)

* Report.
 CALL REPMAT ('celestial to terrestrial matrix (no polar motion)',

F-107

 : RC2TI)
 CALL iau_CR (RC2TI,R3)

* Polar motion matrix (TIRS->ITRS, IERS 2003).
 CALL iau_POM00 (XP, YP, iau_SP00(DJMJD0,TT), RPOM)

* Form celestial-terrestrial matrix (including polar motion).
 CALL iau_RXR (RPOM, RC2TI, RC2IT)

C Transpose TERMAT
 CALL TRANSPOSE (TERMAT, TERTRANS)
 CALL TRANSPOSE (SOFMAT, SOFTRANS)

* Report.
 CALL REPMAT ('celestial to terrestrial matrix', RC2IT)
 CALL REPMAT ('tercel_transposed matrix', TERTRANS)

C WRITE (*, '(1X)')
C WRITE (*,'(3(f20.15))') TERMAT

* Copy for later comparison.
 CALL iau_CR (RC2IT, R4)

* Compare result to TERCEL_Transposed matrix
 WRITE (*, '(1X)')
 WRITE (*,'(1x,''w/ pm result vs tercel ='',e20.10,'' uas'')')
 . DROT (R4, TERTRANS) *1D6 / AS2R

* Compare SOFA w/P03 and SOFA w/o P03
 WRITE (*, '(1X)')
 WRITE (*,'(1x,''sofa w/p03 vs w/o p03 ='',e20.10,'' uas'')')
 . DROT (R4, SOFTRANS) *1D6 / AS2R

 END

--

 SUBROUTINE REPMAT (S, R)
 IMPLICIT NONE
 CHARACTER*(*) S
 DOUBLE PRECISION R(3,3)
 WRITE (*,'(/1X,A/SP,2(3F22.17/),3F22.17)') S,R(1,1),R(1,2),R(1,3),
 : R(2,1),R(2,2),R(2,3),
 : R(3,1),R(3,2),R(3,3)
C WRITE (*, '(1X)')
C WRITE (*,*) S
C WRITE (*,'(3f22.17)') R
 END

--

 DOUBLE PRECISION FUNCTION DROT (RMA, RMB)
*
* Express the difference between two rotation matrices RMA,RMB as an
* amount of rotation R about some arbitrary axis.

F-108

*
 IMPLICIT NONE
 DOUBLE PRECISION RMA(3,3), RMB(3,3)

 DOUBLE PRECISION RMBT(3,3), RM(3,3), RV(3), R

* Multiply the first matrix by the inverse of the second.
 CALL iau_TR (RMB, RMBT)
 CALL iau_RXR (RMBT, RMA, RM)

* Express the result as an r-vector.
 CALL iau_RM2V (RM, RV)

* Return the magnitude (the amount of rotation in radians).
 CALL iau_PM (RV, R)
 DROT = R

 END

--
 SUBROUTINE TRANSPOSE (R, RT)
*
* Transpose 3x3 matrix R ---> RT
*
 IMPLICIT NONE
 DOUBLE PRECISION R(3,3), RT(3,3)
 INTEGER i, j
*
 DO i = 1, 3
 DO j = 1, 3
 RT(i,j) = R(j,i)
 ENDDO
 ENDDO
*
 END

__

(Return to Table of Contents)

F-109

Appendix E List of Internal Calls
ABERAT called by:

 PLACE

ANGLES called by:

 GCRSEQ MPSTAR PLACE

ANMP called by:

 EECT2000

PLACES entry APPLAN not called

PLACES entry APSTAR not called

PLACES entry ASPLAN not called

PLACES entry ASSTAR not called

ASTCON called by:

 ABERAT CATRAN DLIGHT GEOCEN GEOPOS GRVD

 GRVDEF LIMANG PLACE RADVL TERRA VECTRS

AUXPOS called by:

 SOLSYS

CALDAT not called

CATRAN called by:

 GETHIP

ETILT entry CELPOL not called

CIOBAS called by:

 CIORA GCRSEQ PLACE SIDTIM TERCEL

CIORD entry CIOFIL not called

CIOLOC called by:

 CIORA GCRSEQ PLACE SIDTIM TERCEL

CIORA not called

CIORD called by:

 CIOLOC

SETMOD entry CIOTIO not called

F-110

CONST called by:

 SOLSYS

DLIGHT called by:

 GRVDEF PLACE

DPLEPH called by:

 SOLSYS

ECEQ not called

EECT2000 called by:

 ETILT

EQEC called by:

 EQECL

EQECL not called

EQGAL not called

SETMOD entry EQINOX called by:

 GEOPOS ZDAZ

EQXRA called by:

 CIOLOC SIDTIM

EROT called by:

 SIDTIM TERCEL

ETILT called by:

 ECEQ EQEC EQXRA GEOPOS NUTATE SIDTIM

FRAME called by:

 CATRAN CIOBAS CIORA ECEQ EQEC ETILT

 GCRSEQ GEOPOS PLACE SIDTIM TERCEL

FUNARG called by:

 ETILT NU2000K

GCRSEQ not called

GEOCEN called by:

 GRVDEF LITTIM PLACE

F-111

GEOPOS called by:

 PLACE

SETDT entry GETDT called by:

 GEOPOS SIDTIM TERCEL

GETHIP not called

SETMOD entry GETMOD called by:

 ETILT NOD SIDTIM TERCEL

GETVEC not called

GRVD called by:

 GRVDEF

GRVDEF called by:

 PLACE

SETMOD entry HIACC not called

IDSS called by:

 GRVDEF LITTIM PLACE

JULDAT not called

LIMANG called by:

 PLACE

LITTIM called by:

 PLACE

SETMOD entry LOACC not called

PLACES entry LPPLAN not called

PLACES entry LPSTAR not called

MPSTAR not called

NOD called by:

 ETILT

NU2000A called by:

 NOD

NU2000K called by:

F-112

 NOD

NUTATE called by:

 CIOBAS CIORA GCRSEQ GEOPOS PLACE SIDTIM

 TERCEL

PLACE called by:

 MPSTAR PLACES

PLACES not called

GEOPOS entry PLACST called by:

 PLACES

PRECES called by:

 CATRAN CIOBAS CIORA ETILT GCRSEQ GEOPOS

 MPSTAR PLACE SIDTIM TERCEL

PROPMO called by:

 PLACE

RADVL called by:

 PLACE

REFRAC entry REFDAT not called

REFRAC called by:

 ZDAZ

SETMOD entry RESUME called by:

 GEOPOS ZDAZ

SETDT not called

SETMOD not called

GETVEC entry SETVEC called by:

 ANGLES CATRAN ECEQ EQEC EQGAL MPSTAR

 PLACE TERCEL

SIDTIM called by:

 GEOPOS TERCEL

SOLSYS called by:

F-113

 GRVDEF LITTIM PLACE

SPIN called by:

 TERCEL

TERCEL called by:

 ZDAZ

TERRA called by:

 GEOPOS

TIMES called by:

 CIORA ECEQ EQEC GCRSEQ PLACE SIDTIM

 TERCEL

PLACES entry TPPLAN not called

PLACES entry TPSTAR not called

VECTRS called by:

 MPSTAR PLACE

PLACES entry VPPLAN not called

PLACES entry VPSTAR not called

WOBBLE called by:

 TERCEL

ZDAZ not called

(Return to Table of Contents)

F-114

User’s Guide
to NOVAS Version C3.0
Naval Observatory Vector Astrometry Software

C Edition

John Bangert
Wendy Puatua
George Kaplan
Jennifer Bartlett
Alice Monet

Part II of USNO Circular 180

U.S. Naval Observatory
December 2009

Rev C

C-3

User ’s Guide to NOVAS Version C3.0
Naval Observatory Vector Astrometry Software C Edition

In this document, hyperlinks are in blue.

Table of Contents

Introduction C-7
Citing NOVAS C-8
Acknowledgements C-9
References C-9
Abbreviations and Symbols Frequently Used C-10

Chapter 1 Astronomical Background C-13
 1.1 Astronomical Coordinate Systems C-13
 1.2 Computing Observable Quantities C-16
 1.3 Time Scales for Astronomy C-19
 1.4 Adopted Models for Precession and Nutation C-21
 1.5 New Model for the Rotation of the Earth about its Axis C-22
 1.6 Terrestrial-Celestial Relationships C-22
 1.7 References C-24

Chapter 2 Installing NOVAS C-25
 2.1 List of Distribution Files C-25
 2.2 Installation and Basic Validation C-27
 2.3 Using External Solar System Ephemeris Files C-28
 2.4 Using External Minor Planet Ephemeris Files C-29
 2.5 Using an External CIO File C-30
 2.6 Reduced-accuracy Mode C-31
 2.7 References C-32

Chapter 3 Sample Calculations C-33
 3.1 Initialization C-33
 3.2 Setting Time Arguments C-34
 3.3 Example 1—Position of a Star C-35
 3.4 Example 2—Position of the Moon C-36
 3.5 Example 3—Greenwich Sidereal Time C-38
 3.6 Example 4—Other Frequently Requested Quantities C-39

Chapter 4 Data Structures and Functions C-41
 4.1 Important Data Structures C-41
 Structure cat_entry C-41
 Structure object C-42
 Structure on_surface C-42
 Structure in_space C-43

C-4

 Structure observer C-43
 Structure sky_pos C-43
 Structure ra_of_cio C-44
 4.2 Function List (table) C-44
 4.3 Important Functions in NOVAS C-46
 place C-47
 sidereal_time C-50
 ter2cel C-52
 equ2hor C-54
 transform_cat C-56
 transform_hip C-58
 app_star C-60
 topo_star C-62
 virtual_star C-64
 local_star C-65
 astro_star C-67
 app_planet C-68
 topo_planet C-69
 virtual_planet C-71
 local_planet C-72
 astro_planet C-74
 precession C-75
 equ2ecl C-77
 cio_ra C-79
 era C-80
 cel_pole C-81
 e_tilt C-83
 ephemeris C-84
 solarsystem C-86
 solarsystem, Version 1 C-88
 solarsystem, Version 2 C-89
 solarsystem, Version 3 C-91
 solarsystem_hp C-92
 solarsystem_hp, Version 1 C-93
 solarsystem_hp, Version 2 C-94
 solarsystem_hp, Version 3 C-96
 Nutation Models C-97

Chapter 5 Equinox- and CIO-Based Paradigms Compared C-99
 5.1 Computing Hour Angles C-99
 5.2 Other Computational Considerations C-100
 5.3 How NOVAS Implements the CIO-Based Paradigm C-101
 5.4 References C-102

C-5

Appendix A Overview of How NOVAS Has Changed C-103
 A.1 Important Changes in Calls C-103
 A.2 place: A New General-Purpose “Place” Function C-104
 A.3 New Reference Systems C-104
 A.4 New Models for Precession and Nutation C-105
 A.5 New Model for the Rotation of the Earth about its Axis C-106
 A.6 New Features C-107
 A.7 New Terminology C-107
 A.8 References C-107

Appendix B List of Changes to Functions Between C2.0.1 and C3.0 C-109
 B.1 New Functions in NOVAS C3.0 C-109
 B.2 Changes to NOVAS C2.0.1 Structures and Calling Sequences C-111
 B.3 Significant Internal Changes to Code C-112
 B.4 Other Internal Code Changes C-115
 B.5 References C-115

Appendix C How to Set Up the JPL Ephemerides C-117
 C.1 Overview C-117
 C.2 Step-by-Step Guide C-117

Appendix D A Comparison of SOFA and NOVAS C-Error! Bookmark not defined.
 D.1 Goal C-121
 D.2 Procedure C-121
 D.3 Results C-122
 D.4 References C-123
 D.5 Addendum: NOVAS Code C-124

Rev. C

C-6

C-7

Introduction

The Naval Observatory Vector Astrometry Software (NOVAS) is a source-code library in
Fortran and C that provides common astrometric quantities and transformations. It can
supply, in one or two function calls, the instantaneous celestial position of any star or planet
in a variety of coordinate systems. The library also provides access to all of the “building
blocks” that go into such computations—single-purpose functions for common astrometric
algorithms, such as those for precession, nutation, aberration, parallax, etc. NOVAS
calculations are accurate at the sub-milliarcsecond level. The package is an easy-to-use
facility that can be incorporated into data reduction programs, telescope control systems, and
simulations. The United States (U.S.) Nautical Almanac Office uses NOVAS in the
production of its sections of The Astronomical Almanac.

The NOVAS algorithms are based on a vector and matrix formulation that is rigorous and
consistent with recent recommendations of the International Astronomical Union (IAU).
Objects inside and outside the solar system are treated similarly. The position vectors formed
and operated on by the NOVAS functions are defined within either the Barycentric Celestial
Reference System (BCRS) or the Geocentric Celestial Reference System (GCRS), as
appropriate. Both of these systems are described in IAU resolutions passed in 2000. GCRS
quantities are converted to more familiar coordinate systems, such as the equator and equinox
of date, by applying standard rotations.

Three levels of functions are involved: basic, utility, and supervisory. Basic-level functions
supply the values of fundamental variables, such as the nutation angles and the heliocentric
positions of solar system bodies, for specific epochs. Utility-level functions perform
computations corresponding to individual physical effects or transformations (aberration,
light-bending, precession, polar motion, etc.). Supervisory-level functions call the basic and
utility subroutines in the proper order to compute the apparent coordinates of stars or solar
system bodies for specific dates and times. If desired, users can interact exclusively with the
supervisory-level functions and not become concerned with the details of the geometry or
physical models involved in the computation.

The Fortran version of NOVAS goes back to the late 1970s, but has been updated
periodically to use new, more accurate models that represent the evolving standards of the
international astronomical and geodetic communities. The success of the initial Fortran
package led to requests for a C-language version. In the early 1990s, the U.S. Naval
Observatory (USNO)/Naval Research Laboratory (NRL) optical interferometer group
converted parts of NOVAS to C for use in their project. That work formed the basis for the
first complete edition of NOVAS in C (designated NOVAS Version C1.0), which the USNO
Astronomical Applications (AA) Department completed and released in 1996. A major
revision of the NOVAS Fortran code took place in 1998, with the primary goal of supporting
data conforming to the International Celestial Reference System (ICRS). Shortly thereafter,
the C version of NOVAS was updated to version C2.0 to reflect the changes in the Fortran
code and to extend its capabilities. In full-accuracy calculations using the same data sources,
differences in the results from Fortran and C editions of NOVAS, for the same calculation,

C-8

should not exceed 6 × 10−8 arcseconds (3 × 10−13 radians) for solar system bodies and
7 × 10−10 arcseconds (3 × 10−15 radians) for stars.

Previous versions of NOVAS were based on the algorithms described in Kaplan et al.
(1989).1

USNO Circular 179

 Although the phenomena that are considered and the overall sequence of
calculations remains much the same in the current release, many of the models have been
improved substantially over the last two decades in response to increased accuracy in
observing techniques. Specifically, version 3.0 of NOVAS, released in 2009 and described
in this document, implements the resolutions on astronomical reference systems and Earth
rotation models passed at the IAU General Assemblies in 1997, 2000, and 2006. An
explanation of the recent IAU resolutions can be found in The IAU Resolutions on
Astronomical Reference Systems, Time Scales, and Earth Rotation Models: Explanation and
Implementation (Kaplan 2005; hereafter 2

Although

), which contains much more
information on topics only briefly touched on in this document. This version of NOVAS also
improves the accuracy of its star and planet position calculations by including several small
effects not previously implemented in the code; see, for example, Klioner (2003). In addition,
some new convenience functions have been added.

Chapter 1 provides some background material, the intent of this user’s guide is not
to explain positional astronomy. Many books have been written on this subject. NOVAS
users who desire additional information on the terminology and concepts used in the software
should consult The Explanatory Supplement to the Astronomical Almanac (Seidelmann 1992;
hereafter The Explanatory Supplement) and USNO Circular 179. Until the revision of the
former publication is completed, the latter serves as an important update providing an
explanation of the recent IAU resolutions.

Citing NOVAS
If you use NOVAS, please send us an e-mail3

This user's guide constitutes Part II of USNO Circular 180 (the Fortran guide is Part I), which
may be cited as follows:

 that outlines your application. This
information helps justify further improvements to NOVAS. Your comments and suggestions
are also welcome.

Kaplan, G., Bangert, J., Bartlett, J., Puatua, W., & Monet, A. 2009, User’s Guide to NOVAS
3.0, USNO Circular 1804

In addition, we ask that you also direct your readers to the

 (Washington, DC: USNO)

NOVAS website.5

1 Hohenkerk et al. (1992) reprinted parts of this article in Chapter 3 of The Explanatory Supplement to the
Astronomical Almanac.

2 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
3 http://www.usno.navy.mil/help/astronomy-help
4 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180
5 The current version of NOVAS may be obtained at http://www.usno.navy.mil/USNO/astronomical-
applications/software-products/novas

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/help/astronomy-help�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas�

C-9

The official reference for all previous versions of NOVAS is the 1990 software report
announcing its release, which is

Kaplan, G. 1990, “NOVAS: U. S. Naval Observatory,” Bull. AAS, 22, 930

Acknowledgements
Current version: William T. Harris of the USNO AA Department wrote most of the C code
that accesses the JPL binary solar-system ephemerides (files eph_manager.c and solsys1.c).
Previous versions: Thomas K. Buchanan, working as part of the USNO/NRL Optical
Interferometer team, did the initial conversion of many of the NOVAS Fortran subroutines to
C. William T. Harris was largely responsible for completing the conversion, and for NOVAS
Version C1.0. David Buscher, James Hilton, Christian Hummel, and Sandra Martinka, users
of early C versions of NOVAS, provided valuable comments and suggestions.

References
Hohenkerk, C. Y., Yallop, B. D., Smith, C. A., & Sinclair, A. T. 1992, in The Explanatory
Supplement to the Astronomical Almanac

Kaplan, G. 1990,

, ed. P. K. Seidelmann (Mill Valley, CA: Univ. Sci.
Books) 95

Bull. AAS, 22
Kaplan, G. H. 2005,

, 930

The IAU Resolutions on Astronomical Reference Systems, Time Scales,
and Earth Rotation Models, USNO Circular 179 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179 (USNO
Circular 179)

Kaplan, G., Bangert, J., Bartlett, J., Puatua, W., & Monet, A. 2009, User’s Guide to NOVAS
3.0, USNO Circular 180. (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180

Kaplan, G. H., Hughes, J. A., Seidelmann, P. K., Smith, C. A., & Yallop, B. D. 1989, AJ

Klioner, S. A. 2003,

, 97,
1197

AJ
Seidelmann, K., ed. 1992,

, 125, 1580

The Explanatory Supplement to the Astronomical Almanac (Mill
Valley, CA: Univ. Sci. Books) (The Explanatory Supplement)

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�

C-10

Abbreviations and Symbols Frequently Used

∆AT TAI – UTC (an integral number of seconds)
∆T TT – UT1
θ Earth Rotation Angle (also ERA)
A&A Astronomy and Astrophysics (journal)
AA Astronomical Applications, a USNO department
AJ The Astronomical Journal (journal)
ASCII American Standard Code for Information Interchange
AU astronomical unit
BCRS Barycentric Celestial Reference System
Bull. AAS Bulletin of the American Astronomical Society (journal)
c speed of light
CIO Celestial Intermediate Origin
CIP Celestial Intermediate Pole
dec declination
ECEF Earth-centered, Earth-fixed
EO Earth Orientation, a USNO department
ERA Earth Rotation Angle (also θ)
GCRS Geocentric Celestial Reference System
IAU International Astronomical Union
ICRS International Celestial Reference System
IERS International Earth Rotation and Reference Systems Service
ITRS International Terrestrial Reference System
J2000.0 epoch 2000 January 1, 12h TT (JD 2451545.0 TT) at the geocenter

(“J2000.0 system” is shorthand for the celestial reference system defined by
the mean equator and equinox of J2000.0)

JD Julian date
JPL Jet Propulsion Laboratory
NOVAS Naval Observatory Vector Astrometry Software
NRL Naval Research Laboratory
RA right ascension
SI Système International
SOFA Standards of Fundamental Astronomy (software)
TAI International Atomic Time (TAI = UTC + ∆AT)
TDB Barycentric Dynamical Time
TIO Terrestrial Intermediate Origin
TT Terrestrial Time (TT = TAI + 32.184 s = UT1 + ∆T)
U.S. United States
USNO U.S. Naval Observatory
UT1 “Universal Time 1,” universal time that is a measure of the Earth’s rotational

angle and subject to irregularities in the Earth’s rotation (UT1 = TT – ∆T)
UTC Coordinated Universal Time, an atomic time scale that is the basis for

worldwide civil time (replaces Greenwich Mean Time); currently kept within
0.9 s of UT1 through the addition or subtraction of leap seconds

Rev. C

C-11

VLBI Very Long Baseline Interferometry
WGS-84 World Geodetic System 1984
xp, yp Polar motion components; coordinates of the CIP with respect to the ITRS

(Return to Table of Contents)

C-12

C-13

Chapter 1 Astronomical Background

At its highest level, NOVAS computes the precise positions of selected celestial objects at
specified dates and times, as seen from a given location on or near the Earth. Such positions
can then be expressed in a number of coordinate systems. Dates and times are specified in
several astronomical time scales, depending on the application. Users of NOVAS should
have a basic knowledge of astronomical coordinate systems and time; terms like right
ascension (RA), declination (dec), hour angle, ecliptic, equinox, precession, and sidereal time
should be familiar. Any number of texts on fundamental astronomyfor example, Spherical
Astronomy (Green 1985)can provide the essential concepts. For more technical
descriptions of the latest international standards on reference systems, USNO Circular 179,6

USNO Circular 179

cited in the Introduction, can provide the background. documents the
algorithms for many important calculations in NOVAS. Others are described in the Kaplan
et al. (1989) paper mentioned in the Introduction or in the Explanatory Supplement. In
addition, two glossaries may be useful to NOVAS users: one published in The Astronomical
Almanac,7 IAU Working Group on Nomenclature for Fundamental
Astronomy

 and one compiled by the
.8

A very cursory overview of some of the most important aspects of the astronomical
calculations performed by NOVAS follows. In this chapter, names of functions relevant to
the subject being discussed are shown in [brackets]. In the background material, special
terms referred to in IAU resolutions are printed in bold when first mentioned; other relevant
terms with widely accepted meanings in astronomy are initially printed in italics. In
descriptions of specific C code, bold text will be used to refer to file names and italic text
will be used to refer to function names. Variable names or code snippets will be presented in
a typewriter-like font.

1.1 Astronomical Coordinate Systems
Astronomical coordinate systems have traditionally been based on the extension of the
Earth’s equatorial plane to infinity, along with a fiducial direction in that plane, the equinox.
The direction of the equinox is along the line of nodes where the equatorial and ecliptic
planes meet. Because the Earth’s equator and ecliptic are both in motion (the equator’s
motion is described by precession and nutation; the ecliptic’s motion is due to the Earth’s
orbital variations), an infinite number of such coordinate systems exist, each one
corresponding to the orientation of the two planes at a specific date and time. The situation is
complicated by the fact that for some purposes in the past it was convenient to consider only
precession—and to neglect nutation—in defining celestial coordinate systems, so that we can
have, for any given date and time, both a mean system (in which only precession is
considered) and a true system (in which both precession and nutation are taken into account).

6 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
7 http://asa.usno.navy.mil/SecM/Section_M.html
8 http://syrte.obspm.fr/iauWGnfa/NFA_Glossary.html

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://asa.usno.navy.mil/SecM/Section_M.html�
http://asa.usno.navy.mil/SecM/Section_M.html�
http://syrte.obspm.fr/iauWGnfa/NFA_Glossary.html�
http://syrte.obspm.fr/iauWGnfa/NFA_Glossary.html�

C-14

Thus we have the mean system of some date, the true system of some date, the mean system
of 2000.0, etc. [precession, nutation, gcrs2equ]
Sidereal time is closely tied to the equatorial coordinate systems: one day of sidereal time is
marked by successive transits of the equinox across a specific geographic meridian, and local
sidereal time is just the apparent right ascension of stars transiting the observer’s meridian.
Like the equatorial coordinate systems, sidereal time comes in two flavors, mean and
apparent, based on, respectively, the mean and true equinox and the system of right
ascension that each defines. [sidereal_time]
In the last few decades of the 20th century, several IAU working groups led a general re-
examination of astronomical coordinate systems at a very basic level. Part of the motivation
was quite practical: most large ground-based telescopes were no longer built on equatorial
mounts, and the equatorial coordinate systems were irrelevant to increasingly important
space observations. Furthermore, the most precise fundamental measurement—those that by
their nature are most closely related to the equatorial systems—are now obtained from Very
Long Baseline Interferometry (VLBI), a radio technique that has no direct sensitivity to the
equinox. Another important consideration was the need for astronomical coordinate systems
that were part of a general relativistic framework. All of these factors were folded into some
very important resolutions passed by the IAU in 1997 and 2000, which form the basis for the
coordinate systems used in the current version of NOVAS.
These resolutions have introduced concepts and terminology that may not be familiar to
astronomers accustomed to the traditional systems and names, which were used in the
previous versions of NOVAS. The new systems are outlined in the following paragraphs, but
see USNO Circular 1799

One of the resolutions passed by the IAU in 2000 defined two systems of space-time
coordinates, one for the solar system and the other for the near-Earth environment, within the
framework of General Relativity, by specifying the form of the metric tensors for each and
the 4-dimensional space-time transformation between them. The former is called the
Barycentric Celestial Reference System (BCRS) and the latter is called the Geocentric
Celestial Reference System (GCRS). The BCRS is the system appropriate for the basic
ephemerides of solar system objects and astrometric reference data on galactic and
extragalactic objects, i.e., the data in astrometric star catalogs. The GCRS is the system
appropriate for describing the rotation of the Earth, the orbits of Earth satellites, and geodetic
quantities such as instrument locations and baselines. The directions of astronomical objects
as seen from the geocenter can also be expressed in the GCRS. The analysis of precise
observations inevitably involves quantities expressed in both systems and the transformations
between them. Functions in NOVAS may work with BCRS vectors, GCRS vectors, or both
with appropriate conversions.

 for a much more complete description.

If the orientation of the BCRS axes in space is specified, the orientation of the GCRS axes
then follows from the relativistic transformation between the two systems. The orientation of
the BCRS is given by what is called the International Celestial Reference System (ICRS).

