Appendices to the Test Science Roadmap

for the Director, Operational Test and Evaluation (DOT&E)

July 2013

These appendices provide training, tutorials, case studies, and white papers that supplement the Test Science Roadmap Report.

Appendix 1: DOT&E Action Officer Training

- 1-1. Design of Experiments Action Officer Training Course 2012
- 1-2. Survey Action Officer Training Course
- 1-3. Reliability Action Officer Training Course
- 1-4. DOT&E Warfare Brownbag Examples

Appendix 2: Tutorials

- 2-1. Acceptance Testing versus Rejection Testing
- 2-2. Power Calculations
- 2-3. What Does DOE Buy Us?

Appendix 3: Roadmap Case Studies

- 3-1. Examples of DOE Applied in Air Warfare OT
- 3-2. DOE at MCOTEA Global Combat Support System
- 3-3. F-22 FOT&E 3.1 Test Design
- 3-4. ATEC Case Study
- 3-5. SPY-1D Radar Developmental Testing

Appendix 4: IDA Background Case Studies

- 4-1. DOE in TEMPs, T&E Concepts, Test Plans, and BLRIPS
- 4-2. Joint Chemical Agent Detector (JCAD) Test Design
- 4-3. Mobile Gun System (MGS) Case Study
- 4-4. Apache Block III
- 4-5. Integrated Defensive Electronic Countermeasures (IDECM)
- 4-6. Censored Data Analysis Briefing
- 4-7. Excalibur Logistic Regression
- 4-8. Stryker Reliability Case Study
- 4-9. Survey Case Study Measuring Workload and Operator Latency: Command and Control Dynamic Targeting Cell

Appendix 5: White Papers

- 5-1. Case Studies for the Use of DOE in Developmental Testing
- 5-2. Mine Susceptibility Comparison Study
- 5-3. Fuel Leakage Comparative Analysis

Appendix 1 DOT&E Action Officer Training

- 1-1. Design of Experiments Action Officer Training Course 2012
- 1-2. Survey Action Officer Training Course
- 1-3. Reliability Action Officer Training Course
- 1-4. DOT&E Warfare Brownbag Examples

Appendix 1-1. Design of Experiments Action Officer Training Course 2012

> Design of Experiments for Test & Evaluation

Introduction for Action Officers

<u>IDA</u>	Factor	Managemen	t Process		
		Likelihood of I	Encountering Level During	9 Operations	
		Multiple levels occur at balanced frequencies (e.g., 1/3, 1/3, 1/3)	Some levels are balanced, others are infrequent (e.g., 5/10, 4/10, 1/10)	One level dominates (e.g., 4/5, 1/10, 1/10)	
Effect of Cha Perfo	Effect of Changing Level on Performance		Mixed	Dominant	
Significant Effect on Performance	High	Vary all	Vary balanced levels, Demonstrate infrequent levels	Fix dominant level, Demonstrate others	
Moderate Effect on Performance	Medium	Vary all	Vary balanced levels, Demonstrate others	Fix dominant level, Demonstrate others	
Low Effect on Performance	Low	Fix levels or record level used	Fix levels or record level used	Fix dominant level	
 Part of Recent Manual 	f the AFOTEC In tly added to CC al	nitial Test Design F MOPTEVFOR's C	Process Operational Test Dir	rector	

<u>)</u> A	TEMP and Test Plan Review: Integrated Testing				
• Ac qu _	tion Officers estions whe Is there a c responses,	s should be able to an reviewing TEM lear plan that ident and factors/levels	to answer t Ps/Test Pla ifies the tes for each ph	the following th	ng s, ng?
			Test Pha	se	
		DT	MS	IT	IOT
Critical Responses		Select MOE, MOP, MOS, KPP	Select MOE, MOP, MOS, KPP	Select MOE, MOP, MOS, KPP	Select MOE, MOF MOS, KPP
Factors	Factor Levels				
Factor 1	Categorical 2 levels	Systematically Vary (SV)	SV	SV	Record (allow to vary with operational mission)
		Hold Constant (HC)	HC	SV	SV
Factor 2	Continuous				
Factor 3	Continuous	SV	SV	SV	SV
	Categorical	SV	SV	sv	SV

Appendix 1-2. Survey Action Officer Training Course

IDA 5 Golde	n Rules of Writing Items
Singularity:	Only 1 Idea Per Question
<u>User Friendly</u> :	Items Do Not Require a Lot of Thought or Interpretation (e.g., short, clear, specific)
<u>Neutrality</u> :	Items Do Not Imply Value Judgments Items Are Not Emotionally Charged
Knowledge Liability:	Respondents Have Enough Information to Answer the Question
Independence:	Responses Will Not Affect Responses to Other Questions

DA Response Scales: Improved Confidence in Data					
Ν	Better Data Iore Consistenc	for Analyst (more s by Between Resp	ensitivity & specifici ondents (higher	ty) reliability)	
JHSV:	Dichotomous v	. Behaviorally Ar	chored Respo	onse Scale	
"Were vehicl	es/MHE capable of	transiting the ramp.	?"		
	Yes		No		
Yes With No Issues	Yes With Minor Issues	Yes But With Major Issues	No	Not Observed	
	JSF: Dichoto	omous v. Likert R	esponse Scal	e	
"Rate the ov	erall ability of the F-	-35 aircraft to provid	e air collision avo	oidance."	
Not Totally Adequate		Totally A	Totally Adequate		
The informat	ion from the F-35 tr	affic collision avoida	ance system is us	seful.	
Strongly Disagree	Somewhat Disagree	Slightly Disagree Slightly	Agree Somewh Agree	at Strongly Agree	

More Than 3 Pages	1 Page					
FOR OFFICIAL DEE ONLY (when filled in) NOT RELEASABLE OFFICE OF COMOPTEVEDS AND MCOTEA C-P5	FOR DEPENDING DIST	takis odeni t	stied 1 mo ber	AU MEDIE	1	0-0-
(7) Maritimo Operations Effectiveness Survey (02-82)	(0) US 20 1 Miner Class Careford La	withing filmed, in all the states	15-7 1-1	1000		
Survey Sheet ES-2 Team 2 of 20	*	Strengty diamon	- Limetal	fumerial	Apres	França
The sensing of FDE (w.g., gloves, boots, wey) more any schole operation of montrol devices.	1. The 2007 Bridge design provides alequate structures average for	1. 1.	Ŧ		4	1
AND	 the weating of FDE to g., glapper, busts, etc.) does not problem metaphics of manage because. 	1 2			х	
a sered i tizzogi #, esplant	 The state and percept of the 2017 Randing to sciences for all 	1 1		-6		
	 The estantic formulation (i.e., 177 bailings surface in the set information system (i.e., interface), 177 bailings of the set information system (i.e., interface), 177 bailings of the set for effective model and the set for effective model of the set for effective	λį	4		•	÷
size and setup of the JMIV bridge is adequate for all	 The data transfer cats supporting LOT and second XVI summarizations 	- a à-		a.	÷.,	a.
ADDED ADDED AT ADDED AT ADDED AT ADDED ADD	 2007 serigetite symmet (1978. EC018-8. ene : protie adequate supple for repays and mission sizes. 	5 1				
s zetes 3 filmsyn 4. empleini	 . 2027 Desparination, "Lisensenies, and Recupition systems purchas safe and accurate saringston of the 	- à - à:	٠		,	
	 ZEEY mighammakay parquitains systems in g degine, waterijet, wet.t amegistelj expert wild? a 				÷	
The networks, and an addition (1.4., VM bilight-fouring), and universities provide (1.4., STRUET, STRUET, STR.) do the puls for effective conduct of the ansatum.	 ZETY angunering yours even in (b.g., genetation, evidence(if) anguneriy representation; representation; 	$\underline{v} = \underline{v}$	4	4	4	÷
AUREE AURE SCHEMAT SCHEMAN DIALORE DIALORE DIALORE	12. The SETY can show his the pleaf page will without tog represe	. F F.	4	11	τ.	$-\tilde{u}$
n eites 3 förnigt 6. egGstot	11. The role roll interfaces emeranely with polyre.	3. 3	Ψ.	. V.,		

This page intentionally left blank.

Characteristics of a Well-Run Reliability Growth Program						
Element	Details					
Adequate requirements	 System-level values achieved before fielding Interim thresholds and/or Entrance/Exit criteria Appropriate DT metrics (e.g., MTBEMA) 					
Dedicated Test Events for Reliability	 Component HALT, BIT Demo, LOGDEMO, Integration testing, Component DfR 					
RAM Analysis	• FMECA, Level of repair, reliability predictions					
Data collection, reporting, and tracking	 Independent data collector during DT and OT, FRACAS, FDSC, Boeing FRB, RAM WG, scoring/assessment conferences, root cause analysis, field data, etc. 					
Corrective Actions	 Funding and time allotted with commitment from the management 					
Realistic Growth Curve	 Based on funding Realistic assumptions 					

- Confirm that it is supported with a FRACAS and FRB
- Update model inputs once test results are available

IDA Reliability Growth Planning References

DOT&E references

- "State of Reliability," Memo from Dr. Gilmore to Principal Deputy Under Secretary of Defense (AT&L), 30 June 2010.
- "Next Steps to Improve Reliability," Memo from Dr. Gilmore to Principal Deputy Under Secretary of Defense (AT&L), 18 Dec 2009.
- "Test and Evaluation (T&E) Initiatives," Memo from Dr. Gilmore to DOT&E staff, 24 Nov 2009.
- "DOT&E Standard Operating Procedure for Assessment of Reliability Programs by DOT&E Action Officers," Memo from Dr. McQuery, 29 May 2009.
- "DoD Guide for Achieving Reliability, Availability, and Maintainability," DOT&E and USD(AT&L), 3 Aug 2005.

Other references

- "Department of Defense Handbook Reliability Growth Management," MIL-HDBK-189C, 14 June 2011.
- "Improving the Reliability of U.S. Army Systems," Memo from Assistant Secretary of the Army AT&L, 27 June 2011.
- "Reliability Analysis, Tracking, and Reporting," Directive-Type Memo from Mr. Kendall, 21 March 2011.
- "Department of Defense Reliability, Availability, Maintainability, and Cost Rationale Report Manual," 1 June 2009.
- "Implementation Guide for U.S. Army Reliability Policy," AEC, June 2009.
- "Reliability Program Standard for Systems Design, Development, and Manufacturing," GEIA-STD-009, Aug. 2008.
- "Reliability of U.S. Army Materiel Systems," Bolton Memo from Assistant Secretary of the Army AT&L, 06 Dec 2007.
- "Empirical Relationships Between Reliability Investments And Life-cycle Support Costs," LMI Consulting, June 2007.
- "Electronic Reliability Design Handbook," MIL-HDBK-338B, 1 Oct. 1998.
- "Department of Defense Test and Evaluation of System Reliability, Availability, and Maintainability: A primer," March 1982.

Software

- AMSAA Reliability Growth Models, User Guides and Excel files can be obtained from AMSAA.
- RGA version 7, Reliasoft.
- JMP version 10, SAS Institute Inc.

This page intentionally left blank.

Appendix 1-4. DOT&E Warfare Brownbag Examples

Dr. Gilm	G	i uid	ance
	ore's Octol	ber 1	9, 2010 Memo to OTAs
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>	In a sporse T334% and status of end to end element. effectiveness of eners but nort likely dure in order to ensure the source of the element of unables; it is order to ensure the element of the element		 The goal of the experiment. This should reflect evaluation of end-to-end mission effectiveness in an operationally realistic environment. Quantitative mission-oriented response variables for effectiveness and suitability. (These could be Key Performance Parameters but most likely there will be others.) Factors that affect those measures of effectiveness and suitability. Systematically, in a rigorous and structured way, develop a test plan that provides good breadth of coverage of those factors across the applicable levels of the factors, taking into account known information in order to concentrate on the factors of most interest. Amethod for strategically varying factors across both developmental and operational testing with respect to responses of interest. Statistical measures of merit (power and confidence) on the relevant response variables for which it makes sense. These statistical measures are important to understand "how much testing is enough?" and can be evaluated by decision makers on a quantitative basis so they can trade off test resources for desired confidence in results.

Mobile Gun System (MGS) Mission

"The fundamental mission of the mobile gun system platoon is to provide mounted, <u>precision direct fire support</u> to the SBCT infantry company. Its ability to move, shoot, and communicate, and to do so with limited armored protection, is an important factor on the modern battlefield. The MGS platoon <u>moves, attacks, defends, and performs</u> <u>other essential tasks to support the company's mission</u>. In accomplishing its assigned missions, it employs firepower, maneuver, and shock effect, synchronizing its capabilities with those of other maneuver elements and with CS and CSS assets. When properly supported, the platoon is capable of conducting sustained operations against any sophisticated threat."

U.S. Army Field Manual 3-21.11, The SBCT Infantry Rifle Company, Appendix B, The MGS Platoon

	-	pai		ig u		phar	-C			
		Defensive (Stationary) Engagement								
	Weapon		Main Gun		Coa	ax Machine G	Bun	.50 Cal		
	Sight	Primary	Thermal	Auxiliary	Primary	Thermal	Auxiliary			
	Target	700 4455	100 10 10	000 4455						
Stationan	I ank	790-1100	400-1240	900-1100						
	APC	513-1160	761-1160	900-1100				0.47.005		
Stationary	I FUCK	400 1200	460 1055					347-695		
	Troops	240-935	270-857		240-800	270-857		605		
	Tank	1310-1675	710-775	800-1000	240-030	210-031		033		
Moving	APC	850-1200	1030	800-1000						
	Truck	000 1200	1000					385		
	Troops									
				Offensive	(Moving) En	gagement				
	Tank	611-925	830-1230							
	APC	460-1230	400-860							
Stationary	Truck	950						700-777		
	Bunker/Bldg	930-1450	394-1263							
	Troops		230-715		286-570	230-700				
	Tank	750								
Moving	APC	300-1200	1150							
moring	Truck									
	Troops									

	TEMP Exa		nple	e: Arti	illery Howit	zer	
Critical Responses	Accuracy (I Timeliness	Miss Distance in meters (Time to Complete Mis seconds) (Mean Time between F	, CEP) sion in	DOF	E Campaign Strategy		
	rendenity	Factors	Facto	or Levels	Test I	Events	
		T actors	Tucu	n Levels	LUT /OA	IOT	
		Ammo-Lethal	Projec Projec	tile 1(P1), tile 2(P2)	SV	SV	
		Ammo-Non Lethal S Time		Ammo-Non Lethal Smoke, Illum		Non-Lethal limited # missions	
		Time	Day	, Night	SV	SV	
		Range Band	Chai	rges 1- 5	SV	SV	
		Traverse	0°-15°, 1 of	15°-45°, Out Sector Sector (limited # missions)		SV (0°-15°, 15°-45°), Out of Sector (limited # missions)	
		Angle	Lov	w, High	SV	SV	
		Fuze	Time D Point Det Multi-o (N	Delay (TD), conation(PD), option fuse MOF)	SV	SV	
		Test Elements	# of tes	st elements	HC (1 Element)	SV (3 Elements)	
		Notes/Definitions: *HC-Held Constant *SV – Systematically	Varied				

Consolidated Afloat Networks and Enterprise Services (CANES)

- The Consolidated Afloat Networks and Enterprise Services (CANES) initiative is designed to consolidate and improve the networks on tactical platforms, largely through a common computing environment.
- It will modernize the IT infrastructure for ships, submarines, aircraft and selected shore sites
- CANES will be fielded to 193 sites, which includes ships, submarines, training platforms, and marine operation centers.
- Test objective:
 - Determine if CANES provides a timely and accurate display on the display terminal.

