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Voice over IP (VoIP) is a key enabling technology for the migration of circuit-

switched PSTN architectures to packet-based IP networks. However, this migration is 

successful only if the present problems in IP networks are addressed before deploying 

VoIP infrastructure on a large scale. One of the important issues that the present VoIP 

networks face is the problem of unwanted calls commonly referred to as SPIT (spam over 

Internet telephony). Mostly, these SPIT calls are from unknown callers who broadcast 

unwanted calls. There may be unwanted calls from legitimate and known people too. In 

this case, the unwantedness depends on social proximity of the communicating parties.  

For detecting these unwanted calls, I propose a framework that analyzes incoming 

calls for unwanted behavior. The framework includes a VoIP spam detector (VSD) that 

analyzes incoming VoIP calls for spam behavior using trust and reputation techniques. 

The framework also includes a nuisance detector (ND) that proactively infers the 

nuisance (or reluctance of the end user) to receive incoming calls. This inference is based 

on past mutual behavior between the calling and the called party (i.e., caller and callee), 

the callee's presence (mood or state of mind) and tolerance in receiving voice calls from 

the caller, and the social closeness between the caller and the callee. The VSD and ND 

learn the behavior of callers over time and estimate the possibility of the call to be 

unwanted based on predetermined thresholds configured by the callee (or the filter 



administrators). These threshold values have to be automatically updated for integrating 

dynamic behavioral changes of the communicating parties. For updating these threshold 

values, I propose an automatic calibration mechanism using receiver operating 

characteristics curves (ROC). The VSD and ND use this mechanism for dynamically 

updating thresholds for optimizing their accuracy of detection.  

In addition to unwanted calls to the callees in a VoIP network, there can be 

unwanted traffic coming into a VoIP network that attempts to compromise VoIP network 

devices. Intelligent hackers can create malicious VoIP traffic for disrupting network 

activities. Hence, there is a need to frequently monitor the risk levels of critical network 

infrastructure. Towards realizing this objective, I describe a network level risk 

management mechanism that prioritizes resources in a VoIP network. The prioritization 

scheme involves an adaptive re-computation model of risk levels using attack graphs and 

Bayesian inference techniques. All the above techniques collectively account for a 

domain-level VoIP security solution.  
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CHAPTER 1

INTRODUCTION

VoIP (Voice over IP) also termed as IP telephony has fast emerged as a standard

for distant-voice communication using the Internet. Using VoIP, voice and fax can

be transported on the same packet data network that is used for transmitting tra-

ditional data packets, i.e., IP(Internet Protocol) network. As VoIP uses the existing

IP network, it is possible to reduce long distance charges typical with traditional

PSTN(Public Switched Telephone Network) networks. In addition, ease of deploy-

ment and reduced communication hardware make VoIP a compelling solution for voice

communication on the Internet. Further, VoIP provides a flexibility of value-added

and personalized services for defining customized solutions. As a result, most of the

control which existed in PSTN network’s central infrastructure has been transferred

to the end devices by deploying the VoIP communication infrastructure.

With the advent of VoIP technology, an increasing number of telecommuni-

cation service providers have started to integrate VoIP solutions into their systems

and provide VoIP services to their customer base. Equipment manufacturers and end

users have greatly benefited from performance advancements, cost reduction, and fea-

ture support provided by the VoIP technology. Forecasts for VoIP show a massive

increase in revenue (see Figure 1.1). Forecasts for residential-community users are

also high. Analysts estimate that by 2010, the number of residential subscribers will

reach 140 million [62].

1.1. VoIP

Voice over IP is a technology for transmitting voice packets on the existing IP

network between two communicating parties who both have access to the Internet.
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Figure 1.1. VoIP revenue forecast[88] (Source: Frost and Sullivan [25])

Unlike PSTN networks, an IP network is packet switched. In PSTN networks, when

the calling party calls the called party, there exists a physical circuit connecting the

two parties. After the call is established, the parties communicate and the circuit is

reserved until the parties finish the communication. However, on an IP network, all

communication is carried out using IP packets. When a calling party communicates

with a called party, the analog signals are digitized, encoded, and packed into an IP

packet at the transmitting end and converted back to analog signals at the receiving

end.

Figure 1.2. VoIP network interconnectivity
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Figure 1.2 represents a VoIP network’s basic interconnectivity. Calls gen-

erated from the VoIP end devices (such as IP phones, soft-phones) are transmitted

on the IP network to destination IP devices. Gateways separating disparate networks

convert the incoming packets’ format so that the destination network carries forward

the communication. The network components through which the call travels and the

communication format are defined by the specific VoIP implementation, based on

signaling protocols.