9 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-15

The ICRS is a triad of coordinate axes with their origin at the solar system barycenter and
with axis directions effectively defined by the adopted coordinates of about 200 extragalactic
radio sources observed by VLBI (listed in Section H of The Astronomical Almanac). The
abbreviations BCRS and ICRS are often used interchangeably, because the two concepts are
so closely related: the ICRS is the orientation of the BCRS; the BCRS is the metric for the
ICRS.
The extragalactic radio sources that define the ICRS orientation are assumed to have no
observable intrinsic angular motions. Thus, the ICRS is a “space-fixed” system (more
precisely, a kinematically non-rotating system) and as such it has no associated epoch—its
axes always point in the same directions with respect to distant galaxies. However, the ICRS
was set up to approximate the conventional system defined by the Earth’s mean equator and
equinox of epoch J2000.0; the alignment difference is at the 0.02 arcsecond level, which is
negligible for many applications. [frame_tie]
Reference data for positional astronomy, such as the data in astrometric star catalogs (e.g.,
Hipparcos, UCAC, or 2MASS) or barycentric planetary ephemerides (e.g., JPL’s DE405) are
now specified within the ICRS; more precisely stated, they are specified within the BCRS,
with respect to the ICRS axes.
In the near-Earth environment, celestial coordinates and related quantities are expressed with
respect to the GCRS or reference systems that are derived from it. Because the orientation of
the GCRS is derived from that of the BCRS, the GCRS can be thought of as the “geocentric
ICRS.”

Besides the GCRS itself, the two reference systems most commonly used for expressing the
apparent directions of astronomical objects as seen from the Earth are the true equator and
equinox of date and the Celestial Intermediate Reference System. Both are obtained from
simple rotations of the GCRS, and in both cases, the fundamental plane is the true equator of
date. [gcrs2equ] In the new terminology, the true or instantaneous equator is the plane
orthogonal to the Celestial Intermediate Pole (CIP), which is the celestial pole defined by
the adopted precession and nutation algorithms (see section 1.4). The only difference
between these two systems is the origin of right ascension: the points on the equator where
RA = 0 are, respectively, the true equinox and the Celestial Intermediate Origin (CIO).
The CIO is a recently introduced fiducial point on the equator that rigorously defines one
rotation of the Earth (see section 1.5). [cio_location]
The GCRS and the two equatorial systems obtained from it have their origin at the geocenter.
For topocentric coordinates or vectors, referred to an observer at a specific location on or
near the surface of the Earth, there are analogous coordinate systems, although no semantic
distinction is usually made between them and their geocentric equivalents. In NOVAS, the
topocentric equivalent of the GCRS is referred to as the “local GCRS,” and its spatial axes
are assumed to be obtained from the GCRS by a Galilean transformation (simple shift of
origin without a change in orientation). The two topocentric equator-of-date systems are
obtained similarly.
Reference System for NOVAS Input Data: NOVAS now assumes that input reference data,
such as catalog star positions and proper motions, and the basic solar system ephemerides,
are provided in the ICRS (that is, within the BCRS as aligned to the ICRS axes), or at least

C-16

are consistent with it to within the data’s inherent accuracy. [place, ephemeris] The latter
case will probably apply to most FK5-compatible data specified with respect to the mean
equator and equinox of J2000.0 (the “J2000.0 system”). The distinction between the ICRS
and the J2000.0 system becomes important only when an accuracy of 0.02 arcsecond or
better is important. [frame_tie] Nevertheless, because NOVAS is designed for the highest-
accuracy applications, the ICRS is mentioned as the reference system of choice for many
input arguments to NOVAS functions.
Reference Systems for NOVAS Output Data: For output coordinates (e.g., the position of
Mars on a certain date), three options for the coordinate system are available. (The
coordinates themselves can be right ascension and declination or the components of a unit
vector.) You can request coordinates expressed in the GCRS, the equator and equinox of
date, or the Celestial Intermediate Reference System (equator and CIO of date). These
coordinate systems can be requested for either geocentric or topocentric output. [place,
gcrs2equ]
NOVAS can also convert topocentric right ascension and declination, with respect to the
equator and equinox of date, to local horizon coordinates, zenith distance and azimuth. The
angular shift due to atmospheric refraction can be included as an option. [equ2hor] Another
function is available to transform right ascension and declination to ecliptic longitude and
latitude. [equ2ecl] Still another transforms right ascension and declination to galactic
longitude and latitude. [equ2gal]
Reference System for the Location of the Observer: The location of an Earth-based observer
is specified in NOVAS by longitude, latitude, and height with respect to the World Geodetic
System 1984 (WGS-84) reference ellipsoid. Coordinates provided by GPS (if uncorrected for
the local datum) are referred to WGS-84, which is also sometimes called the Earth-centered
Earth-fixed (ECEF) system. The International Terrestrial Reference System (ITRS) is a
geocentric rectangular coordinate system used for high-precision work. WGS-84 coordinates
are functionally equivalent (within a few centimeters) to ITRS coordinates. Thus, the
geodetic positions used by NOVAS are consistent with the ITRS. [geo_posvel]

1.2 Computing Observable Quantities
NOVAS is mostly used for computing, for a selected object, the instantaneous angular
coordinates (or the equivalent unit vector components) at which it might be observed, within
one of several user-selected coordinate systems. Obviously the values of the angular
coordinates computed by NOVAS depend on the coordinate system requested, but there are
several phenomena that affect the observed position of a star or planet that are independent of
the coordinate system. For stars, the effects are

• Proper motion (generalized): the three-dimensional space motion of the star, relative to
that of the solar system barycenter, between the catalog epoch and the date of
interest. Assumed linear and computed from the catalog proper motion
components, radial velocity, and parallax. Projected onto the sky, the motion
amounts to less than 1 arcsecond per year (usually much less) except for a few
nearby stars. [starvectors, proper_motion]

C-17

• Parallax: the change in our perspective on stars in the solar neighborhood due to the
position of the Earth in its orbit. Its magnitude is (distance in parsecs)-1 and hence is
always less than 1 arcsecond. [bary2obs]

• Gravitational light bending: the apparent deflection of the light path in the gravitational
field of the Sun and (to a much lesser extent) the other planets. Although it reaches
1.8 arcsecond at the limb of the Sun, it falls to 0.05 arcsecond 10º from the Sun and
amounts to no more than a few milliarcseconds over the hemisphere of the sky
opposite the Sun. [grav_def, grav_vec]

• Aberration: the change in the apparent direction of light caused by the observer’s
velocity (v) with respect to the solar system barycenter. Independent of distance, it
is approximately equal to v/c, expressed as an angle. Therefore, it can reach
21 arcseconds for observers on the surface of the Earth and somewhat more for
instruments in orbit. [aberration]

• Atmospheric refraction: the total angular change in the direction of the light path
through the Earth’s atmosphere; applies only to an observer on or near the surface of
the Earth. The direction of refraction is always assumed to be parallel to the local
vertical and a function only of zenith distance (although these assumptions may not
be true in all cases). At optical wavelengths, its magnitude is zero at the zenith,
about 1 arcminute at a zenith distance of 45°, and 0.5° at the horizon. Refraction is
roughly proportional to the atmospheric pressure at the observer, but it also depends
on other atmospheric parameters and the observational wavelength. [equ2hor,
refract]

The same effects are relevant to objects in the solar system, except that the proper motion
calculation is replaced by a function that retrieves the object’s barycentric position from its
ephemeris, as part of an iterative light-time calculation. [light_time, ephemeris] Extragalactic
objects can be considered to be stars with zero parallax and proper motion. The star or planet
positions computed by considering all these effects obviously depend on the location of the
observer; so that an observer on the surface of the Earth will see a slightly different position
than one at the geocenter, the differences being greater for solar system objects, especially
nearby ones (reaching about 1º for the Moon).
In computing these effects, the same functions are used for stars and planets, because
NOVAS uses position vectors rather than directions; that is, internally it places all objects at
their computed distance from the solar system barycenter. (Objects of unknown distance are
placed on the “NOVAS celestial sphere” at a radius of 1 Gigaparsec = 2 × 1014 astronomical
units). [starvectors] These vectors are all defined within the BCRS until the relativistic
aberration calculation is applied, which effectively takes an input vector in the BCRS and
produces an output vector in the GCRS.
Nomenclature: When all these effects are included, we obtain star or planet coordinates in
the GCRS that reflect where the star or planet actually appears in the sky. The coordinates
can then be transformed to other reference systems, if desired. We will call the results of this
process, generically, the “apparent position” or “observed position” of the object.

C-18

However, some caution with the semantics is in order, because the term apparent place has
traditionally been reserved specifically for the star or planet position we obtain by applying
all these effects (except refraction) for a geocentric observer, with the coordinates expressed
with respect to the true equator and equinox of date. For an observer on the surface of the
Earth, the corresponding term is topocentric place. If the apparent star or planet position is
instead expressed with respect to the mean equator and equinox of J2000.0, the terms used in
NOVAS have been virtual place and local place, respectively. (Although these last two
terms were suggested in the Kaplan et al. (1989) paper previously cited, there is no evidence
that they have been widely used outside of the context of NOVAS.)
The above terminology is reflected in the names of the high-level functions that perform the
computations, where “app” stands for “apparent place”, “topo” stands for “topocentric
place”, etc. [app_star, app_planet, topo_star, topo_planet, virtual_star, virtual_planet,
local_star, local_planet] In addition, an astrometric place calculation can be used for some
differential measurements; it is the same as virtual place except that light bending and
aberration (and refraction) are not computed, under the assumption that these effects are the
same for all objects within a small field of view. [astro_star, astro_planet]
In response to the introduction of the new IAU-recommended coordinate systems, we must
make some adjustments and additions to the nomenclature. The mean equator and equinox
of J2000.0, considered as a geocentric system, has been replaced by the GCRS. The IAU
Working Group on Nomenclature (2003–2006) recommended that the term proper place be
used for what is called virtual place in NOVAS. With the introduction of the Celestial
Intermediate Reference System, with its right ascension origin at the CIO, we now have two
more possibilities for apparent positions, one geocentric and one topocentric. The geocentric
coordinates are called the object’s intermediate place, and right ascension measured with
respect to the CIO is called intermediate right ascension.
The complete table of nomenclature for apparent positions of various types, updated for
NOVAS 3.0, is then

Final Coordinate System Observer at Geocenter Observer near
Surface of Earth

True equator and equinox of date apparent place topocentric place
Celestial Intermediate Reference System intermediate place [no name]

GCRS proper or virtual place local place
GCRS astrometric place* [no name]

*variant of proper or virtual place, in which some calculations are omitted

The only difference between a position expressed in the Celestial Intermediate Reference
System and the same position expressed with respect to the true equator and equinox of date
is an offset in right ascension, the equation of the origins. The equation of the origins is the
angle between the equinox and the CIO, both of which lie on the instantaneous equator.
[ira_equinox]

C-19

NOVAS function place can be used to compute all of these types of positions; the input argu-
ments allow you to select both the location of the observer and the coordinate system in
which the computed position is to be expressed. These selections make the nomenclature
superfluous. place does not apply atmospheric refraction, but that can be added by a
subsequent call to equ2hor.

1.3 Time Scales for Astronomy
As explained in USNO Circular 179,10

We almost always start with Coordinated Universal Time (UTC), which is the worldwide
basis for civil time. UTC (USNO) is obtained from the Global Positioning System (GPS). In
addition, UTC can also be obtained with varying accuracy from Network Time Protocol
(NTP) services on the Internet and from radio time broadcasts (e.g., WWV, WWV, WWVB,
and CHU), cell phones, TV, etc. UTC is based on SI seconds at sea level on the rotating
Earth. From UTC, one adds an integral number of (SI) seconds to obtain International
Atomic Time (TAI): TAI = UTC + ∆AT, where ∆AT is a total count of leap seconds in
UTC (for example, ∆AT = 34 s for 2009). The USNO

 basically two kinds of time scales are used in
astronomy, those that are based on the Système International (SI) second (“atomic time”) and
those that are tied to the irregular rotation of the Earth; in essence, “lab” time and
“astronomical” time, respectively. Theoretical time scales, not kept by any real clocks, are
also used that are the time basis for—that is, the 4th dimension of—the BCRS and GCRS.

Earth Orientation (EO) Department11

Bulletin A

provides a complete table of ∆AT values on-line. The current value may also be found in at
the beginning of 12

NOVAS Time Arguments: Typically, the first input argument to most NOVAS functions is
the time of interest (for example, the time of an observation), expressed as a Julian date (JD).
Julian dates are simply a convenient format for representing a date and time in any time
scale, and are discussed below. Two time scales are used as the basis for most of the Julian
dates that are input arguments to the higher-level NOVAS functions.

 published by the International Earth Rotation and Reference
System Service (IERS). The addition of a leap second to UTC, which increases ∆AT by
1 second, is usually done, when needed, at 23:59:59 UTC on December 31 and is announced
about six months in advance.

The first is Terrestrial Time (TT), which is effectively just a constant offset from TAI:
TT = TAI + 32.184 s. Therefore, TT = UTC + ∆AT + 32.184 s. Historically, TT is
considered continuous with the obsolete time scales Ephemeris Time (ET) and Terrestrial
Dynamical Time (TDT). It is meant to be a smooth and continuous “coordinate” time scale
independent of the rotation of the Earth. The high-level NOVAS functions that compute the
apparent direction of an object at a specified time use Julian dates based on TT. [place,
app_star, topo_star, app_planet, transform_cat]

10 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179
11 http://maia.usno.navy.mil/ser7/tai-utc.dat
12 http://www.iers.org/MainDisp.csl?pid=36-9

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://maia.usno.navy.mil/ser7/tai-utc.dat�
http://www.iers.org/iers/products/eop/�

C-20

The second time scale is Universal Time (UT1), which is based on the rotation of the Earth.
It is needed for computing sidereal time [sidereal_time] or the Earth Rotation Angle (ERA or
θ) [era], which in turn allows one to compute hour angles, altitude and azimuth, or other
topocentric quantities. UT1 is also obtained from UTC: UT1 = UTC + (UT1−UTC). The
value of UT1−UTC is available in a daily-interval tabulation on the IERS web site13

Bulletin B
 (data

marked “P” are predictions); IERS publishes historical values in .14

A few of the lower-level NOVAS functions use time arguments based on Barycentric
Dynamical Time (TDB). [

 The values of
UT1−UTC often change at the millisecond level over one day. In computing the topocentric
direction of a celestial object with respect to Earth-fixed axes (e.g., altitude and azimuth), 1-
arcsecond accuracy in the final angles requires 67-ms accuracy in UT1. Because UT1−UTC
can have an absolute value up to 900 ms, it is an important correction for all but the crudest
applications; that is, in most cases, it is not acceptable to approximate UT1 as being equal to
UTC.

e_tilt, precession, ephemeris, solarsystem] TDB differs from TT
only by periodic variations (due mainly to the Earth’s elliptical orbit and described by
General Relativity), the largest of which has an amplitude of 1.6 ms and a period of one year.
[tdb2tt] The difference between the two time scales can often be neglected in practice and
this is noted in the function preambles where appropriate. TDB is equivalent to Teph, the
barycentric coordinate time argument of the Jet Propulsion Laboratory (JPL) planetary and
lunar ephemerides.
As previously mentioned, time is specified within NOVAS as Julian dates, which can be used
for any of the above time scales. Julian dates are a simple count of days since noon on 4713
BC January 1, so that any date in recorded human history has a positive JD. Over 2.4 million
days have elapsed since JD 0, so that, for current dates, seven digits of precision are taken up
just by the day count; if the JD is given by a standard double-precision floating-point
number, about 9 digits are left to represent the time of day. Thus, a double-precision floating-
point JD can represent time to a precision of about 0.1 ms. In those NOVAS functions where
more precision is appropriate, the JD can be split between two input arguments, one that
carries the high-order part of the JD (e.g., the day count) and the other that carries the low-
order part (e.g., the fraction of a day). Note that for 0h (TT, UT1, or TDB), the fractional
part of the Julian date is 0.5. An online date-to-Julian-date converter is available at the AA
Department web site.15

The epoch J2000.0 is considered to be an event at the geocenter at Julian date 2451545.0 TT,
which is 2000 January 1, 12h TT.

 NOVAS has utility functions to convert between calendar date and
Julian date and vice versa. They work for any time scale; that is, their input and output
arguments should be considered to be just different ways of expressing the same instant
within the same time scale. [julian_date, cal_date]

The difference ∆T = TT – UT1, expressed in seconds, is required for certain NOVAS
functions that use both TT and UT1 internally but require only one type of input time

13 http://maia.usno.navy.mil/ser7/mark3.out
14 http://www.iers.org/MainDisp.csl?pid=36-9
15 http://www.usno.navy.mil/USNO/astronomical-applications/data-services/cal-to-jd-conv

Rev. C

http://maia.usno.navy.mil/ser7/mark3.out�
http://www.iers.org/MainDisp.csl?pid=36-9�
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/cal-to-jd-conv�
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/cal-to-jd-conv�

C-21

argument. A table of historical values of ∆T is on pages K9–K10 of The Astronomical
Almanac and more recent values and predictions can be found online at EO web site.16

∆T = 32.184s + ∆AT – (UT1–UTC)

Values of ∆T can also be computed from

For example, on 2009 January 1, ∆T = 65.7768 s, which is based on a ∆AT value of 34 s
and a UT1-UTC value of +0.407161 s. More information on ∆T is given in section 1.6
below.

1.4 Adopted Models for Precession and Nutation
Astronomers realized over a decade ago that the old standard models for the precession and
nutation were in need of revision. The value of the angular rate of precession in longitude
adopted by the IAU in 1976—and incorporated into the widely used precession formulation
by Lieske and collaborators (1977)—is too large by about 0.3 arcsecond per century (3 milli-
arcseconds per year). The amplitudes of a number of the largest nutation components
specified in the 1980 IAU Theory of Nutation are also known to be in error by several
milliarcseconds. Both the precession and nutation errors are significant relative to current
observational capabilities.
Thus, the resolutions passed by the IAU in 2000 mandated an improvement to the precession
and nutation formulations. NOVAS 3.0 incorporates the models adopted in response to these
resolutions. [precession, nutation] The precession model is the P03 solution of Capitaine,
Wallace, and Chapront (2003), as recommended by the IAU Working Group on Precession
and the Ecliptic (Hilton et al. 2006). The P03 precession model was formally adopted by the
IAU in 2006. The nutation model is taken from Mathews, Herring, and Buffett (2002). This
model, referred to as the IAU 2000A nutation, consists of 1,365 trigonometric terms, more
than ten times the number in the previous model. [nutation_angles, iau2000a] Because
evaluation of nutation has always been the most computationally intensive task in NOVAS,
you may notice an increase in execution time for some applications.
To reduce execution time, NOVAS 3.0 provides an optional reduced-accuracy mode in
which a truncated nutation series is used. This nutation series is specific to NOVAS and is
referred to as 2000K. [nu2000k] It consists of the largest 488 terms in the IAU 2000A series
and provides an accuracy of about 0.1 milliarcsecond (specifically, 0.1 milliarcsecond for Δψ
and about 0.04 milliarcsecond for Δε and Δψ sin ε). 2000K is the default reduced-accuracy
nutation series in both Fortran and C editions of NOVAS, but the C edition also includes the
77-term, IAU-approved truncated nutation series, IAU 2000B [iau2000b], which is accurate
to about 1 milliarcsecond in the interval 1995–2050 (McCarthy & Luzum 2003). More
information on the implementation of nutation in NOVAS can be found section 2.6,
section 4.3, and in USNO Circular 181,17

16 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

 Nutation Series Evaluation in NOVAS 3.0 (Kaplan
2009).

17 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181

Rev. C

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�

C-22

As mentioned in section 1.1, the celestial pole described by the new precession and nutation
models (with very small observational corrections) is called the Celestial Intermediate Pole
(CIP). The true equator of date, also called the instantaneous equator or the intermediate
equator, is the plane orthogonal to the direction of the CIP. The CIP is also the rotational
pole on the surface of the Earth (see section 1.6).

1.5 New Model for the Rotation of the Earth about its Axis
IAU resolutions passed in 2000 also dealt in a very fundamental way with how the Earth’s
spin around its axis is described. The conventional treatment is based on the equinox and
sidereal time; Greenwich (or local) sidereal time is just the Greenwich (or local) hour angle
of the equinox of date. However, the equinox is constantly moving due to precession, so that
sidereal time combines two angular motions, the Earth’s rotation and the precession of its
axis. (In the case of apparent sidereal time, nutation is also mixed in.) One rotation of the
Earth is about 8 ms longer than one mean sidereal day.
For about two decades, people who routinely deal with the most precise measurements of the
Earth’s rotation have been advocating for a change in the way it is described. Their ideas
were introduced in resolutions passed by the IAU in 2000. In this new paradigm, the
reference point on the moving celestial equator for the description of Earth rotation is called
the Celestial Intermediate Origin (CIO). Unlike the equinox, this point has no motion
along the equator at all; as the orientation of the equator changes in space due to precession
and nutation, the CIO remains on the equator but its instantaneous motion is always at right
angles to it. [cio_location, cio_ra] Thus, loosely speaking, two transits of the CIO across a
terrestrial meridian define one rotation of the Earth. The CIO is a point on the celestial
equator near RA = 0 (in the Celestial Intermediate Reference System, it defines RA = 0), and
there is a corresponding point on the terrestrial equator near longitude = 0 called the
Terrestrial Intermediate Origin (TIO). For all astronomical purposes, the TIO can be
considered a point fixed at geodetic longitude zero on the Earth’s rotational equator.18

era

 In the
new paradigm, the rotation of the Earth is specified by the angle (in the instantaneous
equatorial plane) between the TIO and the CIO, which is a linear function of universal time
(UT1). This angle is called the Earth Rotation Angle (ERA) and is designated by θ. []
Some internal calculations in NOVAS can be performed using either the equinox or the CIO
as the fundamental fiducial point on the moving astronomical equator. The user can select the
basis for these calculations via an input parameter method. The results are identical to within
a microarcsecond around the current time and the computational burden is about the same.

1.6 Terrestrial-Celestial Relationships
NOVAS uses the ITRS for specifying locations and directions on or near the surface of the
Earth. As mentioned at the end of section 1.1, the ITRS is consistent, to within a few

18 The CIO and TIO are technically examples of non-rotating origins, although neither is fixed within its
respective coordinate system. However, the slow drift of the TIO, due to polar motion, with respect to standard
geodetic coordinates (the ITRS, or, effectively, WGS-84) amounts to only 1.5 millimeters per century and is
completely negligible for astronomical purposes.

C-23

centimeters, with WGS-84 coordinates provided by GPS, and it is sometimes referred to as
the Earth-centered Earth-fixed system (ECEF). The ITRS is a geocentric system with the
directions of its axes defined by the coordinates of a large number of observing stations, in a
way completely analogous to the definition of the ICRS by the coordinates of extragalactic
radio sources. The ITRS z-axis is toward the north geodetic pole and its x-axis is toward a
point at longitude and latitude zero; the y-axis forms a right-handed system with the other
two axes.
Practical applications of astronomical data often require relating terrestrial coordinates to
celestial coordinates and vice versa. For example, we may want the position of a celestial
object expressed with respect to the local horizon system. [equ2hor] Or, we may have a
vector, expressed in an Earth-fixed system, that represents some instrumental axis, and we
would like to know where that vector is pointed on the celestial sphere. NOVAS can
perform the terrestrial-to-celestial transformation or its inverse; specifically, the
transformation from the ITRS to the GCRS, or the GCRS to the ITRS. [ter2cel] These
transformations are a series of rotations that, taken together, represent the instantaneous
orientation of the Earth in space. [precession, nutation, cio_basis, sidereal_time, era,
wobble]
Not all aspects of the Earth’s orientation are predictable. Polar motion represents the small
shift of the geodetic north pole (the ITRS z-axis) with respect to the rotational axis (the CIP),
the largest part of which must be determined from observations. Typically, the total shift
amounts to a few tenths of an arcsecond (1-2 µrad, 10 meters) and is specified by the
parameters xp and yp. The observational determinations are designated simply as x and y,
and current values are available from IERS Bulletin A.19

EO web site
 Past values can be obtained at the

.20 USNO Circular 179 For most purposes, we can set xp=x and yp=y (see 21

Because the difference ∆T = TT – UT1 is used in only a few internal computations where the
conversion from one time scale to another is not critical, the value of ∆T needs to be accurate
to only about one second. Therefore, one ∆T value will typically apply to all dates for a given
year.

section 6.5.2). Several NOVAS functions require as input the xp and yp values for the date of
interest, although, if the final accuracy requirements are no better than one arcsecond, these
values can be set to zero.

Finally, the new IAU precession and nutation models are neither perfect nor complete, and
for very high-accuracy applications, observational corrections are sometimes needed. These
corrections now amount to less than one milliarcsecond (5 nrad). These corrections are
available from the same sources as the polar motion determinations, and are designated as dX
and dY (note that the units are milliarcseconds). In the rare cases where they are needed,
they are pre-specified to NOVAS for use in subsequent calculations for a specific date.
[cel_pole]

19 http://maia.usno.navy.mil/ser7/ser7.dat
20 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/daily
21 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://maia.usno.navy.mil/ser7/ser7.dat�
http://www.usno.navy.mil/USNO/earth-orientation/eo-products/daily�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-24

1.7 References
Capitaine, N. Wallace, P. T., & Chapront. J. 2003, A&A
Green, R. 1985,

, 412, 567 (P03)

Spherical Astronomy
Hilton, J. L. et al. 2006,

 (New York: Cambridge Univ. Press)

Celest. Mech. & Dynamical Astron.
Kaplan, G. H. 2005,

, 94, 351

The IAU Resolutions on Astronomical Reference Systems, Time Scales,
and Earth Rotation Models, USNO Circular 179 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

Kaplan, G. H. 2009, Nutation Series Evaluation in NOVAS 3.0, USNO Circular 181
(Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181

Kaplan, G. H., Hughes, J. A., Seidelmann, P. K., Smith, C. A., & Yallop, B. D. 1989, AJ

Lieske, J. H., Lederle, T., Fricke, W., & Morando, B. 1977,

, 97,
1197

A&A
Mathews, P. M., Herring, T. A., & Buffett, B. A. 2003,

, 58, 1

J. of Geophys. Res.
McCarthy, D. D. & Luzum, B. J. 2003,

, 107, ETG 3-1

Celest. Mech. & Dynamical Astron.
Seidelmann, K., ed. 1992,

, 85, 37

The Explanatory Supplement to the Astronomical Almanac (Mill
Valley, CA: Univ. Science Books) (The Explanatory Supplement
USNO & HMNAO. 2008,

)
The Astronomical Almanac for the Year 2010

, (Washington, DC:
GPO) and subsequent editions

(Return to Table of Contents)

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�

C-25

Chapter 2 Installing NOVAS

2.1 List of Distribution Files
The table below lists the fifteen files that comprise the main distribution of NOVAS C3.0.22

File name

Except for the user’s guide, which is in Portable Document Format (PDF), the files are all
plain ASCII text. Files with a .c extension are C source code; their associated header files are
designated by a .h extension. The file with a .f extension contains Fortran source code.