Consolidated Afloat Networks and Enterprise Services (CANES) 4 x 2 x 2 General Factorial Design (32 runs) Responses (all continuous): Unclass Secret SR TS-SCI Chat latency (requirement: <=5) 2 2 2 2 Low sec) 2 2 High 2 2 Time to display common 2 2 2 2 Low operational picture 2 2 High 2 2 Time to download and display media on a CANES terminal (requirement: <=10 s2n=0.5 s2n=1 s2n=2 0.313 0.597 0.975 Classification (A) sec) ork Loading (B) 0 544 0 931 0 999 Factors (all categorical): ssion Type (C) 0.544 0.931 0.999 - Classification (Unclassified, SR, 0.313 0.597 0.975 ΑВ 0.313 0.597 0.975 Secret, SCI) 0.544 0.931 0.999 Network Loading (Low, High) Transmission Type (Internal, External) A model based on the DOE provides information on whether or not the threshold is met across the operational envelope.

Threat Type & Density	N /						
	vary	Vary	Vary	Vary***	Vary***	Vary***	Vary***
4Z	Vary	Vary	Vary	Vary	Vary	Vary	Vary
EL	Vary	Vary	Middle	Vary	Vary	Record	Record
Threat Range	Vary	Vary	Vary	Vary	Vary	Record	Record
R Clutter	Vary	Vary	Record	Vary	Vary	Vary	Vary
ACFT Mode	Vary	Vary	Vary	Vary	Vary	Vary	Vary
Miss distance (HF)	Vary	Near	Vary	N/A	N/A	N/A	N/A
Light	Vary	Vary	Record	Vary	Vary	Vary	Vary
Atmospheric	N/A	Vary	Record	Record	Record	Record	Record
Terrain	Record	Record	Record	Record	Vary	Record	Record
GPS availability	Yes	Yes	Yes	Vary	Yes	Vary	Vary
External payload	No	No	No	Vary	No	Vary	Vary
Wingman	No	No	No	Vary	No	Vary	Record
Flares	No	No	No	Vary	Vary	Vary	Vary
Weapons use	No	No	No	Vary	Vary	Vary	Vary

Low correlations between model terms

	How DOE – [to Test JAT Design Ade	ʿAS quacy	
Response Test phase	Variables: Probability of Design type/size	declaration, Timely t	hreat warning	
DSM	D-Optimal, 360 test points for each threat type and combination of threat types	2 nd Order Model (main effects and two-way interactions)	Continuous Response (S:N = 1) Main Effects: >99% Two-way interactions: > 99%	
HITL	D-Optimal, 360 test points for each threat type and combination of threat types		Binomial Response (S:N = 0.25) Main Effects: >96.2% Two-way interactions: > 95.8%	
Live weapons fire	Series of factorial designs and demonstrations	See Live Fire Table	See Live Fire Table	
ΙΤΒ	D-Optimal, 202 test points (190 single threat, 12 double threat)	1 st order model plus select interactions (main effect & some two-way Interactions)	Continuous Response (S:N = 1) Main Effects: > 99% Estimable Two-ways: > 98% Binomial Response (S:N = 0.25) Main Effects: > 37.4% Two-way interactions: > 44.3%	Binominal vs. continuous metric power!
ОТВ	D-Optimal, 69 test points	1 st order model (main effects only) - threat range is not estimable for L1 and L2	Continuous Response (S:N = 1) Main Effects: > 98% Binomial Response (S:N = 0.25) Main Effects: 35.1% - 79.7%	
ITC	D-Optimal, 150 test points + demonstrations	2 nd order model (main effects and two-way interactions)	Continuous Response (S:N = 1) Main Effects: >99% Two-way interactions: > 99%	
отс	D-Optimal, 150 test points + demonstrations		Binomial Response (S:N = 0.25) Main Effects: > 78.3% Two-way interactions: > 60.5%	

A	C-130J	Factor/I	evel Man	agement
COI 1: Can the AC-130	J conduct persistent s	trike operations?		
Design 1: Dry Strike				
Type: D-Optimal			Runs: 69+8	
Power: 82.8% to 98.39	6			
Factor	Descriptor	Factor Mgmt	Factor Definition	Notes
Target 1 Moving	Yes No	Vary		Separate design for moving targe track stability.
Target 2 (Static only)	None Within 1K Outside 1K	Vary		
Obscured	Yes No	Vary	Target obscured by clouds, smoke, haze, etc	Can force obscure by turning visual sensors off.
Tasking Method	Voice Data	Vary	Data will include many sources	Includes LOS and BLOS
Altitude	Low Med High	Vary	8,000 14,000 20.000	
Friendly Proximity	Danger Close TIC Beyond 1km	Vary	TIC is from Danger Close to 1km.	Can we vary a level in an operationally
TOD	Day Night	Vary		realistic manner?
Target 1 Weapon	30mm GPS Laser	Vary		
Time sensitive	>5 mins <5 mins	Fix @ <5 mins		-

	AFOTI	EC Factor F	Prioritizati	on			
		Likelihood of Encountering Level During Operations					
		Multiple levels occur at balanced frequencies (e.g., 1/3, 1/3, 1/3)	Some levels are balanced, others are infrequent (e.g., 5/10, 4/10, 1/10)	One level dominates (e.g., 4/5, 1/10, 1/10)			
Effect of Cha Perfo	nging Level on rmance	Balanced	Mixed	Dominant			
Significant Effect on Performance	High	Vary all	Vary balanced levels, Demonstrate infrequent levels	Fix dominant level, Demonstrate others			
Moderate Effect on Performance	Medium	Vary all	Vary balanced levels, Demonstrate others	Fix dominant level, Demonstrate others			
Low Effect on Performance	Low	Fix levels or record level used	Fix levels or record level used	Fix dominant level			
	How	do we prioritize the t	factors/levels?				

5												
DEMO Standoff Precision Guided Munitions (SOPGM) Factorial, 2 ³ w/2 center points Signal/Noise = 2 for all responses Power less than 80% for demo (65.7%)												
Select	Std	Run	Factor 1 A:Moving Targ	Factor 2 B:Altitude	Factor 3 C:Day/Night	Response 1 R1	Response 2 R2	Response 3 R3	Response 4 R4	Response 5 R5		
	1	5	0.00	8000.00	0.00							
	2	8	50.00	8000.00	0.00							
	3	1	0.00	25000.00	0.00							
	4	4	50.00	25000.00	0.00							
	5	9	0.00	8000.00	100.00							
	6	7	50.00	8000.00	100.00							
	7	3	0.00	25000.00	100.00							
	8	10	50.00	25000.00	100.00							
	9	6	25.00	16500.00	0.00					6		
	10	2	25.00	16500.00	100.00							

	(Applying DOE Principles)
Response	Туре
Achieved Search Lev	# of mines detected divided by # of mines in search are
Probability of Classifying	a Mine # of mines detected divided by the # of mines passing
a Mine	within sensor's detection envelope
Additional responses were investi	igated but not shown here.
Additional responses were investi	igated but not shown here.
Factors	Levels
Additional responses were investi	igated but not shown here.
Factors	Levels
Mine Shape	A-type, Irregular, Spherical, Large Cylinder, Small Cylinder, Stealth
Additional responses were investi	igated but not shown here.
Factors	Levels
Mine Shape	A-type, Irregular, Spherical, Large Cylinder, Small Cylinder, Stealth
Mine Type	Volume, Close Tethered, Close-Close Tethered, Bottom
Additional responses were investi	igated but not shown here.
Factors	Levels
Mine Shape	A-type, Irregular, Spherical, Large Cylinder, Small Cylinder, Stealth
Mine Type	Volume, Close Tethered, Close-Close Tethered, Bottom
Target Strength	High, Low
Additional responses were investi	igated but not shown here.
Factors	Levels
Mine Shape	A-type, Irregular, Spherical, Large Cylinder, Small Cylinder, Stealth
Mine Type	Volume, Close Tethered, Close-Close Tethered, Bottom
Target Strength	High, Low
Ocean Depth	Shallow (x feet to y feet)
Additional responses were investi Factors Mine Shape Mine Type Target Strength Ocean Depth Operating Mode	igated but not shown here. Levels A-type, Irregular, Spherical, Large Cylinder, Small Cylinder, Stealth Volume, Close Tethered, Close-Close Tethered, Bottom High, Low Shallow (x feet to y feet) Single Pass Shallow – deployed, Single Pass Shallow – hull mounted

C	overage	e of th (Where E	e Opera stablished by	ational E	Invelo	pe
		Mine Shape	Operational E	nvelope		
Mine Shape	A-type	Irregular	Spherical	Large Cylinder	Small Cylinder	Stealth
Sample Size	16 (24)*	24	24	32	16	16*
		Mine Type Mod	Operational E pred Targets	nvelope	Bot	tom Targets
Mine Type	Volume	Moo	ored Targets	Close-Close	Bot	Bottom
		0.0.		Tethered		Bottom
Sample Size	24		24	16 (24)*		48 (64)*
* Includes targets that are	outside of the system's C	DD requirements				
	larget Streng	th Operatio	nal Envelope (Bottom Targets	Only)	
Target Strengt	h	Hig	h		Low	
Sample Size		32			16 (32)	*

	Overall I	Power and (Shallow W	d Confide /ater Roll-up Res	Confidence Summar Roll-up Results)			
Metric	Model	Effect Size	Expected Sample Size	Confidence	Power		
ASL (PMA)	Binomial (exact)	0.10	112	0.81	0.93		
P _{cmm} (PMA)	Binomial (exact)	0.10	112	0.83	0.93		
P _r	Binomial (exact)	0.10	19	0.80	0.54		
P _{imm}	Binomial (exact)	0.10	(P _r)*19	0.92	0.45		
ASR	Normal	1.0σ	4	0.80	0.88		
FCD	Poisson	0.1* (threshold)	48	0.80	0.79		

ASL (PMA): Achieved Search Level (Post-Mission Analysis) - number of mines detected and classified divided by the number of mines in the search area. Pomm (PMA): Probability of Classifying a Mine as a Mine (Post-Mission Analysis) - number of mines detected and classified divided by the number of mine passing within the sensor's detection envelope. P; Probability of Reacquisition P_{inm}: Probability of Identifying a Mine as a Mine ASR: Area Search Rate FCD: False Classification Density

Standard DOE table from COTF doesn't tell the whole story...

Metric	Model	Effect Size	Expected Sample Size	Confidence	Power
ASL (PMA) Roll-up	Binomial (exact)	0.10	112	0.81	0.93
Comparing to the thre	shold:				
ASL (PMA) Bottom	Binomial (exact)	0.10	48	0.81	0.76
ASL (PMA) Moored	Binomial (exact)	0.10	64	0.86	0.77
Ability to distinguish factor levels (DOE):	n performance be	tween			
ASL (PMA) Bottom vs. Moored	Binomial (exact)	0.10	48 vs. 64	0.80	0.56
ASL (PMA): Achieved Search Level (Po	st-Mission Analysis) - number of i	mines detected and class	sified divided by the number	r of mines in the search are	a.

Identify response variables & building blocks by threat class

1 1	P(no perforation)	Armor Coupon, Substructure and/or BH&T
2	P(no perforation), BAD and residual penetration capability, casualties, system state	Armor Coupon (including BAD & residual penetration), Substructure and/or BH&T tests, Component tests, CDE, Engineering analysis, System and/or FUSL tests, M&S
3	Structural integrity, casualties, system state	Substructure and/or BH&T tests, Component Tests, CDE, Engineering analysis, System and/or FUSL tests, M&S
4	P(no perforation), number of perforations, BAD and residual penetration capability, casualties, system state	Armor Coupon (including BAD & residual penetration), Substructure and/or BH&T tests, Component tests, CDE, Engineering analysis, System and/or FUSL tests, M&S

Building Block		Response	Test Design Approach
Building Brook	Perforation	Response	Systematically vary factors
Armor Sample (i.e. Coupon)	Residual Penet	ration	May test to specified confidence level (perforation)
	Behind Armor Debris		May be able to address risk of over/under estimating effects*
		Damage due to Fragments	Systematically vary factors
	Ballistic	Damage due to Shock	May be able to address risk of over/under estimating effects*
Components	Fire		May be able to address risk of
	Safety		over/under estimating effects*
	Failure Mechai	nisms	
	Resistance of a	irmor integration to	Systematically vary factors
a (a. l	perforation		Pre-shot predictions may be available
Structures (Substructure, BH&T, Damaged Vehicle)	Armor perfora caused by com Fire Initiation/ effectiveness	tion and structural response plex threats (HE-Frag, Blast) Propagation and AFES	May be able to calculate risk of M&S under/over predicting vulnerability depending on test scope*

D	OE within the Bu	ilding Blocks
Building Block	Response	Test Design Approach
Integration (System Integration Laboratory, Controlled Damage)	Degraded system states following simulated damage scenario.	System analysis (e.g. wiring diagrams) Simulated threat encounter May be able to address risk of test program*
	Damage Assesment Degraded system states/functionality	Systematically vary factors (with sparse sampling) Pre-shot predictions available
System Level & FUSL tests	BDAR Secondary threat effects on system	Opportunity to reveal vulnerabilities at the system level (not captured in building blocks)*
	System & synergistic effects/damage mechanisms	May be able to address risk of test program*

*Work to be done establishing statistical measures of merit that can be used to determine/support the level of testing required and address the risks to a test program.

Example Critical Issue: Vulnerability of the Aircraft to Threat-Induced Fires

CTOR D	Detailed Test Plan/F Conce	Report Framework erns		
	Typical Approach	DOE – BASED Approach		
OBJECTIVE	Generate the necessary data to allow assessment of the system vulnerability to ballistic threat-induced fire. Confidence levels not considered.	Generate the necessary data to allow assessment of the system vulnerability to ballistic threat-induced fire with a specified level of confidence		
RESPONSE	MOE - likelihood of sustained fire: threat functioning characteristics ; release of the flammable fluids ; fire sustainment; structural damage measurement. Not all responses are considered; some are not measurable.	Probability of fire; Fire duration; Time to First Fuel Spurt; Forward Face Flash; Back Face Flash.		
FACTORS	Only one mission scenario segment considered. Factors not always explicitly stated – the rationale behind using the ones tested are typically not explained.	Considers all possible variables: Threat (type, size, velocity, attitude); Impact conditions ; Fuel (type, temp., quant., pressure); Dry bay airflow (velocity, pressure, temp); Ambient conditions (temp, pressure)		
LEVELS	Levels are not explicitly stated.	Two levels typically considered.		
MATRIX	Rationale not provided - chosen with an effort to maximize the number of tests possible for the selected threats. Assumptions necessary to extrapolate the results to other conditions. Does not isolate well variables of importance.	Designed to test hypotheses about unique or combined effects. Designed to maximize the collection of valuable data in the minimum number of possible tests. Explores multiple conditions while retaining power and confidence to get the right answer.		
ANALYSIS	Minimal - an assessment is made based on temp, pressure histories and a video review as to the type of fire which occurred (no fire, self-extinguishing fire, or sustained fire). Unexpected behavior difficult to address. Confidence intervals, power not discussed.	Explains the impact of factors on identified responses. Can be used to build a model to address the response at other test points. Provides confidence levels.		