1.1.1. VoIP Protocols

The two major protocols used for voice communication on the IP network are

(1) H.323: An ITU Telecommunication standard for voice communication on

packet networks, H.323 defines a suite of protocols such as H.225 (for call

signaling), H.235 (security), H.245 (multimedia communication) and H.261,

H.263 and H.264 for Video encoding. This suite of protocols establishes

standards for communication between the H.323 Terminals and network

components such as Gateways, Gatekeepers, and Multipoint Control Units

(MCU’s).

(2) SIP(Session Initiation Protocol): SIP is an application layer protocol for

creating, modifying, and termination sessions between the communication

parties. The protocol, which specifies a set of signaling messages for session

establishment and termination, is used along with other transport protocols

such as RTP(Real-time Transport Protocol), RTCP(Realtime Control Proto-

col) for enabling voice-communication services between two communication

parties. We have discussed the SIP protocol in detail in Chapter 2.

In addition to the above protocols, VoIP networks may use protocols such as MGCP

(Media Gateway Control Protocol) and SCCP (Skinny Client Control Protocol) for

communication among various VoIP network elements. The MGCP protocol permits

controlling VoIP devices such as media gateways from control elements such as Call

3



agents. Some VoIP infrastructures use SCCP, a Cisco proprietary protocol, for com-

munication between Cisco end-IP phones running skinny clients with a Cisco Call

manager.

1.1.2. VoIP Security

Based on their VoIP implementation, network components are interconnected to

provide end-to-end VoIP services on both the public Internet and private enterprise

Intranets. However, before successful deployment and management of VoIP networks,

a number of issues have to be taken care of. Only then can VoIP service providers

and recipients reap the advantages of VoIP. One of the most important issues which

need immediate attention is securing VoIP networks and their communication ele-

ments. As VoIP is still at its inception, service providers are deploying their network

infrastructures without adequate security. Such inattention to implementing pre-

cise and adequate security measures allows malicious individuals to cause damage to

critical communications networks. In addition, inadequate security within the VoIP

network’s infrastructure elements can lead to exploitation of network infrastructure

of other connected networks such as PSTN.

Current PSTN voice services provide excellent voice quality and high relia-

bility (99.999%), carry critical services such as E911, provide federal agencies with

the ability to carry out lawful intercept, and operate on well-established and secured

PSTN networks. The PSTN network’s security, mainly based on a closed network

principle, is often physically remote and/or inaccessible to users. End-users do not

directly connect to PSTN signaling networks (e.g., SS7). Hence, it is reasonable to

assume that they have adequate protection from malicious users. On the contrary, in

case of VoIP, attackers can either have a physical (by being near) or logical access (by

exploiting and gaining access) to the network elements. These attackers can access

most of the network infrastructure on the IP network. Once gaining access, they can

4



create a major telecommunications disruption.

1.2. Motivation

Unfortunately, researchers have reported very little work on how to defend VoIP

against attacks such Denial of Service (Dos), session hijacking and termination, mon-

itoring and eavesdropping, service disruption, toll fraud, identity fraud, spamming,

and other attack methods. Also, as a discipline, we do not yet understand the impact

of vulnerabilities on a large-scale VoIP network (e.g., several millions of IP phones).

Hence, it is imperative that we investigate the vulnerabilities and threats to residen-

tial communities that arise with the wide-spread adoption of real-time services like

VoIP. All possible threats need to be addressed before we deploy VoIP services on a

mass scale. Our current lack of adequate security has the potential of delaying and

disrupting next-generation voice communications.

With the use of IP network for VoIP communication services, the problems

that exist on the present IP networks hold also for the VoIP networks. One such

problem that present IP networks face is spam. A recent study [22] indicates that

spam makes up over 40% of the email circulating on the Internet nowadays. Analysts

predict daily traffic will rise above 68 billion messages a day by 2007, and more than

half63%will be spam. The study estimates the spam costs for US corporations will

reach $8.9 billion. With this quantity of spam messages circulating through the In-

ternet each day, problems such as low availability and network congestion would not

be a surprise.