Description
novas.c contains all supervisory and utility functions and most basic

functions (see Section 4.2 for a full listing)
novas.h header file for novas.c

(includes structure definitions and function prototypes)
novascon.c contains most mathematical and physical constants used by

NOVAS
novascon.h header file for novascon.c
nutation.c contains functions implementing the IAU 2000A,

IAU 2000B, and 2000K nutation models
nutation.h header file for nutation.c
solsys1.c versions of functions solarsystem and solarsystem_hp that,

when used with eph_manager.c, provide a complete “all
C” interface between NOVAS and JPL’s lunar and
planetary ephemerides (see detailed discussion in
Chapter 4)

solsys2.c versions of functions solarsystem and solarsystem_hp that,
when used with jplint.f, serve as an interface between
NOVAS and JPL’s Fortran solar system ephemeris-access
code (see detailed discussion in Chapter 4)

solsys3.c versions of functions solarsystem and solarsystem_hp that
provide the position and velocity of the Earth and Sun
without reference to an external data file (see detailed
discussion in Chapter 4)

solarsystem.h header file for the solsys1.c, solsys2.c, and solsys3.c files
eph_manager.c C implementation of JPL’s solar system ephemeris-access

code for use with solsys1.c.

22 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/novas-c

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/novas-c�

C-26

File name Description
eph_manager.h Header file for eph_manager.c
readeph0.c dummy version of function readeph, the highest-level call

to the USNO/AE9823

USNO/AE98

 minor planet ephemerides software.
When positions of selected minor planets are desired,
replace this file with readeph.c from the
package.

jplint.f Fortran subroutines that serve as the interface between
NOVAS and JPL’s Fortran ephemeris-access code for use
with solsys2.c.

NOVAS_C3.0_Guide.pdf User’s Guide to NOVAS C3.0, this manual

In addition, the following six files are provided to assist you in validating the installation of
NOVAS on your local system. Files with a .c extension are the C source code that created the
associated ASCII text files ending with .txt extensions. Compare the USNO-generated output
files provided with the results produced by your local installation as described in Section 2.2
(basic installation), Section 2.3 (including a JPL solar system ephemeris), and Section 2.4
(including a USNO/AE9824

File name

 minor planet ephemeris).

Description
checkout-stars.c main function that calls functions in novas.c and solsys3.c

to validate a basic local installation
checkout-stars-usno.txt output from checkout-stars application computed at

USNO
checkout-stars-full.c main function that calls functions in novas.c and solsys1.c

with full accuracy to validate a local installation for use
with solar system ephemerides; requires binary JPL
ephemeris file

checkout-stars-full-usno.txt output from checkout-stars-full application computed at
USNO

checkout-mp.c main function that calls functions in novas.c, solsys1.c,
and USNO/AE98 minor planet software to validate a local
installation for use with minor planet ephemerides;
requires minor planet ephemeris file and binary JPL
ephemeris files

checkout-mp-usno.txt output from checkout-mp application computed at USNO

23 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98
24 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�

C-27

The following two files contain sample code to get you started developing your own
applications using NOVAS. Chapter 3 discusses each of the examples included and provides
instructions for using the sample code. The file with a .c extension is the C source code that
produced the associated ASCII text file (.txt).

File name Description
sample.c main function that calls selected functions in novas.c and

solsys1.c; example code discussed in Chapter 3; requires a
binary JPL ephemeris

sample-usno.txt output from sample application computed at USNO

Finally, an ASCII text file (.txt) containing the right ascensions of the CIO in the GCRS is
supplied along with C source code (.c) to convert it to a binary direct-access file. The set-up
and use of this file is discussed in Section 2.5.

File name Description
CIO_RA.TXT right ascensions of the CIO in the GCRS from 1700 to 2300
cio_file.c main function that converts CIO_RA.TXT (ASCII) to

cio_ra.bin (binary)

2.2 Installation and Basic Validation
To install NOVAS and perform a basic validation of the code on your local system, follow
the instructions given below. These instructions assume that you know how to compile and
link C source code on your computer system. Details of the process are dependent on your
particular computer system. In particular, some C compilers require an explicit link to the
math library, which is typically accomplished using the –lm option in the command line; see
your compiler’s documentation for details. NOVAS has been successfully implemented on
Microsoft Windows systems, Apple Macintosh systems, and Red Hat Enterprise Linux
systems.

The most basic validation of NOVAS requires no external ephemeris files.
a. Copy all NOVAS files to a directory on your local system.
b. Compile and link files checkout-stars.c, novas.c, novascon.c, nutation.c, solsys3.c,

and readeph0.c. Name the resulting application checkout-stars
c. Run the

.
checkout-stars

d. Compare the results that you get from
 application.

checkout-stars with the data in file checkout-
stars-usno.txt

. If the results agree, the installation was probably successful, but see
the important note below.

Important Note
The checkout-stars application exercises one supervisory function and most, but not all,
of the low-level functions in novas.c. The use of the checkout-stars application is not a
complete test of NOVAS. Comparing the results from the NOVAS C supervisory
functions with results from the analogous NOVAS Fortran supervisory functions will
constitute a more complete check of your NOVAS implementation.

Rev. C

C-28

This setup of NOVAS, using solarsystem version 3, will provide the positions of stars or
extragalactic objects with errors not exceeding 1.5 milliarcseconds (if your input catalog data
is that good) or the Sun with an error not exceeding 2 arcseconds. However, it will not
provide the positions of solar system objects other than the Sun. For more general or
demanding applications, NOVAS must use another version of solarsystem.

2.3 Using External Solar System Ephemeris Files
NOVAS must have access to a solar system ephemeris, which provides NOVAS with the
heliocentric and barycentric positions and velocities of desired solar system objects referred
to the ICRS. A solar system ephemeris is required even when only precise star positions are
needed—in that case, the “desired solar system objects” are the Earth and Sun. Thus, an
ephemeris of the barycentric Earth and the barycentric Sun is the minimum requirement.

NOVAS C3.0 accesses such data for solar system objects through function ephemeris. As
provided, ephemeris supports access to a JPL ephemeris of the major solar system bodies
(here defined as Sun, Moon, eight planets, and Pluto) and provides direct support for access
to the USNO Ephemerides of the Largest Asteroids (Hilton 1999; hereafter USNO/AE9825

ephemeris
).

Function accesses the JPL ephemerides by calling the appropriate version of
solarsystem or solarsystem_hp.

If you need to compute star or radio-source positions to better than 1.5 milliarcseconds,
positions of the Sun to better than 2 arcseconds, or positions of solar system bodies other
than the Sun, you will have to use function solarsystem version 1 or version 2, which require
external ephemerides, instead of solarsystem version 3, which is self-contained.

solarsystem version 1, along with functions in eph_manager.c, provides a complete C
language interface between NOVAS and one of the JPL “development ephemerides”
(DEnnn), such as DE405. The Planet_Ephemeris function is the C version of the Fortran
subroutine PLEPH, and it, in turn, calls other functions in the JPL ephemeris software
package. Alternatively, solarsystem version 2, along with subroutines in jplint.f, provides an
interface to the JPL ephemeris access code, which is available in Fortran. Subroutine jplint
contains a single call to JPL’s Fortran subroutine PLEPH, which in turn calls other Fortran
subroutines in the JPL ephemeris software package.

Establishing a working copy of the JPL software and the DEnnn binary files on your system
is not, unfortunately, a trivial process. The files for doing that can be obtained directly from
JPL26 Appendix C as discussed in .

Once you have generated a DEnnn binary file, you can test the combined set-up with
solarsystem version 1

a. Compile and link files
 on your system as follows:

checkout-stars-full.c, novas.c, novascon.c, nutation.c,
solsys1.c, eph_manager.c, and readeph0.c

b. Name the resulting application
.

checkout-stars-full

25 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98

.

26 http://ssd.jpl.nasa.gov/?planet_eph_export

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://ssd.jpl.nasa.gov/?planet_eph_export�

C-29

c. Run the checkout-stars-full
d. Compare the results that you get from

 application.
checkout-stars-full with the data in file

checkout-stars-full-usno.txt. If the results agree, the installation was probably
successful, but see the important note above.

The USNO output file, checkout-stars-full-usno.txt, was generated using DE405. The
application, check-out-stars-full, uses the full-accuracy mode of NOVAS, which includes
the IAU 2000A nutation model, a three-body gravitational deflection model, two-part Julian
dates in calls to function ephemeris, and the full series when computing the “complementary
terms” in the equation of the equinoxes [iau2000a, nutation_angles, grav_def, ephemeris,
ee_ct]. If your accuracy requirements are no better than about 1 milliarcsecond, you may
wish to consider “reduced-accuracy” mode, which is described in Section 2.6, for your own
applications.

2.4 Using External Minor Planet Ephemeris Files
The USNO/AE9827

USNO/AE98

 minor planet ephemerides contain positions for fifteen of the largest
asteroids and are used in the production of The Astronomical Almanac. These ephemerides
along with software to compact, read, and interpolate them are available on CD-ROM from
the USNO. The software is written in C and designed to be used with NOVAS. To include
these ephemeris files in your NOVAS programs, you will need to install a working copy of
the software and convert the relevant ASCII ephemerides to binary Chebyshev
polynomial ephemerides. You will still need one version of solarsystem; solarsystem
version 1 with access to the JPL lunar and planetary ephemeris is recommended.
Instructions28 USNO/AE98 for installing and testing the software and for converting
ephemerides are provided with the software. Section 2.3 and Appendix C discuss the use and
installation of a JPL lunar and planetary ephemeris.

In order to access the USNO/AE98 minor planet ephemerides, function ephemeris calls
function readeph, which is part of the USNO/AE98 package and is not part of, or supplied
with, NOVAS. A dummy version of readeph is provided in file readeph0.c. The dummy
function enables NOVAS to be used without the minor planet package (i.e., for computing
positions of major solar system bodies and “stars” only). To use USNO/AE98 with NOVAS,
replace file readeph0.c provided with NOVAS, with readeph.c, allocate.c, and chby.c from
the USNO minor planet ephemerides software when compiling and linking.

Once you have a DEnnn binary solar system ephemeris file, the USNO/AE98 software, and a
binary Chebyshev polynomial ephemeris of a minor planet, you can test the combined set-up
with solarsystem version 1

a. Compile and link files
 on your system as follows:

checkout-mp.c, novas.c, novascon.c, nutation.c, solsys1.c,
eph_manager.c, readeph.c, allocate.c, and chby.c. The last three code files are
from the USNO/AE98 software.

b. Name the resulting application checkout-mp
c. Run the

.
checkout-mp

27 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98

 application.

28 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98/ae98-rm

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98/ae98-rm�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�

C-30

d. Compare the results that you get from checkout-mp with the data in file checkout-
mp-usno.txt. If the results agree, the installation was probably successful, but see the
important note above.

The USNO output file, checkout-mp-usno.txt, was generated using DE405 from JPL and
pallas.chby from the minor planet ephemerides. Like the check-out-stars-full application,
checkout-mp uses the full-accuracy mode of NOVAS. If you do not require accuracy better
than about 1 milliarcsecond, you may wish to consider the “reduced-accuracy” mode
discussed in Section 2.6.

2.5 Using an External CIO File
You have the option of using an external file of CIO right ascension values on the GCRS or
of allowing NOVAS to calculate the true right ascension of the CIO (the arc on the
instantaneous equator from the equinox to the CIO) using a series expansion. Section 5.3
explains how NOVAS handles these two situations. If you choose to use CIO_RA.TXT

a. Copy

,
which is provided with NOVAS, you must first convert it to a binary direct-access file as
follows:

CIO_RA.TXT and cio_file.c
b. Compile

 to a directory on your local system.
cio_file.c.

c. Name the resulting application

cio_file
d. Run the

.
cio_file

Results from program cio_file:

 application. If everything runs smoothly, you should get the
following message

Input file identifier: CIO RA P03 @ 1.200d

182657 records read from the input file:
 First Julian date: 2341951.400000
 Last Julian date: 2561138.600000
 Data interval: 1.200000 days

First data point: 2341951.400000 -1.948328
Last data point: 2561138.600000 1.942125

Binary file cio_ra.bin created.

e. Verify the presence of cio_ra.bin
The file CIO_RA.TXT, as supplied, contains six centuries of data, most of which is seldom
used, so trimming it down can reduce the file size. It is plain text (ASCII) that can be
modified by any text editor. The first record is a header, which should remain as such
(although its contents are not used by NOVAS), but all the other records contain a Julian date
and information for that date in ascending date order. Simply trim from the beginning and
ending of the file any records for dates that you are sure you will never need (be sure to leave
at least ten extra dates on each end to allow the internal interpolation scheme to work
properly). For example, CIO_RA.TXT contains data for years 1700 through 2300 but you
may need only the range from 2010 to 2015. Leave the data within your overall anticipated
date range as is—that is, do not attempt to make several groups of dates within the same file.
The final file that you create must be a fixed-interval list running from the first date to the
last date with no gaps after the header record. When you have modified CIO_RA.TXT

, which should contain approximately 2.9 Mbytes.

Rev. C

C-31

appropriately, follow the steps above to convert your custom version to the binary direct-
access format useable by NOVAS. The output message and file will differ from that above
based on the changes you made.

If a CIO file (cio_ra.bin) is not present when NOVAS needs to determine the location of the
CIO, NOVAS will simply revert to using an internal computation for this information. The
results differ by a few microarcseconds at most, and those differences are reached only for
dates before 1900 or after 2200. The two approaches represent independent algorithms for
determining the location of the CIO on the equator, and the tiny differences for dates that are
several centuries from now are of no practical consequence. Small differences in execution
time may occur for the two approaches, but those timing differences are likely to vary with
the specific application—depending, for example, on the order and spread of the dates that
are processed by NOVAS. For some applications using such an external file may be
undesirable. Because, in many simple NOVAS applications, the location of the CIO is never
needed, the best scheme is probably to start without using the CIO file. If your application’s
execution time is critical, you might want to experiment to see whether using a CIO file
affects its performance one way or the other.

2.6 Reduced-accuracy Mode
NOVAS has “full-accuracy” and “reduced-accuracy” modes that must be selected when
calling about half of the functions in novas.c; see the prolog to each function and the
corresponding description in Chapter 4 for specific functions. Each of those functions has a
short integer input parameter, accuracy. If accuracy is set to zero (0), the function and
any lower-level functions that it calls will proceed with full accuracy. Alternatively, if
accuracy is set to one (1), the function and any lower-level functions that it calls will
proceed with reduced accuracy.

In full-accuracy mode,

• nutation calculations use the IAU 2000A model [iau2000a, nutation_angles];
• gravitational deflection is calculated using three bodies: Sun, Jupiter, and Saturn

[grav_def];
• the equation of the equinoxes includes the entire series when computing the

“complementary terms" [ee_ct];
• geocentric positions of solar system bodies are adjusted for light travel time using

split, or two-part, Julian dates in calls to ephemeris and iterate with a convergence
tolerance of 10-12 days [light_time, ephemeris];

• ephemeris calls the appropriate solar system ephemeris using split, or two-part, Julian
dates primarily to support light-time calculations [ephemeris, solarsystem_hp,
light_time].

In reduced-accuracy mode,

• nutation calculations use the 2000K model, which is the default for this mode, or the
IAU 2000B model, which may be set manually by user [nu2000k, iau2000b,
nutation_angles];

• gravitational deflection is calculated using only one body, the Sun [grav_def];

C-32

• the equation of the equinoxes excludes terms smaller than 2 microarcseconds when
computing the "complementary terms" [ee_ct];

• geocentric positions of solar system bodies are adjusted for light travel time using
single-value Julian dates in calls to ephemeris and iterate with a convergence
tolerance of 10-9 days [light-time, ephemeris, solarsystem];

• ephemeris calls the appropriate solar system ephemeris using single-value Julian
dates [ephemeris, solarsystem].

In full-accuracy mode, the IAU 2000A nutation series (1,365 terms) is used [iau2000a].
Evaluating the series for nutation is usually the main computational burden in NOVAS, so
using reduced-accuracy mode improves execution time, often noticeably. In reduced-
accuracy mode, the NOVAS 2000K nutation series (488 terms) is used by default [nu2000k].
This mode can be used when the accuracy requirements are not better than 0.1 milliarcsecond
for stars or 3.5 milliarcseconds for solar system bodies. Selecting this approach can reduce
the time required for Earth-rotation computations by about two-thirds. However, if your
reduced-accuracy application requires the IAU-approved truncated nutation series, IAU
2000B (77 terms), you can edit the function nutation_angles slightly so that it calls iau2000b
in reduced-accuracy mode instead of nu2000k; the necessary changes are described in the
prolog to that function. Section 1.4 and USNO Circular 18129

2.7 References

 (Kaplan 2009) provide some
additional information about nutation series.

Hilton, J. L. 1999, AJ, 117, 1077 http://www.usno.navy.mil/USNO/astronomical-
applications/software-products/usnoae98 (USNO/AE98)

Kaplan, G. H. 2009, Nutation Series Evaluation in NOVAS 3.0, USNO Circular 181
(Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181

USNO & HMNAO. 1998, The Astronomical Almanac for the Year 2000, (Washington, DC:
GPO) and subsequent editions

(Return to Table of Contents)

29 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-181�

C-33

Chapter 3 Sample Calculations

The sample C code discussed in this chapter can be found in the file sample.c, which is
distributed along with NOVAS; it is a main function that can be linked to the NOVAS
modules and executed. It requires solarsystem version 1, a working copy of the JPL software,
and a DEnnn binary file. To use it,

a. compile and link files: sample.c, novas.c, novascon.c, nutation.c, solsys1.c,
eph_manager.c, and readeph0.c

b. name the resulting application
.

sample
c. verify that the JPL ephemeris file

.
JPLEPH, or an alias to it, is available in the same

directory as sample
d. execute the

.
sample application. On some Unix systems (e.g., Mac OS X),

execute ./sample to avoid confusion with the system sample

The results are given in the file sample-usno.txt, which was generated at the USNO with the
JPL DE405 ephemeris. sample.c may be modified for use with

 command.

solarsystem version 2; see the
comments within that file for details.

NOVAS has a number of high-level functions that make obtaining frequently needed
information on the positions of celestial objects easy; some of these are described below. In
addition, Chapter 4 describes many of the functions and all of the structures used in these
examples. The checkout programs used to validate a local installation (checkout-stars.c,
checkout-stars-full.c, and checkout-mp.c) also provide other examples of NOVAS function
calls.

Note that all floating-point arguments to NOVAS functions, input or output, are double
precision floating-point values (type double).

3.1 Initialization
You may choose to call many NOVAS functions in either full- or reduced-accuracy modes.
Usually all functions in a single application will have the same accuracy requirements.
Therefore, you may wish to define a short integer constant for this purpose at the beginning
of your main function. sample operates in full-accuracy mode, so accuracy is set to zero

A value of one (1) would have set reduced accuracy. For more information on the two
modes, see

const short int accuracy = 0;

section 2.6.

Two high-level NOVAS functions sidereal_time and ter2cel can perform their internal
calculations using either the CIO-based method or equinox-based method. If you will be
calling these functions multiple times, you may also wish to define a short integer constant
for this purpose, with a value of zero (0) for the CIO-based method or one (1) for the
equinox-based method. In sample, the appropriate method is chosen when these functions
are called. Because the equinox-based method is more efficient for computing sidereal time,
sample chooses this mode. For more information about these two methods, see section 5.2.

Rev. A

C-34

3.2 Setting Time Arguments
You should also consider how you will handle dates and times. As described in section 1.3,
NOVAS uses either of two time scales, TT or UT1, as the basis for the time input argument
to its higher-level functions. However, you may be working with UTC, Coordinated
Universal Time. UTC is the basis for civil time systems worldwide and, because it is
distributed quite accurately by GPS, is often used as the time-tag for observations. The key
relationship is

TT = UTC + ∆AT + 32.184s
where ∆AT is an integer representing the total count of leap seconds in UTC (for example,
∆AT = 34 s for 2009). Equivalently,

TT = TAI + 32.184s
where TAI is International Atomic Time. If you will only be dealing with the geocentric
celestial coordinates of objects, TT is all you will need.

If you will also be computing topocentric coordinates (for a specific location on the surface
of the Earth), you will also need to obtain UT1. The key relationship is

UT1 = UTC + (UT1–UTC)
where UT1–UTC is interpolated from the daily values of this quantity published by the
IERS.30

UT1 = TT – ∆T
 Alternatively,

See section 1.3 for more information on time scales, including sources of data that can be
used for the values of ∆AT, UT1–UTC, and ∆T.

To convert a date and time in the common format (year/month/day/hour/minute/second) to a
Julian date, which is used by NOVAS for time arguments, call julian_date. Dates and times
based on UTC, TT, or UT1 (or any other time scale) can be converted using julian_date; the
output Julian date simply has the same basis as the input date and time. In the examples
below, we will be using 2008 April 24, 10:36:18.0 UTC as the time of interest; this
corresponds to a Julian date of 2454580.9441875 UTC.31

const short int year = 2008;

 Consequently, we will use a ∆AT
value of 33 s and a UT1–UTC value of −0.387845 s, which are appropriate for this date.

const short int month = 4;
const short int day = 24;
const short int leap_secs = 33;

const double hour = 10.605;
const double ut1_utc = -0.387845;

const double x_pole = -0.002;
const double y_pole = +0.529;

30 http://maia.usno.navy.mil/ser7/mark3.out
31 A “UTC Julian date” is something of a non sequitur, because UTC is not continuous due to leap seconds.
Here we are simply using julian_date with UTC input to obtain a value that allows us to compute Julian dates in
better-behaved time scales.

http://maia.usno.navy.mil/ser7/mark3.out�

C-35

where x_pole and y_pole

jd_utc = julian_date (year,month,day,hour);

 are the coordinates of the CIO with respect to the ITRS pole for
2008 April 24. So, if we use

the output argument, jd_utc, will have a value of 2454580.9441875

jd_tt = jd_utc + ((double) leap_secs + 32.184) / 86400.0;

. The next few lines
of code should be something like

jd_ut1 = jd_utc + ut1_utc / 86400.0;
delta_t = 32.184 + leap_secs - ut1_utc;

where 86400.0 is the number of seconds in a day, and the value of delta_t would be
computed to be 65.571845 (seconds). If we had known the value of ∆T (delta_t) at the
start, rather than the value of ut1_utc

jd_tt = jd_utc + ((double) leap_secs + 32.184) / 86400.0;
jd_ut1 = jd_tt - delta_t / 86400.0;

 (UT1–UTC), then the lines immediately above could
have been replaced by

3.3 Example 1—Position of a Star
Suppose we have the catalog data from star FK6 1307 (Groombridge 1830) for epoch
J2000.0, expressed in the ICRS:

ICRS right ascension at J2000.0 (hours): 11.88299133
ICRS declination at J2000.0 (degrees): 37.71867646
Proper motion in RA (milliarcseconds per year): 4003.27
Proper motion in dec (milliarcseconds per year): –5815.07
Parallax (milliarcseconds): 109.21
Radial velocity (kilometers per second): –98.8

To obtain the apparent geocentric place of the star on our date of interest, with respect to the
equator and equinox of that date, first make a structure of type cat_entry,
make_cat_entry ("GMB 1830","FK6",1307,11.88299133,37.71867646,
 4003.27,-5815.07,109.21,-98.8, &star);

Then, simply call app_star supplying it with the catalog quantities:
error = app_star (jd_tt,&star,accuracy,&ra,&dec)

In this example and other examples in this chapter, the returned value from the function—
error—is an error indicator. Non-zero values of error indicate an error condition inside
the function; see the function prolog for details. The calling function should take appropriate
action in such cases. The output coordinates, ra and dec (hours and degrees, respectively),
represent the apparent geocentric coordinates of the star, with respect to the true equator and
equinox of date. The computation takes into account all time-dependent effects that shift the
star’s position from its catalog coordinates (except atmospheric refraction, which is location-
and weather-dependent): the star’s space motion to the date of interest, parallax due to the
Earth’s position in its orbit, gravitational light-bending in the solar system, aberration due to
the Earth’s orbital velocity, and the precession and nutation of the Earth’s axis.

Rev. C

C-36

Important note: Hipparcos catalog data, although expressed with respect to the ICRS, refer
to epoch 1991.25 and must be converted to epoch J2000.0 before being used as input
arguments to any NOVAS function. Use function transform_hip to do this. Most other
modern catalogs, including the FK6 (used above), Tycho-2, UCAC, etc., provide data for
epoch J2000.0 that need no conversion.
If we want the apparent topocentric place of the star, that is, the star’s position as it would be
seen (except for refraction) from a particular location on Earth, such as off the Atlantic coast
near Truro, Massachusetts
const double latitude = 42.0;
const double longitude = -70;
const double height = 0.0;
const double temperature = 10.0;
const double pressure = 1010.0;

where longitude and latitude are the location’s geodetic longitude and latitude
(degrees, with east longitude and north latitude positive) and height is the height of the
location above sea level (meters). The temperature and pressure (in degrees Celsius
and millibars, respectively) are only used in calculations involving atmospheric refraction;
here, the values are simply placeholders. You should create a structure of type on_surface
for that location
make_on_surface (latitude,longitude,height,temperature,pressure,&geo_loc);

Now, call topo_star
error = topo_star (jd_tt,delta_t,&star,&geo_loc,accuracy,&rat,&dect)

where rat and dect reflect the position of the star as it would be seen from that particular
location—the small differences from the geocentric coordinates ra and dec arise mainly
from diurnal aberration. topo_star uses the catalog data on the star created earlier.

3.4 Example 2—Position of the Moon
Obtaining the coordinates of solar system objects other than the Sun requires that either
solarsystem version 1 or version 2 be used. First, you will need to create a structure of type
cat_entry for a “dummy” star, which is, then, used as a placeholder in a structure of type
object for the Moon.
make_cat_entry ("DUMMY","xxx",0,0.0,0.0,0.0,0.0,0.0,0.0,&dummy_star);

error = make_object (0,11,"Moon",&dummy_star,&moon)

Then, call function app_planet
error = app_planet (jd_tt,&moon,accuracy,&ra,&dec,&dis)

where, again, ra and dec are the apparent geocentric coordinates of the Moon (hours and
degrees, respectively), with respect to the true equator and equinox of date, and dis is the
true (Euclidean) geocentric distance (astronomical units or AU) at time jd_tt. The
computation of the angular coordinates of solar system objects takes light-time into account,

C-37

along with the other effects (light bending, aberration, precession, and nutation) that also
apply to stars.

To get the topocentric celestial coordinates of the Moon, call topo_planet
error = topo_planet(jd_tt,&moon,delta_t,&geo_loc,accuracy,&rat,&dect,&dist)

However, a single function, place, can be used for all types of positions of both stars and
solar system objects. In fact, app_star, topo_star, app_planet, and topo_planet, along with
several other similar functions, are actually just special-purpose front-ends to place. place
uses three structure arguments (cel_object of type object and location of type
observer for input and output of type sky_pos for output) as well as several scalar
arguments. The cel_object of type object is same as was created earlier for use by
app_planet and topo_planet in calculating the position of the Moon. Function
make_observer_on_surface creates a structure of type observer for an observer on or near
the surface of the Earth:
make_observer_on_surface (latitude,longitude,height,temperature,pressure,
 &obs_loc);

The call to place to obtain topocentric coordinates of the Moon, with respect to the true
equator and equinox of date, then is
error = place (jd_tt,&moon,&obs_loc,delta_t,1,accuracy,&t_place)

where short integer coord_sys has been set to one (1) so that the output coordinates in
t_place, a structure of type sky_pos, will be based on the true equator and equinox of
date:
typedef struct
{
 double r_hat[3];
 double ra;
 double dec;
 double dis;
 double rv;
} sky_pos;

Here, double r_hat[3] is a dimensionless unit vector in the apparent direction of the
Moon, in the same coordinate system as the right ascension and declination (i.e., it is exactly
equivalent to the spherical coordinates). place has many options for both input and output;
refer to its description in Chapter 4 or look at its prolog.