Appendix 2 Tutorials

- 2-1. Acceptance Testing versus Rejection Testing
- 2-2. Power Calculations
- 2-3. What Does DOE Buy Us?

This page intentionally left blank.

Appendix 2-1. Acceptance Testing versus Rejection Testing

Acceptance- versus Rejection-Based Hypothesis Tests

V. Bram Lillard

(with help from Drs. Laura Freeman, Merl Bell, George Khoury)

•	Sample size res	ults			C
		Type I Error (α)	Power	Sample Size	- Star
	Normal Approx	20.0%	80.4%	53	
	Beta Approx	20.0%	79.8%	52	
	Exact	19.7%	81.0%	55	
	Exact Wald	67.2%	83.2%	5	
•	Recommendatio	n h's exact metho	od for or	ne proportion	tests

	Method	Option	Type I Error (α)	Power	Sample Size (N2)
Gpower	Exact	unconditional	20.2%	69.4%	27
Gpower	Exact	Fisher's	14.2%	70.0%	45
Gpower	Normal Approx	w/o continuity	N/A	69.7%	28
Gpower	Normal Approx	w/ continuity	N/A	70.2%	45
JMP	Exact		N/A	70.3%	31
Russ Lenth	Normal Approx	w/ continuity	N/A	70.2%	46
Russ Lenth	Normal Approx	w/o continuity	N/A	70.3%	29
	Power shows e	xact Type I e	error, while JN	ΛP doe	es not

Test	JMP	Russ Lenth	Gpower	Design Exper
One Proportion		✓		
Two Proportions			\checkmark	
One-Sample t-Test	\checkmark	\checkmark	\checkmark	
Design of Experiments				\checkmark
		0		*
Those recommo	ndations will	keep vou safe	e most of th	ne time

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$ $\boxed{\frac{\beta_1 \beta_2 \beta_{12} \beta_{11} \beta_{22}}{\text{JMP} 1 1 1 1 1}}$ Design Expert 1/2 1/2 1/2 1/2 1 1	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$ $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$y = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \beta_2 x_2 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 $	$\beta_2 x_2 +$	$\beta_{12}x_1x_2$	$_{2} + \beta_{1}$	$_{1}x_{1}^{2} + \mu$	$B_{22}x_2^2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
JMP 1	JMP11111Design Expert $1/2$ $1/2$ $1/2$ $1/2$ 1 Russ Lenth's Tool $\sqrt{2}/2$ $\sqrt{2}/2$ $1/2$ N/A*N/A*						
Design Expert 1/2 1/2 1/2 1 1	Design Expert $1/2$ $1/2$ $1/2$ 1 1 Russ Lenth's Tool $\sqrt{2}/2$ $\sqrt{2}/2$ $1/2$ N/A* N/A*		β_1	β_2	β_{12}	β_{11}	β_{22}
	Russ Lenth's Tool $\sqrt{2}/2$ $\sqrt{2}/2$ $1/2$ N/A* N/A*	JMP	$\frac{\beta_1}{1}$	β_2 1	β_{12} 1	β_{11}	β_{22} 1
Russ Lenth's Tool $\sqrt{2}/2 \sqrt{2}/2 1/2$ N/A* N/A	,	JMP Design Expert	$\frac{\beta_1}{1}$ $1/2$	$\frac{\beta_2}{1}$ $1/2$	$\frac{\beta_{12}}{1}$ 1/2	$\frac{\beta_{11}}{1}$	β_{22} 1 1

This page intentionally left blank.

Appendix 2-3. What Does DOE Buy Us?

What Does DOE Buy Us? (Examples to Illustrate the Value of Using DOE)

> V. Bram Lillard Laura Freeman

IDA	System performance in each condition
•	Simple math to obtain performance estimates from the DOE model
	$A = (\beta_0 + \beta_1 + \beta_2 + \beta_{12})$ * Performance in (+1,+1) part of the space (i.e., slow target speed, with countermeasures)
	$B = (\beta_0 - \beta_1 + \beta_2 - \beta_{12})$ * Performance in (-1,+1) part of the space (i.e., fast target speed, with countermeasures)
	$C = (\beta_0 + \beta_1 - \beta_2 - \beta_{12})$ * Performance in (+1,-1) part of the space (i.e., slow target speed, without countermeasures)
	$D = (\beta_0 - \beta_1 - \beta_2 + \beta_{12})$ * Performance in (-1,-1) part of the space (i.e., fast target speed, without countermeasures)
•	Simple math holds for this balanced, 2-level full-factorial design; more general case uses matrix algebra (see backup slides)
•	Key point: we use ALL the data to know performance better in each bin of the run
	 Confidence intervals in each bin (mean performance in those conditions) will be
	 Smaller = better knowledge of system performance Sounds like magic We are adding in the additional knowledge/assumption that the data have approx. same variance across the test conditions.

DA Environm	nent/Locat	Example ion (i.e., im	2: possible to	vary) Facto	rs
 Often we ca (randomiza) We typic relatively weather, to obtain Two ways to Fixed B Random 	innot vary t tion) cally do a ha constant se sound-velo data under o handle: lock Effect n Block Effe	he order of t ndful to a larg et of environm city-profile), a a different se – global shift across the t ect – variance	he run condition nental condition and then move t of environme but same varia est space changes betw	tions in our f uns under a s ns (e.g., loca to another lo ental condition ance ween blocks	single tion, tocation ns.
	Enviro	nment 1	Environ	iment 2	
	Slow Speed Target	Fast Speed Target	Slow Speed Target	Fast Speed Target	
With Countermeasures	а	b	w	x	
No Countermeasures	с	d	У	Z	

Slow Speed Fast Speed Slow Speed Fast Speed Target Target Target Target									
	Slow Speed Target	Fast Speed Target	Slow Speed Target	Fast Speed Target					
With Countermeasures	0.7, 1.7, 2.6	2.1, 2.9, 4.1	4.0, 4.3, 5.7	6.8, 8.3, 6.0					
No Countermeasures	4.9, 6.4, 7.5	3.2, 3.8, 5.0	8.3, 9.2, 10.8	6.0, 7.0, 7.5					
 Consider out (24 total runs) Math to deter – E.g., effect between t conditions – E.g., block Env. 2: 	r 12-run OT rmine mode ct of counter he row 1 co s (c+d+y+z) k effect is sin [(a+b+c+d)	, duplicated i el terms is sa measures is s nditions (a+b- divided by the mply the mean – (w+x+y+z) /	in two environ ame as before simply the diffe +w+x) and the e sample size. n shift between / N].	nments ! erence row 2 n Env.1 and					

Appendix 3 Roadmap Case Studies

- 3-1. Examples of DOE Applied in Air Warfare OT
- 3-2. DOE at MCOTEA Global Combat Support System
- 3-3. F-22 FOT&E 3.1 Test Design
- 3-4. ATEC Case Study
- 3-5. SPY-1D Radar Developmental Testing

This page intentionally left blank.

Factors & Responses

Initial Planned List of Response Variables

						Re	sponse	Variab	les							
						Prela	unch							Pos	t Laun	ch
	Slant Range	Slant Range	Slant Range	Slant Range	Slant Range	Slant Range	Altitude	Altitude	Altitude	Altitude	Lock-on	Lock-on	Lock-on	Launch	Break	Hit
	(Start)	(Start)	(Lock)	(Final)	(Interval)	(Interval)	(Start)	(Lock)	(Final)	(Interval)	(Attempts)	(Hit / Miss)	(Attempts)	Range	Lock	Miss
	(mi)	(Difference)	(mi)	(mi)	(mi)	(Difference)	(1000 x ft)	(1000 x ft)	(1000 x ft)	(1000 x ft)	(#)		(Difference)	(mi)	(Y/N)	(Y/N)
iority →	м	м	м	м	н	L	L	L	L	L	н	L	L	М	н	н

List of Potential Factors

	Factors												
	Run	Seeker	Mission	Aircraft	Pilot	Station	Seeker	Polarity	Target	Uniform	Clutter	Alt	Attack
		Version	Date	Tail			Туре		Vel.	Contrast		(G-bias)	Angle
	(#)	(H/K)	(dd/mm/yy)	(#)	(Name)	(3/7)	(Old/New)	(BoW/WoB)	(S/M)	(Easy/Hard)	(Easy/Hard)	(Low/High)	(H / M / L)
Priority →	L	м	L	L	L	L	н	м	м	м	м	м	м
-													

				Po	wer			
Design	Торіс	N Variables (Vars)	Var Levels	1 sigma	2 sigma	Model	Design Strategy	Test Event
1	Air to Air Jam Protection (EA)	6 x 2^4 fraction	Mixed	20-80	70-99	ME+2FI	D-optimal	48
2	Velocity Sweep Excursion	3x2 - 4 reps full	Mixed		92-99	ME+2FI	Gen Factorial	24
3	Other EA Mode Excursion	4x2^2 - 1 rep	Mixed		84-99	ME+2FI	Gen Factorial	16
4	WVR AutoAcquire categoric	4x2 30 reps	Mixed		90	ME+2FI	Gen Factorial	120
5	WVR AutoAcquire numeric	5x5 2 reps	Mixed	47	96	Quadratic	D-opt RSM	40
6	WVR AutoAcquire WEZ check	2 cat x 3 numeric	Mixed	80-97	99	Quadratic	CCD RSM	64
7	SAR Map (EHRM) Matrix	6 x 2 level vars	2^k	97	99	ME+2FI	Full Factorial	64
8	Air-to-Ground Mov'g Tgt Trk	2^7 Vars	2^k	99	99	ME+2FI	Full Factorial	128
9	IFF Mode 5 Design 2 reps	2^2 x 3^2 4 vars	Mixed	86-96	99	ME+2FI	Full Factorial	72
11	Sniper Targeting Pod Tgt Loc E	2^7 level vars	2^k +cp	65-70	99	Rev ME+2FI	1/4 fraction	38
12	Sniper Air-Gnd Movers track	2^5 level vars	2^k +cp	30	80	ME+2FI	1/2 Fraction	19
	n total, about 6-8 over four months KT/DT/OT team Each design tune perceived risk, ex complexity of bat	days worl with d to pense, tlespace	K Var 2 WVI	rs – sepa ME FI – 2 fa R – withi	arate test Main E ctor inte n visual	Glossary conditions ffects, vars raction, 2 v range enga	(alt, range, E. s acting alone ars acting toge agements e.g.	A tech) ether . <5 nmi

2-Level Fractiona	r GMTI al Factorial Des	ign
	Design Met Metric Name 2 σ Power @ 95% Confid Pred SD Accuracy @75% FDS	rics Metric value 99.9 .31
	Variables Considered All Combinations Test Set Points Fraction of All Combos Model Order Supported Aliasing -	7 128 32 + 16+4 38% 7 Fl None-Full Resolution
 Run Set Objective Can Suite7 Radar Indicate Moving Ground Targets? ID factors that influence detect/display DOE Approach Many factors to begin – 7-9 variables Screen these down to the most important factors 	 Pros and Cons of this se Screening design with runs Very robust to missing Efficient and learn as Excellent power and c Sequential experiment 	et: follow on additional g data – even 30-40% you test confidence tation – stop early

Electron Mixed Lev	ic Attack vel Fraction	
	Design Met	rics
	Metric Name	Metric value
	2 σ Power @ 95% Confid	95%+ but 55% EA
	Pred SD Accuracy @75% FDS	1.45
	Variables Considered	5 2^4 x 6 level
	All Combinations	96
	Test Set Points	48
	Fraction of All Combos	50%
	Model Order Supported	Main Eff + 2 FI (ex EA)
APG-70	Aliasing -	Extensive, moderate
 Run Set Objective Can Suite7 Radar Defend Electronic Attack? ID techniques that influence detect/display DOE Approach Multiple EA techniques – dozens to begin Focus on discipline to examine "most important" Cannot achieve power for all levels 	 Pros and Cons of this set Screening design with the set Will ID EA with strong in Low power EA (2 sigmation in the set of the set	t: good resolution mpact (3 sigma) a) and EA interactions – even 10-20% m isolation) g in strong EA techs rimentation –

No.	1			Inp E	ut S A Ma	Sp ati	aco rix	e						A	
Factor	Name	Type	Low Actual	High Actual						h					
Α	Target Man	Categoric	Straight	Weave	2 Levels:		STT-	\sim	\mathbb{N}_{2}						
В	Track Mode	Categoric	3BarHDTWS	STT	2 Levels:	Track									
С	Target Size	Categoric	Low	High	2 Levels:	ω.	3BarHDTWS-		- 1						
D	Clutter	Categoric	Level	Lookdown	2 Levels:							1			
E	EA Tech	Categoric	AP5	TP14	6 Levels:	et	High-	1		14					
						C:Targ Size	Low-	10	· 5	\$: }	;				
	Desir	e bro	ad loc	ok at E	Α	lutter	Lookdown-			, ¹		7.5 18	di.		
	Tech	nique	es – bo	ottom	row	0	Level-		· · · ·	17		201			
-	More Each	Expe one a	ensive a pass	Point	s –	E:EA Tech	TP3 = TP14 = Mode S = Mode L = Mode A = AP5 =								
1	Singl	e test	t point	per p	ass		AP5-	Straight A:Ti M	Weave arget Ian	3BarHDT B:T M	wsstr frack ode	Low C:T	High arget ize	LevelL D:C	ookdown lutter

AMRAAM Hig Response S	h Off-Boresi urface Design	ght 🕖			
	Design Met	rics Metric value			
	2 σ Power @ 95% Confid	99%			
	Pred SD Accuracy @75% FDS	.47			
	Variables Considered	5 – 2^2 cat x 3^3 numeric			
	All Combinations	108			
A Card and a contract of the c	Test Set Points	64			
	Fraction of All Combos	59% Quadratic			
	Aliasing -	Full resolution			
Run Set Objective:	Pros and Cons of this se	t:			
 Can Suite7 supply correct Weapon Engagement Zone for complex shots? ID conditions causing inaccurate displays 	 Nicely handles geometric variables and three levels; if add more, go to fraction factorial 				
DOE Approach	 Two categoric variable to 3 levels is possible 	s as well – expanding			
 Multiple radar modes and AMRAAM types 	Design could be trimmare cheap, however	ed if desired – points			
 3 var CCD crossed with 2 categoric vars in face-centered CCD 	Good power and cover	age of space			
 Design can easily be expanded 					

Appendix 3-2. DOE at MCOTEA – Global Combat Support System

Global Combat Support System – Marine Corps (GCSS-MC)

- Physical implementation of enterprise information technology architecture for Combat Service Support (CSS) functions
- Comparable to "Amazon.com"

Capabilities:

- Gain visibility of equipment readiness and position
- Track the location of inbound supplies
- Streamline the Warfighter's procedures for requesting support

					Day		
Design	System	Unit	Monday	/ Tuesday	Wednesday	Thursday	Frida
• 2x4x5 Mixed Level Full	Legacy	M29024	10	10	10	10	10
		M29026	10	10	10	10	10
Factorial		M29030	10	10	10	10	10
		M29040	10	10	10	10	10
 10 replications 	GCSS	M29024	10	10	10	10	10
• 400 total trials		M29026	10	10	10	10	10
		M29030	10	10	10	10	10
Dowor					Significance Leve	0.20	1
Power				Sigi	Variance	D I Pot	vor
• Continuous response variable			Int	ercept	0.025	1.0	00
			Sys	stem	0.025	1.	00
 High power 			Un	it	0.025	1.	00
			Da	У	0.025	1.	00
			Sys	stem*Unit	0.025	1.	00
			Sys	stem*Day	0.025	1.	00

		Day						
System	Unit	Monday	Tuesday	Wednesday	Thursday	Friday		
Legacy	M29024	10	10	10	10	10		
	M29025	0	0	0	0	0		
	M29026	10	10	10	10	10		
	M29030	10	10	10	10	10		
	M29040	10	10	10	10	10		
GCSS	M29024	0	0	0	0	0		
	M29025	10	10	7	7	7		
	M29026	6	10	2	7	4		
	M29030	6	10	10	10	5		
	M29040	10	10	10	10	10		

- Unbalanced
- Units available differed for GCSS and Legacy

			System	Day	Unit	Time (days)
Kendall's tau_b	System	Correlation Coefficient	1.000	035	.099*	795
		Sig. (2-tailed)		.456	.037	.000
		N	361	361	361	361
	Day	Correlation Coefficient	035	1.000	.020	012
		Sig. (2-tailed)	.456		.630	.782
		N	361	361	361	361
	Unit	Correlation Coefficient	.099*	.020	1.000	161
		Sig. (2-tailed)	.037	.630		.000
		N	361	361	361	361
	Time (days)	Correlation Coefficient	795**	012	161**	1.000
		Sig. (2-tailed)	.000	.782	.000	
		N	361	361	361	361
*. Correlation is	s significant at	the 0.05 level (2-tailed).				
**. Correlation	is significant a	t the 0.01 level (2-tailed).				