In VoIP networks, SPIT(Spam over IP Telephony) refers to unsolicited or un-

wanted voice calls (the equivalent to spam in email). Initially, it was perceived that

such unwanted calls are calls from unknown people, e.g., strangers. But, over time, the

meaning of ”unwanted” has changed to include subjectively labeled unwanted calls,

e.g., telemarketing calls from sales or marketing personnel in legitimate corporations

and organizations or calls from people calling about previously opted-in services such
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as mortgages, financial opportunities, newsletters, and discussion groups. People in-

terested in those services may view them as wanted calls, but other recipients may

view those same calls as unwanted.

So far, we lack documented cases of SPIT because few people use VoIP ser-

vices. But, with the rapid pace of deployment, SPIT poses a major threat if the VoIP

industry fails to adequately investigate and implement prevention mechanisms now.

An analysis [71] indicates that spammers find IP-based SPIT roughly three orders

of magnitude cheaper to send than traditional circuit-based telemarketer calls. For

example, consider a VoIP spammer generating random user-names, IP addresses, or

domain names to form a SIP (Session Initiation Protocol) URI (SIP identity) in the

form sip:usernameip address such as in sip:aliceabcdef.com(similar to e-mail addresses

in e-mail domain). The spammer can then use this randomly generated SIP URI to

generate SPIT calls (similar to the way an e-mail spammer generates random ad-

dresses for sending spam emails). In addition, spammers can use botnets for relaying

VoIP spam calls just as e-mail spammers use botnets to generate and relay spam

e-mails. By using botnets, the spammers do not reveal their identity, and, therefore,

tracing back to the source would be useless. The spammers can also spoof their iden-

tity while generating VoIP calls. Thus, the Caller-ID of the incoming voice call does

not reveal the actual individual who has generated the call. It is also not uncommon

that spammers confide with each other and exchange phone-numbers among them-

selves for monetary benefit. Using the available SIP identities and phone numbers,

the spammers could likewise deluge the end-users’ voice-mail boxes. Certainly, end-

users will become frustrated when they know that their voice-mail box are filled with

junk voice calls, thus, denying legitimate callers access or space to leave a message.

Most of the present day spam filters use blacklists and whitelists for access

control. The set of users from which the calls have to be blocked are encoded in

blacklists and the set of users from which the calls have to be forwarded are en-

coded in whitelists. However, especially for VoIP, this level of quarantining proves
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insufficient. Frequently, we receive wanted calls from unknown callers. For example,

legitimate callers might call us from new phone numbers. Using lists as our prime

filtering method denies us calls from these kinds of callers. Additionally, it is also

possible that we stop communicating with some acquaintances for various reasons

(e.g., an acquaintance has a new phone number or has not been in communication

with us for a while). In this case, if a spammer obtains this phone number and gen-

erates VoIP spam calls, a filter would allow the call to reach the end user; the filter,

thus, mistakenly forwards a SPIT call to the VoIP recipient. Few spam filters employ

challenge response methodology for filtering spam calls. When a spam filter receives

a suspicious call, the spam filter can challenge the calls’s source (e.g., by requesting

to perform a simple mathematical operation). Upon response from the source, the

spam filter quarantines the call or forwards it, depending on its legitimacy. Using

challenge response SPIT filters, it would be feasible to identify calls from automated

machines that fail when responding back to the filter. However, challenge response

filters are inefficient with calls generated by humans (e.g., calls from a creditor of an

unknown credit card company).

Besides SPIT(Spam over Internet Telephony) calls from unknown callers being

unwanted, there can be unwanted calls from known people, too. Thus, call recipients

may find it extremely useful if their VoIP system can detect an unwanted call well

in advance of reaching the callee and stop it at a perimeter controller (such as proxy

server or gateway). Preventing unwanted calls into the network limits the the misuse

of network resources which can be better used for legitimate call-processing functions.

An inference as to whether an incoming call is wanted can be estimated from past

calling patterns between the caller and the callee. We can reasonably assume that the

more frequent the callee’s communication with the caller has been in the past, higher

are the chances that the callee wants to receive the incoming call. On the other hand,

if the callee has rejected calls from the caller in the past, then the chances that the

callee wants to receive calls from that caller gets significantly reduced.
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To date, we have found no reported work on estimating a called party’s ea-

gerness or reluctance when receiving an incoming voice call. However, we believe,

pro-actively computing a callee’s eagerness helps when limiting unwanted calls. We

argue that every incoming voice call is associated with some amount of nuisance which

depends on several factors

(1) The closeness between the caller and the callee: A caller’s closeness repre-

sents the proximity of the caller in the callee’s social network. The callee’s

social network constitutes all the people with whom the callee previously

had VoIP communication. People with whom the callee had more communi-

cation are closer; people who had fewer communications with the callee are

considered to be farther away from the callee if we were to map the callee’s

social network. Thus, closeness depends on the frequency and duration of

communication with the callee.