Once you have the topocentric celestial coordinates of an object, these can be transformed
into local altitude and azimuth by a call to equ2hor. If we have used place to obtain the
topocentric coordinates, then
equ2hor (jd_ut1,delta_t,accuracy,0.0,0.0,&geo_loc,rat,dect,1,&zd,&az,&rar,
 &decr);

where the refraction option, short integer ref_option, is set here to one (1) and the x- and
y-coordinates of the CIO with respect to the ITRS pole, double x and double y, have been set
to zero (0.0). The refraction option selected here is for “standard atmospheric” conditions.
The other options for refraction are zero (0) for no refraction or two (2) for refraction based
on the atmospheric conditions indicated by location, a structure of type on_surface.

C-38

Setting the CIO coordinates to zero is appropriate when sub-arcsecond accuracy is
unnecessary; otherwise these arguments should contain the appropriate pole coordinates for
the date of interest. The output coordinates, zd, az, rar, and decr, are, respectively, the
zenith distance (degrees), azimuth (degrees), right ascension (hours), and declination
(degrees). The output values of zd, rar, and decr are affected by atmospheric refraction for
refraction options 1 and 2. If ref_option equals 0, the output right ascension and
declination values are the same as the input values. zd and az are referred to the horizon
system that is tangent to the Earth’s reference ellipsoid at the observer’s location; that is, the
deflection of the vertical (the local undulation of the geoid) is not taken into account.

3.5 Example 3—Greenwich Sidereal Time
To obtain Greenwich sidereal time, call sidereal_time:
error = sidereal_time (jd_ut1,0.0,delta_t,1,1,accuracy,&gast)

where short integer gst_type and short integer method have each been set to one (1) to
compute Greenwich apparent sidereal time using the equinox-based method. In this example,
the output sidereal time gast is Greenwich apparent sidereal time in hours. If gst_type
had been set to zero (0), the output sidereal time would have been Greenwich mean sidereal
time in hours. Choosing between equinox-based and CIO-based methods is discussed in
section 3.1 and section 5.2.

sidereal_time and several other functions allow for a “split” input UT1 Julian date—high-
and low-order parts in the first two arguments—for increased precision. Generally, the split
would be at the Julian date’s decimal point, with the day count in the first argument and the
fraction of a day in the second. However, using two arguments for the Julian date provides
more precision only if the fractional part of the Julian date has been handled separately all
along. We have not done that, so here, the entire Julian date is just placed in the first
argument and the second argument is set to zero (0.0).

To compute local sidereal time (either mean or apparent), add the longitude (east positive)
expressed in hours:
last = gast + geo_loc.longitude / 15.0;

The result may have to be reduced to the range 0 to 24 hours by statements similar to the
following:
if (last >= 24.0)
 last -= 24.0;
if (last < 0.0)
 last += 24.0;

The quantity that is analogous to Greenwich apparent sidereal time in the CIO-based
paradigm is θ, the ERA. It can be computed
theta = era (jd_ut1,0.0);

where theta is the ERA (degrees). era, like sidereal_time, allows for a split input UT1
Julian date.

See section 5.1 for information on the difference between Greenwich apparent sidereal time
and the ERA, and how hour angles are computed in the two paradigms.

C-39

3.6 Example 4—Other Frequently Requested Quantities
In the following function calls, vectors are used. Vectors are simply double-precision arrays
with a dimension of 3. Most NOVAS internal calculations are performed with vectors and
matrices. The following vectors are referred to below:
double pos[3], vel[3], pose[3], vter[3], vcel[3];

To obtain the barycentric or heliocentric coordinates (BCRS vectors) of a solar system body,
for example, Mars, first create an appropriate structure of type object
error = make_object (0,4,"Mars",&dummy_star,&mars)) != 0

which uses the dummy_star structure created in Example 2. Then, call ephemeris:
jd_tdb = jd_tt; /* Approximation good to 0.0017 seconds. */
jd[0] = jd_tdb;
jd[1] = 0.0;
error = ephemeris (jd,&mars,1,accuracy,pos,vel)

where short integer origin has been set to one (1) to obtain a heliocentric position, we have
approximated jd_tdb = jd_tt,32

If

 and the output position and velocity vectors are pos and
vel (components in AU and AU/day, respectively). For barycentric positions, set origin
to zero (0).

pos is a heliocentric vector, it can be transformed to the ecliptic system (fixed ecliptic of
J2000.0) by calling equ2ecl_vec
error = equ2ecl_vec (T0,2,accuracy,pos,pose)

:

where pose is the output vector in the ecliptic system (same units as pos). pose

error = vector2radec (pose,&elon,&elat)

 could then
easily be converted to heliocentric spherical coordinates: ecliptic longitude, ecliptic latitude,
and radius vector.

elon *= 15.0;
r = sqrt (pose[0] * pose[0] + pose[1] * pose[1] + pose[2] * pose[2]);

Finally, transforming a vector from the terrestrial reference system to the celestial reference
system can be useful. The vector might represent a geographic position, a geodetic reference
line or direction, or an instrumental axis. For this transformation, the vector starts out as an
Earth-fixed vector expressed with respect to the ITRS axes. For example, the vector toward
the local vertical (orthogonal to the ellipsoid at the place of interest) is simply (cos φ cos λ,
cos φ sin λ, sin φ), where φ is the geodetic latitude and λ is the longitude. A vector along a
telescope’s polar axis would nominally point toward (0,0,1) in this system.
lon_rad = geo_loc.longitude * DEG2RAD;
lat_rad = geo_loc.latitude * DEG2RAD;
sin_lon = sin (lon_rad);
cos_lon = cos (lon_rad);
sin_lat = sin (lat_rad);

32 Strictly, ephemeris requires a TDB-based Julian date as input. TDB differs from TT by at most 1.7 ms; see
section 1.3. If this time difference is important, use function tbd2tt to determine the difference between the two
time scales and adjust jd_tdb accordingly. For the example here, neglecting the difference can lead to an
error in the position of Mars of about 50 meters.

C-40

cos_lat = cos (lat_rad);
vter[0] = cos_lat * cos_lon;
vter[1] = cos_lat * sin_lon;
vter[2] = sin_lat;

Any such ITRS vector can be transformed into the equivalent GCRS vector with a single call
to ter2cel:
error = ter2cel (jd_ut1,0.0,delta_t,1,accuracy,0,x_pole,y_pole,vter,vcel)

where vter is the input vector (terrestrial, ITRS) and vcel is the equivalent output vector
(celestial, GCRS). The components of vter can be in any units; vcel will be in the same
units. vcel will sweep around the celestial sphere as the Earth rotates, i.e., as jd_ut1
advances. (ter2cel, like sidereal_time, allows for a split input UT1 Julian date.) Use
vector2radec to obtain vcel
error = vector2radec (vcel,&ra,&dec)

’s instantaneous spherical coordinates:

where ra and dec are the GCRS right ascension and declination (hours and degrees,
respectively) of the point on the celestial sphere toward which vcel points. At any jd_ut1,
vcel can be compared to the directions of stars computed by place for the equivalent jd_tt,
with GCRS output coordinates selected.

(Return to Table of Contents)

C-41

Chapter 4 Data Structures and Functions

NOVAS can be used several different ways. Some users will simply want to adopt a subset
of the basic or utility functions for use in their own code systems. For these users, the
function prologs should be sufficient for providing the information needed to use the
functions. Other users will want to implement the supervisory functions to compute, for
example, apparent places of stars or topocentric places of solar system bodies. This section
of the user’s guide is intended for these users.

4.1 Important Data Structures
Seven important data structures are used throughout NOVAS. They are formally declared in
file novas.h.

Structure cat_entry

Structure cat_entry contains the astrometric catalog data for a celestial object; equator and
equinox and units will depend on the catalog. While this structure can be used as a generic
container for catalog data, all high-level NOVAS functions require ICRS catalog data with
the appropriate units, which are shown in parentheses below.
typedef struct
{
 char starname[51];
 char catalog[4];
 long int starnumber;
 double ra;
 double dec;
 double promora;
 double promodec;
 double parallax;
 double radialvelocity;
} cat_entry;

where:
 starname[51] = name of celestial object
 catalog[4] = 3-character catalog designator
 starnumber = integer identifier assigned to object
 ra = ICRS right ascension (hours)
 dec = ICRS declination (degrees)
 promora = ICRS proper motion in right ascension
 (milliarcseconds/year)
 promodec = ICRS proper motion in declination
 (milliarcseconds/year)
 parallax = parallax (milliarcseconds)
 radialvelocity = radial velocity (km/s)

C-42

Structure object

Structure object designates a celestial object.
typedef struct
{
 short int type;
 short int number;
 char name[51];
 cat_entry star;
} object;

where:
 type = type of object
 = 0 ... major planet, Sun, or Moon
 = 1 ... minor planet
 = 2 ... object located outside the solar system
 (star, nebula, galaxy, etc.)
 number = object number
 For 'type' = 0: Mercury = 1, ..., Pluto = 9,
 Sun = 10, Moon = 11
 For 'type' = 1: minor planet number
 For 'type' = 2: set to 0 (object is
 fully specified in 'struct cat_entry')
 name = name of the object (limited to 50 characters)
 star = basic astrometric data for any celestial object
 located outside the solar system; the catalog
 data for a star

Structure on_surface

Structure on_surface contains data for the observer’s location. The weather parameters
(temperature and pressure) are used only by the refraction function (refract) called from
function equ2hor when ref_option = 2; dummy values can be used otherwise.
Parameters can be added to this structure, if a more sophisticated refraction model is
substituted.
typedef struct
{
 double latitude;
 double longitude;
 double height;
 double temperature;
 double pressure;
} on_surface;

where:
 latitude = geodetic (ITRS) latitude; north positive (degrees)
 longitude = geodetic (ITRS) longitude; east positive (degrees)
 height = height of the observer (meters)
 temperature = temperature (degrees Celsius)
 pressure = atmospheric pressure (millibars)

C-43

Structure in_space

Structure in_space contains data for an observer’s position and velocity in a near-Earth
spacecraft.
typedef struct
{
 double sc_pos[3];
 double sc_vel[3];
} in_space;

where:
 sc_pos[3] = geocentric position vector (x, y, z), components
 in km
 sc_vel[3] = geocentric velocity vector (x_dot, y_dot,
 z_dot), components in km/s

 Both vectors with respect to true equator and
 equinox of date

Structure observer

Structure observer is a general container for information specifying the location of the
observer.
typedef struct
{
 short int where;
 on_surface on_surf;
 in_space near_earth;
} observer;

where:
 where = integer code specifying location of observer
 = 0: observer at geocenter
 = 1: observer on surface of earth
 = 2: observer on near-earth spacecraft
 on_surface = structure containing data for an observer's
 location on the surface of the Earth (where = 1)
 near_earth = data for an observer's location on a near-Earth
 spacecraft (where = 2)

Structure sky_pos

Structure sky_pos contains data specifying a celestial object’s place on the sky; contains the
output from function place.
typedef struct
{
 double r_hat[3];
 double ra;
 double dec;
 double dis;
 double rv;
} sky_pos;

C-44

where:
 r_hat[3] = unit vector toward object (dimensionless)
 ra = apparent, topocentric, or astrometric
 right ascension (hours)
 dec = apparent, topocentric, or astrometric
 declination (degrees)
 dis = true (geometric, Euclidian) distance to solar
 system body or 0.0 for star (AU)
 rv = radial velocity (km/s)

Structure ra_of_cio

Structure ra_of_cio contains the right ascension of the Celestial Intermediate Origin (CIO)
with respect to the GCRS.
typedef struct
{
 double jd_tdb;
 double ra_cio;
} ra_of_cio;

where:
 jd_tdb = TDB Julian date
 ra_cio = right ascension of the CIO with respect
 to the GCRS (arcseconds)

4.2 Function List
The following functions are contained in file novas.c:

Function name Level Purpose
place super Computes apparent direction of a star or solar system body, given the

time and observer’s location. Direction is expressed in one of several
selectable coordinate systems.

sidereal_time super Computes Greenwich sidereal time, either mean or apparent
ter2cel super Transforms arbitrary vector in rotating Earth-fixed (ITRS) system to

space-fixed (ICRS) system, terrestrial to celestial transformation
equ2hor super Transforms topocentric RA and dec to zenith distance and azimuth,

optionally accounts for atmospheric refraction.
transform_cat super Transforms star’s catalog quantities for a change of epoch and/or

equator and equinox
transform_hip super Converts Hipparcos catalog data at epoch J1991.25 to epoch J2000.0
app_star super Computes apparent place of a star, given its catalog data
topo_star super Computes topocentric place of a star, given geodetic location of

observer
virtual_star super Computes virtual place of a star, given its catalog data
local_star super Computes local place of a star, given geodetic location of observer
astro_star super Computes astrometric place of a star, given its catalog data
mean_star super Computes ICRS/J2000.0 place of a star, given its apparent place
app_planet super Computes apparent place of a planet or other solar system body
topo_planet super Computes topocentric place of a planet or other solar system body,

given geodetic location of observer
virtual_planet super Computes virtual place of a planet or other solar system body

C-45

Function name Level Purpose
local_planet super Computes local place of a planet or other solar system body, given

geodetic location of observer
astro_planet super Computes astrometric place of a planet or other solar system body
aberration util Adjusts position vector for aberration of light due to motion of Earth
bary2obs util Changes origin of coordinates from barycenter of solar system to center

of mass of Earth
cio_basis util Computes orthonormal basis vectors, with respect to GCRS, of right-

handed system defined by CIP (z-direction) and CIO (x-direction)
d_light util For a star, returns difference in light-time between solar system

barycenter and observer. Or, returns the light-time from observer to
point on light ray closest to a given solar system body.

ecl2equ_vec util Converts ecliptic position vector to an equatorial position vector
equ2ecl util Converts RA and dec to ecliptic longitude and latitude
equ2ecl_vec util Converts equatorial position vector to an ecliptic position vector
equ2gal util Converts ICRS RA and dec to galactic longitude and latitude
era util Returns ERA (θ) for given UT1 Julian date
frame_tie util Transforms vector between dynamical reference system (mean equator

and equinox of J2000.0) and ICRS
gcrs2equ util Converts GCRS RA and dec to coordinates with respect to the equator

of date (mean or true)
geo_posvel util Computes geocentric position and velocity, in GCRS, of observer on or

near the surface of Earth
grav_def util Computes total gravitational deflection of light for an object due to

major solar system bodies
grav_vec util Corrects position vector for deflection of light in gravitational field of

given body
light_time util Computes position of a solar system body antedated for light-time
limb_angle util Determines angle of object above or below Earth's limb (horizon)
make_cat_entry util Creates a structure of type cat_entry containing catalog data for a

star or “star-like” object
make_object util Creates structure of type object—specifying a celestial object - based

on the input parameters
make_observer util Creates structure of type observer—specifying the location of the

observer
make_observer_at_geocenter util Creates structure of type observer—specifying that the “observer” is

at the geocenter
make_observer_in_space util Creates structure of type observer—specifying the position and

velocity of an observer situated on a near-Earth spacecraft
make_observer_on_surface util Creates structure of type observer—specifying the location of and

weather for an observer on the surface of the Earth
make_in_space util Creates structure of type in_space—specifying the position and

velocity of an observer situated on a near-Earth spacecraft
make_on_surface util Creates structure of type on_surface—specifying the location of and

weather for an observer on the surface of the Earth
nutation util Applies nutation to position vector
precession util Applies precession to position vector
proper_motion util Updates position vector of a star to allow for its space motion
rad_vel util Predicts radial velocity of observed object as would be measured by

spectroscopy
radec2vector util Converts RA, dec, and distance to a position vector
spin util Rotates vector by specified angle about the z-axis

C-46

Function name Level Purpose
starvectors util Converts a star’s RA, dec, proper motion, etc., to position and velocity

vectors
terra util Converts geodetic coordinates to geocentric position vector
vector2radec util Converts position vector to RA and dec
wobble util Adjusts Earth-fixed vector for polar motion
cal_date basic Computes calendar date and time, given Julian date
cel_pole basic Allows for the specification of celestial pole offsets for high-precision

applications
cio_array basic Returns array of Julian dates and corresponding values of RA of CIO

(in GCRS), given TDB Julian date and number of dates desired
cio_location basic Returns location of CIO as RA with respect to either GCRS origin or

true equinox of date, given TDB Julian date
cio_ra basic Computes true right ascension of the CIO, given TT Julian date
ee_ct basic Returns complementary terms for equation of the equinoxes
ephemeris basic Retrieves position and velocity of a solar system body from a

fundamental ephemeris
e_tilt basic Provides information on orientation of Earth’s axis: obliquity, nutation

parameters, etc.
fund_args basic Computes fundamental arguments (mean elements) of the Sun and

Moon
ira_equinox basic Computes intermediate RA of the equinox, given TDB Julian date
julian_date basic Computes Julian date, given calendar date and time
mean_obliq basic Computes the mean obliquity of the ecliptic
norm_ang basic Normalize angle into the range 0 <= angle < (2 * pi)
nutation_angles basic Supervises calculation of nutation parameters and provides nutation in

longitude and obliquity
refract basic Computes atmospheric refraction in zenith distance
tdb2tt basic Converts Barycentric Dynamical Time (TDB) to Terrestrial Time (TT).

The following functions are contained in file nutation.c:

Function name Level Purpose
iau2000a basic Evaluates high-accuracy nutation series (IAU 2000A model)
iau2000b basic Evaluates low-accuracy nutation series (IAU 2000B model)
nu2000k basic Evaluates low-accuracy nutation series (2000K, truncated version of

IAU 2000A model)

4.3 Important Functions
Descriptions of some of the most frequently used NOVAS functions follow. The prologs in
the source code at the beginning of each NOVAS function are intended to provide enough
information for correct usage. They are reproduced here followed by additional discussion
and recommendations.

C-47

place

short int place (double jd_tt, object *cel_object,
 observer *location, double delta_t,
 short int coord_sys, short int accuracy,

 sky_pos *output)

 PURPOSE:
 This function computes the apparent direction of a star or solar
 system body at a specified time and in a specified coordinate
 system.

 REFERENCES:
 Kaplan, G. et al. (1989), Astronomical Journal 97, 1197-1210.
 Klioner, S. (2003), Astronomical Journal 125, 1580-1597.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for place.
 *cel_object (struct object)
 Specifies the celestial object of interest (structure defined
 in novas.h).
 *location (struct observer)
 Specifies the location of the observer (structure defined in
 novas.h).
 delta_t (double)
 Difference TT-UT1 at 'jd_tt', in seconds of time.
 coord_sys (short int)
 Code specifying coordinate system of the output position.
 = 0 ... GCRS or "local GCRS"
 = 1 ... true equator and equinox of date
 = 2 ... true equator and CIO of date
 = 3 ... astrometric coordinates, i.e., without light
 deflection or aberration.
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *output (struct sky_pos)
 Output data specifying object's place on the sky at time
 'jd_tt', with respect to the specified output coordinate system
 (struct defined in novas.h).

Rev. C

C-48

 RETURNED
 VALUE:
 = 0 ... No problems.
 = 1 ... invalid value of 'coord_sys'
 = 2 ... invalid value of 'accuracy'
 = 3 ... Earth is the observed object, and the observer is
 either at the geocenter or on the Earth's surface
 (not permitted)
 > 10, < 40 ... 10 + error from function 'ephemeris'
 > 40, < 50 ... 40 + error from function 'geo_posvel'
 > 50, < 70 ... 50 + error from function 'light_time'
 > 70, < 80 ... 70 + error from function 'grav_def'
 > 80, < 90 ... 80 + error from function 'cio_location'
 > 90, < 100 ... 90 + error from function 'cio_basis'

Discussion:
This function computes the apparent direction of a star or solar system body at a specified
time and in a specified coordinate system. The word “star” as used here refers to any object
outside the solar system.
The apparent direction of a star computed by this function takes into account the star’s proper
motion (linear three-dimensional space motion) from the catalog epoch to the date requested,
parallax, gravitational deflection of light by solar system bodies (mostly the Sun), and
aberration. The same effects are computed for solar system bodies, except that the proper
motion calculation is replaced by an algorithm that retrieves the object’s barycentric position
from its ephemeris, as part of an iterative light-time calculation. Extragalactic objects are
treated as stars with zero proper motion and parallax. The result in all cases is an apparent
direction expressed in the GCRS, which is optionally transformed into either of two other
output coordinate systems, as specified by argument coord_sys.

“Astrometric place” is a variant of the above calculation that is appropriate for some types of
differential measurements. Light bending and aberration are ignored under the assumption
that they are the same for all objects within a small area of the sky. Astrometric places are
expressed in the ICRS.

The observer’s location may be at the geocenter, on or near the surface of the Earth, or in
orbit around the Earth, as specified by the where member of the argument location.

place does not take into account atmospheric refraction (which would be appropriate only for
observers on or near the surface of the Earth), but its effect can be added by a subsequent call
to function equ2hor.

For stars, the required input data, stored in the cel_object->star argument, are the
standard five astrometric quantities from a catalog, together with radial velocity if known.
Any parameter should be set to 0.0 if its value is unknown. All catalog data used as input to
this function must apply to epoch J2000.0 and be expressed with respect to the ICRS. (For
Hipparcos catalog data, see function transform_hip.) Extragalactic objects should be treated
as stars, but with all input parameters set to 0.0 except for the catalog right ascension and
declination. For solar system bodies, the argument cel_object->number must contain the
identification number from the list of objects supported by the ephemeris in use.

C-49

The values of location->where and coord_sys

location->where

 for various kinds of place are listed
below.

coord_sys Type of Place
0 virtual place0 * = proper place
1 local place0 *
0 apparent place 1
1 topocentric place 1
0 intermediate place 2
1 topocentric intermediate place2
0

*
3 astrometric place

1 3 topocentric astrometric place*
*Place name not widely recognized outside of NOVAS.

NOVAS functions app_star, topo_star, app_planet, topo_planet, etc., are now just special-
purpose front-ends to place.

Important: The input value of ∆T (delta_t) is used only when location->where = 1
or 2 (observer is on surface of Earth or in a near-Earth satellite). An error in ∆T of 1 s can
result in a topocentric place error of up to 0.3 arcsecond for the Moon, but proportionally less
for more distant bodies (e.g., 3 milliarcseconds for Venus at its closest). Distance errors of up
to 500 m (3 × 10-9 AU) can also result, independent of distance. If errors of this magnitude are
important, care needs to be taken in specifying a more accurate value of ∆T. An error in ∆T
of 1 s will not result in a significant error in the topocentric places of stars. Values of ∆T are
published annually in The Astronomical Almanac or can be obtained from the EO web site.33

output->rv, the radial velocity, is the predicted radial velocity measure (z) times the speed
of light, an inherently spectroscopic quantity. For a star, it includes all effects, such as
gravitational red shift, contained in the catalog barycentric radial velocity measure, which is
assumed given in cel_object->star.radialvelocity. For a solar system body, it
applies to a fictitious emitter at the center of the observed object, assumed to be massless (no
gravitational red shift), and does not in general apply to reflected light.

“Loose” catalog data can be assembled into a structure of type cat_entry by using function
make_cat_entry. Similarly, we recommend using function make_object to create the input
structure cel_object.

(Return to Function List)

33 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

C-50

sidereal_time

short int sidereal_time (double jd_high, double jd_low,
 double delta_t,short int gst_type,
 short int method, short int accuracy,

 double *gst)

 PURPOSE:
 Computes the Greenwich apparent sidereal time, at Julian date
 'jd_high' + 'jd_low'.

 REFERENCES:
 Kaplan, G. (2005), US Naval Observatory Circular 179.

 INPUT
 ARGUMENTS:
 jd_high (double)
 High-order part of UT1 Julian date.
 jd_low (double)
 Low-order part of UT1 Julian date.
 delta_t (double)
 Difference TT-UT1 at 'jd_high'+'jd_low', in seconds
 of time.
 gst_type (short int)
 = 0 ... compute Greenwich mean sidereal time
 = 1 ... compute Greenwich apparent sidereal time
 method (short int)
 Selection for method
 = 0 ... CIO-based method
 = 1 ... equinox-based method
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *gst (double)
 Greenwich apparent sidereal time, in hours.

 RETURNED
 VALUE:
 (short int)
 = 0 ... everything OK
 = 1 ... invalid value of 'accuracy'
 = 2 ... invalid value of 'method'
 > 10, < 30 ... 10 + error from function 'cio_rai'

Discussion:
This function computes Greenwich sidereal time, either mean, if gst_type = 0, or
apparent, if gst_type = 1.

C-51

The input Julian date, which must be in the UT1 time scale, may be split into two parts to
ensure the highest precision in the computation. For example, set jd_high equal to the
integral part of the Julian date and set jd_low equal to the fractional part. Generally, this
split will be advantageous only if the low-order part has been treated separately within the
calling program; for example, if the time of day has been stored in its own variable(s), from
which jd_low is constructed.

For many applications, the position of the split is not critical as long as the sum jd_high +
jd_low is correct: in particular, when used with computers providing 16 decimal digits of
precision in double variables, this function will yield values of gst precise to about
0.1 millisecond even if jd_high contains the entire Julian date and jd_low = 0.0.

Values of ∆T (delta_t) are published annually in The Astronomical Almanac or can be
obtained from the EO web site.34

If gst_type = 1 for apparent sidereal time, the output value of gst will correctly reflect
the celestial pole offset in longitude if function

cel_pole has previously been called.

(Return to Function List)

34 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

C-52

ter2cel

short int ter2cel (double jd_ut_high, double jd_ut_low, double delta_t,
 short int method, short int accuracy, short int option,
 double x, double y, double *vect,

 double *vecc)

 PURPOSE:
 This function rotates a vector from the terrestrial to the
 celestial system. Specifically, it transforms a vector in the
 ITRF (rotating earth-fixed system) to the GCRS (a local space-
 fixed system) by applying rotations for polar motion, Earth
 rotation, nutation, precession, and the dynamical-to-GCRS
 frame tie.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Kaplan, G. H. (2003), 'Another Look at Non-Rotating Origins',
 Proceedings of IAU XXV Joint Discussion 16.