- Operational Testing with uncontrollable combinations
- Unbalanced Design of Experiments results
- Data sets that do not follow a normal distribution

Discussion / Questions

Contact Info: swala.burns@usmc.mil brittney.cates@usmc.mil

Factor		Descriptors	
Farget Type	A	B	С
Farget Location	In Garrison	Deployed	
Target Clutter	Rural	Urban	
Farget Coordinates	< VHR SAR Map	> VHR SAR Map	
Number of Targets	1	2	
Weapon Type	JDAM	SDB	14
Miniature Air Launched Decoy (MALD)	Not Present	Present	

			Test Ve	nue		
	NT	IR.	ACSI	Band 4	ACS Lon	g Range
	(16 Tr	rials)	(64]	nals)	(32 Tr	ials)
Factor	Descri	ptors	Desci	riptors	Descri	ptors
Target Type	A		A	В	В	С
Target Location	Deployed		Depl	oyed	In Garrison	Deployed
Target Clutter	Rural		Rural	Urban	Rural	Urban
Target Coordinates	< VHR Map	> VHR Map	< VHR Map	> VHR Map	< VHR	Map
Number of Targets	1	2	1	2	1	2
Weapon Type	JDAM	SDB	JDAM	SDB	SD	В
MALD	Not Present	Present	Not Present	Present	Not Present	Present

			Test Ver	nue			
	NT	R	ACS B	and 4	ACS Long Range		
	(8 Tn	als)	(32 T	nals)	(32 Trials)		
Factor	Descri	ptors	Descri	ptors	Descri	plors	
Target Type	A		A	В	В	С	
Target Location	Deployed		Depk	oyed	In Garrison	Deployed	
Target Clutter	Rural		Rural	Urban	Rural	Urban	
Target Coordinates	> VHR	Map	> VHR	Map	< VHR	R Map	
Number of Targets	1	2	1	2	1 1	2	
Weapon Type	JDAM	SDB	JDAM	SDB	SD	В	
MALD	Not Present	Present	Not Present	Present	Not Present	Present	

		Ex Initia	al Test Matrix f	for 31 Shots	
= Example of DUE Process	Range	GPS Jamming	Temperature	Fuze Modes	Offset
Initial Test Matrix Proposal for Set P	35km	On	70 degrees F	PD	0 mits
and to a many roposarior ser	8km	On	-45 degrees F	HOB	0 mils
	35km	Off	-45 degrees F	PDD	150 mils
	Skm	Cff.	70 degrees F	PDD	300 mils
2	35km	Cff	-45 degrees F	PD	0 mils
Proposed three designs with	35km	On	145 degrees F	HOB	300 milis
i iopoooe aante seengare aante	35km	On	70 degrees F	PDD	150 mils
varied sample sizes, estimation	Bkm	On	145 degrees F	PDD	0 mits
	22km	On	-45 degrees F	PDD	300 mils
capabilities, and risks	22km	Off.	145 degrees F	PDD	0 mits
all are used and a second second	22km	On	145 degrees F	PD	150 mils
run main effects model	8km	Off	145 degrees F	PD	300 mils
	Skm	Off	145 degrees F	HOB	150 mils
in main effects and some two	22km	Off	70 degrees F	HOB	150 mils
internations.	.35km	On	145 degrees F	HOB	300 mils
Interactions	Skm	On	-45 degrees F	PD	150 mils
I run main offects and all two way	8km	Off	-45 degrees F	HOB	0 mils
50 run main effects and all two way	22km	Off	-45 degrees F	HOB	0 mils
interactions	35km	Oll	-45 degrees F	PD	0 mits
interdetions	22km	Qn	145 degrees F	PD	0 mits
	Skm	Off	145 degrees F	PDD	0 mils
NMM -	35km	On	145 degrees F	PDD	Dmils
Nº 12	35km	Cff	45 degrees F	HOB	150 mils
	22km	Off	70 degrees F	HOB	150 mila
Balancing Cost,	35km	Off	70 degrees F	HOB	150 mils
Schedule and Risk	35km	Off	70 degrees F	PD	150 mils
	22km	Off	-45 degrees F	PDD	150 mils
The set	22km	Off	-45 degrees F	PD	300 mils
Munn	22km	Off	70 degrees F	PDD	300 mils
	35km	Off	70 dégrees F	PDD	300 mils
du	35km	Off	145 degrees F	PDD	300 milis

Phase	Run	Test Site	Range	QE	OFF set	Temp	Macs	GPS jamming	Fuze Mode														
1	1				0	Hot		OFF	НОВ														
	2		13	1244	300	Ambient	4	OFF	PD														
5	3		1	100	0	Cold	1.0	ON	PDD														
L	4			1031	300	Ambient	3	ON	PDD														
3	- 5		16.5	800	0	Cold	3	OFF	PD														
3	6			1244	0	Hot	5	ON	НОВ														
1	7	1 1	1.000		0	Cold		OFF	PDD														
	8	YPG	10.2	1244	0	Ambient	3	ON	HOB														
1	9	1.00		1.1	300	Hot		ON	PD														
+	10	1 1	20.2	1244	0	Ambient	4	ON	PD														
	11			20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2	1031	300	Cold	3	OFF	PDD
1.10	12				800	300	Hot	4	ON	HOB													
	13			1244	0	Hot	5	OFF	PDD														
	14		28.1	800	300	Ambient	5	ON	PD														
	15	1.0	1.0	1031	300	Cold	4	OFF	НОВ														
	16				0	Ambient		OFF	PD														
	17	WSMR	36.1	1031	.0	Cold	5	ON	PDD														
	18			125	300	Hot	-	OFF	НОВ														

	Phase	Run	Test Site	Range	QE	OFF set	Temp	Macs	GPS jamming	Fuze Mod		
2)		19		1.1	1031	0	Hot	3	ON	PD		
	1.1	20	2 - 1	20.2	1031	0	Ambient	4	OFF	HOB		
	1.0	21		1	1244	300	Cold	4	OFF	PDD		
		22		- 1	800	300	Ambient	5	OFF	PDD		
	1.1	23		28.1	1031	0	Cold	5	ON	HOB		
		24		1.1.1	1031	0	Hot	4	ON	PD		
	1.0	25			1244	300	Ambient	3	ON	HOB		
	2	26	YPG	16.5	1244	300	Cold	5	OFF	PD		
		27	1.20		800	0	Hot	3	ON	PDD		
		28			13	13		300	Cold	4	ÓN	HOB
	1.1	29					13	13	13	1244	300	Hot
	1.1	30			1.1	0	Ambient	10.00	ON	PDD		
	1.1	31		Coll 1	100	0	Cold	3	ON	PD		
		32		10.2	1244	300	Hot	1.12	ON	PDD		
		33			1.1.1.1	0	Ambient		OFF	HOB		
		34	1.000	1227.0	100	300	Cold	5	ON	PD		
		35	WSMR	36.1	1031	300	Ambient	1.42	ON	PDD		
10		36			1 de 1	0	Hot	1	OFF	НОВ		

Eour D30	
1001000	OFF
Day Light - 1	On
Light - 2	On
Light – 1	On
Day Four D30	OFF
Light - 2	On
Light - 1	On
ight Light - 2	On
Four D30	OFF
	Light – 1 Light – 1 Light – 2 Light – 1 Day Four D30 Light – 2 Light – 2 Light – 1 Light – 2 Jight – 1 Light – 2 Four D30 Light – 2

Vignette	Distance (km)	Illumination	Mission	GPS Jamming	Target ID	Firing Point	QE	Offset	Fuze					
C. 14	1000	×	· · · · ·	1.	5	1 2	12.3	-						
					6	3								
			D30	OFF	3	5								
1		Devi	Dav	Dav	Dav		a. 1	1	7 8	U	Incontrolle	d but		
	Long	Long	Long	Long	Long	Long	Day				1 2		Recorde	ed
		1.1.1	Light-1	Un		3 4								
			1000.7	~		1 2								
	h	1	Light-2	ight-2 On	2	3 4								

			E	xamp Factors	le o	f DOE Pro	Ces	s	
2	Respo	onse Va	ariable	Factors	# of Levels	Conditions	E	vents	
	1			Range (km)	6	10.2, 13.0, 16.5, 20.2, 28.1, 36.1	SET-P SV	1 vignette per Range Band	
		2		QE (mils)	3	800, 1031, 1244	SV	TV	
		nce		Offset (mils)	2	0, 300	SV	TV	
	y,	ss Dista		GPS Jamming	2	Off, On	sv	HC within a Target Type	
	le	S	1.00	Charge (MACS)	3	3, 4, 5	SV	TV	
	L.		·	ē.	Temperature	3	-25°F, +70°F, +145°F	SV	U
	1°		abil	Fuze Mode	3	VT, PD, D	SV	TV	
	5		Reli	Storage (years)	2	0, 20	HC (0)	HC (0)	
	10		1.5.1	Airdrop	2	None, Dropped	HC (None)	HC (None)	
	Effect			Target	5	None, Personnel, Light Materiel, Concrete Roof, Plywood Roof	HC	TV	
				Illumination	2	Day, Night	HC(Day)	2 vignettes day, 1 vignette night	
				MOPP Gear	2	MOPP 0, MOPP IV	HC(0)	0, Excursion in IV	

This page intentionally left blank.

Discussion Topics	
 AN/SPY-1D(V) IOT&E Background Test Objectives Test Site Limitations Models and Simulation 	
 T&E Approach (Then) Test Planning Test Execution Analysis and Assessment (TEMP Detection Requirements) 	
 DoE Approach (Now) Test Design Test Execution Analysis and Assessment (TEMP Detection Requirements) 	
Summary and Conclusions	
31 October 2011 UNCLASSIFIED / FOUO; DISTRIBUTION STATEMENT D	

CORONA		
Design 2 ⁵ Full Factorial	Completely Randomized Design Analysis of variance table [Partial sum of squares - Type III] Sum of Mean p-value Source Squares of Mean P p-value Source Squares of Square Value Prob > F Model 313.94 4 78.48 125.56 < 0.0001 sign - 4.875	gnificant
1 Replicate (32 Runs) Diagnostics	B-Alt C-ECM BC Residual Cor Totol Sea State (Factor D) has no significant effect detection range. The clutter model and clu simulator are suspect. Reduced Empirical Model (Coded Factors)	ct on utter
Hat-Hormal Post	R = I + 1.95A + 2.10B -1.25C - 0.24BC R ² = 0.9490 Adj. R ² = 0.9414 Pred. R ² = 0.9283 Adeq. Precision = Analysis via DoE yields an empirical detect model that is useful for tactical decision a training, and performance assessment	tion ids,

WARFARE CENTERS CORONA	TEM	P Det DoE A	ectior pproa	n Req ch – A	uirem nalysis	ients	
Design	Analysis of v	variance table	Complete [Partial sum o	ely Rand	omized [^{we iii]}	Design	
2 ⁵ Full Factorial + CP	Source	Squares	df	Square	r Value	p-value Prob > F	
	Model	1524.59	5	304.92	141.81	< 0.0001	significant
	A-RCS	423.11	1	423.11	196.78	< 0.0001	0
4 Replicates (192 Runs)	B-Alt	636.09	1	636.09	295.83	< 0.0001	
	C-ECM	191.10	1	191.10	88.88	< 0.0001	
	E-Xmitter	2.90	1	2.90	1.35	0.2467	
	BE	15.04	1	15.04	7.00	0.0089	
	Curvature	22.76	8	2.84	1.32	0.2346 <	not significant
Diagnostics	Residual	382.73	178	2.15			
	Lack of Fit	52.47	34	1.54	0.67	0.9112 🤇	not significant
	Pure Error	330.26	144	2.29			
And Manual Dist.	Cor Total	1930.08	191				
		Red	uced Em	pirical M Adjusteo	odel (Co d Model	ded Fact	ors)
4 December 4		R = I +	1.82A + 2	2.23B -1.	22C +0.0	15E + 0.3	34BE
		R ² = 0.7899	Adj. R ² = 0.	.7843 Pred	. R ² = 0.7775	Adeq. Preci	ision = 40.9
31 October 2011	UNCLASS	IFIED / FOUO;	DISTRIBUTION	STATEMENT D)		

WARFA		E/	1	TEMP Detection Requirements DoE Approach – Model Validation					
_				Predict	ion Error*				
	в	c	E	Factorial Replicates/Center Points			Comparison between the		
A				1/0	2/0	4/4	 empirical average of treatments (four replicates) with A = 0 to model predictions from full factorials and full factorials with four center points The average prediction error was consistent – 4.7 % 		
0	-1	-1	-1	2.2	4.0	2.1			
0	-1	-1	-1	4.3	0.5	5.5			
0	-1	1	-1	9.0	13.7	10.0			
0	-1	1	-1	7.4	5.3	5.2			
0	1	-1	-1	2.7	0.2	0.2			
0	1	-1	-1	7.3	0.4	0.4			
0	1	1	-1	1.7	7.9	4.6			
0	1	1	-1	0.2	5.4	9.4			
				4.36	4.67	4.67			
Prec	lictio	n err	or = p	percentage model pred All mod	difference be iction and ac dels are	etween ctual values e wrong, k	out some are useful. "		
31 0	Octobe	er 201	11		UNCLASSIFIED / FOUO; DISTRIBUTION STATEMENT D				