(2) Presence of the callee: The callee’s presence is the callee’s mood or state

of mind at the time of receiving a call. Presence depends upon the the

callee’s current spatial and temporal contexts. Depending on presence, a

callee perceives certain calls to be wanted and certain others to be unwanted.

For example, a callee may consider calls from family members to have a

comparatively high nuisance value when the callee is in the office as compared

to when the callee is at home.

Integrating nuisance computation along with inferring SPIT behavior can be

used to limit unwanted calls. Filters can be configured with anti-SPIT and nuisance

computation mechanisms for allowing legitimate and necessary calls to reach a callee

while deleting or diverting unwanted or illegitimate calls. These filters can learn the

characteristic behavior of specific callers over a period of time and effectively quar-

antine unwanted calls. However, apart from learning the callers’ behavior, the filters

must also adapt to a callee’s changing preferences. For example, a callee who is look-

ing to buy a house may initially welcome calls from mortgage companies or realtors.
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But, once the callee has completed a purchase, mortgage and realtor calls become

unwanted. In this context of changing end user preferences, it is always a challenging

task for adaptive filters to re-evaluate the callers’ behavior based on the new prefer-

ences and re-learn the wantedness of any specific caller. This learning should be fast

enough so that the filter’s performance is unaffected.

In addition to being unwanted, SPIT calls can threaten the VoIP network’s

components. Intelligent attackers can create malicious VoIP traffic for compromising

a VoIP network’s infrastructure. For example, an attacker can deluge a domain-

level VoIP network device such as an H.323 or SIP server with call set-up requests

(Dos attack). By exploiting the network components’ vulnerabilities, the attacker

may attain administrative privileges on them. Using these privileges, the hacker

can manipulate device configurations and overwrite routing tables. Thus, the hacker

can perform attacks such as session termination, session hijacking, toll fraud[2][87],

Dos[46][79][52][34], phishing[28], and eavesdropping[34]. Using these attacks, the at-

tacker can bring down the network and deny service to legitimate users, or the attacker

can use the exploitation for financial benefit. In this context, it can be extremely use-

ful to frequently perform risk-assessment procedures to infer the risk levels of critical

network infrastructure. Based on the assessed risk, respective network components

can be patched to reduce or even avoid risk from attackers. Frequently assessing the

risk of network devices and fixing their vulnerabilities would render a lower opportu-

nity to a attacker to compromise network infrastructure.

1.3. Contributions

Here, in this section, I outline the contributions of this dissertation in the field of

SPIT research and VoIP/ Network security as a whole. This dissertation makes five

major contributions

1. A behavior learning mechanism for filtering spam calls in VoIP networks: We de-

veloped a filtering mechanism using social notions of trust and reputation for filtering

SPIT calls in VoIP networks. In developing this mechanism, we have defined
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(1) A model for computing and updating trust based on past transactions. The

model uses a Bayesian learning mechanism that takes into account a callee’s

preferences and past mutual communication between the callers and the

callee when updating knowledge about the callers’ SPIT behavior.

(2) A model for inferring and updating reputation based on recommendations.

For inferring reputation, we developed a Bayesian Network inference model

that takes into account the caller’s history of the caller with users in different

VoIP domains.

(3) A trust and reputation formalism based on human intuitive behavior for

detecting SPIT based on the called party’s direct and indirect relationships

with the calling party.

(4) A model for inferring domain-level trust information based on the calling

party’s history with domain-level users.

2. Pro-active eagerness estimation based on previous communication: We developed

a model for proactively inferring the callee’s eagerness when receiving voice calls from

different callers. For this inference, we have defined

(1) A model for inferring social closeness of callers with the callee on the voice

communication network. This inference is based on previous communication

patterns between the callers and the callee such as frequency and talk-time.

Using the inferred social closeness, we group callers into four groups of a)

Socially Close callers b) Socially near callers c) Opt-ins and d) Opt-outs.

(2) A model for computing incoming calls’ nuisance. A measure of nuisance for a

given caller depicts the callee’s eagerness to receive incoming voice calls from

that caller. For this nuisance computation, we have developed a model based

on communication patterns between a caller and the callee such as frequency,

talk-time, periodicity, and reciprocity along with other factors such as social

closeness and presence (based on present context). Quarantining calls from

unauthorized callers, and unnecessary calls based on present context of callee
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helps in realizing the objective of making the phone to ring only when the

callee would like to receive it.