 INPUT
 ARGUMENTS:
 jd_ut_high (double)
 High-order part of UT1 Julian date.
 jd_ut_low (double)
 Low-order part of UT1 Julian date.
 delta_t (double)
 Value of Delta T (= TT - UT1) at the input UT1 Julian date.
 method (short int)
 Selection for method
 = 0 ... CIO-based method
 = 1 ... equinox-based method
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy
 option (short int)
 = 0 ... The output vector is referred to GCRS axes.
 = 1 ... The output vector is produced with respect to the
 equator and equinox of date.
 x (double)
 Conventionally-defined X coordinate of celestial intermediate
 pole with respect to ITRF pole, in arcseconds.
 y (double)
 Conventionally-defined Y coordinate of celestial intermediate
 pole with respect to ITRF pole, in arcseconds.
 vect[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to ITRF axes (terrestrial system) in the normal case
 where 'option' = 0.

C-53

 OUTPUT
 ARGUMENTS:
 vecc[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to GCRS axes (celestial system) or with respect to
 the equator and equinox of date, depending on 'option'.

 RETURNED
 VALUE:
 = 0 ... everything is ok.
 = 1 ... invalid value of 'accuracy'
 = 2 ... invalid value of 'method'
 > 10 ... 10 + error from function 'cio_location'
 > 20 ... 20 + error from function 'cio_basis'

Discussion:
This function rotates a vector from the terrestrial to the celestial system. Specifically, it
transforms a vector in the ITRS (a rotating Earth-fixed system) to the GCRS (a local space-
fixed system) by applying rotations for polar motion, Earth rotation, nutation, precession, and
the dynamical-to-GCRS frame tie. The input vector might represent a cardinal direction at
the observer’s position, a geodetic baseline, or some instrumental axis. The units for the
vector components are arbitrary and the output vector will have the same units as the input
vector. Geodetic coordinates in the WGS-84 system, also sometimes called the Earth-
centered Earth-fixed (ECEF) system, can be considered to be compatible with the ITRS.

This function allows for the input UT1 time to be represented as a split Julian date. See the
discussion in the description of function sidereal_time. Both jd_ut_high and jd_ut_low
should be non-negative for normal use; jd_ut_low = 0.0 is acceptable.

Values of ∆T (delta_t) are published annually in The Astronomical Almanac or can be
obtained from the EO web site.35

The option flag only works for the equinox-based method.

Set x=y=0 to omit the polar motion rotation.

(Return to Function List)

35 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

C-54

equ2hor

void equ2hor (double jd_ut1, double delta_t, short int accuracy,
 double x, double y, on_surface *location, double ra,
 double dec, short int ref_option,

 double *zd, double *az, double *rar, double *decr)

 PURPOSE:
 This function transforms topocentric right ascension and
 declination to zenith distance and azimuth. It uses a method
 that properly accounts for polar motion, which is significant at
 the sub-arcsecond level. This function can also adjust
 coordinates for atmospheric refraction.

 REFERENCES:
 Kaplan, G. (2008). USNO/AA Technical Note of 28 Apr 2008,
 "Refraction as a Vector."

 INPUT
 ARGUMENTS:
 jd_ut1 (double)
 UT1 Julian date.
 delta_t (double)
 Difference TT-UT1 at 'jd_ut1', in seconds.
 accuracy (short int)
 Selection for method and accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy
 x (double)
 Conventionally-defined x coordinate of celestial intermediate
 pole with respect to ITRS reference pole, in arcseconds.
 y (double)
 Conventionally-defined y coordinate of celestial intermediate
 pole with respect to ITRS reference pole, in arcseconds.
 *location (struct on_surface)
 Pointer to structure containing observer's location (defined
 in novas.h).
 ra (double)
 Topocentric right ascension of object of interest, in hours,
 referred to true equator and equinox of date.
 dec (double)
 Topocentric declination of object of interest, in degrees,
 referred to true equator and equinox of date.
 ref_option (short int)
 = 0 ... no refraction
 = 1 ... include refraction, using 'standard' atmospheric
 conditions.
 = 2 ... include refraction, using atmospheric parameters
 input in the 'location' structure.

C-55

 OUTPUT
 ARGUMENTS:
 *zd (double)
 Topocentric zenith distance in degrees, affected by
 refraction if 'ref_option' is non-zero.
 *az (double)
 Topocentric azimuth (measured east from north) in degrees.
 *rar (double)
 Topocentric right ascension of object of interest, in hours,
 referred to true equator and equinox of date, affected by
 refraction if 'ref_option' is non-zero.
 *decr (double)
 Topocentric declination of object of interest, in degrees,
 referred to true equator and equinox of date, affected by
 refraction if 'ref_option' is non-zero.

 RETURNED
 VALUE:
 None.

Discussion:
This function takes the topocentric celestial coordinates of an object and computes the
equivalent local horizon coordinates. The function uses a method that properly accounts for
polar motion, which is significant at the sub-arcsecond level. Atmospheric refraction can be
included in the transformation, and, if so, refraction is applied to both sets of coordinates
(this can be useful for telescope pointing). Refraction, when requested, is computed by
function refract.

ra and dec, the input topocentric right ascension and declination, can be obtained from
place (with location->where = 1 and coord_sys = 1), or topo_star, or topo_planet.
jd_ut1 is the UT1 time at which the topocentric place was computed. The difference
TT − UT1 (often called ∆T) is passed to the function via argument delta_t. Values of ∆T
are published annually in The Astronomical Almanac or can be obtained from the EO web
site.36

The coordinates of the pole, x and y, can be obtained from

IERS Bulletins A and B,37

The height of the observer and meteorological conditions at the observer’s location,
contained in structure location, are used only for refraction, i.e., if ref_option is not
equal to zero. In this function, the directions zd = 0.0 (the zenith) and az = 0.0 (north)
are considered fixed in the terrestrial frame. Specifically, the zenith is along the geodetic
normal, and north is toward the ITRS reference pole.

although x and y can be set to zero (0.0) if sub-arcsecond accuracy is not needed. (If
refraction is requested, sub-arcsecond accuracy is unlikely.)

If ref_option = 0 for no refraction, then rar = ra and decr = dec.

(Return to Function List)

36 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term
37 http://www.iers.org/MainDisp.csl?pid=36-9

Rev. C

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�
http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�
http://www.iers.org/MainDisp.csl?pid=36-9�

C-56

transform_cat

short int transform_cat (short int option, double date_incat,
 cat_entry *incat, double date_newcat,
 char newcat_id[4],

 cat_entry *newcat)

 PURPOSE:
 To transform a star's catalog quantities for a change of epoch
 and/or equator and equinox. Also used to rotate catalog
 quantities on the dynamical equator and equinox of J2000.0 to the
 ICRS or vice versa.

 REFERENCES:
 None.

 INPUT
 ARGUMENTS:
 option (short int)
 Transformation option
 = 1 ... change epoch; same equator and equinox
 = 2 ... change equator and equinox; same epoch
 = 3 ... change equator and equinox and epoch
 = 4 ... change equator and equinox J2000.0 to ICRS
 = 5 ... change ICRS to equator and equinox of J2000.0
 date_incat (double)
 TT Julian date, or year, of input catalog data.
 *incat (struct cat_entry)
 An entry from the input catalog, with units as given in
 the struct definition (struct defined in novas.h).
 date_newcat (double)
 TT Julian date, or year, of transformed catalog data.
 newcat_id[4] (char)
 Three-character abbreviated name of the transformed catalog.

 OUTPUT
 ARGUMENTS:
 *newcat (struct cat_entry)
 The transformed catalog entry, with units as given in
 the struct definition (struct defined in novas.h).

 RETURNED
 VALUE:
 = 0 ... Everything OK.
 = 1 ... Invalid value of an input date for option 2 or 3.

Discussion:
Function transform_cat performs mean place to mean place transformations on star catalog
data. Only catalog reference data, not observed quantities, should be processed by this
function.

C-57

For option = 1, 2, or 3, two dates, date_incat and date_newcat, must be specified:
the input data is associated with the first date, and the output data is associated with the
second date. Two transformations are available:

option = 1: The star’s data is updated to account for the star’s space motion
between the first and second dates, within a fixed reference system. That is,
the epoch of the data is changed, but not the equator and equinox (or other
system).

option = 2

Setting option = 3 requests both transformations and is the most common case.

: The reference frame within which the star’s coordinates and proper
motion are expressed is rotated corresponding to precession between the first
and second dates. The star’s position in space is not changed. That is, the
equator and equinox of the data are changed, but not the epoch.

The two date arguments, date_incat and date_newcat, may be specified either as a
Julian date (e.g., 2433282.5) or a Julian year and fraction (e.g., 1950.0). (Values less
than 10000.0 are assumed to represent years.)

The option = 1 and option = 3 transformations are appropriate only for objects with
linear (or no) space motion; do not use them for components of binary stars. Also, this
function cannot be properly used to bring data from old star catalogs into the modern system,
because old catalogs were compiled using a set of constants (in particular, the rate of
precession) that are incompatible with modern values.

The option = 2 and option = 3 transformations involve the dynamical system, that is,
the moving mean equator and equinox. The mean equator and equinox of J2000.0 was the
most common reference system for modern astrometric catalog data before the ICRS was
introduced in 1998. Now, catalog data is usually referred to the ICRS, which is a reference
system fixed with respect to distant extragalactic objects, not defined by any Earth motions
and with no associated date. The option = 4 transformation is used to convert catalog
quantities from the mean equator and equinox of J2000.0 (the “J2000.0 system”) to the
ICRS. The option = 5 transformation is the opposite. The arguments date_incat and
date_newcat are ignored for these transformations.

Function frame_tie can be used to transform vectors from the J2000.0 system to the ICRS or
vice versa.
See function transform_hip for transforming Hipparcos catalog data to epoch J2000.0.

(Return to Function List)

C-58

transform_hip

void transform_hip (cat_entry *hipparcos,

 cat_entry *hip_2000)

 PURPOSE:
 To convert Hipparcos catalog data at epoch J1991.25 to epoch
 J2000.0, for use within NOVAS. To be used only for Hipparcos or
 Tycho stars with linear space motion. Both input and output data
 is in the ICRS.

 REFERENCES:
 None.

 INPUT
 ARGUMENTS:
 *hipparcos (struct cat_entry)
 An entry from the Hipparcos catalog, at epoch J1991.25, with
 all members having Hipparcos catalog units. See Note 1
 below (struct defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *hip_2000 (struct cat_entry)
 The transformed input entry, at epoch J2000.0. See Note 2
 below (struct defined in novas.h).

 RETURNED
 VALUE:
 None.

 NOTES:
 1. Input (Hipparcos catalog) epoch and units:
 Epoch: J1991.25
 Right ascension (RA): degrees
 Declination (Dec): degrees
 Proper motion in RA: milliarcseconds per year
 Proper motion in Dec: milliarcseconds per year
 Parallax: milliarcseconds
 Radial velocity: kilometers per second (not in catalog)
 2. Output (modified Hipparcos) epoch and units:
 Epoch: J2000.0
 Right ascension: hours
 Declination: degrees
 Proper motion in RA: milliarcseconds per year
 Proper motion in Dec: milliarcseconds per year
 Parallax: milliarcseconds
 Radial velocity: kilometers per second

C-59

Discussion:
This function takes Hipparcos catalog data, which is published for epoch J1991.25, and
transforms it to epoch J2000.0 for use in NOVAS functions such as place, app_star,
topo_star, virtual_star, etc. Note that the Hipparcos (input) right ascension is expressed in
degrees, as in the catalog, while the J2000.0 (output) right ascension is given in hours,
compatible with other NOVAS functions. Function transform_cat (with option = 1) is
called to perform the epoch transformation. The reference frame for both input and output is
the ICRS.

This function should be used only for Hipparcos stars with linear space motion.

Radial velocity (hipparcos->radialvelocity) is not given in the Hipparcos catalog. If
a value is not known, set hipparcos->radialvelocity = 0.0. The radial velocity is
important for only a small number of nearby, high-proper-motion stars.

(Return to Function List)

C-60

app_star

short int app_star (double jd_tt, cat_entry *star, short int accuracy,

 double *ra, double *dec)

 PURPOSE:
 Computes the apparent place of a star at date 'jd_tt', given its
 catalog mean place, proper motion, parallax, and radial velocity.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for apparent place.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing catalog data for
 the object in the ICRS (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date 'jd_tt'.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date 'jd_tt'.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 > 10 ... Error code from function 'make_object'.
 > 20 ... Error code from function 'place'.

Discussion:
This function computes the apparent place of a star for time jd_tt. The word “star” as used
here refers to any object outside the solar system. If the values of promora, promodec,
parallax, or radialvelocity within structure star are unknown (or zero within the
errors of measurement), the calling program should set them to zero. For extragalactic
objects, these input values should also be set to zero.

app_star works by calling place with location->where = 0 and coord_sys = 1.

C-61

“Loose” catalog data can be assembled into a structure of type cat_entry by using function
make_cat_entry.

(Return to Function List)

C-62

topo_star

short int topo_star (double jd_tt, double delta_t, cat_entry *star,
 on_surface *position, short int accuracy,

 double *ra, double *dec)

 PURPOSE:
 Computes the topocentric place of a star at date 'jd_tt', given its
 catalog mean place, proper motion, parallax, and radial velocity.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for topocentric place.
 delta_t (double)
 Difference TT-UT1 at 'jd_tt', in seconds of time.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing catalog data for
 the object in the ICRS (defined in novas.h).
 *position (struct on_surface)
 Specifies the position of the observer (structure defined in
 novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true equator
 and equinox of date 'jd_tt'.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date 'jd_tt'.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'where' in structure 'location'.
 > 10 ... Error code from function 'make_object'.
 > 20 ... Error code from function 'place'.

C-63

Discussion:
This function computes the topocentric place of a star (neglecting atmospheric refraction) for
the location specified by the argument location, for time jd_tt. Note that jd_tt is the
TT time at which the topocentric place is to be computed. The word “star” as used here
refers to any object outside the solar system. If the values of promora, promodec,
parallax, or radialvelocity within structure star are unknown (or zero within the
errors of measurement), the calling program should set them to zero. For extragalactic
objects, these input values should also be set to zero. The difference TT–UT1 (often called
∆T) is passed to the function via argument delta_t. Values of ∆T are published annually in
The Astronomical Almanac or can be obtained from the EO web site.38

Atmospheric refraction can be subsequently applied to ra and dec by function

equ2hor.

topo_star works by calling place with location->where = 1 and coord_sys = 1.

“Loose” catalog data can be assembled into a structure of type cat_entry by using
function make_cat_entry.

(Return to Function List)

38 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

C-64

virtual_star

short int virtual_star (double jd_tt, cat_entry *star,
 short int accuracy,

 double *ra, double *dec)

 PURPOSE:
 Computes the virtual place of a star at date 'jd_tt', given its
 catalog mean place, proper motion, parallax, and radial velocity.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for virtual place.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing catalog data for
 the object in the ICRS (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to the GCRS.
 *dec (double)
 Virtual declination in degrees, referred to the GCRS.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 > 10 ... Error code from function 'make_object'.
 > 20 ... Error code from function 'place'.

Discussion:
See the discussion for function app_star. Function virtual_star is identical to app_star in
input arguments and use. Here, however, the output arguments provide the virtual place
(also called the proper place) of the star. The virtual place (proper place) is essentially the
apparent place expressed in the GCRS.

virtual_star works by calling place with location->where = 0 and coord_sys = 0.

(Return to Function List)

Rev. B

C-65

local_star

short int local_star (double jd_tt, double delta_t, cat_entry *star,
 on_surface *position, short int accuracy,

 double *ra, double *dec)

 PURPOSE:
 Computes the local place of a star at date 'jd_tt', given its
 catalog mean place, proper motion, parallax, and radial velocity.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for local place.
 delta_t (double)
 Difference TT-UT1 at 'jd_tt', in seconds of time.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing catalog data for
 the object in the ICRS (defined in novas.h).
 *position (struct on_surface)
 Specifies the position of the observer (structure defined in
 novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to the 'local GCRS'.
 *dec (double)
 Local declination in degrees, referred to the 'local GCRS'.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'where' in structure 'location'.
 > 10 ... Error code from function 'make_object'.
 > 20 ... Error code from function 'place'.

Discussion:
See the discussion for function topo_star. Function local_star is identical to topo_star in
input arguments and use. Here, however, the output arguments provide the local place of the
star. The local place is essentially the topocentric place expressed in the “local GCRS”.

C-66

local_star works by calling place with location->where = 1 and coord_sys = 0.

(Return to Function List)

C-67

astro_star

short int astro_star (double jd_tt, cat_entry *star, short int accuracy,

 double *ra, double *dec)

 PURPOSE:
 Computes the astrometric place of a star at date 'jd_tt', given
 its catalog mean place, proper motion, parallax, and radial
 velocity.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for astrometric place.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing catalog data for
 the object in the ICRS (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours (referred to the ICRS,
 without light deflection or aberration).
 *dec (double)
 Astrometric declination in degrees (referred to the ICRS,
 without light deflection or aberration).

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 > 10 ... Error code from function 'make_object'.
 > 20 ... Error code from function 'place'.

Discussion:
See the discussion for function app_star. Function astro_star is identical to app_star in
input arguments and use. Here, however, the output arguments provide the astrometric place
of the star in the ICRS.

astro_star works by calling place with location->where = 0 and coord_sys = 3.

(Return to Function List)

C-68

app_planet

short int app_planet (double jd_tt, object *ss_body, short int accuracy,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Compute the apparent place of a planet or other solar system body.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for apparent place.
 *ss_body (struct object)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date.
 *dis (double)
 True distance from Earth to planet at 'jd_tt' in AU.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'type' in structure 'ss_body'.
 > 10 ... Error code from function 'place'.

Discussion:
This function computes the apparent place of a planet or other solar system body. Your
chosen version of function solarsystem, accessed from function ephemeris, determines the
source of the body’s barycentric rectangular coordinates used in the calculation.

app_planet works by calling place with location->where = 0 and coord_sys = 1.

(Return to Function List)

C-69

topo_planet

short int topo_planet (double jd_tt, object *ss_body, double delta_t,
 on_surface *position, short int accuracy,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the topocentric place of a solar system body.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for topocentric place.
 *ss_body (struct object)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 delta_t (double)
 Difference TT-UT1 at 'jd_tt', in seconds of time.
 *position (struct on_surface)
 Specifies the position of the observer (structure defined in
 novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true equator
 and equinox of date.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date.
 *dis (double)
 True distance from Earth to planet at 'jd_tt' in AU.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'where' in structure 'location'.
 > 10 ... Error code from function 'place'.

Rev. C

C-70

Discussion:
This function computes the topocentric place of a planet or other solar system body
(neglecting atmospheric refraction) for the location specified by the argument location at
the time specified by the argument jd_tt. Note that jd_tt is the TT time at which the
topocentric place is to be computed. The difference TT–UT1 (often called ∆T) is passed to
the function via argument delta_t. Values of ∆T are published annually in The
Astronomical Almanac or can be obtained from the EO web site.39

Atmospheric refraction can be subsequently applied to ra and dec by function

 The user’s choice of
ephemerides determines the values to be used in structure ss_body, which identifies the
solar system object.

equ2hor.

topo_planet works by calling place with location->where = 1 and coord_sys = 1.

(Return to Function List)

39 http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term�

C-71

virtual_planet

short int virtual_planet (double jd_tt, object *ss_body,
 short int accuracy,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Compute the virtual place of a planet or other solar system body.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992),
 Chapter 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for virtual place.
 *ss_body (struct object)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to the GCRS.
 *dec (double)
 Virtual declination in degrees, referred to the GCRS.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'type' in structure 'ss_body'.
 > 10 ... Error code from function 'place'.

Discussion:
See the discussion for function app_planet. Function virtual_planet is identical to
app_planet in input arguments and use. Here, however, the output arguments provide the
virtual place (also called the proper place) of the planet. The virtual place (proper place) is
essentially the apparent place expressed in the GCRS.

virtual_planet works by calling place with location->where = 0 and coord_sys = 0.

(Return to Function List)

C-72

local_planet

short int local_planet (double jd_tt, object *ss_body,
 double delta_t, on_surface *position,
 short int accuracy,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the local place of a solar system body.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992), Ch. 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for local place.
 *ss_body (struct object)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 delta_t (double)
 Difference TT-UT1 at 'jd_tt', in seconds of time.
 *position (struct on_surface)
 Specifies the position of the observer (structure defined in
 novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to the 'local GCRS'.
 *dec (double)
 Local declination in degrees, referred to the 'local GCRS'.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'where' in structure 'location'.
 > 10 ... Error code from function 'place'.

Discussion:
See the discussion for function topo_planet. Function local_planet is identical to
topo_planet in input arguments and use. Here, however, the output arguments provide the

C-73

local place of the star. The local place is essentially the topocentric place expressed in the
“local GCRS.”

local_planet works by calling place with location->where = 1 and coord_sys = 0.

(Return to Function List)

C-74

astro_planet

short int astro_planet (double jd_tt, object *ss_body,
 short int accuracy,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Compute the astrometric place of a planet or other solar system
 body.

 REFERENCES:
 Kaplan, G. H. et. al. (1989). Astron. Journ. 97, 1197-1210.
 Explanatory Supplement to the Astronomical Almanac (1992), Chap. 3.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date for astrometric place.
 *ss_body (struct object)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 accuracy (short int)
 Code specifying the relative accuracy of the output position.
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours (referred to the ICRS,
 without light deflection or aberration).
 *dec (double)
 Astrometric declination in degrees (referred to the ICRS,
 without light deflection or aberration).
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'type' in structure 'ss_body'.
 > 10 ... Error code from function 'place'.

Discussion:
See the discussion for function app_planet. Function astro_planet is identical to app_planet
in input arguments and use. Here, however, the output arguments provide the astrometric
place of the planet in the ICRS.

astro_planet works by calling place with location->where = 0 and coord_sys = 3.

(Return to Function List)

C-75

precession

short int precession (double jd_tdb1, double *pos1, double jd_tdb2,

 double *pos2)

 PURPOSE:
 Precesses equatorial rectangular coordinates from one epoch to
 another. One of the two epochs must be J2000.0. The coordinates
 are referred to the mean dynamical equator and equinox of the two
 respective epochs.

 REFERENCES:
 Explanatory Supplement To The Astronomical Almanac, pp. 103-104.
 Capitaine, N. et al. (2003), Astronomy And Astrophysics 412,
 pp. 567-586.
 Hilton, J. L. et al. (2006), IAU WG report, Celest. Mech., 94,
 pp. 351-367.

 INPUT
 ARGUMENTS:
 jd_tdb1 (double)
 TDB Julian date of first epoch.
 pos1[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean dynamical equator and equinox of first epoch.
 jd_tdb2 (double)
 TDB Julian date of second epoch.

 OUTPUT
 ARGUMENTS:
 pos2[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean dynamical equator and equinox of second epoch.

 RETURNED
 VALUE:
 (short int)
 = 0 ... everything OK.
 = 1 ... Precession not to or from J2000.0; 'jd_tdb1' or 'jd_tdb2'
 not 2451545.0.

Discussion:
This function precesses the input position vector, pos1, from the equator and equinox of
jd_tdb1 to the equator and equinox of jd_tdb2; the resulting vector is pos2.

 One of the two input Julian dates must be standard epoch J2000.0—either jd_tdb1 or
jd_tdb2 must be 2451545.0 exactly. To precess a vector from one arbitrary date to
another, call precession twice, using J2000.0 as the “middle” date. That is, in the first call,
jd_tdb1 = first Julian date, and jd_tdb2 = 2451545.0; in the second call, jd_tdb1 =
2451545.0, and jd_tdb2 = second Julian date.

C-76

Formally, the current precession algorithm is a function of Barycentric Dynamical Time
(TDB), but using TT as the basis for the input Julian dates results in a maximum error of only
about 3 × 10-9 arcseconds, which is totally negligible. Standard epoch J2000.0, although
formally defined in the TT time scale, is the same in the TT and TDB time scales to the
precision given by double-precision Julian dates: at J2000.0,
TT − TDB ≈ 10-4 second ≈ 10-9 day.

(Return to Function List)

C-77

equ2ecl

short int equ2ecl (double jd_tt, short int coord_sys,
 short int accuracy, double ra, double dec,

 double *elon, double *elat)

 PURPOSE:
 To convert right ascension and declination to ecliptic longitude
 and latitude.

 REFERENCES:
 None.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date of equator, equinox, and ecliptic used for
 coordinates.
 coord_sys (short int)
 Coordinate system selection.
 = 0 ... mean equator and equinox of date 'jd_tt'
 = 1 ... true equator and equinox of date 'jd_tt'
 = 2 ... ICRS
 (ecliptic is always the mean plane)
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy
 ra (double)
 Right ascension in hours, referred to specified equator and
 equinox of date.
 dec (double)
 Declination in degrees, referred to specified equator and
 equinox of date.

 OUTPUT
 ARGUMENTS:
 *elon (double)
 Ecliptic longitude in degrees, referred to specified ecliptic
 and equinox of date.
 *elat (double)
 Ecliptic latitude in degrees, referred to specified ecliptic
 and equinox of date.

 RETURNED
 VALUE:
 (short int)
 = 0 ... everything OK
 = 1 ... invalid value of 'coord_sys'

C-78

Discussion:
This function converts the equatorial position of an object into the equivalent ecliptic
position: equatorial coordinates ra and dec are converted to ecliptic coordinates elon and
elat. This function can be used for any kind of barycentric or geocentric coordinates—the
conversion involves a simple rotation and should be regarded as just a formalism. As in
function precession, the input Julian date can be based on either the TDB or TT time scales,
with negligible resulting error.

ra and dec can be expressed with respect to either the mean equator and equinox of date
jd_tt (if coord_sys = 0) or the true equator and equinox of date jd_tt (if coord_sys
= 1).

The representation of the ecliptic used for celestial coordinates is a smoothly moving mean
plane described as part of the precession development. However, the mean and true equators
intersect this ecliptic at different points. Therefore, the equinox, which serves as the origin of
ecliptic longitude as well as the origin of right ascension, is different in the two cases. elon
will be expressed with respect to the same equinox as ra.

 If jd_tt = 0.0 and coord_sys = 0, the function assumes ra and dec are expressed
with respect to the ICRS and provides elon and elat with respect to the ecliptic and mean
equinox of J2000.0.

See functions equ2ecl_vec and ecl2equ_vec for the conversion of vectors between equatorial
and ecliptic systems.

(Return to Function List)

C-79

cio_ra

short int cio_ra (double jd_tt, short int accuracy,

 double *ra_cio)

 PURPOSE:
 This function computes the true right ascension of the celestial
 intermediate origin (CIO) at a given TT Julian date. This is
 -(equation of the origins).

 REFERENCES:
 Kaplan, G. (2005), US Naval Observatory Circular 179.

 INPUT
 ARGUMENTS:
 jd_tt (double)
 TT Julian date.
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *ra_cio (double)
 Right ascension of the CIO, with respect to the true equinox
 of date, in hours (+ or -).

 RETURNED
 VALUE:
 (short int)
 = 0 ... everything OK.
 = 1 ... invalid value of 'accuracy'.
 > 10 ... 10 + the error code from function 'cio_location'.
 > 20 ... 20 + the error code from function 'cio_basis'.