Appendix 4 IDA Background Case Studies

- 4-1. DOE in TEMPs, T&E Concepts, Test Plans, and BLRIPS
- 4-2. Joint Chemical Agent Detector (JCAD) Test Design
- 4-3. Mobile Gun System (MGS) Case Study
- 4-4. Apache Block III
- 4-5. Integrated Defensive Electronic Countermeasures (IDECM)
- 4-6. Censored Data Analysis Briefing
- 4-7. Excalibur Logistic Regression
- 4-8. Stryker Reliability Case Study
- 4-9. Survey Case Study Measuring Workload and Operator Latency: Command and Control Dynamic Targeting Cell

This page intentionally left blank.
Appendix 4-1. DOE in TEMPs, T&E Concepts, Test Plans, and BLRIPs

Lessons Learned from Case Studies

Quantitative, Mission-Oriented Metrics

AND THE TOP	Joint Ch	emical Ag Powe	ent Detec r of Test	tor (JCAD)
	 Power Analy DT Testing Statistical High power 	ysis for JCAD Cl Response Surface er test plan	namber Test Design (I-Optima	1)
	Factor	S:N* = 0.5	S:N = 1.0	S:N = 2.0
	Temperature	32.0%	84.7%	99.9%
	Water Vapor Content (WVC)	42.1%	94.1%	99.9%
	Concentration	46.5%	96.3%	99.9%
	*S:N – signal-to-noise standard deviation	e ratio, goal detectable	e difference as a ratio t	to the design

	Mobile Gun System (MGS) Power of Test									
• Ori (Sar	ginal Test F nple Size = 22	Plan 2)		DOE In (Sample	nterrupte e Size = 16)	d by Dep	loyment			
Factor	S:N* = 0.5	S:N = 1.0	S:N = 2.0	Factor	S:N = 0.5	S:N = 1.0	S:N = 2.0			
Missior Type	7.7%	16.6%	54.1%	Mission Type	5.7%	8.1%	18.3%			
Terrain Type	17.0%	51.3%	97.8%	Terrain Type	10.6%	28.0%	78.2%			
Threat Level	9.4%	24.4%	75.5%	Threat Level	6.4%	10.9%	31.2%			
Illumin	15.9%	47.9%	96.7%	Illumin.	10.1%	26.0%	74.3%			
*S:N – s ratio to	signal-to-noise the design star	ratio, goal d ndard deviat	etectable dif ion	ference as a Lesson sample	Learned: sn size decrea	naller ses power				

MH-6 Confidence A	50R/S P3I Above Three	shold
Metric	Demonstrated	Confidence Above Threshold
MTBOMF (Romeo) Threshold = 14.8 hours	49.8 hours	99%
MTBOMF (Sierra) Threshold = 20.3 hours	41.8 hours	99%
Mission Capable Rate (Romeo) Threshold = 70%	75.2%	Unknown
Mission Capable Rate (Sierra), Threshold = 69%	71.3%	Unknown
For both aircraft, all mission fail issues vice P3I systems.	ures were due to leg	gacy airframe

MH- Confidence	-60R/S P3I Above Thre	eshold
Metric	Demonstrated	Confidence Above Threshold
MTBOMF (Romeo) Threshold = 14.8 hours	49.8 hours	99%
MTBOMF (Sierra) Threshold = 20.3 hours	41.8 hours	99%
Mission Capable Rate (Romeo) Threshold = 70%	75.2%	Unknown
Mission Capable Rate (Sierra), Threshold = 69%	71.3%	Unknown
Lesson Learned: Data not available to cal Watch data collection ar management plan	culate. nd	gacy airframe

CTOR			Da	ata Ana	IYSIS				
"DOE" illus performan	trates how ce varies								
across enve	elope	Proportion of Successful Missions Based on Achieving Stated Unit Mission	80 % Confidence Interval	Proportion of Successful Missions according to Army Subject Matter Experts (# success / Total SME)	Proportion of Missions where Mobile Gun System Contributed Positively to Mission as rated by Army Subject Matter Experts	Mobil Syst Based o Da Start	e Gun tem In RTCA ita Lost	Infantr Vel Based D Start	y Carrie hicle on RTC ata Lost
	Urban Terrain	63%	35%-85%	54% (22/41)	88%	24	4	32	15
Terrain	Mixed Terrain	75%	46%-93%	51% (20/39)	74%	24	8	32	9
	High Threat	63%	35%-85%	38% (19/38)	78%	24	11	32	12
Ihreat	Low-Mid	75%	46%-92%	50% (26/44)	9.1%	24	1	22	12
	All Attack	50%	24%-76%	46% (19/41)	77%	24	6	32	15
Mission	All SASO	100%	32%-100%	70% (7/10)	76%	6	0	8	1
	All Defend	83%	49%-98%	55% (16/29)	90%	18	6	24	8

USS Conf	Virginia M idence Inte	etrics Statistical metrics may require special techniques
Metric	Demonstrated	Confidence
Secure Search Rate versus SSN (moderately difficult environment)	9 runs against USS Georgia. Demonstrated XX nmi ² /hr.	Bootstrap methodology (non-parametric, but very small data set): 90% confidence Secure Search Rate is less than XX nmi ² /hr
Tomahawk Missile Reliability	3/3 on USS Virginia XX/YY in testing on similar systems	90% confidence interval 0.37 – 1.0 XX/YY yields: XX% confidence performance is above threshold of XX 90% confidence interval of XX - XX
Provide supplementar past testing. Previous testing demonstrated and past data to ident scenarios	y details from 5 Tomahawk Use factors fy limited test	

Summary

Appendix 4-2. Joint Chemical Agent Detector (JCAD) Test Design

<u>IDA</u>		JCAD DO	E Overviev	N	
			FACTORS		
	Temperature	Relative Humidity	Agent Concentration *	Detector Mode	Detector Type
ELS	49°C	100%	High	Monitor	Legacy Detector
LEV	1	1	1	Survey	JCAD
	5°C	5%	Low		
		* Range different	for each agent		
	<u>Response</u>	Variables	s (user req	uirement)) <u>-</u>
	Pre	obability of	f Detection		
	Tir	ne to Alarr	п		
	Tir	ne to Rese	et after Ala	rm	

Data determin	e significant fa	ctors:		
Factor	Model Coefficient Estimate	Standard Error	F-Ratio	P-value
Temperature	-7.07	1.30	29.7	< 0.001
Water Vapor Content	5.13	1.06	23.6	< 0.001
Agent Concentration	5.13	2.01	96.5	< 0.001
Agent Type	N/A	N/A	4.34	< 0.001
 Allows for unoperational endoted Note: All results Illustration or 	derstanding ce across the nvelope. Its are for	30- 25- 20- 15- 10- 5-		Detection Ti

Mobile Gun System (MGS) Case Study Bruce Simpson Laura Freeman

Mobile Gun System (MGS) Mission

IDA

"The fundamental mission of the mobile gun system platoon is to provide mounted, <u>precision direct fire support</u> to the SBCT infantry company. Its ability to move, shoot, and communicate, and to do so with limited armored protection, is an important factor on the modern battlefield. The MGS platoon <u>moves</u>, <u>attacks</u>, <u>defends</u>, <u>and performs other essential tasks to support</u> <u>the company's mission</u>. In accomplishing its assigned missions, it employs firepower, maneuver, and shock effect, synchronizing its capabilities with those of other maneuver elements and with CS and CSS assets. When properly supported, the platoon is capable of conducting sustained operations against any sophisticated threat."

U.S. Army Field Manual 3-21.11, The SBCT Infantry Rifle Company, Appendix B, The MGS Platoon

	Mission		Att	ack			Defend			Stability and Support				
n OPFOR	Terrain	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	
y Low		1	1	L				//////						
y Med		1				1								
y High		1				1	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_
tht Med		2			///////////////////////////////////////			///////	///////	///////	2	///////	(//////	_
zht High		2	2			1								
		5	2		//////	2	2			//////	2	//////		
/eather:	as it o	data colli	red; no Key	ot cor		d	ood;	• IO fron	T test n previ ➤ Mi prior Sect	desigi ious e ission to uni ion 23	n build vents Rehea t deplo	ls on e arsal E cymen ort)	evidenc Exercise ht (basis	e ? s fo

	DA			ſ	MGS	6 De	sign	Co	mpa	ariso	on				
Cá	ase Ba	ased D	Desigr	n Exe	cuted	in IO	T&E								
		Mission		Att	ack			Def	end		Sta	bility ar	nd Supp	ort	
Illum	OPFOR	Terrain	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	
Day	Low		1	1											2
Day	Med		1				1								2
Day	High		1				1	3				2			5
Night	LOW		2									2			2
Night	lvied		2	2			1								2
Night	High		-	2			1	2				2			3
s	tatistic	al D-0	Optim	al De	sign										-
	-1	Mission	1	At	tack			Det	fend		St	ability a	nd Supp	ort	
Illum	OPFOR	Terrain	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	Urban	Mixed	Forest	Desert	
Day	Low						1		1					1	3
Day	Med	4		1		1									2
Day	High		1						1			1			3
Nigh	t Low		L	1	1										2
Nigh	t Med		L				1	1					1		3
Nigh	t High	1		_		1				1	1				3
			1	2	1	2	2	1	2	1	1	1	1	1	16
_															

		Proportion of Successful Missions Based on Achieving	80 %	Proportion of Successful Missions according to Army Subject Matter Experts	Proportion of Missions where Mobile Gun System Contributed Positively to Mission as rated	Mobile Sys Base RTCA	e Gun tem d on Data	Infa Ca Vel Bas RTC	antry rrier nicle ed on A Data
		Stated Unit Mission	Confidence Interval	(# success / Total SME)	by Army Subject Matter Experts	Start	Lost	Start	Lost
Terrain	Urban Terrain Mixed	63%	35%-85%	54% (22/41)	88%	24	4	32	15
	Terrain High	75%	46%-93%	51% (20/39)	74%	24	8	32	9
Threat	Low-Mid Threat	75%	46%-93%	59% (26/44)	84%	24	1	32	12
	All Attack	50%	24%-76%	46% (19/41)	77%	24	6	32	15
Mission	All SASO	100%	32%-100%	70% (7/10)	76%	6	0	8	1
	All Defend	83%	49%-98%	55% (16/29)	90%	18	6	24	8

Metric	Limited User Test	Mission Rehearsal Exercise/Field Training	Developmental Testing	Initial Operational Test and Evaluation
Mean Miles Between System Abort (Chassis) Req. 1,000 MMBSA	No data	1,590	1,838 80% Lower Conf. Limit	477 80% Lower Conf. Limit
Mean Rounds Between System Abort (Mission Equipment Package) Reg. 81 MRBSA	12 80% Lower Conf. Limit 8 MRBSA	No data	92 80% Lower Conf. Limit 79 MRBSA	53 80% Lower Conf. Limit 37 MRBSA

This page intentionally left blank.

IDA		Response Variable
• A	B3 Mission I – Scored by – Used the a	Effectiveness Response: Mission Score the data authentication group (IDA, TICM, OTA) verage score of the group
Mission Score	Outcome	General Criteria
5	Complete Success	The Apache team quickly identified and neutralized most or all of the threat systems without either aircraft being destroyed. The Apache team used very good tactics, techniques, and procedures.
4	Partial Success	The Apache team identified and neutralized most threat systems, while fewer than two aircraft were destroyed. The Apache team used good tactics, techniques, and procedures.
3	Neutral Outcome	The Apache team eventually indentified some of the threat systems and might have neutralized one or more, while fewer than two aircraft were destroyed. The Apache team displayed instances of good and bad tactics, techniques, and procedures.
2	Partial Failure	The Apache team identified and neutralized threat systems and one or more aircraft were destroyed. The Apache team used poor tactics, techniques, and procedures.
1	Complete Failure	The Apache team was destroyed without identifying or neutralizing any threats. The Apache team used very poor tactics, techniques, and procedures.

DA	Lesso	ons Le	earne	d	
Our estimat	e of signal-to-r	noise r	atio w	as not v	very good
 Choos signal, If the susing a Table s 	e different factors such as good/bac ame factors are us a different signal t shows power of th	next tir d SA sed nex o noise e desig	ne that t time, ratio n we us	have a str then size ⁻ sed for dif	ronger the test ferent signa
to nois	e ratios:				
to nois	e ratios:	Signal	to Noise	e Ratio	
to nois	e ratios: Factor	<u>Signal</u> 0.5	to Noise	e Ratio 2	
to nois	e ratios: <u>Factor</u> Aircraft Type	<u>Signal</u> 0.5 0.50	to Noise 1 0.89	2 0.99	
to nois	e ratios: <u>Factor</u> Aircraft Type UAS Support	Signal 0.5 0.50 0.48	to Noise 1 0.89 0.87	e Ratio 2 0.99 0.99	
to nois	e ratios: <u>Factor</u> Aircraft Type UAS Support Light	Signal 0.5 0.50 0.48 0.50	to Noise 1 0.89 0.87 0.89	2 0.99 0.99 0.99	
to nois	e ratios: <u>Factor</u> Aircraft Type UAS Support Light Mission Type	Signal 0.5 0.50 0.48 0.50 0.46	1 0.89 0.87 0.89 0.89 0.85	2 0.99 0.99 0.99 0.99 0.99	

This page intentionally left blank.

Appendix 4-5. Integrated Defensive Electronic Countermeasures (IDECM)

> Integrated Defensive Electronic Counter Measures (IDECM) Case Study

> > Laura J. Freeman

Brad Thayer

Po	ower Number	rs	■ Color Map On Correlations L Di
Factor	S:N = 1	S:N = 2	mmel mmel int nt nt nt nt nt nt nt nt nt nt nt nt n
Aircraft	0.258	0.745	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Variant	0.258	0.745	100.00 (CODE) #
Jamming	0.975	0.999	1.5 N. 1. 1. 1.
Threat	0.388	0.844	
Wingman	0.258	0.745	and the second second

This page intentionally left blank.