3. Automatic calibration mechanism for optimizing filter performance: We have de-

veloped an automatic parameter calibration mechanism for optimizing a filter’s per-

formance. The automatic calibration mechanism can be used with any adaptive filter

to enable the filter to quickly converge to optimal values for configured parameters.

This automatic calibration is extremely useful with filters in dynamic environments

(where configurations change frequently) particularly when the filters involve multiple

dynamically changing parameters.

4. Formalism based on voice communication: A formalism that represents possible

communication patterns between different callers and callees. The formalism can be

integrated with SPIT filtering and the nuisance-estimation mechanism to provide ev-

idential information regarding the type of communication between the callers and the

callees. The formalism includes

(1) Enumeration of algebraic rules based on real-life communication patters for

a given callee with respect to callers who belong to socially close, socially

near, opt-in, and opt-out groups.

(2) Enumeration of operations using communication patterns between multiple

callers and callees (e.g., using matrices). Matrices based on communication

patterns such as frequency and talk-time can be used for defining meaningful

calling constructs such as connectivity, reputation, and periodicity.

(3) Enumeration of applications that can be solved using derived operations.

This enumeration provides insight into applications that can be solved by

examining the communication patterns between the callers and the callees.

5. Adaptive risk computation: We have developed a model for adaptively inferring

the risk to network devices in a given VoIP network. Deriving network devices’ risk

levels proves to be useful when prioritizing vulnerabilities and exploits during the

patch-management process. In addition, the adaptive risk-computation mechanism
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can be used to dynamically infer risk levels after implementing suitable security poli-

cies. Therefore, the adaptive-computation mechanism forms an effective basis for a

network administrator to appropriately change network configuration. Thus, suitable

vulnerability analysis and risk-management strategies can be formulated to efficiently

curtail the risk from different types of attackers (script kiddies, hackers, criminals and

insiders).

To sum up, the work presented in this dissertation extends our understanding

of how to limit unwanted calls on a VoIP network. The solution can be deployed at

any level, i.e., on the end VoIP phones, at an enterprise network’s perimeter gateway,

or at the higher level ISP domain. At any level, the solution helps in quarantining

unwanted calls and prevents congestion at that level. Further, the work helps in

minimizing the threats due to unwanted calls on the VoIP infrastructure.

1.4. Dissertation Road-map

The dissertation discusses a framework for limiting unwanted calls coming into a

VoIP network. The content in this dissertation is organized into nine chapters.

Chapter 1 (Introduction): In chapter 1, we give an overview about voice over IP

(VoIP) and VoIP security in general. In addition, we discuss the problem of spam in

VoIP networks. Further, we give a brief overview about the necessity of risk manage-

ment for minimizing network attacks on VoIP infrastructure.

Chapter 2 (Session Initiation protocol): In this chapter, we give a brief overview

about Session Initiation Protocol. In this overview, we discuss about network ele-

ments in a SIP based network and a basic SIP call-flow. In addition, we also discuss

SIP messages i.e. SIP requests and responses.

Chapter 3 (Unwanted voice call detection framework): In this chapter, we present

a general overview of the detection framework for minimizing unwanted calls on a

VoIP network. Different stages of the framework are discussed in brief and a general

overview of statistical models incorporated into different stages is presented.
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Chapter 4 (VoIP Spam Detection): In this chapter, we present a VoIP spam detec-

tion framework for filtering VoIP spam calls. The framework includes models for

computing and updating trust, inferring reputation based on recommendations using

a network topology graph, and a domain level trust information integration mecha-

nism. Using all the models, the spam detection framework learns the behavior of the

callers over a period of time and quarantines next incoming calls from them.

Chapter 5 (Pro-active Nuisance Estimation): In this chapter, we discuss a computa-

tion mechanism for nuisance of incoming calls. For this computation, we describe a

model for inferring social closeness between a caller and a callee based on past com-

munication patterns. Further, we discuss mathematical models for inferring other

behavioral patterns such as periodicity, reciprocity, and presence for integrating them

into nuisance computation mechanism.

Chapter 6 (Automatic Calibration using Receiver Operating Characteristics Curves):

In this chapter, we discuss an automatic calibration mechanism for dynamically up-

dating filter parameters (e.g., threshold values). Using this automatic calibration

mechanism, the filter quickly converges to optimum parameter values after each trans-

action (e.g. call) and thereby delivers optimum overall performance.