Discussion:
This function supplies the true right ascension of the Celestial Intermediate Origin (CIO).

 ra_cio = – (equation of the origins)
ra_cio

where all quantities are expressed in hours.
 = Greenwich apparent sidereal time – Earth Rotation Angle

(Return to Function List)

C-80

era

double era (double jd_high, double jd_low)

 PURPOSE:
 This function returns the value of the Earth Rotation Angle
 (theta) for a given UT1 Julian date. The expression used is
 taken from the note to IAU Resolution B1.8 of 2000.

 REFERENCES:
 IAU Resolution B1.8, adopted at the 2000 IAU General Assembly,
 Manchester, UK.
 Kaplan, G. (2005), US Naval Observatory Circular 179.

 INPUT
 ARGUMENTS:
 jd_high (double)
 High-order part of UT1 Julian date.
 jd_low (double)
 Low-order part of UT1 Julian date.

 OUTPUT
 ARGUMENTS:
 None.

 RETURNED
 VALUE:
 (double)
 The Earth Rotation Angle (theta) in degrees.

Discussion:
This function supplies the Earth Rotation Angle, θ, which is the geocentric angle, in the
instantaneous equatorial plane (true equator), between the directions toward the Terrestrial
Intermediate Origin (TIO) and the Celestial Intermediate Origin (CIO).

This function allows for the input UT1 time to be represented as a split Julian date. See the
discussion in the description of function sidereal_time.

(Return to Function List)

C-81

cel_pole

short int cel_pole (double tjd, short int type, double dpole1,
 double dpole2)

 PURPOSE:
 This function allows for the specification of celestial pole
 offsets for high-precision applications. Each set of offsets is
 a correction to the modeled position of the pole for a specific
 date, derived from observations and published by the IERS.

 REFERENCES:
 Kaplan, G. (2005), US Naval Observatory Circular 179.
 Kaplan, G. (2003), USNO/AA Technical Note 2003-03.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB or TT Julian date for pole offsets.
 type (short int)
 Type of pole offset
 = 1 for corrections to angular coordinates of modeled pole
 referred to mean ecliptic of date, that is,
 delta-delta-psi and delta-delta-epsilon.
 = 2 for corrections to components of modeled pole unit
 vector referred to GCRS axes, that is, dx and dy.
 dpole1 (double)
 Value of celestial pole offset in first coordinate,
 (delta-delta-psi or dx) in milliarcseconds.
 dpole2 (double)
 Value of celestial pole offset in second coordinate,
 (delta-delta-epsilon or dy) in milliarcseconds.

 OUTPUT
 ARGUMENTS:
 None.

 RETURNED
 VALUE:
 (short int)
 = 0 ... Everything OK.
 = 1 ... Invalid value of 'type'.

Discussion:
This function allows for the specification of celestial pole offsets for high-precision
applications. The offsets describe the observed position of the Celestial Intermediate Pole
(CIP) with respect to the position computed from the standard precession and nutation
models. The offsets are subsequently applied as corrections to the nutation in longitude and
nutation in obliquity within e_tilt. Thus, e_tilt output arguments tobl, ee, dpsi, and deps
will be affected. Because other NOVAS functions, such as sidereal_time, call e_tilt to obtain

C-82

data related to the Earth’s orientation in space, the celestial pole offsets specified here are
propagated through the data that the various NOVAS functions provide.

Daily values of the celestial pole offsets are published, for example, in IERS Bulletins A and
B.40

Important: For compatibility with the NOVAS version 3.0 precession and nutation models,
specify type = 2 and use only IERS dX and dY values with respect to “IAU 2000A”
(sometimes labeled “IAU 2000”). These pole offset values will generally not exceed
0.5 milliarcsecond and therefore cel_pole would need to be called only when very high
accuracy is required.

 The celestial pole offsets effectively correct for errors or incompleteness in the standard
precession or nutation models. If you use cel_pole, make sure it is called before any other
functions for a given date. Values of the pole offsets that you specify by a call to cel_pole
will be used by e_tilt until you explicitly change them.

(Return to Function List)

40 http://www.iers.org/MainDisp.csl?pid=36-9

http://www.iers.org/MainDisp.csl?pid=36-9�
http://www.iers.org/MainDisp.csl?pid=36-9�

C-83

e_tilt

void e_tilt (double jd_tdb, short int accuracy,

 double *mobl, double *tobl, double *ee, double *dpsi,
 double *deps)

 PURPOSE:
 Computes quantities related to the orientation of the Earth's
 rotation axis at Julian date 'jd_tdb'.

 REFERENCES:
 None.

 INPUT
 ARGUMENTS:
 jd_tdb (double)
 TDB Julian Date.
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 *mobl (double)
 Mean obliquity of the ecliptic in degrees at 'jd_tdb'.
 *tobl (double)
 True obliquity of the ecliptic in degrees at 'jd_tdb'.
 *ee (double)
 Equation of the equinoxes in seconds of time at 'jd_tdb'.
 *dpsi (double)
 Nutation in longitude in arcseconds at 'jd_tdb'.
 *deps (double)
 Nutation in obliquity in arcseconds at 'jd_tdb'.

 RETURNED
 VALUE:
 None.

Discussion:
This function computes various quantities related to the orientation of the Earth’s rotation
axis (vector toward Celestial Intermediate Pole) with respect to the ecliptic plane at a specific
time. The computation involves a call to function nutation_angles to evaluate the nutation
series.

The output values of the last four arguments will correctly reflect the celestial pole offsets if
function cel_pole has previously been called.

(Return to Function List)

C-84

ephemeris

short int ephemeris (double jd[2], object *cel_obj, short int origin,
 short int accuracy,

 double *pos, double *vel)

 PURPOSE:
 Retrieves the position and velocity of a solar system body from
 a fundamental ephemeris.

 REFERENCES:
 None.

 INPUT
 ARGUMENTS:
 jd[2] (double)
 TDB Julian date split into two parts, where the sum
 jd[0] + jd[1] is the TDB Julian date.
 *cel_obj (struct object)
 Pointer to structure containing the designation of the body
 of interest (defined in novas.h).
 origin (int)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1.
 accuracy (short int)
 Selection for accuracy
 = 0 ... full accuracy
 = 1 ... reduced accuracy

 OUTPUT
 ARGUMENTS:
 pos[3] (double)
 Position vector of the body at 'jd_tdb'; equatorial rectangular
 coordinates in AU referred to the ICRS.
 vel[3] (double)
 Velocity vector of the body at 'jd_tdb'; equatorial rectangular
 system referred to the mean equator and equinox of the ICRS,
 in AU/Day.

 RETURNED
 VALUE:
 (short int)
 0 ... Everything OK.
 1 ... Invalid value of 'origin'.
 2 ... Invalid value of 'type' in 'cel_obj'.
 3 ... Unable to allocate memory.
 10+n ... where n is the error code from 'solarsystem'.
 20+n ... where n is the error code from 'readeph'.

C-85

Discussion:
This function serves as the single interface between NOVAS and ephemerides of solar
system bodies. The version of ephemeris distributed with NOVAS provides direct support
for the JPL ephemerides of major solar system bodies (such as JPL’s DE405 and DE406),
and the USNO minor planet ephemerides (USNO/AE9841

solarsystem
). The function ephemeris calls an

appropriate version of function (or solarsystem_hp) in order to access an
ephemeris of the “major” bodies (in this context Sun, Moon, and Mercury through Pluto). It
accesses the minor planet ephemerides by calling readeph. Neither the USNO minor planet
ephemerides nor the JPL ephemerides are part of NOVAS and must be obtained elsewhere as
discussed in sections 2.4 and 2.3, respectively.

Modifying function ephemeris to support ephemerides other than the two mentioned above is
relatively easy. In function ephemeris, a switch structure is controlled by the value of type
in a data structure of type object. Currently, two cases within the switch are defined:
type = 0 for major bodies to be handled via a call to solarsystem and type = 1 for minor
planets to be handled via a call to readeph. To support ephemerides of other bodies, simply
define a new value of type and add another case block containing code that accesses the
new ephemeris. Alternate versions of solarsystem can be written to support alternate
ephemerides, i.e., non-JPL, of major solar system bodies.

Additional information concerning function solarsystem is provided in the following
sections.

(Return to Function List)

41 http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/usnoae98�

C-86

solarsystem

short int solarsystem (double tjd, short int body, short int origin,

 double *position, double *velocity)

 PURPOSE:
 Provides the position and velocity vectors of a planet or other
 solar system body at a specific time. The origin of coordinates
 may be either the barycenter of the solar system or the center
 of mass of the Sun.

 REFERENCES:
 JPL. 2007, “JPL Planetary and Lunar Ephemerides: Export Information,”
 (Pasadena, CA: JPL) http://ssd.jpl.nasa.gov/?planet_eph_export.
 Kaplan, G. H. "NOVAS: Naval Observatory Vector Astrometry
 Subroutines"; USNO internal document dated 20 Oct 1988;
 revised 15 Mar 1990.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date.
 body (short int)
 Body identification number for the solar system object of
 interest; Mercury = 1,...,Pluto = 9, Sun = 10, Moon = 11.
 origin (short int)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1.

 OUTPUT
 ARGUMENTS:
 position[3] (double)
 Position vector of 'body' at tjd; equatorial rectangular
 coordinates in AU referred to the mean equator and equinox
 of J2000.0.
 velocity[3] (double)
 Velocity vector of 'body' at tjd; equatorial rectangular
 system referred to the mean equator and equinox of J2000.0,
 in AU/Day.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 Other values depend upon version in use.

Discussion:
Another NOVAS function, ephemeris, calls this function, solarsystem to provide the position
vector pos and velocity vector vel for body at time tjd. The vectors computed by

C-87

solarsystem are expressed with respect to ICRS axes, in the BCRS metric. The vectors are
barycentric if origin = 0 and heliocentric if origin = 1.

Three different versions of solarsystem are supplied in NOVAS, each with its own internal
logic. One uses internally-stored data or series expansions while the other two use the JPL
ephemerides, which exist as external data files. Additional documentation (see below) is
usually required for the proper use of each version. You are, of course, free to supply your
own version(s) of solarsystem, providing that the arguments conform to the above
specifications.

The values of the body identification number, body, will in general differ from one
solarsystem version to another; consult the documentation for the specific version in use.
Usually, body = 1 refers to Mercury, body = 2 refers to Venus, body = 3 refers to the
Earth, etc., but the identification numbers for bodies such as the Sun or Moon differ across
implementations. [Note: The data structure of type object, input to function ephemeris,
specifies the way that NOVAS identifies solar-system bodies. Code within ephemeris does
the “translation” between the body numbers required by ephemeris and the body numbers
required by solarsystem.] Furthermore, some versions of solarsystem support only a subset
of the major solar system bodies. The minimum requirement is support for the Sun and
Earth. Here, “Earth” refers to the geocenter and not the Earth/Moon barycenter.

For highest-precision applications using “split” Julian dates, call solarsystem_hp.

(Return to Function List)

C-88

solarsystem, version 1
(File solsys1.c)

 RETURNED
 VALUE:
 None.

Discussion:
This version of solarsystem provides an “all C” interface between NOVAS and the JPL lunar
and planetary ephemerides. Specifically, it serves as the interface between USNO’s C version
of the JPL ephemeris software (contained in file eph_manager.c) and the main set of
NOVAS functions. This version of solarsystem calls Planet_Ephemeris (the C version of
JPL’s Fortran subroutine PLEPH), which in turn calls other functions in the ephemeris
software package. The user must set up the binary, random-access ephemeris file (see
Appendix C).

Important: When using this version of solarsystem, the user’s program that calls the
NOVAS functions must make a call to function Ephem_Open prior to calling the NOVAS
functions. Ephem_Open opens the binary JPL ephemeris file. Similarly, the user’s
program should call Ephem_Close to close the binary ephemeris file once ephemeris
access is no longer required. Ephem_Open and Ephem_Close are located in
eph_manager.c.

The body identification numbers to be used with this version are listed below.

Name body

Sun 10

Mercury 1

Venus 2

Earth 3

Mars 4

Jupiter 5

Saturn 6

Uranus 7

Neptune 8

Pluto 9

Moon 11

(Return to Function List)

Rev. C

C-89

solarsystem, version 2
(File solsys2.c)

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Invalid value of body or origin.
 2...Error detected by JPL software.

Discussion:
This version of solarsystem serves as the interface between the JPL’s own Fortran-based
lunar and planetary ephemeris software and NOVAS. The function contains a single call to
Fortran subroutine jplint_, which in turn calls PLEPH and other Fortran subroutines in the
JPL ephemeris software package. The user is responsible for obtaining the Fortran
ephemeris code and data, setting up the binary, random-access ephemeris file, and linking the
JPL Fortran code with NOVAS. See the implementation notes below.

The body identification numbers to be used with this version are listed below.

Name body

Sun 10

Mercury 1

Venus 2

Earth 3

Mars 4

Jupiter 5

Saturn 6

Uranus 7

Neptune 8

Pluto 9

Moon 11

Implementation Notes:
In order to use NOVAS with solarsystem version 2, you must first obtain the planetary
ephemeris export package from JPL as discussed in Appendix C. If the verification process
is successful, the ephemeris file is ready to use. The ephemeris data is obtained from the
binary file by calling the access subroutines provided in the JPL export package.

Version 2 of solarsystem obtains ephemeris data from the binary file by calling Fortran
subroutine jplint_, which is contained in NOVAS file jplint.f. Subroutine jplint_, in turn,
calls JPL Fortran subroutine PLEPH and all other supporting Fortran subroutines. The C
function solarsystem has a few features that make it possible for it to exchange data with the
Fortran subroutine jplint_. First, all of the C arguments of the call to jplint_ are addresses,
because Fortran uses call by address instead of call by value for arguments of subroutines.

C-90

Second, all of the integer arguments in the call are designated as type long int in the C
function to match the Fortran INTEGER default. The DOUBLE PRECISION arguments in the
subroutine are designated as type double in the C function.

Probably the biggest hurdle in implementing version 2 of solarsystem involves the proper
compiling and linking of files containing different languages. The procedures will be
specific to your computing platform; therefore, you will have to consult your compiler
manual for detailed instructions. The following instructions are offered only as a guideline;
they provide a specific example of how such files were successfully handled on a PC running
Red Hat Enterprise Linux ES release 4 (Nahant Update 8).

1. Create a single file named jplsubs.f with all of the JPL Fortran ephemeris access
subroutines as discussed in

2. Compile the Fortran files,

Appendix C.

jplsubs.f and jplint.f, without invoking the linkage
editor to create the object file jplsubs.o and jplint.o. The Fortran compiler/linker
is g77

g77 -c jplsubs.f jplint.f

.

3. Compile, again without invoking the linkage editor, the C files main.c, novas.c,

novascon.c, nutation.c, solsys2.c, and readeph0.c, that create the object files
main.o, novas.o, novascon.o, nutation.o, solsys2.o, and readeph0.o. In this
example, main.c is the name of the file containing the user’s program. The C
compiler/linker is gcc

gcc -c main.c novas.c novascon.c nutation.c solsys2.c readeph0.c

.

4. Finally, link the object files using the Fortran linker:

In this example, the resulting executable file is named app

.

(Return to Function List)

create executable named "app"

object files

g77 -o app main.o novas.o novascon.o nutation.o solsys2.o readeph0.o jplsubs.o jplint.o

Rev. C

C-91

solarsystem, version 3
(File solsys3.c)

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Input Julian date ('tjd') out of range.
 2...Invalid value of 'body'.

Discussion:
This version of solarsystem provides the position and velocity of the Earth or Sun only
without reference to any external data file. The heliocentric position and velocity of the Earth
are computed by evaluating trigonometric series. When barycentric positions and velocities
are required, a number of additional approximations are involved; therefore, barycentric
positions and velocities computed by this version of solarsystem are less accurate than
heliocentric positions and velocities. This version of solarsystem produces data within the
following error limits (compared to the JPL DE405 ephemeris) for dates within the interval
1800–2050:

Earth heliocentric positions: 840 km
Earth heliocentric velocities: 1.4 m/s
Earth barycentric positions: 2500 km
Earth barycentric velocities: 1.4 m/s

When this version of solarsystem is used in the computation of the apparent place of the Sun,
it should contribute less than 2 arcseconds error. When this version of solarsystem is used in
the computation of apparent places of stars, it should contribute less than 1.5 milliarcseconds
error. This error assessment applies to the interval 1800–2050.

This version of solarsystem will return ierr = 1 for Julian dates prior to 2340000.5
(August 1694) or Julian dates after 2560000.5 (December 2296).

This version of solarsystem calls NOVAS function precession, and certain expressions in the
solarsystem algorithm have been adjusted to conform to the IAU 2006 precession.

The body identification numbers to be used with this version are listed below.

Name body

Sun 0

Sun 1

Sun 10

Earth 2

Earth 3

(Return to Function List)

C-92

solarsystem_hp

short int solarsystem_hp (double tjd[2], short int body,
 short int origin,

 double *position, double *velocity)

 PURPOSE:
 Provides an interface between the JPL direct-access solar system
 ephemerides and NOVAS-C for highest precision applications.

 REFERENCES:
 JPL. 2007, “JPL Planetary and Lunar Ephemerides: Export
 Information,” (Pasadena, CA: JPL)
 http://ssd.jpl.nasa.gov/?planet_eph_export.
 Kaplan, G. H. "NOVAS: Naval Observatory Vector Astrometry
 Subroutines"; USNO internal document dated 20 Oct 1988;
 revised 15 Mar 1990.

 INPUT
 ARGUMENTS:
 tjd[2] (double)
 Two-element array containing the Julian date, which may be
 split any way (although the first element is usually the
 "integer" part, and the second element is the "fractional"
 part). Julian date is on the TDB or "T_eph" time scale.
 body (short)
 Body identification number for the solar system object of
 interest; Mercury = 1, ..., Pluto= 9, Sun= 10, Moon = 11.
 origin (short)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1,
 center of Earth = 2.

 OUTPUT
 ARGUMENTS:
 position (vectors)
 Position vector of 'body' at tjd; equatorial rectangular
 coordinates in AU referred to the ICRS.
 velocity (vectors)
 Velocity vector of 'body' at tjd; equatorial rectangular
 system referred to the ICRS.

 RETURNED
 VALUE:
 None.

Discussion:
Function solarsystem_hp provides positions and velocities for the major bodies of the solar
system when the highest precision is required. This function supports the “split” Julian date
feature for highest precision. The two parts of the input Julian date are stored in the two-
element array, tjd.

(Return to Function List)

C-93

solarsystem_hp, version 1
(File solsys1.c)

 RETURNED
 VALUE:
 None.

Discussion:
This version of solarsystem_hp provides an “all C” interface between NOVAS and the JPL
lunar and planetary ephemerides when the highest precision is required. Specifically, it
serves as the interface between USNO’s C version of the JPL ephemeris software (contained
in file eph_manager.c) and the main set of NOVAS functions. This version of
solarsystem_hp calls Planet_Ephemeris (the C version of JPL’s Fortran subroutine PLEPH),
which in turn calls other functions in the ephemeris software package. The user must set up
the binary, random-access ephemeris file (see Appendix C).

Important: When using this version of solarsystem_hp, the user’s program that calls the
NOVAS functions must make a call to function Ephem_Open prior to calling the NOVAS
functions. Ephem_Open opens the binary JPL ephemeris file. Similarly, the user’s program
should call Ephem_Close to close the binary ephemeris file once ephemeris access is no
longer required. Ephem_Open and Ephem_Close are located in eph_manager.c.

The body identification numbers to be used with this version are listed below.

Name Body

Sun 10

Mercury 1

Venus 2

Earth 3

Mars 4

Jupiter 5

Saturn 6

Uranus 7

Neptune 8

Pluto 9

Moon 11

(Return to Function List)

C-94

solarsystem_hp, version 2
(File solsys2.c)

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Invalid value of body or origin.
 2...Error detected by JPL software.

Discussion:
This version of solarsystem_hp serves as the interface between the JPL’s own Fortran-based
lunar and planetary ephemeris software and NOVAS when the highest precision is required.
The function contains a single call to Fortran subroutine jplihp_, which in turn calls
DPLEPH and other Fortran subroutines in the JPL ephemeris software package. The user is
responsible for obtaining the Fortran ephemeris code and data, setting up the binary, random-
access ephemeris file, and linking the JPL Fortran code with NOVAS. See the
implementation notes below.

The body identification numbers to be used with this version are listed below.

Name Body

Sun 10

Mercury 1

Venus 2

Earth 3

Mars 4

Jupiter 5

Saturn 6

Uranus 7

Neptune 8

Pluto 9

Moon 11

Implementation Notes:
In order to use NOVAS with solarsystem_hp version 2, you must first obtain the planetary
ephemeris export package from JPL (see Appendix C for details). If the verification process
is successful, the ephemeris file is ready to use. The ephemeris data is obtained from the
binary file by calling the access subroutines provided in the JPL export package.

Version 2 of solarsystem_hp obtains ephemeris data from the binary file by calling Fortran
subroutine jplihp_, which is in the NOVAS jplint.f file. Subroutine jplihp_, in turn, calls JPL
subroutine DPLEPH (Fortran code) and all other supporting Fortran subroutines. The C
function solarsystem_hp has a few features that make it possible for it to exchange data with
the Fortran subroutine jplihp_. First, all of the C arguments of the call to jplihp_ are

C-95

addresses, because Fortran uses call by address instead of call by value for arguments of
subroutines. Second, all of the integer arguments in the call are designated as type long
int in the C function to match the Fortran INTEGER default. The DOUBLE PRECISION
arguments in the subroutine are designated as type double in the C function.

Probably the biggest hurdle in implementing version 2 of solarsystem_hp involves the proper
compiling and linking of files containing different languages. The procedures will be
specific to your computing platform; therefore, you will have to consult your compiler
manual for detailed instructions. The instructions given for version 2 of solarsystem provide
an example of how such files could be handled.

(Return to Function List)

C-96

solarsystem_hp, version 3
(File solsys3.c)

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Input Julian date ('tjd') out of range.
 2...Invalid value of 'body'.
 3...This version of 'solarsystem' not valid for use with
 NOVAS-C.

Discussion:
NOVAS does not provide a high-precision counterpart of solarsystem version 3 that works
without requiring an external data file. Thus, this version of solarsystem_hp is essentially a
dummy function that acts according to the value of variable action, which is set within the
function itself. If action = 1 (the default), this function returns an error code of 3
indicating appropriately that the function does not provide high-precision position and
velocity of the Earth and Sun. If action = 2 (must be manually set), this function simply
calls function solarsystem (version 3) and returns the low-precision position and velocity. An
error code of 0 (no error) is also returned. This action may be useful for code testing
purposes, but is neither appropriate nor recommended for normal use of NOVAS. Use
alternate versions of solarsystem_hp (located in the various solsysn.c files, where n is an
integer) when the highest precision is needed.

(Return to Function List)

Rev. C

C-97

Nutation Models
(File nutation.c)

The C version of NOVAS provides three implementations of the nutation model, all of which
are found in file nutation.c. Each model computes the nutation angles, ∆ψ and ∆ε, which are
the nutation in longitude and obliquity, respectively. These functions have the following
input and output:
INPUT
 ARGUMENTS:
 jd_high (double)
 High-order part of TT Julian date.
 jd_low (double)
 Low-order part of TT Julian date.

 OUTPUT
 ARGUMENTS:
 *dpsi (double)
 Nutation (luni-solar + planetary) in longitude, in radians.
 *deps (double)
 Nutation (luni-solar + planetary) in obliquity, in radians.

 RETURNED
 VALUE:
 None.

Discussion:
The nutation model is invoked via function nutation_angles in file novas.c. As previously
mentioned, the nutation model can be the most computationally intensive part of NOVAS. It
makes no sense to evaluate the full IAU 2000A nutation model (1,365 terms) [iau2000a]
unless the highest level of accuracy is needed. Thus, in addition to the full IAU 2000A
model, two reduced-accuracy models—truncated versions of IAU 2000A—are also provided:
IAU 2000B [iau2000b] and 2000K [nu2000k]. Section 1.4 discussed these models in greater
detail. Several higher-level NOVAS functions have an input argument, accuracy, which
specifies whether a full- or reduced-accuracy calculation is desired. Whenever accuracy is
set to 0 (full accuracy), IAU 2000A is used. By default, whenever accuracy is set to 1
(reduced accuracy), 2000K is used. However, a small coding change can be made to
nutation_angles to replace 2000K with IAU 2000B as the reduced-accuracy model. The
prolog and comments in nutation_angles explain how to make this change. A summary of
the models follows.

Nutation Model Function Name Terms Accuracy Compared to
IAU 2000A (mas) Time Span

IAU 2000A iau2000a 1,365 … …
2000K nu2000k 488 0.1 1700–2300

IAU 2000B iau2000b 77 1 1995–2050

(Return to Function List)

C-98

C-99

Chapter 5 Equinox- and CIO-Based Paradigms Compared

5.1 Computing Hour Angles
The equinox- and CIO-based celestial reference systems are part of two computational
schemes for accounting for the Earth’s instantaneous orientation with respect to the stars.
These two methods represent the same phenomena (as they obviously must) but in slightly
different order. The overall matrix that embodies, for a given instant, the terrestrial-to-
celestial (ITRS-ICRS) transformation is the same for both schemes. Therefore, the value of
observable quantities will not be affected by the choice of which paradigm is used for the
computations.

In NOVAS, quantities such as declination and hour angle, which are in principle measurable
angles, should have the same values regardless of the way in which they are computed.
Because both the equinox-based and CIO-based paradigms are constructed on the
instantaneous (true) equator of date—the plane orthogonal to the CIP—declinations are, in
fact, completely unaffected.

How are hour angles of celestial objects computed in the old and new paradigms? Assume
that we are considering Greenwich hour angles, that is, hour angles measured from the
meridian of geodetic longitude zero (the X-Z plane of the ITRS), without polar motion. In
the equinox-based scheme, we compute the topocentric place of the object of interest with
respect to the true equator and equinox of date. Then, we compute Greenwich apparent
sidereal time and subtract the object’s apparent right ascension to form the hour angle. In the
CIO-based scheme, we compute the object’s topocentric place with respect to the true
equator and CIO of date. To form the hour angle, we compute the ERA and subtract the
CIO-based right ascension (also called the intermediate right ascension). The two results
should be identical. The computed GHA may have to be reduced to the range −12h to +12h.
The table below summarizes the two equivalent procedures for hour angle and the NOVAS
functions that would be used for each, assuming that polar motion is neglected. The
procedures outlined here provide the Greenwich hour angle (GHA) of a star; only the first step
would be different for a solar system body.
Functions app_star, topo_star, and place require time arguments in the TT time scale
(topo_star also requires ∆T), while sidereal_time and era require time arguments in the UT1
time scale. The two procedures should yield the same value of GHA to within a micro-
arcsecond around the present time and identical values for DEC. To obtain the local hour
angle in either method, simply add to the GHA the observer’s longitude (east positive) in
appropriate units.