DA Chara	Characterizing Performance						
Now let's employ I	DOE						
 Consider a test wit <u>Two</u> factors exa Run Matrix: 	t h 16 runs Imined in the test						
	Target Fast	Target Slow	Totals				
Test Location ?	1 4	4	8				
Test Location 2	2 4	4	8				
	8	8	16				
 Detection Resul 	ts:						
	Target Fas	t Target Slow	Totals				
Test Location	1 3/4	1/4	4/8 (0.5)				
Test Location	2 3/4	4/4	7/8 (0.875)				
	6/8 (0.75)	5/8 (0.63)					

DA	Model Analysis			
• (s	Overall model	analysis determii ffect test outcome	nes whether the es	factors
	Source of Variation	Level	s P-	value
	Charge	4	<0	.0001
	Temperature	4	0.	0021
• (c	Customizable lifferences ex – For exampl and hot tem	tests of contrast ist e: compare ambier operature	provide informant temperature to	tion on where cold temperature
Ambient	versus Cold	83%-64%	19%	02
1 interent	versus Hot	83%-78%	5%	.30
Ambient				

Rebecca Dickinson, Virginia Tech Laura Freeman, IDA Alyson Wilson, IDA Bruce Simpson, IDA

IDA	Stryker System Description	
• The St	ryker family of vehicles includes 10 separate systems	
• Two B 1. In	asic Vehicle Variants antry Carrier Vehicle (ICV) - the infantry/mission-vehicle type Base vehicle for eight separate configurations	
	 Infantry Carrier Vehicle (ICV) Mortar Carrier Vehicle (MCV) Antitank Guided Missile Vehicle (ATGMV) 	
	Reconnaissance Vehicle (RV) Fire Support Vehicle (FSV) this analysis	
	Engineer Squad Vehicle (ESV) Commander's Vehicle (CV) Medical Evacuation Vehicle (MEV)	
2. N th	NBC Reconnaissance Vehicle (NBCRV)* obile Gun System (MGS)* – direct fire platform and performs e maneuver fire support role	
*NBC	V and MGS were not included because they were on a different acquisition timeline	

The table below is similar to that which was included in the report written for DOT&E when considering this data set. These results serve as the reference when comparing the new methods that loo					
at combi	Stryker Relia	bility by Variant us	sing Operatio	nd operational	test phases
Vehicle Variant	Total Miles Driven	System Aborts	MMBSA	MMBSA 95% LCL	MMBSA 95% UCL
ATGMV	10334	12	861	492,9971	1666.62
CV	8494	1	8494	1524.505	335495.1
ESV	3771	13	290	169.6326	544,7885
FSV	2306	1	2306	413.8815	91082.13
ICV	29982	35	857	615.9437	1229.84
MCV	4521	4	1130	441.4354	4148.219
	1967	0	-	656.6007	-
MEV		2	2687	743.8384	22187.42
MEV RV	5374	2			

IDA	Summarizing Confidence Intervals		
	(1	Reduction in Intervals compared to Traditional Analysis)	
		Under the Assumption t ~ Exponential	
	Vehicle		
	ATGMV	0.25	
	CV	0.99	
	ESV	0.13	
	FSV	0.98	
	ICV	0.10	
	MCV	0.77	
	RV	0.91	
	MEV		
	Column Average	0.59	
·			

Stryker Reliability by Variant using Developmental Test Data					
/ehicle /ariant	Total Miles Driven	System Aborts	MMBSA	MMBSA 95% LCL	MMBSA 95% UCL
ATGMV	30086	17	1770	1105	3038
с٧	24160	11	2197	1228	4400
ESV	25095	35	717	516	1029
FSV	24385	11	2217	1239	4441
ICV	61623	39	1580	1156	2222
MCV	3702	7	529	257	1315
MEV	-	-	-	-	-
RV	23742	11	2158	1206	4324
Total	192793	131	1472	1240	1760

This page intentionally left blank.

Appendix 4-9. Survey Case Study – Measuring Workload and Operator Latency: Command and Control Dynamic Targeting Cell

Survey Analysis Case Study

Rebecca Grier

Laura Freeman

NASA Took Lood Index (2 pages)	
NASA 125K LOBO INDEX (2 pages) We are interested in the workcady our experienced while completing this task. As workload can be caused by several different factors, we asky out or tale several of the factors individually on the scales provided. Note: Performance goes from good on the left to bad on the	For each of the following pairs, please circle the scale title that contributed more to your experience of workload during this run. In other words, <u>which of the pair made the task <i>harder</i>?</u>
right.	1 Mental Demand Physical Demand
Mental Demand: How mentally demanding was the task?	2 Temporal Demand Performance
Very Low High	3 Effort Frustration
Physical Demand: How physically demanding was the task?	4 Mental Demand Temporal Demand
Very Very	5 Effort Physical Demand
Low High	6 Performance Frustration
Temporal Demand: How hurried or rushed was the pace of the task?	7 Effort Mental Demand
Very Very Low High	8 Temporal Demand Frustration
Performance: How successful were you in accomplishing what you were asked to do?	9 Physical Demand Performance
Perfect Failure	10 Mental Demand Performance
Effort: How hard did you have to work to accomplish your level of performance?	11 Temporal Demand Effort
Very Very Very	12 Frustration Physical Demand
Low High	13 Frustration Mental Demand
Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?	

This page intentionally left blank.

Appendix 5 White Papers

- 5-1. Case Studies for the Use of DOE in Developmental Testing
- 5-2. Mine Susceptibility Comparison Study
- 5-3. Fuel Leakage Comparative Analysis

This page intentionally left blank.

Appendix 5-1 Case Studies for the Use of DOE in Developmental Testing

Summary

The Director, Operational Test and Evaluation (DOT&E) has advocated the more rigorous application of scientific experimental design in test and evaluation, which includes the application of Design of Experiments (DOE). In this regard, DOT&E policy is not intended to be prescriptive. The director's T&E initiatives letter of 24 November 2009 notes that DOE is "One important means to achieve integrated test...." DOT&E policy recognizes the limitations of DOE and the applicability of other scientific and statistical techniques.

To understand the applicability of DOE to operational test and evaluation (OT&E), we previously conducted a retrospective analysis of OT&E and concluded that DOE was being underutilized. That analysis determined that structured test and evaluation was generally used and that in some test programs DOE techniques had been applied. However, there were many instances where DOE and other statistical techniques could have been applied and improved the test program, but had not.

To supplement our previous analysis of OT&E reports, you asked for preliminary information concerning the use of DOE in test and evaluation activities of a developmental nature. This memorandum examines cases where DOE has been applied, considers why DOE was used, and examines the benefits that the practitioners sought. We note that the cases that we examined are almost exclusively in industry and non-defense government agencies. We have not examined the used of DOE in developmental test and evaluation (DT&E) of Department of Defense (DoD) systems to any significant extent, and we have not studied the distinctions between the use of DOE by defense contractors and government agencies involved in DoD DT&E. We are not aware of retrospective analyses of the potential use of DOE in DoD DT&E similar to the ones we performed for OT&E. Analyses of such cases might provide additional insights on DOE applicability to DoD DT&E.

This memorandum concludes that DOE is applicable to DT&E in many instances, there is long history of its use in industry, and it is considered a "best practice" in industry. We understand the Director, Developmental Test and Evaluation (DDT&E) is developing policy for the application of scientific test and evaluation design (STED) methods to DT&E events. The information in this memorandum may assist you in your discussions on these issues with your DDT&E counterparts.

Background

In order to coherently discuss the use of DOE in DT&E, we must begin by defining an experiment. An experiment is a test event or a series of test events in which purposeful changes

are made to the input variables and factors of a process or system so that we can observe and identify the reasons for change in the output response.¹

DOE is the scientific process of planning the experiment so that appropriate data will be collected, resulting in statistically valid, objective conclusions. The process for applying scientific experimental design to test and evaluation can be divided into the following steps²:

- (1) Identify the questions to be answered, also known as the objectives.
- (2) Identify the quantitative metrics, also known in the statistical world as response variables, in support of those questions.
- (3) Identify the factors that affect the response variables. Factors are broad categories of test conditions that affect the outcome of the test. In developmental testing, factors might include system configuration, temperature, and pressure.
- (4) Identify the levels for each factor. For example, a factor such as temperature might have levels such as high temperature and low temperature. The levels represent various subcategories between which analysts and engineers expect system performance to vary significantly. When performance is expected to vary linearly, two levels are used. Nonlinear performance typically results in three or more levels.
- (5) Identify applicable DOE techniques. Examples of DOE techniques include factorial designs, response surface methodology, and combinatorial designs. The applicable DOE technique depends on the question, the metrics, the types of factors (numeric or categorical), and available test resources.
- (6) Identify which combinations of factors and levels will be addressed in each test period (i.e., coverage of the envelope). In statistical terms, this is often referred to as blocking.
- (7) Identify relevant statistical measures of the test (e.g., confidence, power, effect size).

Many of the steps outlined above are part of the longstanding practices of the test and evaluation community. What the emphasis on DOE brings is a shift in those practices to apply scientific experimental design principles. In the retrospective analysis, we noted that most operational testing employed a structured approach to testing due to the fact that many of the steps described above were already being employed, particularly steps 1 through 4. That analysis also noted, however, that in many areas a more rigorous application of DOE principles would have improved test and evaluation. Specifically, it was noted that step 4, while generally considered, could have been conducted in a more rigorous and systematic fashion. Additionally, if steps 5 through 7 had been implemented, they would have identified holes in the testing where performance was not examined and would have provided an assessment of the uncertainties in the measurements and conclusions.

¹ Definition adapted from: Montgomery, Doug, *Design and Analysis of Experiments*, 6th Edition, 2005, John Wiley & Sons, Inc.

² These steps directly map to steps 1 through 4 in Montgomery's Text (see note 2), page 14, Table 1.1.
Objectives of DOE

DOE is a rich scientific methodology, containing many tools. The specific tool that is employed depends on the question to be answered (step 1). The question, or in other words the objective of the test, can vary significantly from one developmental test to the next. And the questions and objectives can change as the system under test matures. The choice of DOE technique (step 5) should reflect the objective. Table 1 below lists several common objectives and the corresponding designs one might select to satisfy the corresponding objective. This list is intended to show the breadth of tools that are included in DOE, but is far from exhaustive.

Test Objective	DOE Design Method	Examples in this Memorandum
Product design and development	Super-Saturated Designs, Factorial and Fractional Factorial Designs	Trade Studies and Engineering Analyses
Process optimization	Response Surface Designs, Optimal Designs	Trade Studies and Engineering Analyses
Test for problems	Combinatorial Designs, Orthogonal Arrays, Space Filling Designs	Software Testing Integration and Interoperability Testing
Evaluation of material properties	Accelerated Life Tests, Mixture Designs	Accelerated Life Tests
Screen for important factors	Factorial and Fractional Factorial Designs	Characterizing Performance
Characterize a system or process over an envelope	Factorial and Fractional Factorial Designs, Response Surface Designs, Optimal Designs	Characterizing Performance
Develop robust processes (i.e., affected minimally by input conditions)	Taguchi Arrays, Orthogonal Arrays, Response Surface Designs	Not covered in this memorandum

 Table 1. Test Objectives and Corresponding DOE Designs

In addition, to the examples in Table 1, DOE is applicable to various certifications. As an example, MIL-STD-1763 describes the process to demonstrate compatibility between an aircraft and specific stores for use on that aircraft. The process involves numerous steps, including structural analysis, flutter analysis, fit tests, and separation tests. Many of these steps are amenable to experimental design. For example, wind tunnel tests are an important step in the certification process, and as will be discussed below, DOE offers substantial benefits when applied to wind tunnel testing. Similarly, CJCSI 6212.01 describes the process for developing, coordinating, reviewing, and approving Interoperability and Supportability (I&S) needs for Information Technology (IT) systems. Part of the process is demonstrating IT standards conformance, and as discussed below, DOE is applicable to examining compliance with communication protocols and interfaces. In the discussion below, we examine a variety of DT&E papers. We provide examples of using DOE to meet the test objectives, given in Table 1, associated with various systems. The systems considered are not always military systems; however, the examples illustrate types of testing that are applicable to military systems. The goal was to identify how DOE and other scientific experimental design principles have been employed in DT&E. The goal was **not** to provide a comprehensive examination of DOE in DT&E. Because DOE and DT&E are both broad subjects, such an endeavor would be impossible.³ Instead, the goal was to sample the use of DOE in DT&E to illustrate its applicability. The cases include DOE applied to trade studies and engineering analyses, software and hardware testing, integration and interoperability testing, accelerated life testing, and characterizing performance.

Trade Studies and Engineering Analyses

Trade studies and engineering analyses are a common task early in the development of a new system; Rhew and Parker⁴ have described the application of DOE techniques⁵ to such analyses. In their example, a trade study and engineering analysis was conducted for the Launch Abort System (LAS) for NASA's manned launch system, Ares I. The LAS is a rocket tower and shroud mounted on the crew vehicle; it is used to separate the crew vehicle from the Ares rocket in the event of an emergency. In assessing various LAS designs, NASA wanted to identify which factors (e.g., tower length, tower diameter, nose shape) affected drag the most. The study used parametric Computational Fluid Dynamics (CFD) models to rank the factors based on their contributions to aerodynamic drag over the vehicle's ascent trajectory. Ultimately, the CFD results fed into wind tunnel analyses.

A DOE approach was used to ensure that important interactions between factors were understood, to examine non-linear behavior, and to limit the scope of the analysis. A traditional analytic approach would have required an examination of all possible combinations of factors and levels, changing one factor at a time.⁶ Such an approach would have required an analysis of at least 1,556 LAS configurations to study seven factors, and it would have ignored important interactions between the factors. Under a DOE approach, however, only 84 configurations were required to study the same seven factors. In addition, the DOE approach allowed critical interactions between factors to be examined, and it allowed an analysis of non-linear performance. Rhew and Parker noted that the DOE approach represented a starting point for experimental activities that would eventually explore the entire design space.

Holcomb, Montgomery, and Carlyle,⁷ in another study, employ the use of DOE⁸ in the development of a turbine engine. They note that during product development there is usually a

³ The authors also recognize that this is by no means the first attempt to conduct such overview. The literature is filled with such studies.

⁴ Rhew and Parker, A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE).

⁵ In their paper, they used fractional factorial designs with center points.

⁶ This type of analysis is known as One Factor At a Time analysis.

⁷ Holcomb, Montgomery, and Carlyle, *The Use of Supersaturated Experiments in Turbine Engine Development*. Quality Engineering, 2007.

⁸ In their paper, they use a supersaturated design.

significant time constraint. DOE offers a useful method of examining many design factors with only a few tests. Once the factors influencing the design's performance are identified, the designer can rapidly make meaningful design decisions.

The goal of the study was to identify factors that affect the performance of a turbine engine. Engineers identified 27 potential factors, including heat transfer coefficients, shaping of specific components, and loads. DOE allowed for the investigation of the 27 factors with between 12 and 20 tests, depending on the DOE selected. However, by using such a small number of tests, there was a high risk of mistakenly concluding that a factor was not significant (the design had low power). DOE allows this risk to be quantified.

Software Testing

Many military systems employ complex software (and hardware) that is developed in an evolutionary manner, with functionality being developed incrementally and tested in each iteration. The number of combinations of input data, operator actions, etc., can be huge. As a result, testing can be overwhelming.

Burr and Young have described the application of DOE⁹ to software testing.¹⁰ Others have described similar applications to software and hardware suites.¹¹ In the Burr and Young example, they examined testing of an email system. Traditional testing would have required 27 trillion test cases. They note that under traditional approaches, test cases take too long to create, too long to automate, too long to run, too long to verify, and for new software and hardware builds there is no easy way to know which test cases need to be re-run for regression testing.

Burr and Young describe the DOE approach as a "best practice" for industry, and by applying DOE in their problem, they were able to reduce the number of test cases from 27 trillion to 100. Within the smaller number of test cases, they were able to cover 97 percent of the branches (conditional statements) within the software and 93 percent of the testable code. In contrast, they note that typical software testing covers only 40 to 60 percent of the code.