Chapter 7 (Call Algebra): In this chapter, we discuss a formalism that enumerates

algebraic rules that represent possible communication patterns between callers and

callees, operations based on communication patterns such as frequency and talk-time

for deriving calling constructs such as periodicity, reciprocity, and reputation. In ad-

dition, we discuss how the algebraic rules and operations can be used for solving a

multitude of problems pertaining to real-time voice communication.

Chapter 8 (Network Level Risk Management): In this chapter, we discuss a network

level risk management mechanism that can be used for adaptively inferring the risk

of network resources of a given VoIP network. In addition, we discuss how attack

behavior relates to risk (i.e. how much risk do different types of attackers such as

hackers and explorer pose to network infrastructure) and network penetration (i.e.
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the penetration an attacker can achieve).

Chapter 9 (Conclusion): In this chapter, we summarize the work presented in pre-

vious chapters. In addition, we discuss how the proposed framework can be used

along with other filtering techniques to result in a comprehensive solution for limiting

unwanted calls in a VoIP network.
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CHAPTER 2

SESSION INITIATION PROTOCOL

2.1. SIP Protocol

SIP, an RFC(Request for Comments) standard (RFC 3261) from the IETF (Inter-

net Engineering Task Force), provides signaling constructs for real-time IP commu-

nication. An increasing number of Internet Telephony Service Providers have started

to provide value-added, SIP-based services to their subscribers. As a result, SIP is

becoming a de-facto standard for telephony on the IP network. In addition, the SIP

protocol’s similarity to other text-based protocols such as HTTP(HyperText Trans-

fer Protocol) and SMTP(Simple Mail Transport Protocol) has considerably eased its

transition into traditional IP applications.

As an application layer protocol for creating, modifying, and terminating sessions

between participants in communication, SIP protocol specifies a standard for digital

communication on the IP network between the SIP end points. Sessions can be any

of voice, video, chat, interactive games, and virtual reality [1]. The protocol provides

capabilities for registration, location identification, and availability determination of

SIP end points. In addition to providing a means for end-to-end multimedia communi-

cation, presence, and instant messaging, SIP provides an application layer framework

for multi-user support such as multimedia conferencing. Using SIP, multiple users

can establish multimedia sessions and exchange multimedia content.

When facilitating communication, SIP can work independently of the transport medium

such as TCP(Transmission Control Protocol), UDP(User Datagram Protocol), or

ATM(Asynchronous Transfer Mode) protocols. SIP’s flexibility makes it transport

independent, i.e., independent of underlying transport protocols. This independency

from the transport medium when coupled with it’s ability to provide capabilities
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to the SIP end points to negotiate the media communication parameters makes the

SIP protocol a highly scalable, an extensible, and a generic signaling framework that

provides a wide variety of services. However, SIP alone cannot provide a complete

framework for multimedia transfer across different participants. SIP works in con-

junction with other protocols to provide communication services. The basic protocols

with which SIP has to function for providing the IP communication services are

• DNS: SIP uses the DNS(Domain Name System) protocol’s services to trans-

late domain names to network IP addresses. The name resolution is needed

for the signaling and the media information to be transferred from one com-

municating party to the other.

• DHCP(Dynamic Host Configuration Protocol): The DHCP protocol pro-

vides a standard for dynamic host configuration. The communicating par-

ties’ end points should have network identity (IP address) to communicate

with other network participants. To obtain this identity, the end points com-

municate with a local DHCP server to dynamically obtain an IP address.

• SDP (Session Description Protocol): SIP provides a signaling framework for

establishing sessions between the communication participants. However, for

describing the underlying media, SIP uses standards provided by the SDP

protocol. The SIP end points use the SDP standard for agreeing on the media

information such as codec formats, timing, and transport information.

• RTP: The SIP end points use RTP protocol for real-time content transfer.

RTP provides a standard for real-time data transfer over the IP network.

In addition to the above basic protocols, SIP also works with other protocols such as

SOAP(Simple Object Access Protocol), HTTP, XML(Extensible Markup Language),

and WSDL(Web Service Definition Language) to provide a wide variety of services

[2]. Of course, each of the above protocols has a specific role to aid in IP communi-

cation.
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2.2. SIP Elements

SIP performs similarly to SS7(Signaling System 7) in the present PSTN networks.