C-100

 Equinox-Based Method CIO-Based Method
Use
function

topo_star
— or —

place with
cel_object (type) = ′2′,
location = 1, and
coord_sys = 1

place with
cel_object (type) = ′2′, ,
location = 1, and
coord_sys = 2

 …to obtain RA and DEC
topocentric RA and dec of the star
with respect to the true equator and
equinox of date
(in hours and degrees, respectively)

RA and DEC
topocentric RA and dec of the star
with respect to the true equator and
CIO of date
(in hours and degrees, respectively)

Then, use
function

sidereal_time with
gst_type = 1

era

…to obtain GST
Greenwich apparent sidereal time
(in hours)

THETA
Earth Rotation Angle, θ
(in degrees)

Compute
Greenwich
hour angle

GHA = GST – RA
(in hours)

GHA = THETA / 15.0 – RA
(in hours)

The common notion of hour angle becomes somewhat problematic when polar motion is
taken into account, because what we usually regard as the Greenwich (or observer’s)
meridian—a plane of constant geodetic longitude—is not, in general, parallel to an hour
circle on the celestial sphere when the geodetic pole and the CIP are not coincident. See the
discussion in section 6.5.4 of USNO Circular 179.42

5.2 Other Computational Considerations

Two high-level NOVAS functions that involve Earth rotation, sidereal_time and ter2cel, can
perform their internal calculations using either the equinox-based paradigm or the CIO-based
paradigm. As previously mentioned, sidereal_time computes sidereal time. ter2cel performs
the terrestrial-to-celestial transformation. equ2hor is indirectly involved because it calls
ter2cel. The method used within either function is selected when that function is called. The
integer input argument, method, must be set to either zero (0) to use the CIO-based method
or to one (1) to use the equinox-based method. Because there is no external difference in
how sidereal_time or ter2cel are used, and the two computational paradigms yield answers
that are consistent within a few microarcseconds over many centuries, there is seldom a
practical basis for a choice. However, the equinox method is much more efficient if mean
sidereal time is to be computed.

42 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-101

Finally, another of the new Earth-rotation-related functions is worth mentioning. For a given
TT Julian date, cio_ra provides the right ascension of the CIO with respect to the true
equinox of date. With a sign reversal, this quantity is the equation of the origins, the direction
of the true equinox measured in the equator eastward (+) from the CIO. Because the equinox
and CIO are simply different right ascension origins on the instantaneous equator, cio_ra
provides the angular difference between the origins of these two systems. The equation of
the origins is also the difference, expressed as an angle, between the ERA and Greenwich
apparent sidereal time.

5.3 How NOVAS Implements the CIO-Based Paradigm
The equinox-based paradigm is, of course, the historical basis for NOVAS. One of its key
pieces is the precession algorithm [precession], which uses the equinox as its azimuthal
coordinate; that is, it transforms celestial coordinates from the mean equator and equinox of
one date to the mean equator and equinox of another date. Even though the recommended
precession formulation has been replaced twice over the last half-century, this aspect of it has
remained unchanged. Another key piece is the algorithm for sidereal time [sidereal_time],
which is based on a sidereal day that is defined by successive transits of the equinox. The
sidereal time formula must always be matched to the precession algorithm, because mean
sidereal time must account for the precession of the equinox in right ascension; this has been
consistently done in NOVAS.

To use the CIO-based paradigm, we must know where the CIO is in some well-defined
coordinate system. Unlike the equinox, the CIO is not defined by static geometry but by its
motion, so its position at any time is given by the result of an integral that has been evaluated
either analytically or numerically. In NOVAS, both results are available: the position of the
CIO can be taken from an external file that is the output of a numerical integration, or it can
be obtained from an analytical expression for the equation of the origins [cio_location]. See
sections 6.5.1.1 and 6.5.1.2 of USNO Circular 179.43

The NOVAS implementation of the CIO-based Earth rotation paradigm for a given date is
based on the construction of the Celestial Intermediate Reference System for that date, using
vectors toward the CIP and the CIO. These two directions define, respectively, the z-axis
and x-axis of the celestial intermediate system. The direction toward the CIP in the GCRS
can be computed by passing the vector (0,0,1) through functions nutation,

precession, and
frame_tie in succession. Given the direction of the CIP, the other piece of required
information is the location of the CIO for the same date, which is provided by cio_location,
described below. The basis vectors of the intermediate system, with respect to the GCRS, are
computed by cio_basis (see section 6.5.1 of USNO Circular 179 for the algorithms). Having
these basis vectors available allows NOVAS to easily transform any vector in the GCRS to
the intermediate system. The only other quantity used in the CIO-based paradigm is the
ERA, which is trivial to compute and provided by era.

Function cio_location obtains the location of the CIO for a given date in one of two ways,
and sets an output argument, ref_sys, that indicates which way was used. If an external

43 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-102

file of CIO right ascension values is available (nominally called cio_ra.bin and located in the
current directory) then cio_location will provide the GCRS right ascension of the CIO, and
will set ref_sys to one (1). If this file is not available, then cio_location will provide the
true right ascension of the CIO (the arc on the instantaneous equator from the equinox to the
CIO), obtained from a series expansion, and will set ref_sys to two (2). cio_basis can
work with either coordinate of the CIO. The two methods are equivalent within several
microarcseconds over six centuries centered on the year 2000; it is not clear which method is
more correct.

To do the hard work, cio_location calls either cio_array (for ref_sys = 1) or ira_equinox
(for ref_sys = 2). cio_location always initially checks to see if the external file of CIO
right ascensions is present. If it is, cio_array reads the file, which is the output from a
numerical integration covering years 1700 to 2300, and returns an array to be interpolated;
the interpolation directly provides the right ascension of the CIO in the GCRS. A copy of
CIO_RA.TXT is provided as part of the NOVAS distribution, along with a utility program
called cio_file.c to convert the text file to a binary direct-access file; section 2.5 describes
creating cio_ra.bin (2.9 Mbytes) from CIO_RA.TXT (7.5 Mbytes).

If cio_ra.bin is not present, then cio_location calls ira_equinox to evaluate the equation of
the origins from a closed-form expression that includes the evaluation of nutation in
longitude, a lengthy series of trigonometric terms. The result locates the CIO with respect to
the equinox on the instantaneous equator.

At no point does NOVAS use the CIO locator, s, which is described in IERS documents and
The Astronomical Almanac.

5.4 References
Kaplan, G. H. 2005, The IAU Resolutions on Astronomical Reference Systems, Time Scales,
and Earth Rotation Models, USNO Circular 179 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179 (USNO
Circular 179)

USNO & HMNAO. 2004, The Astronomical Almanac for the Year 2006

, (Washington, DC:
GPO) and subsequent editions

(Return to Table of Contents)

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-103

Appendix A Overview of How NOVAS Has Changed

A detailed list of the changes in the NOVAS C code from the previous version (C2.0.1 of
2000) is given in Appendix B. This appendix provides some perspective on these changes
for people who are already familiar with NOVAS. Most of the modifications have been
made in response to resolutions passed by the IAU in 2000 and 2006 that recommended new
models for fundamental astronomy within a new conceptual framework. To the greatest
extent possible, the calling sequences for the highest-level (and most used) functions from
the previous versions of NOVAS have been preserved, but there are a few important
exceptions. Many new calls are now available as well.

A.1 Important Changes in Calls
Probably the most important change to existing NOVAS calls is the change of proper motion
and parallax units in the calls to app_star, virtual_star, astro_star, transform_cat, and
transform_hip, all of which deal with star positions. The units have been changed as follows:

• proper motion in right ascension: from seconds per century to milliarcseconds per year
• proper motion in declination: from arcseconds per century to milliarcseconds per year
• parallax: from arcseconds to milliarcseconds

These changes have been made to conform to the units used in most modern star catalogs
(e.g., Hipparcos, Tycho-2, or the FK6), which in turn follow from the observational
techniques now used in the construction of such catalogs. Obviously, star data previously
used with NOVAS must either be replaced or transformed. The transformation equations
from “old” to “new” units are as follows:
pmrnew = pmrold * 150.0 * cos (dec0 * DEG2RAD); /* proper motion in RA */
pmdnew = pmdold * 10.0; /* proper motion in declination */
paxnew = paxold * 1000.0; /* parallax */

where dec0 is the catalog declination (J2000.0 or ICRS) of the star in degrees and DEG2RAD
is the degrees-to-radians conversion factor (0.01745329…).

Another important change to the high-level functions is that the argument lists of the
traditional “place” functions (app_star, topo_star, app_planet, topo_planet. virtual_star,
etc.) have changed. The earth data structure (type body) has been removed. This structure
is now created within the new place function described in the following section. A new input
parameter, accuracy, has been added to select either full-accuracy or reduced-accuracy
calculations.

Finally, function pnsw has been renamed to ter2cel with a change to the time argument; this
function carries out the terrestrial-to-celestial transformation.

All other changes to existing NOVAS calls involve lower-level functions not frequently
invoked by most users; these are detailed in Appendix B.

C-104

A.2 place: A New General-Purpose “Place” Function
All computational code to compute apparent, topocentric, virtual, astrometric, etc., places of
stars or planets has now been consolidated into a single new function called place. The
familiar calls to the traditional place functions from earlier versions of NOVAS still work
essentially as before—except for the important changes described in A.1 above—but are now
just “front-ends” to place [app_star, topo_star, app_planet, topo_planet. virtual_star,
local_star, virtual_planet, local_planet, astro_star, astro_planet]. This change eliminated
much duplicate code, provides more flexibility, and allows for possible future additions (such
as binary star orbits or nonlinear terms in proper motion). place can produce star or planet
positions within the Celestial Intermediate Reference System that is part of the new paradigm
for Earth rotation calculations (see below). place provides its output position both in
spherical coordinates (right ascension, declination, and, for solar system bodies, geometric
distance) and as a unit vector. In addition, place furnishes radial velocity. It also allows the
observer to be located at the geocenter, on or near the Earth’s surface, or in a near-Earth
spacecraft. You may want to consider changing your calls to app_star, app_planet, etc., to
the equivalent calls to place; the code for the new versions of the traditional place functions
specifies the appropriate input parameters.

A.3 New Reference Systems
The IAU resolutions of 2000 defined several new reference systems for fundamental
astronomy. The Barycentric Celestial Reference System (BRCS), Geocentric Celestial
Reference System (GCRS), International Celestial Reference System (ICRS), and Celestial
Intermediate Reference System are defined briefly below. More detailed descriptions of these
systems are in section 1.1 of this document and in Chapters 1, 3, and 6 of USNO Circular
179.44

Barycentric Celestial Reference System (BCRS) replaces the barycentric system based on the
mean equator and equinox of J2000.0. It is used for data tabulated in astrometric catalogs
and fundamental solar system ephemerides.

Geocentric Celestial Reference System (GCRS) replaces the geocentric system based on the
mean equator and equinox of J2000.0. It is used for geocentric apparent positions of celestial
objects, measurements and coordinates in the near-Earth environment, and artificial Earth
satellite ephemerides.

The BCRS and GCRS are nearly parallel systems, related by a relativistic transformation.

International Celestial Reference System (ICRS) is the name applied to the orientation of the
axes of the BCRS, based on the adopted coordinates of several hundred extragalactic radio
sources that are assumed to have no net systematic motion. The resulting orientation is close
to, but not exactly aligned with, the mean equator and equinox of J2000.0. The ICRS is a
“space-fixed” (kinematically non-rotating) system.

44 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-105

Because of their close relationship, the abbreviations “BCRS” and “ICRS” are often used
interchangeably.

Celestial Intermediate Reference System is a system for geocentric apparent positions of stars
and planets based on the true (instantaneous) equator of date and a zero point of right
ascension at the CIO (see section A.5).

The geocentric system based on the true equator and equinox of date is also still used for
geocentric apparent positions of stars and planets.

These reference systems are now used for the input and output arguments to NOVAS
subroutines. For example, NOVAS C3.0 assumes that input reference data, such as catalog
star positions and proper motions, and the basic solar system ephemerides, are provided in
the ICRS (that is, within the BCRS as aligned to the ICRS axes), or at least are consistent
with it to within the data’s inherent accuracy. The distinction between the ICRS and the
system defined by the mean equator and equinox of J2000.0 (the “J2000.0 system”) becomes
important only when an accuracy of 0.02 arcseconds or better is needed. Nevertheless,
because NOVAS is designed for the highest accuracy applications, the ICRS is given as the
reference system of choice for many input arguments to NOVAS functions.
Because the ICRS axes are not precisely aligned to those of the J2000.0 system, a new
function called frame_tie is available to transform vectors between the two systems. This
transformation is a very small fixed rotation. frame_tie is used for both barycentric vectors
(BCRS to or from the barycentric J2000.0 system) and geocentric vectors (GCRS to or from
the geocentric J2000.0 system). frame_tie is called many times, in both directions, within the
NOVAS code. It is needed because precession (and nutation) can properly be applied only to
vectors in a real equatorial system; vectors in the GCRS (geocentric ICRS) must be
transformed, via frame_tie, to the J2000.0 system before precession is used. If your code
only interacts with the highest-level NOVAS functions, all this is transparent to you.
However, if you use precession within your own code, you should precede it by a call to
frame_tie (with the middle argument direction > 0) if your input vector is expressed in the
GCRS, that is, if it is derived from an input source based on the ICRS.

Output data from many of the supervisory-level NOVAS functions can be expressed in the
GCRS or either of two equator-of-date systems: the true equator and equinox of date or the
Celestial Intermediate Reference System. The latter two systems differ only in their right
ascension origins, and, in the new paradigm, they are understood to be derived from the
GCRS by applying a few rotations.

A.4 New Models for Precession and Nutation
As described in section 1.4, new models for both precession and nutation have been adopted
by the IAU and have been incorporated into NOVAS. Although the underlying
developments for these effects are different than in NOVAS 2.0, from a programming point
of view, little has changed. The functions that directly involve precession and nutation
[precession, nutation, nutation_angles, sidereal_time] essentially work the same as before,
but with slightly different results. The new nutation model has more than ten times the
number of trigonometric terms than the previous model. Because evaluation of nutation has
always been the most computationally intensive task in NOVAS, you may notice an increase

C-106

in execution time for some NOVAS applications. However, that extra computation time can
be reduced.

Earth rotation calculations can be performed in either full- or reduced-accuracy mode as
described in section 2.6. Many functions include an input argument, accuracy, that
determines which mode will be used by that function and by any function it calls. In full-
accuracy mode, the various models are evaluated at the few-microarcsecond level. For
nutation, using this mode means that a 1,365-term trigonometric series is evaluated for each
unique date. However, neither the models nor current observations are accurate at this level;
so much of the increased computational burden is unproductive. Reduced accuracy mode can
be used when the accuracy requirements are not better than 0.1 milliarcsecond for stars or
3.5 milliarcseconds for solar system bodies. The computation time for these calculations is
thereby reduced by about two-thirds.

A.5 New Model for the Rotation of the Earth about its Axis
IAU resolutions passed in 2000 established a new geometric paradigm for how we describe
the Earth’s spin around its axis. Both the old and new paradigms are based on the
instantaneous (true) equator of date, but they use different fiducial points on the equator as
the origin of right ascension and different time-like quantities (actually, time-dependent
angles) to describe the rotation of the Earth. As described in section 1.4 and Chapter 5, the
conventional scheme is based on the equinox and sidereal time; in the new paradigm, the
reference point is called the CIO and the time-like quantity is called the ERA. A more
complete explanation of the new concepts, along with the algorithms used with them, can be
found in Chapter 6 of USNO Circular 179.45

NOVAS 3.0 implements both the equinox- and CIO-based computational schemes.
Implementing the CIO-based paradigm has required the addition of many new functions,
along with new code added to existing functions. First, the function

place is coded to provide
output right ascensions with respect to either the equinox or the CIO; the choice is made
through input argument coord_sys. Function gcrs2equ can similarly convert GCRS right
ascensions and declinations to their equatorial equivalents (for a given date), with output
right ascensions measured with respect to either zero point. cio_ra provides the angle
between the two zero points, that is, the difference between the two right ascension systems.
Functions cio_location, cio_basis, cio_array, ira_equinox provide lower-level support to
these computations. Function era computes the ERA for any instant.

Two high-level NOVAS functions that involve Earth rotation, sidereal_time and ter2cel (the
latter replaces the old pnsw) have been re-coded to perform their internal calculations using
either the equinox-based or CIO-based paradigm. When each function is called, an input
argument, method, is set to either zero (0) for the CIO-based approach or one (1) for the
equinox-based approach.

45 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-107

A.6 New Features
The functions in this section have been added to NOVAS to increase functionality and
convenience.

place is new general-purpose apparent place function. Section A.2 describes this function in
greater detail.

equ2ecl converts RA and dec to ecliptic longitude and latitude. In addition, equ2ecl_vec and
ecl2equ_vec convert vectors from an equatorial to an ecliptic basis and vice versa,
respectively.

equ2gal converts ICRS RA and dec to galactic longitude and latitude.

gcrs2equ converts GCRS (geocentric ICRS) RA and dec to one of the equatorial systems of
date.

make_object and make_observer are examples of a new set of functions which have been
added to facilitate the construction of important data structures used in NOVAS.

A.7 New Terminology
Not surprisingly, the IAU resolutions on reference systems and Earth rotation have required
some new terminology, and an IAU Working Group on Nomenclature for Fundamental
Astronomy was established for the 2003–2006 triennium to systematize the usage. New
terms and abbreviations now appear in the comment statements of many NOVAS functions,
including the prologs where the input and output arguments are described. The most
important terms are described in Chapter 1 of this document and further information can be
found in USNO Circular 179.

A.8 References
Kaplan, G. H. 2005, The IAU Resolutions on Astronomical Reference Systems, Time Scales,
and Earth Rotation Models, USNO Circular 179 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179 (USNO
Circular 179)

(Return to Table of Contents)

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-108

C-109

Appendix B List of Changes to Functions Between C2.0.1 and C3.0

This appendix lists in detail the changes between the current C3.0 version of NOVAS and the
previous C2.0.1 version of 2000. Appendix A provides some perspective on these changes
for people who are already familiar with NOVAS. Most of the modifications are in response
to resolutions passed by the IAU in 2000 and 2006 that recommended new models for
fundamental astronomy within a new conceptual framework. To the greatest extent possible,
the calling sequences for the highest-level (and most used) functions from the previous
versions of NOVAS have been preserved, but there are a few important exceptions. Many
new calls are now available as well.

B.1 New Functions in NOVAS C3.0
cio_array is called from cio_location. It reads and returns a set of values of the GCRS right
ascension of the CIO, near a given TDB Julian date, from an external, binary direct-access
file.

cio_basis returns orthonormal basis vectors for the Celestial Intermediate Reference System
with respect to the GCRS. It requires a prior call to cio_location.

cio_location returns the RA of the CIO at a given TDB Julian date, either with respect to the
GCRS or with respect to the true equator and equinox of date.

cio_ra returns the value of the true RA of the CIO for a given TDB Julian date.
d_light evaluates the difference in light-time to a star between the solar system barycenter
and the Earth.

ecl2equ_vec converts an ecliptic position vector to an equatorial position vector.

ee_ct evaluates a 34-term series for “complementary terms” in the equation of the equinoxes
based on the work of Capitaine, Wallace, and McCarthy (2003).

equ2ecl converts equatorial RA and dec to ecliptic longitude and latitude.

equ2ecl_vec converts an equatorial position vector to an ecliptic position vector.

equ2gal converts ICRS RA and dec to galactic longitude and latitude.

era evaluates the ERA, θ.
frame_tie sets up the frame tie matrix and transforms a vector from the dynamical mean
J2000.0 system to the ICRS, or vice versa. This function implements a first-order matrix
with second-order corrections to the diagonal elements, patterned after the work by Hilton
and Hohenkerk (2004). Given the smallness of the angles involved and their uncertainties,
this approach is quite adequate.

Rev. C

C-110

gcrs2equ transforms GCRS RA and dec to RA and dec on mean or true equator of date. For
true equator of date, either the true equinox or the CIO can be specified as the origin of right
ascension.

geo_posvel is called from place to compute the geocentric position and velocity vectors of an
observer on, or above, the surface of the Earth.

grav_def replaces sun_field; it supervises the evaluation of gravitational deflection of light
due to the Sun, Jupiter, and other solar system bodies. It calls a new function grav_vec to do
the deflection calculation for each body.

grav_vec calculates the gravitational deflection of light due to a solar system body. It is
called by grav_def, a new function that replaces sun_field.

iau2000a evaluates the IAU 2000A nutation series (nutation only) based on IERS code46

iau2000b evaluates the IAU 2000B nutation series based on

(Wallace 2003a).

IERS code (Wallace 2003b).

ira_equinox returns the value of the Equation of the Origins, i.e., the right ascension of the
equinox in the Celestial Intermediate Reference System from an analytical expression. The
Equation of the Origins is the arc on the true equator of date from the CIO to the equinox,
measured positively to the east.

light_time is called from place to antedate the position of a solar system body for light-time.

limb_angle evaluates where an observed object is with respect to the Earth’s limb (horizon),
given the geocentric position vectors of the observer and the object. place calls limb_angle
for the topocentric cases in order to decide whether to include the gravitational deflection of
light due to the Earth itself.

make_observer creates a structure of type observer specifying the location of the observer.

make_observer_at_geocenter creates a structure of type observer specifying an observer at
the geocenter.

make_observer_in_space creates a structure of type observer specifying the position and
velocity of an observer situated on a near-Earth spacecraft.

make_observer_on_surface creates a structure of type observer specifying the location of
and weather for an observer on the surface of the Earth.

make_in_space creates a structure of type in_space specifying the position and velocity of
an observer situated on a near-Earth spacecraft.

make_on_surface creates a structure of type on_surface specifying the location of and
weather for an observer on the surface of the Earth.

mean_obliq is called from e_tilt and cel_pole to compute the mean obliquity of the ecliptic.

norm_ang is called by ee_ct to normalizes angles into the range 0 ≤ angle < (2 π).

46 http://www.iers.org/MainDisp.csl?pid=38-15

Rev. C

http://www.iers.org/MainDisp.csl?pid=38-15�
http://www.iers.org/MainDisp.csl?pid=38-15�

C-111

nu2000k is a modification of iau2000a. It evaluates a truncated version (2000K) of the full
IAU 2000A nutation series and uses a consistent set of expressions for the fundamental
arguments, those of Simon et al. (1994). It is more accurate than the IAU 2000B series:
about 0.1 milliarcseconds for Δψ and about 0.04 milliarcseconds for Δε and Δψ sin ε over a
longer interval of time than IAU 2000B.

place is a new, general-purpose function for computing apparent, topocentric, virtual,
astrometric, etc., places of stars and planets. All substantive code for performing these
calculations has been moved from app_star, topo_star, app_planet, etc., into place. In the
call to place, the object requested is specified by the input parameter cel_object. The type
of place requested is specified by two input parameters, one indicating the location of the
observer and the other indicating the coordinate system of the output positions. app_star,
topo_star, app_planet, etc., now are just “front-ends” to place.

rad_vel is called from place to compute the radial velocity of observed object with respect to
the observer.

B.2 Changes to NOVAS C2.0.1 Structures and Calling Sequences
All of the high-level functions (place, app_star, app_planet, etc.) now assume that they are
working with ICRS data, including input RA, dec, and proper motion components for the
stellar functions and position and velocity vectors obtained from solarsystem for both stellar
and planetary functions. virtual_star, local_star, virtual_planet, local_planet, astro_star,
astro_planet, and mean_star produce output positions in the ICRS.

app_star, virtual_star, astro_star, app_planet, virtual_planet, astro_planet, mean_star,
topo_star, topo_planet, local_star, and local_planet have a new accuracy input parameter.
The former earth input parameter was removed from each of these functions.

aberration no longer returns an error code.

bary_to_geo was renamed bary2obs.

cel_pole can now accept input corrections to the pole positions as either (dψ, dε) or
(dX, dY); the choice of correction is specified by a new input parameter type. In either case,
the units of the correction must be in milliarcseconds. In addition, this function now returns
an error code.

earthtilt was renamed e_tilt with a new accuracy input parameter.

ephemeris now returns an error code.

get_earth was eliminated and its functionality moved to place.

make_cat_entry changed its proper motion units (in both RA and dec) to
milliarcseconds/year and changed its parallax units to milliarcseconds. Proper motion in RA
includes a cos dec factor.

nutate was renamed nutation. It has a new accuracy input parameter, and it no longer
returns an error code.

nutation_angles has a new accuracy input parameter, and it no longer returns an error code.

C-112

pnsw was renamed ter2cel (terrestrial-to-celestial transformation) with the former input
argument tjd changed to a UT1 Julian date split into a pair of double-precision words,
jd_ut_high and jd_ut_low, and with a new accuracy input parameter added.

precession can no longer process two arbitrary epochs. Therefore, one of the input epochs
must be 2451545.0 (J2000.0), because the new precession expressions are not as flexible as
those of Lieske et al. (1977, 1979). In addition, this function now returns an error code.

set_body was renamed make_object.

sidereal_time has new delta_t, gst_type, method, and accuracy input parameters. The
former ee input parameter was removed. In addition, this function now returns an error code.

spin is no longer specifically associated with sidereal time. It now applies a rotation about
the current z-axis with the angle expressed in degrees.

struct body was renamed object with the length of name member shortened to 50
characters and structure cat_entry member added.

struct site_info was renamed on_surface.

sun_field was replaced by grav_def, a more general function that evaluates the gravitational
deflection of light due to several solar system bodies.

tdb2tdt was renamed tdb2tt.

transform_cat has two modified and two new transformation options. Existing option=2
and existing option=3 can no longer process two arbitrary epochs. Therefore, one of the
input epochs for these options must be 2451545.0 (J2000.0), because the new precession
expressions are not as flexible as those of Lieske et al. (1977, 1979). New option=4 rotates
data from the dynamical equator and equinox of J2000.0 to the ICRS while new option=5
does the opposite rotation.
wobble has a new Julian date argument.

B.3 Significant Internal Changes to Code
app_star, topo_star, app_planet, topo_planet, virtual_star, local_star, virtual_planet,
local_planet, astro_star, and astro_planet are now simply “front-ends” to specific calls to
place. All substantive apparent place calculations of the various kinds are now done only in
place. The following changes in the basic algorithms were made.

1. Calls to frame_tie

2. In updating a star’s position for proper motion, a correction to the epoch of interest
for the difference in light-time between the solar system barycenter (the reference
point for the input catalog data) and the Earth itself is now included. This change
affects only stars with the greatest proper motions, and, then, only at the
0.1-milliarcsecond level. The new function

 were added in appropriate places to transform between the ICRS
and the dynamical system.

d_light

3. The “Doppler factor,” k, is included in the computation of stellar space motion
vectors as discussed in the note on

 is used to compute the epoch
offset.

starvectors below.