In a similar study, National Institute for Standards and Technology (NIST) researchers, Kuhn and Reilly,¹² use DOE techniques in software testing. They employ a DOE approach¹³ that allows for a large number of input conditions to be covered in a small number of runs. They examined two open source projects: the Mozilla web browser and the Apache web server. Both projects have large sets of code, large user bases, and extensive databases of reported bugs. Kuhn and Reilly conclude that 89 (Apache) to 95 percent (Mozilla) of reported bugs could be found using only three small DOE designs, and 100 percent of reported bugs could be found using six small DOE designs. The advantage of using DOE in this case was that Kuhn and

⁹ These papers describe the application of combinatorial DOE designs.

 ¹⁰ Burr and Young, Combinatorial Test Techniques: Table-based Automation, Test Generation and Code Coverage, Software Engineering Analysis Lab, Nortel.

¹¹ Hartman, *Software and hardware Testing Using Combinatorial Covering Suites*, IBM Haifa Research Laboratory.

¹² Kuhn and Reilly, *An Investigation of the Applicability of Design of Experiments to Software Testing*. NASA IEEE Software Engineering Workshop, 2002.

¹³ They employ combinatorial designs as their DOE approach.

Reilly were able to find the majority of reported bugs quickly. These techniques are applicable early in software development when code segments are being tested.

Integration Testing

During DT&E, it is common to conduct integration tests to examine whether systems have properly implemented communication protocols, interfaces, and other requirements; Burroughs, Jain, and Erickson described the application of DOE¹⁴ to such testing.¹⁵ In their example, Burroughs, Jain, and Erickson examined testing of telecommunication switches using Integrated Services Digital Network (ISDN) protocols. ISDN is a set of communications standards for the simultaneous digital transmission of voice, video, data, and other network services over telephone circuits.

The problem encountered in this case is common: the number of possible combinations of message types, message originator, interface configurations, etc., is large. Traditional testing approaches do not provided sufficient breadth of coverage.

Burroughs, Jain, and Erickson noted that DOE allowed integration testing to be conducted that provided "much broader coverage of the test space without leaving any systematic holes." Testing is easily implemented in automated test systems, and the "improved quality of testing leads to faster detection of non-conformances, and a higher quality of products in a shorter development interval."

Interoperability Testing

Also common to DT&E is interoperability testing; Brownlie, Prowse, and Phadke describe a DOE approach for such testing.¹⁶ Their problem was to examine interoperability of a new email software release within an environment that included multiple operating systems, hardware configurations, and client and server software. Testing examined interoperability at the functional level (e.g., copy function).

Brownlie, Prowse, and Phadke noted that testing takes up a significant portion of development resources and that a DOE approach improved testing. They concluded that DOE-based testing was completed in less staff time, provided systematic testing of the product functionality, higher confidence in coverage of the requirements, and discovered more faults (in their case, 22 percent more faults).

Accelerated Aging

Accelerated aging is a common procedure during DT&E. In a presentation to the DOT&E Science Advisor (February 2009), NIST described the use of DOE in accelerated aging programs to determine the lifetime of compact disks (CD). The testing was conducted in

¹⁴ In their examples, they use orthogonal arrays.

¹⁵ Burroughs, Jain and Erickson, Improved Quality of Protocol Testing Through Techniques of Experimental Deign, IEEE, 1994.

¹⁶ Brownlie, Prowse and Phadke, *Robust Testing of AT&E PMX/StarMAIL using OATS*, June 1992, AT&T Technical Journal.

cooperation with the Library of Congress to examine archiving of data. It was known that high temperatures and humidity could degrade CDs. The objective of the testing was to estimate the lifetime of commercially available CDs.

NIST has described the testing in publications.¹⁷ The DOE approach taken allowed a specific life expectancy model to be applied in a systematic way. A sample of 100 CDs was divided into six groups. Each group was exposed to one of six levels of stress (higher temperature and humidity). After each period of exposure, each CD was tested to evaluate any degradation in performance. Statistical analysis of the data allowed the team to estimate the life expectancy of the CDs. It also allowed them to estimate how stresses from temperature and humidity mighty reduce life expectancy.

Characterizing Performance

During development, it is common that requirements must be verified by characterizing the performance of the system or subsystem; DOE is applicable to these tests. As an example, the Joint Chemical Agent Detector had a test requirement to characterize its ability to detect chemical agents as a function of agent concentration, atmospheric water vapor content, and temperature. The goal was to determine the mathematical equations that related these quantities to probability of detection, time to detect, and other relevant metrics.

The testing was conducted in the laboratory under developmental test conditions and employed a DOE approach.¹⁸ In this case, DOE was selected in order to provide what is known as a response surface model (the mathematical relationship between factors mentioned above). This approach has been used throughout the program's history as the system has been developed. It has provided test results with high statistical confidence.

In another example, Landman, Simpson, Mariani, Ortiz, and Britcher¹⁹ use DOE techniques to characterize the aerodynamic behavior of the X-31 Enhanced Fighter Maneuverability program. The aerodynamic behavior of an aircraft is characterized through aerodynamic equations. Traditionally, one factor at a time experiments have been used to vary the factors in the wind tunnel. For aerodynamic analysis, this often requires more than 1,000 test points.

Such testing can require weeks of wind tunnel time and is complicated by instrument drift over the lengthy test periods. Instrument drift leads to biases in the results. Landman *et al* use DOE^{20} in this example to characterize the aircraft's aerodynamic performance as a function of altitude and aerodynamic control inputs in only 104 test points. The dramatic reduction in the number of test points reduces instrument drift concerns. Additionally, based on the response surface models, the DOE allowed for predictions accurate to within one percent of the true value. It also allowed for the characterization of experimental error through an analysis of variance.

¹⁷ NIST/Library of Congress (LoC) Optical Disc Longevity Testing Procedure, NIST Special Publication 500-263.

¹⁸ JCAD employed a D-Optimal test design.

¹⁹ Landman, Simpson, Mariani, Ortiz, and Britcher, A High Performance Aircraft Wind Tunnel Test using Response Surface Methodologies. U.S. Air Force T&E Days, 2005.

²⁰ They employ a Response Surface Design the Face Centered Cube (FCC) DOE technique.

Finally, the DOE revealed unexpected interactions. The interactions would have been impossible to detect using traditional experiments.

Characterizing Performance across DT&E and OT&E

In addition to characterizing performance solely in developmental testing or in operational testing, it might be important to characterize performance and ensure coverage of the envelope across DT&E and OT&E.

Hutto and Kowalski²¹ use a DOE approach to ensure adequate testing of the MAU-209 B guidance kit across developmental and operational testing. The guidance kit straps on to the MK-82 and MK-84 bomb, which turns it into a laser-guided bomb. Several factors were identified as affecting the performance of the guidance kit. A factorial design was used to ensure that all important combinations of factors and levels were covered between DT&E and OT&E with adequate confidence and power. The DOE provides important understanding of where the DT&E could be improved. It also provides information on where DT&E and OT&E testing can be synergistic.

Careful Planning

In this memorandum, we provided examples of successful implementation of DOE techniques to DT&E. These case studies omit one of the most important aspects of DOE. The DOE process requires critical thought in the planning stages of potential factors and levels using the expertise of engineers and scientists. This process can prevent gaps in testing by initiating the thought process on causal factors and environmental factors that might affect the outcome of the test. The worst unknown is the unknown-unknown. The DOE process, properly executed, helps to reduce the risk of unknown-unknowns.

Conclusion

It is clear that DOE is applicable to many areas of DT&E and that it has a wide range of benefits – systematic coverage of the envelope, improved quality of testing with faster detection of problems, a higher probability of detecting faults, potential cost and time efficiencies, and the ability to quantify the risks inherent to any test program.

The case studies presented in this memorandum represent only a fraction of the publically available literature on DOE in DT&E. Nonetheless, they represent cases that span the range of developmental test and evaluation activities, from early engineering analyses, through incremental development of software and hardware, to final verification of system requirements. The application of DOE to DT&E in the open literature is dominated by examples from industry. Only limited information is available on the application of DOE to DT&E of military systems.

²¹ Hutto, Drenth, Kowalski, and Sparkman, *Design of Experiments: Meeting the Central Challenge of Flight Test*, Page 16-27.

Appendix 5-2 Mine Susceptibility Comparison Study

Summary

Design of Experiments (DOE) is a methodology for planning and analyzing tests. In this memorandum, we compare multiple design methodologies for the mine susceptibility test of the *Lewis and Clark* Class (T-AKE-1) Dry Cargo/Ammunition Ship using the Advanced Mine Simulation System (AMISS). The comparison study determines the trade space between the number of test conditions (factors) examined, the sample size (test cost), and the associated test risk. A two-part comparison study first compares seven different statistically optimum designs to determine the trade-off between sample size and statistical power, which is a measure of test risk. The result from this comparison study shows that designs between 20 and 28 test points are adequate to fully characterize the performance of T-AKE-1 against AMISS as a function of range, ship speed, and whether or not the degaussing system is turned on.

A second comparison study examines the impact of adding and removing additional factors form the design on statistical power. From this study, one can see that there is only a minimal impact of adding or removing factors from the design in terms of statistical power.

Overview

The goal of this mine susceptibility trade study is to evaluate potential test designs for a mine susceptibility test and determine the trade space between the number of factors, the sample size (test cost), and the associated test risk. This is accomplished by a two-step comparison study. In the first comparison study we compare different test designs of varying size for a fixed number of factors and investigate trade-offs in test risk as a function of design type (sample size). In the second comparison study, for a fixed number of samples (16 and 36) we investigate the trade-off between risk and the number of factors included in the test design.

The goal of the test is to characterize the detonation distance for a variety of mine types for a surface ship. The factors that may influence the range at which the mine detonation occurs are:

- Speed of the surface ship
- Horizontal range of the ship to the simulated mine
- Degaussing status of the ship
- Machine line-up (correlated with speed)
- Ship's direction (north/south approach versus east/west approach)

The first three factors (speed, range, degaussing status) are the most important factors to investigate. Therefore, these three factors will be used to determine the base designs for the first comparison study. Since, machine line-up is correlated with the speed of the ship it will be treated as a recordable factor and not considered in any of the test designs. In the second

comparison study the impact of adding and removing a factor from the base design are considered. Table 1 shows the factors considered in the second comparison study.

Number of Factors	Factors Considered				
2	Range, degaussing status				
3	Speed, range, degaussing status				
4	Speed, range, degaussing status, ship's direction				

Table 1. Factors Considered in Factor Trade-off Study

To compare the design we will use two metrics, the first is the number of model terms that are estimable based on the design type. Consider the following generic statistical model:

$$y_{i} = \beta_{0} + \sum_{i=1}^{k} \beta_{i} x_{i} + \sum_{i=1}^{k} \sum_{j \neq i}^{k} \beta_{ij} x_{ij} + \sum_{i=1}^{k} \beta_{ii} x_{i}^{2}$$

where k is the number of factors considered in the design. The first summation $\sum_{i=1}^{k} \beta_i x_i$ provides the "main effect" of the factor on the outcome. In our case, these terms provide the estimated mean shift in response (detonation distance) for the factors. The second summation, $\sum_{i=1}^{k} \sum_{j\neq i}^{k} \beta_{ij} x_{ij}$, provides the interaction effects, which provide information on how factors work synergistically to impact the detonation distance. The final summation, $\sum_{i=1}^{k} \beta_{ii} x_i^2$, provides the quadratic effects, which account for non-linear relationships between the continuous factors (range, speed) and the test outcome. The ability to estimate more model terms provides increase flexibility in the analysis and therefore is desirable. We could continue to expand upon the model he to higher order terms (three-way interactions, cubic terms) However, from the principle of sparsity of effects we know that typically second order models are adequate to characterize the response (think Taylor series). For the three factors considered in the first comparison study, an ideal number of model terms is eight (three main effects, three two-way interactions, and two squared terms).

The second metric considered is the power for estimating model terms. For a designed experiment, the power calculations tell us about our ability to detect an effect of a factor as different from zero. This is one estimate of test risk. Power is the probability that given β_i has a non-zero effect on the detonation range that we will be able to conclude that based on our testing. This is a key element for determining an adequate test. The remainder of this document is laid out as follows:

- Overview of common statistical designs that are viable candidates for the mine susceptibility test.
- Comparison study of sample size/design type versus test risk
- Comparison study of number of factors versus test risk
- Recommendations

Potential Test Designs

Table 2Table below provides seven common statistical designs for the three primary factors considered in this comparison study (speed, range, and degaussing status). These designs have been shown by the statistical literature to be the best designs available for three factor tests.

	Design Type	Number of Runs	Estimable Model Terms	Design Properties
1	Full Factorial (2-level)	8	6	Smallest possible design to investigate 3 factors and their interactions. Very low power for detecting factor effects.
2	Full Factorial (2-level) replicated	16	7	Increased power over non-replicated 2-level factorial design. Adds the ability to estimate a three-way interaction over the un-replicated design.
3	General Factorial (3x3x2), also referred to as a Face Centered Cube (CCD) Design	18	9	Three-level designs for the continuous factors allow for the estimation of squared model terms.
4	Central Composite Design (w/ 1 center point)	18	9	Five – level design produces a rotatable design that balances variance and increases power.
5	Central Composite Design (replicated center point)	20	9	Center point replication allows for an estimate pure error (variability between runs under the same conditions) in addition to all other design benefits.
6	Central composite Design with replicated factorial points (Large CCD)	28	9	Large design has great power and the ability to estimate all desired model terms.
7	Replicated General Factorial	36	9	Large design with good power but not as optimum as the Large CCD.

Table 2. Designs Evaluated in Comparison Study

Notice in Table, that the smallest two designs support a smaller model than the other designs.

Figures 1 - 3 provide a pictorial view of what these designs look like.

In Figure 1, one can see the layout of the design for the 2-level full factorial design. The scales are in coded units, one the actual ranges of interest for both horizontal range and airspeed are determined the scales can be adjusted to match the low and high values. The purple boxes with the number "2" next to them indicate that two runs will be executed at this point, one with the degaussing system turned on, the other with the degaussing system turned off.

The second design simply replicates the full-factorial design illustrated in Figure 1 such that there are 4 points run at each design point (2 with degaussing, 2 without degaussing).

Figure 2 shows the layout for Design 3, the general factorial design. Notice that the design adds "axial points" colored in green, and a "center point" colored in brown to the full factorial layout. These points allow for the estimation of the additional desired model terms.

Figure 3 illustrates Design 4, the CCD. Notice that this design pulls the green axial points out to make a spherical design region. This balances the information across the design space, resulting in lower variance for each for estimating each of the model terms.

Design 5 simply replicates the brown center point of Figure 3.

Design 6, the Large CCD, replicates the purple factorial points and the brown center point from Figure 3 resulting in 28 total runs.

Design 7, the replicated General Factorial Design, replicates all of the design points in Figure 2.

Figure 1. Full Factorial Design (2-level)

Figure 2. General Factorial Design (3x3x2)

Figure 3. Central Composite Design

Design/Sample Size Comparison

Figures 4 and 5 examine the trade space between the design type, and therefore sample size, and power. Typically, power levels above 80 percent are considered favorable for adequately covering the design space. A test with 80 percent power means that if a factor, for example degaussing status, has an effect on the test outcome, we will have an 80 percent probability of being able to conclude that based on the data collected in the test. The detectable difference of one standard deviation (σ) tells us about the magnitude of the difference in the test outcome that we will be able to detect. Figures 4 and 5 show the power levels for the main effects factors in each of the designs for a detect able difference of one standard deviation and two standard deviations respectively. The power results for the two-way interactions are similar in magnitude due to the inherent balanced of the all the designs.