However, while PSTN’s SS7 uses a highly centralized architecture with dumb termi-

nals (normal telephone sets) and intelligent central systems such as switches, the SIP

world consists of intelligent entities towards the end. With SIP, most functionality is

implemented at the end-user terminal with intermediate servers being used for call

routing and user identification. Here is a list of SIP elements generally observed in a

SIP network.

• SIP End Points: The SIP end points (IP Phones) are end devices that the

communicating parties use for making and receiving calls. The communicat-

ing parties’ terminals exchange signaling information to establish, modify,

and terminate calls. In addition, each end device samples the analog media,

digitizes it, and encodes it with a codec format (negotiated during call es-

tablishment process) to transfer the media to other parties. The end devices

(or terminals) in the SIP world are intelligent with the ability to provide

an interface for many services such as call waiting, three-way calling, and

call transfer. These services, otherwise provided and managed by the service

providers in the PSTN world, are integrated into end SIP devices for regu-

lar use. Integration of these services reduces the complexity involved in the

central servers and provides a mechanism to customize and offer SIP-users

on-demand access.

• SIP Proxy Server: The proxy server is used predominantly for call rout-

ing. When an end user (caller) would like to invite another user (callee) to

communicate, the caller requests that the domain proxy server establish a

session with the intended callee. The Proxy server after receiving the call

request checks to determine whether the callee is in the same domain. If

the callee is, the proxy server routes the call to the callee. Alternatively, if

the callee is not within the proxy’s domain, the caller’s domain proxy routes

17



the call to the appropriate proxy of the callee’s domain. The destination

domain proxy would, thus, redirect the call to the callee’s appropriate end

device and the call is established. Similarly to the above call-establishment

process, the proxy server may route signaling communication such as session

modification and termination between the communicating parties.

• SIP Registrar Server: A SIP registrar is a domain-level server for receiving

and acknowledging register requests of domain’s end points. The registrar

servers are generally collocated with the domain’s proxy and redirect servers.

The domain’s SIP end points periodically (and whenever they boot-up) ex-

change registration requests with the registrar to let the server know that

they are ready to receive incoming calls. The domain proxy server acknowl-

edges calls only from users registered with the registrar.

• SIP Location Server: As a registered user can log in from multiple end points,

the SIP registrar uses an abstract service known as location service managed

by a Location server to provide their address bindings. When the domain

proxy receives a call request for a callee in its domain, the proxy queries the

location service to determine the callee’s location.

• SIP Redirect Server: The redirect servers generally provide the next hop

information to the SIP end points. To provide this information, the SIP end

points can request an alternate set of addresses from the redirect server. The

redirect servers are also sometimes used for reducing the proxy server’s load

by providing routing services.

• IP-PBX(IP based Private Branch Exchange): The IP-PBX facilitates switch-

ing VoIP calls in a domain and provides a multiplexing/de-multiplexing so-

lution by enabling domain users to use a limited set of outgoing phone lines

onto either an external IP or a traditional PSTN network. Traditional PBX’s

require separate networks for voice and data transfer. However, by using
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IP-PBX’s, a converged network providing voice and data services can be

implemented.

• Soft-switches: Soft-switches facilitate routing services between VoIP net-

works. These soft-switches generally include signaling and media gateways

for voice call transfer.

• SBC(Session Border Controllers): The SBC’s, intermediate devices either

or both on the signaling and media paths, traditionally have been used for

providing a control function on the incoming VoIP traffic (i.e., call admis-

sion control). SBC’s are VoIP-session aware and can filter unwanted calls.

SBC’s, although primarily used as a firewall (for limiting unwanted traffic)

and a NAT(Network Address Translation) gateway when the VoIP network

employs topology hiding, may also (depending upon the vendor), provide

fault tolerance and Quality of Service (QoS) for media traffic.

2.3. SIP Messages

The SIP network elements described in Section 2.2 communicate among them-

selves using a set of SIP messages which constitute the requests the client makes to

a server and the responses the server returns back to the client. Any SIP element

can adopt a client or server role depending on the direction of the requests from the

message-generating elements to the message receiving elements.

2.3.1. SIP Requests

The SIP network’s elements exchange SIP requests for requesting a service from

the server. These services can be session initiation, session modification, or session

termination. In general, the following are the SIP messages that are exchanged when

a client requests for a service

• INVITE: The SIP elements exchange INVITE messages when inviting other

parties into a call. A client sends an Invite message to its domain’s proxy

server requesting to establish a call. The proxy server forwards the message
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directly to the destination proxy (if it knows the destination proxy) or indi-

rectly (by forwarding to the next hop proxy). The destination proxy in turn

forwards the Invite message to the destination end point for call establish-

ment.