C-113

4. Modifications were made related to the change in gravitational deflection algorithms
from sun_field to the more general function grav_def as discussed in the note above.

5. Code has been introduced that allows a place to be expressed in the Celestial
Intermediate Reference System (equator of date with CIO as the right ascension
origin).

6. Code has been added that allows the input of an observer’s instantaneous geocentric
position and velocity vectors (with respect to the true equator and equinox of date) for
a topocentric place calculation; this change supports satellite observations.

e_tilt now evaluates a more complete series for the complementary terms in the equation of
the equinoxes; formerly, it just evaluated the two largest terms. It uses the expression for the
mean obliquity from the P03 precession formulation. Internally, the function works in either
full- or reduced-accuracy mode as set by the accuracy

Full-accuracy mode obtains the sum of the terms from IERS function ee_ct.
 input parameter.

Reduced-accuracy obtains the sum of the terms from a nine-term internal series.

equ2hor implements an improved algorithm for refraction geometry.
fund_args now evaluates expressions for the fundamental solar and lunar arguments from
Simon et al. (1994).

nutation_angles now just calls either of the nutation functions, iau2000a (from the IERS) or
nu2000k (a reduced-accuracy version of iau2000a), to do the hard work; it does not contain a
nutation series itself. The nutation function called depends on the value of the accuracy
input parameter. In reduced-accuracy mode, iau2000b may be called instead of nu2000k by
making a small code modification as explained in the prolog to the nutation_angles function.

precession now evaluates the precession-angle polynomials for the Capitaine, Wallace, and
Chapront (2003) P03 model, which was recommended by an IAU resolution in 2006. Some
code changes were made to ensure reversibility of transformation (to/from J2000.0).

sidereal_time returns the value of sidereal time, either mean or apparent. Internally, this
function can work by either of two methods as set by the method

Equinox-based method evaluates the expression for mean sidereal time following the
discussion in section 2.6.2 of

 input parameter.

USNO Circular 179.47 era The ERA, θ, is obtained from .
For apparent sidereal time, the equation of the equinoxes, including the “complementary
terms,” is obtained from e_tilt.
CIO-based method obtains the sidereal time using the method of section 6.5.4 of USNO
Circular 179. That equation is based on the position of the true equinox of date in the
Celestial Intermediate Reference System, the basis of which is obtained from cio_basis.
The ERA, θ, is obtained from era. Mean sidereal time, when requested, is obtained by
subtracting the equation of the equinoxes, obtained from e_tilt.
In either method, sidereal_time/era evaluates θ using the input UT1 epoch, but other
components of sidereal time are evaluated using TDB (set equal to TT), with
TT=UT1+ΔT where the delta_t input parameter sets the ΔT value.

47 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�

C-114

ter2cel performs the terrestrial-to-celestial transformation on a given vector, i.e., the total
rotation from the ITRS to the ICRS; it includes calls to frame_tie at appropriate places.
Internally, this function can work by either of two methods as set by method

Equinox-based method evaluates the old-style transformation as per the previous function
pnsw, but with a call to frame_tie added at the end to put final vector in ICRS. This
method uses apparent sidereal time, obtained from

 input
parameter.

sidereal_time.
CIO-based method performs the transformation of equations 3 and 4 given by Kaplan
(2003), based on the Celestial Intermediate Reference System. The orthonormal basis of
the system is obtained from cio_basis and the ERA, θ, is obtained from era.
In either method, the “fast angle” (rotation about z-axis) is evaluated using the input UT1
epoch, but other components of sidereal time are evaluated using TDB (set equal to TT),
with TT=UT1+ΔT where the delta_t input parameter sets the ΔT value.

transform_cat, transform_hip, and starvectors were modified to accommodate the new
proper motion and parallax units.
transform_cat and starvectors now use (sin(parallax))-1 to compute distance, rather than
parallax-1; an inconsequential change that just makes the expression formally correct. Also,
the “Doppler Factor,” k, mentioned in the Hipparcos documentation and other papers, is now
applied in computing the space-motion vector. The computational distance used for objects
of zero parallax has been increased to 1 Gpc (2.06 x 1014 AU).
transform_cat calls frame_tie for new transformation option=4 and for the new
transformation option=5, which rotate data between dynamical J2000.0 system and ICRS.
wobble now includes a very tiny (inconsequential for most applications) rotation about the z-
axis in the matrix to correct the ITRS longitude origin to TIO. This rotation uses the recently
published approximation to TIO longitude as a function of time, which required that the new
time argument also be added to this function. Essentially, this modification changes a W
rotation to a W´ rotation. Also, the matrix-element expressions changed from first-order
approximations to exact expressions for increased precision.
The following changes were made to constants:

• renamed MAU to AU
• renamed

 and updated value
KMAU to AU_KM

• added
 and updated value

AU_SEC
• added

 from DE405

• changed units of
C_AUDAY

C
• updated value of

 from AU/day to meters/second
GS

• added
 from DE405

GE
• renamed

 from DE405
EARTHRAD to ERAD

• updated value of
, changed units from kilometers to meters, and updated value

• renamed
F

OMEGA to
• added

ANGVEL

• updated value of
RMASS[12]

• added
TWOPI

Rev. B

ASEC360

C-115

• removed
• added

RAD2SEC

B.4 Other Internal Code Changes

ASEC2RAD

Many minor changes have been made in the code. Obviously, many of the comment
statements had to be revised, and others had to be added; such changes are too numerous to
try to list. Some variable names were changed. For example, the output RA and dec for the
mean_star function was named mra and mdec, the m indicating “mean”; these are now ira
and idec, the i indicating “ICRS.” Many similar trivial changes have been made.

B.5 References
Capitaine, N. Wallace, P. T., & Chapront. J. 2003, A&A
Capitaine, N., Wallace, P. T., & McCarthy, D. D. 2003,

, 412, 567 (P03)

A&A
Hilton, J. L. & Hohenkerk, C. Y. 2004,

, 406, 1135

A&A
Kaplan, G. H. 2003, in

, 413, 765

Proceeding of IAU Gen. Assembly XXV, Joint Discussion 16, The
International Celestial Reference System, Maintenance and Future Realizations

Kaplan, G. H. 2005,

, ed.
R. Guame, D. McCarthy, & J. Souchay (Sydney: The Assembly) 196

The IAU Resolutions on Astronomical Reference Systems, Time Scales,
and Earth Rotation Models, USNO Circular 179 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179 (USNO
Circular 179)

Lieske, J. H., Lederle, T., Fricke, W., & Morando, B. 1977, A&A
Lieske, J. H. 1979,

, 1

A&A
Simon, J. L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., & Laskar, J.
1994,

, 282

A&A
Standish, E. M. 1998, “JPL Planetary and Lunar Ephemerides, DE405/LE405,” JPL IOM
312.F-98-048 (Pasadena, CA: JPL)

, 282, 663

http://ssd.jpl.nasa.gov/iau-comm4/relateds.html

Wallace, P. 2003a, NU2000A Subroutine, Subroutines for Chapter 5, in IERS Conventions,
ed. D. McCarthy & G. Petit, IERS Tech. Not. 32 (Frankfurt: IERS)
http://www.iers.org/MainDisp.csl?pid=38-15

Wallace, P. 2003b, NU2000B Subroutine, Subroutines for Chapter 5, in IERS Conventions,
ed. D. McCarthy & G. Petit, IERS Tech. Not. 32 (Frankfurt: IERS)
http://www.iers.org/MainDisp.csl?pid=38-15

(Return to Table of Contents)

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-179�
http://ssd.jpl.nasa.gov/iau-comm4/relateds.html�
http://www.iers.org/MainDisp.csl?pid=38-15�
http://www.iers.org/MainDisp.csl?pid=38-15�

C-116

C-117

Appendix C How to Set Up the JPL Ephemer ides

C.1 Overview
As described elsewhere in this document, NOVAS requires access to a high-accuracy solar
system ephemeris in order to compute places of solar system bodies and the highest-accuracy
star places. Groups in the U.S., France, and Russia now construct high-accuracy solar system
ephemerides. In NOVAS C, solarsystem version 1 and solarsystem version 2 provide direct
access to the “developmental ephemerides,” designated as “DEnnn,” which are produced by
JPL in the U.S. The former is a front-end to a USNO-supplied C implementation of JPL’s
ephemeris-access software, while the latter is a front-end to the JPL-provided Fortran
software; both versions enable reading and interpolating a binary, direct-access ephemeris
file. The binary ephemeris file is created from ASCII data files and software supplied by JPL.
The JPL software must be tailored for your specific computer architecture.

This appendix describes how to set up the binary ephemeris file and the JPL software that
reads it on your system. After these tasks have been done successfully, the JPL software must
be linked into any NOVAS application that uses solarsystem version 2. Alternatively, the
binary ephemeris file can be used directly with solarsystem version 1 and the software in file
eph_manager.c. The procedures outlined below worked on an Intel-based Mac OS X system
using the open-source gfortran compiler and JPL software available in February 2009. The
resulting binary, direct-access ephemeris file was successfully transferred to and used on
other Intel-based computers running Microsoft Windows XP and Linux. Thus, our
procedures are tailored for computers containing Intel processors, including many systems
running Microsoft Windows, Mac OS X, and Linux. Providing specific procedures for all
combinations of computer processors, operating systems, and compilers is beyond the scope
of this user’s guide. Furthermore, the procedures in the appendix are intended simply as a
guide; the USNO cannot provide technical support regarding JPL software.

C.2 Step-by-Step Guide
Step 1: Connect to the JPL ftp site. All the files needed to install the JPL ephemerides are
available via anonymous ftp from ssd.jpl.nasa.gov. This can be accomplished through
most modern Web browsers by typing
ftp://ssd.jpl.nasa.gov
in the address (URL) field. When connected, go to the pub/eph/planets/ directory.

Step 2: Download the JPL software, ASCII ephemeris files, and corresponding test data file.
Follow the “CONTENTS TO BE RETRIEVED BY THE USER” instructions in the file
README.txt, which is also available as a webpage.48

48 http://ssd.jpl.nasa.gov/?planet_eph_export

 We recommend following the
instructions for “non-UNIX users” regardless of your computer’s operating system. Our
experience at USNO has been that the installation process is more a function of your
computer’s processor (hardware) than its operating system. The test data file, testpo.xxx, may

Rev. B

ftp://ssd.jpl.nasa.gov/�
http://ssd.jpl.nasa.gov/?planet_eph_export�

C-118

be found in both the same directory as the ASCII ephemeris files and in the separate test data
directory.

The characters used to terminate lines, the end-of-line codes, vary among operating systems.
Some systems use carriage returns (CR), some use line feeds (LF), and some use both. The
end-of-line codes may not be properly translated between operating systems when files are
copied from one system to another, depending on how the files are transferred and on what
options are invoked. If you have trouble reading or using any of the files downloaded from
JPL, check the encoding to ensure it is appropriate to your system.

Step 3: Configure the asc2eph.f file provided by JPL. For computer systems with Intel
processors, select (uncomment) the following statement at the beginning of the program:
PARAMETER (NRECL = 4)

Step 4: Split the testeph.f file provided by JPL into two files: jplsubs.f and testeph.f. The
first new file, jplsubs.f, should contain JPL subroutines FSIZER3, PLEPH (including
ENTRY DPLEPH), INTERP, SPLIT, STATE, and CONST extracted from the original JPL test
program. The second revised file, testeph.f, should contain only the main program and no
subroutines. JPL subroutines FSIZER1 and FSIZER2 will not be needed and are not retained
in either file.

The creation of the new file, jplsubs.f, is advantageous for the long-term use of the JPL
subroutines and the binary ephemeris files with NOVAS. The new file contains no
extraneous material and is named descriptively.

Step 5: Configure the new jplsubs.f
a. For computer systems with Intel processors, in subroutine

 file.
FSIZER3 of jplsubs.f,

uncomment and set

b. In subroutine
NRECL=4

FSIZER3 of jplsubs.f, identify the binary ephemeris file to be used
by setting
NAMFIL= 'JPLEPH'
You may wish to specify a more complete file name including the appropriate
directories, such as
NAMFIL= '/users/mystuff/ephem/JPLEPH'

c. In subroutine
to avoid having to keep an alias to this binary file in all your working directories.

FSIZER3 of jplsubs.f, set KSIZE to the correct value for the
specific ephemeris being used (see the comments in the code); e.g., set
KSIZE = 2036

d. In subroutine

for DE405.

STATE of jplsubs.f, select (uncomment)
CALL FSIZER3(NRECL,KSIZE,NRFILE,NAMFIL)
leaving the lines containing CALL FSIZER1 and CALL FSIZER2

Step 6: Compile and create executables.

 as comments.

a. Create executable application asc2eph by compiling and linking file asc2eph.f
b. Create executable application

.
testeph by compiling and linking files testeph.f

and jplsubs.f.

C-119

NOTE for Windows systems: Some Fortran compilers may produce files
with an .exe extension, i.e., asc2eph.exe and testeph.exe. If so, ignore the
.exe extension when using those applications in the following steps.

Step 7: Concatenate the ASCII data files and convert the concatenated file to binary form.
Follow the instructions in the “ASCII to BINARY (for non-UNIX users)” section of the
usrguide file, which is located in the pub/eph/planets directory. The resulting binary
ephemeris file will be named JPLEPH, or whatever name you specified in Step 5b.

Step 8: Test the binary ephemeris file. Follow the instructions in the “TESTING THE
BINARY FILE” section of the usrguide file, which is located in pub/eph/planets. You
should have already downloaded the appropriate test data file in Step 2.

Step 9: Use the binary ephemeris file with NOVAS. After successfully completing the test,
compile and link NOVAS function solarsystem version 2 (solsys2.c) and the JPL subroutines
contained in jplsubs.f with the remaining relevant parts of NOVAS and your application
code. Alternatively, the binary ephemeris file can be used directly with solarsystem version 1
and the software in file eph_manager.c. Unless you specified otherwise in Step 5b, the
binary JPL ephemeris file, or an alias to it, should reside in the same directory as your
executable application.

(Return to Table of Contents)

C-120

C-121

Appendix D A Compar ison of SOFA and NOVAS

The Standards of Fundamental Astronomy (IAU 2009a; SOFA)49

Generally, NOVAS is independent of SOFA although both software libraries include code
that is similar to two

 library is the official
collection of approved software for positional astronomy, operating under the auspices of
International Astronomical Union (IAU) Division 1 (Fundamental Astronomy). Both Fortran
and C libraries are available. An international SOFA Reviewing Board manages the
collection.

IERS Fortran modules.50

The document SOFA Tools for Earth Attitude, also known as the “SOFA Cookbook”,
contains several Fortran examples of the transformation between terrestrial and celestial
coordinate systems. This appendix examines how one of those examples plays out in the C
editions of both NOVAS and SOFA.

 Function iau2000a, which evaluates the full
1,365-term IAU 2000A nutation series in NOVAS 3.0, is based on the IERS subroutine
NU2000A. Function ee_ct, which evaluates the “complementary terms” in the equation of the
equinoxes, is based on IERS function EECT2000. The corresponding modules in SOFA are,
respectively, iau_NUT00A and iau_EECT00 (Fortran) and iauNut00a and iauEect00 (C).

D.1 Goal
These tests were designed to compare the transformation from GCRS to ITRS using the IAU
2000A/2006 models for precession and nutation. We compared the CIO-based method in
NOVAS C3.0 at full accuracy with a C translation of the example in the SOFA Cookbook
titled “IAU 2006/2000A, CIO based, using classical angles.” The goal was to verify that the
NOVAS libraries, which are (mostly) independent of SOFA, produced results that agree with
their SOFA counterparts at a level that is at least an order of magnitude better than the best
observational results.

D.2 Procedure
The comparison of the C editions of NOVAS and SOFA was based on an earlier comparison
of the Fortran editions, which is described in Appendix D of the User’s Guide to NOVAS
Version F3.051

User’s Guide to NOVAS Version F3.0

 (Fortran section of this circular). The C test functions were basically a line-
for-line transliteration of the Fortran terceltest.f and SOFA-TEST.f using the NOVAS and
SOFA C functions, respectively. includes complete
code for the full text of terceltest.f and SOFA-TEST.f.

49 http://www.iausofa.org/index.html
50 http://tai.bipm.org/iers/conv2003/conv2003_c5.html
51 http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180

Rev. C

http://www.iausofa.org/index.html�
http://tai.bipm.org/iers/conv2003/conv2003_c5.html�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�

C-122

Function terceltest is provided in the addendum; it was run using the following input
parameters:

• Universal Time: UT1 = 2400000.5 + 54195.4999991658

• Difference between TT and UT1:

 days (Julian date)
The UT1 value is divided into two parts, i.e., two separate arguments, because of the
large number of significant digits needed for precise results. The best agreement
between NOVAS and SOFA was obtained when UT1 was split in the exactly the
same place. In the Fortran tests, splitting the date differently produced differences of
about 3 microarcseconds.

∆T = 65.25607389

• Polar coordinates:

 s
SOFA does not use ∆T; this value is the difference between the TT and UT1 Julian
dates in the SOFA example, expressed in seconds.

XP = 0.0349282, YP = 0.4833163

• CIP offsets:

 arcsec

DX = 0.1725, DY = -0.265

The SOFA function iauNut06a includes small corrections to the nutation series arising from
the P03 precession that are not used in the NOVAS calculations. The corrections amount to
only a few microarcseconds for current dates.

 arcsec

NOVAS does not directly produce an overall GCRS-to-ITRS rotation matrix as SOFA does.
The NOVAS rotation matrix was constructed simply by passing the three vectors, (1,0,0),
(0,1,0), and (0,0,1), in succession through function ter2cel.
A series of tests was done, with and without corrections for polar motion, precession and
nutation, and the P03 correction in SOFA. The output of the C functions was compared with
output from the corresponding Fortran programs. Both the Fortran and C computations were
executed on a 32-bit Intel Apple Macintosh system running the Leopard (Mac OS X 10.5)
operating system.

D.3 Results
Table D1 shows that the latest C releases of NOVAS and SOFA agree at the sub-
microarcsecond level in the transformation between the celestial and terrestrial reference
systems when the same Earth orientation parameters and conventions are used. In this case,
including the P03 corrections in the SOFA nutation adds a discrepancy on the order of
1.4 µas. Inclusion of the CIP offsets and polar motion does not significantly add to the
differences in the two formulations, as long as the parameters used are identical in the two
cases. Use of the external CIO_RA file in the NOVAS calculation adds about 0.05 µas to
the difference for the above case, while using the equinox method for the NOVAS
computations does not have a significant effect on the results.

The results presented in Table D1 were obtained by computing the GCRS to ITRS
transformations for the single time discussed in the SOFA Cookbook. Therefore, the values
should be typical.

Rev. C

C-123

Table D1. Comparison of NOVAS C3.0 and SOFA C
Corrections Applied Other Options

Polar
Motion

CIP
Offsets

P03
Terms

External
CIO_RA

Equinox
method

Difference
(µas)

No No No No No 0.25814
No No Yes No No 1.6752
No Yes Yes No No 1.6728
Yes Yes Yes No No 1.6735
Yes Yes No No No 0.28679
Yes Yes No Yes No 0.34369
Yes Yes No No Yes 0.28644

D.4 References
Capitaine, N., Wallace, P. T., Chapront, J. 2003, A&A, 412, 567 (P03)

Kaplan, G., Bartlett, J., Monet, A., Bangert, J., & Puatua, W., 2009, User’s Guide to NOVAS
F3.0 (Washington, DC: USNO)
http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180

IAU. 2009a, Standards of Fundamental Astronomy, (SOFA) http://www.iausofa.org/

IAU. 2009b, SOFA Tools for Earth Attitude, Software version 4, Document revision 1.1
(SOFA Cookbook) http://www.iausofa.org/sofa_pn.pdf

IERS. 2003, Conventions 2003: Chapter 5 Transformation Between the Celestial and
Terrestrial Systems (Frankfurt, Germany: BKG)
http://tai.bipm.org/iers/conv2003/conv2003_c5.html

Monet, A., Kaplan, G., & Harris, W. Testing Coordinate Frame Transformations
NOVAS vs SOFA, USNO/AA Technical Note 2010-04 (Washington, DC: USNO)

William Harris
Alice Monet
George Kaplan
14 July 2010

Rev. C

http://www.usno.navy.mil/USNO/astronomical-applications/publications/circ-180�
http://www.iausofa.org/�
http://www.iausofa.org/sofa_pn.pdf�
http://tai.bipm.org/iers/conv2003/conv2003_c5.html�

C-124

D.5 Addendum: NOVAS Code

void terceltest ()
{

/* Transform vectors from ITRS to GCRS */

 double tjdh, tjdl, xp, yp, delt = 65.25607389, vec1[3], vec2[3], tjd,
 dx, dy, mobl, tobl, ee;

 short num = 0;

 FILE *In_Data = NULL;

 dx = +0.1750;
 dy = -0.2259;

/* Open the input file of Julian dates,CIO coords,ITRS vector */

 In_Data = fopen ("tercel-test-input.dat","r");

 while (!feof(In_Data))
 {
 fscanf(In_Data,"%hi%lf%lf%lf%lf%lf%lf%lf",&num,&tjdh,&tjdl,
 &xp,&yp,&vec1[0],&vec1[1],&vec1[2]);

/* Set transformation method, accuracy level, and ut1-utc. */

 tjd = tjdh + tjdl;

/* celpol (tjd,2,dx,dy);*/
 e_tilt (tjd,0, &mobl,&tobl,&ee,&dx,&dy);

/* Rotate vec1 from ITRS to GCRS = vec2 */

 ter2cel (tjdh,tjdl,delt,1,0,0,xp,yp,vec1, vec2);
 printf ("%i %20.17f %20.17f "
 " %20.17f\n",num,vec2[0],vec2[1],vec2[2]);
 }

 fclose (In_Data);

}

(Return to Table of Contents)

Rev. C

	Circ_180C
	User’s Guide to NOVAS 3.0 Naval Observatory Vector Astrometry Software
	Preface
	Errata List

	NOVAS_F3.0_GuideC
	User’s Guide to NOVAS Version F3.0 Naval Observatory Vector Astrometry Software Fortran Edition
	PLACE
	SIDTIM
	TERCEL
	ZDAZ
	CATRAN
	GETHIP
	APSTAR
	TPSTAR
	VPSTAR
	LPSTAR
	ASSTAR
	APPLAN
	TPPLAN
	VPPLAN
	LPPLAN
	ASPLAN
	PRECES
	EQECL
	CIORA
	This call supplies the true right ascension of the Celestial Intermediate Origin (CIO).
	RACIO = – (equation of the origins) = RACIO =Greenwich apparent sidereal time – ERA
	where all quantities are expressed in hours.
	EROT
	HIACC
	LOACC
	GETVEC
	This call supplies the unit vector that corresponds to the last object position computed by any NOVAS subroutine. It provides a simple way to obtain the vector that is equivalent to a pair of spherical coordinates, for example, right ascension and d...
	SETDT
	This routine allows for the specification of (T, the difference in seconds between the TT and UT1 time scales, to be used by NOVAS in subsequent calculations. The value of (T that you specify by a call to SETDT will be used by various NOVAS subrouti...
	Generally, the value of DELTAT needs to be accurate to only about one second, which means that a single call can be used for about a year’s span of dates. The only exception is for the computation of accurate topocentric positions of bodies in the i...
	(3TReturn to subroutine entry list3T) CELPOL
	ETILT
	SOLSYS
	Integer Function
	IDSS
	SOLSYS Version 1
	SOLSYS Version 2
	Specifications for Subroutine AUXPOS
	User-supplied subroutine called by SOLSYS version 2 (dummy version is provided)

	SOLSYS Version 3

	NOVAS_C3.0_GuideC
	User’s Guide to NOVAS Version C3.0 Naval Observatory Vector Astrometry Software C Edition
	Introduction
	Citing NOVAS
	Acknowledgements
	References

	Abbreviations and Symbols Frequently Used
	Chapter 1 Astronomical Background
	1.1 Astronomical Coordinate Systems
	1.2 Computing Observable Quantities
	1.3 Time Scales for Astronomy
	1.4 Adopted Models for Precession and Nutation
	1.5 New Model for the Rotation of the Earth about its Axis
	1.6 Terrestrial-Celestial Relationships
	1.7 References

	Chapter 2 Installing NOVAS
	2.1 List of Distribution Files
	2.2 Installation and Basic Validation
	2.3 Using External Solar System Ephemeris Files
	2.4 Using External Minor Planet Ephemeris Files
	2.5 Using an External CIO File
	2.6 Reduced-accuracy Mode
	2.7 References

	Chapter 3 Sample Calculations
	3.1 Initialization
	3.2 Setting Time Arguments
	3.3 Example 1—Position of a Star
	3.4 Example 2—Position of the Moon
	3.5 Example 3—Greenwich Sidereal Time
	3.6 Example 4—Other Frequently Requested Quantities

	Chapter 4 Data Structures and Functions
	4.1 Important Data Structures
	Structure cat_entry
	Structure object
	Structure on_surface
	Structure in_space
	Structure observer
	Structure sky_pos
	Structure ra_of_cio
	4.2 Function List
	4.3 Important Functions
	place
	sidereal_time
	ter2cel
	equ2hor
	transform_cat
	transform_hip
	app_star
	topo_star
	virtual_star
	local_star
	astro_star
	app_planet
	topo_planet
	virtual_planet
	local_planet
	astro_planet
	precession
	equ2ecl
	cio_ra
	era
	cel_pole
	e_tilt
	ephemeris
	solarsystem
	solarsystem, version 1 (File solsys1.c)
	solarsystem, version 2 (File solsys2.c)
	solarsystem, version 3 (File solsys3.c)
	solarsystem_hp
	solarsystem_hp, version 1 (File solsys1.c)
	solarsystem_hp, version 2 (File solsys2.c)
	solarsystem_hp, version 3 (File solsys3.c)
	Nutation Models (File nutation.c)

	Chapter 5 Equinox- and CIO-Based Paradigms Compared
	5.1 Computing Hour Angles
	5.2 Other Computational Considerations
	5.3 How NOVAS Implements the CIO-Based Paradigm
	5.4 References

	Appendix A Overview of How NOVAS Has Changed
	A.1 Important Changes in Calls
	A.2 place: A New General-Purpose “Place” Function
	A.3 New Reference Systems
	A.4 New Models for Precession and Nutation
	A.5 New Model for the Rotation of the Earth about its Axis
	A.6 New Features
	A.7 New Terminology
	A.8 References

	Appendix B List of Changes to Functions Between C2.0.1 and C3.0
	B.1 New Functions in NOVAS C3.0
	B.2 Changes to NOVAS C2.0.1 Structures and Calling Sequences
	B.3 Significant Internal Changes to Code
	B.4 Other Internal Code Changes
	B.5 References

	Appendix C How to Set Up the JPL Ephemerides
	C.1 Overview
	C.2 Step-by-Step Guide

	Appendix D A Comparison of SOFA and NOVAS
	D.1 Goal
	D.2 Procedure
	D.3 Results
	D.4 References