Notice only the smallest design (Design 1) provides extremely low power, meaning that this test is high risk for failing to detect the impact of the degaussing system (or any other factor). Figures 4 and 5 show that if one is interested in effects on the order of twice the standard deviations any of the Design 2 - 7 will be adequate. However, if one is interested in effects on the order of the one standard deviation, the larger designs (Design 6 with 28 runs and Design 7 with 36 runs) are recommended.

Figure 4. Power Comparison for the Model Main effects at the 90% Confidence Level

Figure 5. Power Comparison for the Model Main effects at the 90% Confidence Level

Number of Factors Comparison

The second comparison examines the trade space between the number of factors and power. Figure 6 shows the power for testing main effects as a function of the number of factors considered in the design. Notice that there is a decline in power, as expected, when the number of factors is increased. However, the decrease in power is minimal compared to the risk of not having any information on that factors impact on the outcome of the test if it is not considered at all. For a constant test size, the power for each factor main effects only decreases by on average 5.75 percent when increasing the number of factors from two to four factors.

Figure 6. Power for the Model Main effects for 2, 3, and 4 factors at the 90% Confidence Level

Recommendations

Design 5 and Design 6 both provide excellent coverage of the factors that impact the outcome of the mine detection simulation test. It would be prudent to plan for Design 6 to provide more discriminatory ability between the factors levels and their effect on the outcome of the test. Additionally, these designs provide five levels of the horizontal range, which allows for flexibility in the test setup. One of the unknowns going into testing is the exact values of the horizontal ranges needed to ensure useful data is collected. Five levels allows for maximum flexibility in moving between different levels as data is collected throughout the test to determine the most appropriate sets of ranges for the ship from AMISS. However, if achieving five levels of the speed and horizontal range is not possible, then Design 3 is another competitive test design option.

Another point of interest is the building block nature of all of the test designs. In fact, design 1 is actually a subset design of all the other designs. A good test execution strategy might be to execute the subset of Design 6 that aligns with Design 1 first. A preliminary data analysis of the eight runs can be done to determine the relative impact of each of the factors on the test outcome. Adjustments based on the outcome of the initial analysis can be made to maximize the benefits of the remaining test points. Potential adjustments include, adding/removing an additional factor, reducing the required number of test points, and rescaling the levels of either the range and/or speed factors.

This page intentionally left blank.

Appendix 5-3 Fuel Leakage Comparison Analysis

Summary

The Naval Air Systems Command conducted live fire testing to determine the impact of fuel type on the self-sealing properties of aircraft fuel bladders. The objective of the test was to collect data to determine if switching fuel types, from traditional petroleum based fuels with high aromatic contents to a bio-fuels negatively impacts self-sealing. Four fuels were considered in the experiment, JP-5 (20.5 percent aromatics), JP-8 (11.5 percent aromatics), hydrotreated renewable jet fuel (HRJ-5) (0 percent aromatics), and a 50/50 blend of JP-5 and HRJ-5 (9 percent aromatics). The four fuel types were placed in similar test setups consisting of a metal test cubes with fuel bladder panel/backing board facing the gun. The panels were impacted by fully tumbled 7.62-millimeter (mm) round and the leakage of fuel was measured for 6 minutes.

Prior to the completion of the analysis described in this memorandum, two separate analyses were performed on the data collected by the Navy Live Fire and NAVAIR. The two analyses focused on comparing only a subset of the fuels tested (i.e. each vendor was treated as an independent subset) and resulted in difference conclusions about the impact of the biofuel on self-sealing properties of fuel cubes. IDA conducted a third analysis described in this memorandum to independently determine if the use of biofuels impacts the self-sealing ability of fuel cubes.

The analysis that follows uses linear mixed modeling to determine if the fuel type impacts the leakage rate for the data under consideration. We conclude that there is no statistical difference between three of the four fuel types: JP-8, HRJ-5, and the 50/50 blend. JP-5 fuel results in a statistically significant reduction in the fuel leakage over the six-minute test period from the JP-8 fuel, but there is no statistical difference between JP-5 and HRJ-5 of the 50/50 blend over the six-minute test period. Additionally, the analysis shows that all of the fuel types exhibit some degree of self-sealing within approximately two minutes.

Overview

The Navy recently conducted live fire testing at the Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, Weapons Survivability Laboratory (WSL) in support of the support of the Navy's Alternative Fuels program. The testing was conducted to help clarify the potential vulnerabilities associated with the use of biofuels in military aircraft. The objective of the live fire testing was to provide data regarding the relative self-sealing performance of fielded military aircraft fuel bladder materials when used in conjunction with biofuels with reduced aromatic content. Fuel bladder materials came from four different vendors: Meggitt, GKN, METS, and AmFuel, but comparing the self-sealing capabilities of the different vendors was not a goal of the testing. The alternative fuel used in testing was a hydrotreated renewable jet fuel (HRJ-5) designed to meet the JP-5 specification. The hydrocarbons present in this fuel are nearly identical to petroleum fuels, but lack the aromatic compounds found in petroleum. Table 1 summarizes the fuels used in this live fire test.

Fuel	Aromatic Content		
JP-5	20.5%		
JP-8	11.5%		
Neat HRJ-5 (Neat)	0%		
50/50 Blend of HRJ-5 and JP-5	9%		

 Table 1. Fuels and Corresponding Aromatic Contents

After the completion of testing, two separate analyses were conducted on the raw data. The first analysis used statistical t-tests to determine if the mean leakage rates were different at each time step in the data collection for between JP-8 and the 50/50 blend. The analysis focused on these two fuel types because they provided the closest match in aromatic content. The first analysis concluded that the data did not support the conclusion that there was a difference in performance between the two fuel types. The second analysis used a linear extrapolation of the aromatic content of the traditional fuels (JP-5 and JP-8) to match the 50/50 Blend. The second analysis concludes that there is a significant difference between a hypothetical traditional petroleum based fuel at 9% aromatic content and the biofuel 50/50 blend fuel with 9 percent aromatic content. These two analyses focused on comparing only a subset of the fuels tested (i.e. each vendor was treated as an independent subset) resulting in difference conclusions about the impact of the biofuel on self-sealing properties of fuel cubes.

In this memorandum, IDA provides a third analysis that incorporates all the data in a statistically rigorous manor. We account for problems with normality that were observed in the first analysis. We conclude that there is no statistical difference in the leakage amounts for JP-8, Neat, and the 50/50 Blend. Therefore, since these fuel types span 3 different aromatic contents levels it does not appear that for these lower levels of aromatic content that there is a difference between the petroleum based JP-8 fuel and the biofuel blend or the pure biofuel. Additionally, we find that JP-5 has significantly lower leakage rates than JP-8. The reason for this difference is unknown based on the test results.

Data Description

Fuel was placed in a metal test cube with fuel bladder panel/backing board facing the gun. Panels were impacted by a fully tumbled 7.62-millimeter (mm) round and observed for 6 minutes. Amount of fuel leakage was recorded at regular intervals. Raw data from each fuel type is shown in Figure 1.

Figure 1. Leakage Amounts for Six Minutes by Fuel Type

Data Analysis

The data are correlated between the time increments because the total leakage at a time point always includes previous leakage. In this analysis we calculate the leakage amount within a given 30 second time bin to use as the primary response variable for two reasons: (1) to remove some of the correlation in the data; (2) it provides an easier understanding of the fuel leakage rate relative to the current time. Figure 2 provides the fuel leakage amounts within a given time increment. Figure 2 clearly shows that for most of the trials, there is some sealing effect within all the data. The leakage amounts tend to increase for a short period of time and then appear to level-off or decrease after that initial window.

Time (sec) Figure 2. Leakage Amounts within a Time Increment by Fuel Type

Figure 3 shows the average leakage rates by fuel type per 30-second time increment. The leakage rate was calculated by subtracting the total leakage amount from the previous time period from the new leakage amount to get the leakage total for each 30-second time increment. This was done to reduce the amount of correlation between each time bin to improve the power of the statistical analysis. These leakage rates were plotted against time (the raw data points are dots in Figure 2), and then used cubic splines to fit a smooth trend line to the data for each Fuel Type. In Figure 3, one can see that all four fuel types follow a similar leakage pattern. Initially, we seen an increasing trend in the leakage rates, however, and after around 100-120 seconds all of the fuel types show some degree of sealing and leakage amounts begin to decrease.

Figure 3. Smoothed Average Leakage Amount by Fuel Type

Statistical Data Analysis

To determine if the fuel type (and its corresponding aromatic content) significantly impacts the self-sealing properties, we use a linear mixed model. The mixed model allows for random effects that account for correlations in the dataset. Additionally, because the leakage rate is not normally-distributed we must transform the data. Figure 4 below shows the distribution of the leakage amounts per 30-second time interval for the raw data. Clearly, these data are not normal; they are highly right-skewed. Figure 5 shows the distribution of the data after a log transformation. It is reasonable to assume the normal distribution for this data because it is has a single peak and is close to symmetric.

Figure 4. Histogram of Leakage Amounts

The linear mixed model used in the analysis also allows for the inclusion of additional factors that may influence fuel leakage amounts. We model the log leakage amounts as a function of time period, fuel type, and velocity. Additionally, to determine if the leakage amounts vary by fuel type as a function of time (i.e. sealing occurs faster for one fuel type than another) we include the interaction term between fuel type and time period.

Table 2 below shows the least squares estimates of the mean log leakage amounts by fuel type and time. Recall, that all of these values have been transformed to be on the log scale so to get the actual mean leakage amounts one needs to exponentiate the values in Table 1. Figure 6 plots the actual least squares estimates of leakage rates (not log transformed) by time increment and fuel type.

Figure 5. Histogram of Log Transformed Leakage Amounts

Fuel	Time (sec) (Standard Error)											
туре	30	60	90	120	150	180	210	240	270	300	330	360
50/50	1.66	2.95	3.35	3.35	2.99	3.20	3.00	2.84	2.65	2.47	2.55	2.40
	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)	(.415)
JP-5	1.83	2.43	3.13	2.92	2.74	2.61	2.63	2.60	2.44	1.82	1.94	1.42
	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)	(.418)
JP-8	2.11	3.31	3.78	3.83	3.65	3.65	3.33	3.14	3.15	3.01	2.72	2.42
	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)	(.416)
Neat	1.89	3.00	3.62	3.49	3.02	3.30	3.18	3.05	2.89	2.70	2.57	2.68
	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)	(.421)

 Table 2. Least Square Estimates of Mean Leakage Rate per Fuel Type and Time Increment

The highlighted cells in Table 2 indicate that there was a significant difference between that cell and another cell within the same time step. Table 3 below summarizes all of the

significant difference between the cells. Notice, all of the pair-wise significant differences contain JP-5. Therefore, this analysis shows that JP-5 does exhibit different leakage amounts from the other fuels indicated. Additionally, there is no statistically distinguishable difference between the 50/50 blend, JP-8, and Neat SPK.

Fuel Type 1	Fuel Type 2	Time (sec)	Estimated Difference	Standard Error	t Value	p-value
JP-5	JP-8	60	-0.8822	0.5944	-1.48	0.1386*
JP-5	JP-8	120	-0.9118	0.5944	-1.53	0.1259*
JP-5	JP-8	150	-0.9034	0.5944	-1.52	0.1294*
JP-5	JP-8	180	-1.0379	0.5944	-1.75	0.0816**
JP-5	JP-8	300	-1.1906	0.5944	-2	0.0459***
JP-5	Neat	300	-0.8766	0.5926	-1.48	0.1399*
JP-5	JP-8	330	-0.7802	0.5987	-1.3	0.1933*
JP-5	Neat	360	-1.2589	0.5926	-2.12	0.0343***
JP-5	JP-8	360	-1.0008	0.5987	-1.67	0.0955*
JP-5	50%	360	-0.9784	0.5909	1.66	0.0986*

Table 3. Significant Pair-wise Differences between Fuel Types at a given Time Increment

^a Significant at the 80% Confidence Level

^b Significant at the 90% Confidence Level

^c Significant at the 95% Confidence Level

Table 4 provides an overall summary of the differences between fuels if we look at the differences averaged over all of the time points. Overall, the only significant difference between fuel types across all time points is JP-5 results in significantly lower leakage amounts than JP-8.

Fuel Type 1	Fuel Type 2	Estimated Difference	Standard Error	t Value	p-value
50%	JP-5	0.4091	0.5212	0.78	0.4331
50%	JP-8	-0.3900	0.5156	-0.76	0.4498
50%	Neat	-0.1642	0.5163	-0.32	0.7507
JP-5	JP-8	-0.7991	0.5253	-1.52	0.1290*
JP-5	Neat	-0.5732	0.5185	-1.11	0.2696
JP-8	Neat	0.2259	0.5180	0.44	0.6631

Table 4. Overall Differences between Fuel Types

* Significant at the 80% Confidence Level

Figure 6. Least Square Estimates for Fuel Leakage amounts by Fuel Type

Additionally in Figure 6, it is interesting to note that the maximum leakage amount for all fuel types occurs at either 90 or 120 seconds, indicating that sealing is occurring after about 2 minutes across all fuel types. Additionally, it is important to notice that the amount of fuel leaking from the cube does not appear to be a function directly of aromatic content. JP-8, which has the second highest aromatic levels (11.5 percent), has the highest amount of fuel leaked in this experiment. This graph illustrates that the linear extrapolation method used in the second pervious analysis was not valid, at least for the given data set.

Figure 7 provides an analysis of the model assumptions by checking the distribution of the residuals from the model. The linear mixed model assumes normality and that the variance between observations can be properly accounted for by random effects. The residual scatter plot below shows that there are no trends in the residuals as a function of the mean predicted value. The histogram and the residual versus quantile plots show that the residuals follow an approximately normal distribution. Therefore, the assumptions have been met to use this model for statistical inference.

Figure 7. Residual Plots for Linear Mixed Model

Conclusions

The analysis provided in this document supports the conclusions of the first analysis conducted using standard t-tests. There is no statistically significant difference between JP-8 and the 50/50 biofuel blend. Additionally, it expands on that analysis to show that there are no statistical differences in leakage amounts between JP-8, the 50/50 Blend, and the Neat Fuel. JP-5 is statistically different from JP-8 across the six minute observation period, but there is insufficient evidence to conclude it is different from the 50/50 blend or the Neat biofuel overall.

A factor that could not be considered in this analysis is the degree of damage that occurred in each live fire shot. The amount of damage, as indicated by the previously conducted analyses, is causing more variability in the fuel leakage amounts than the fuel type. Figure 8 below illustrates this point by plotting the leakage amount as a function of the classified leak type. In the presence of such a highly variable factor, to detect differences in the fuels ability to seal leak types one would need a much larger experiment. However, there may be no operationally meaningful reason to conduct such an experiment because the impact of the fuel type on leakage sealing from the current analysis appear to be small.

Figure 8. Fuel Leakage by Leak Type