• BYE: SIP elements exchange BYE messages to specify their intention to

terminate a call. During a communication, any client or the server can

generate such a message.

• ACK: An exchanged ACK (acknowledgment) message acknowledges receipt

of a message such as INVITE or BYE. When the client or the server receives

an ACK message, it is assumed that the other party has received its earlier

message.

• CANCEL: The CANCEL messages are exchanged for canceling any pending

searches. However, this exchange does not terminate an established call.

• REGISTER: A SIP end point registers with its domain SIP registrar by

sending REGISTER messages. The end points periodically (and after boot-

up) send REGISTER messages to indicate that they are up, running, and

ready to receive calls.

• OPTIONS: A client can use the Options message to query server’s capabil-

ities. Depending upon the server’s response, the client can initiate actions

that modify session parameters.

• PRACK: A client may use the PRACK (Provisional Acknowledgement) mes-

sage to request the server to keep re-transmitting the provisional responses

until they are received by the client.

• REFER: The REFER message arises when client asks the recipient to issue

a call transfer by initiating a call request.

• MESSAGE: The MESSAGE method is used when transmitting Instant mes-

sages using SIP.
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• INFO: The INFO message is used for carrying session information. However,

using INFO message does not change the session state.

• UPDATE: The client can use an UPDATE message to update session param-

eters. However, updating session parameters does not impact the established

dialog.

• SUBSCRIBE: The SUBSCRIBE message can be used to request notification

when an event happens.

• NOTIFY: The NOTIFY message is used for notifying an event’s happening.

While the above messages request a service, SIP protocol also defines a set of responses

for these requests.

2.3.2. SIP Responses

Unlike the SIP request messages, however, SIP identifies responses by status codes,

a 3-digit number with the first digit representing the response’s class [3]. Classes of

responses defined by the SIP protocol are as shown in Table 2.1:

Table 2.1. SIP response codes

Class Description Used

1xx Informative and Provisional Responses To represent session status information

2xx Success Responses When the request is received and accepted

3xx Redirection Responses To request needs further action

4xx Client Failure Responses To represent client error messages

5xx Server Failure Response To represent Server error messages

6xx Global Failure Responses To represent errors that are nowhere accept-

able

Many responses (thus response codes) defined for SIP fall into the above classes,

and the SIP elements interact using the SIP request and response messages outlined

21



above. With the discussed elements and connectivity, a typical SIP network is as

shown in Figure 2.1.

Figure 2.1. A basic SIP network

SIP defines a number of network components that are used for user-identification

and call routing as shown in Figure 2.1. A caller generates a call request to a callee

through the caller’s domain SIP proxy server. The proxy server checks with the do-

main SIP registrar if the caller is a user registered to use the SIP services. After the

caller is identified as a registered user, the proxy server uses the SIP location server’s

services to appropriately locate the destination domain and its proxy server. If the

callee is in the same domain as the caller, the proxy server forwards the call directly

to the callee’s end device. However, if the callee is not in the same domain, the

proxy server communicates with the redirect server to determine the next-hop proxy

for sending the request. The next-hop proxy again checks whether the callee exists

within its domain and, if not, forwards the call to the next hop proxy. This continues

until the call request reaches the domain proxy in which the callee resides. Once the

destination domain proxy determines the callee’s end device, it forwards the call to

that device. The callee acknowledges the call request, and the connection between

caller and callee is established. A basic SIP call flow diagram is shown in Figure 2.2.

Figure 2.2 presents the series of signaling messages for establishing and terminating

a call. The caller’s terminal generates an INVITE request to its domain proxy. The
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Figure 2.2. A basic SIP call flow diagram

proxy forwards the INVITE request to the destination SIP proxy which forwards the

request to the callee. The callee acknowledges the call invitation using a 200 OK

message. However, before the callee acknowledges the call request, the SIP devices

exchange a set of status messages such as 100 Trying and 180 Ringing. After the

200 OK message reaches the caller’s SIP terminal, the terminal sends back an ACK

message for acknowledging the receipt of 200 OK message. When the ACK message

reaches the callee’s terminal, the call is established and the two parties exchange the

media (RTP traffic). When the two parties finish the communication and intend

to terminate the call, one of the two parties (usually the party that hangs up first)

generates a BYE message from their terminal to the other party’s terminal. Upon

receiving the BYE message, the terminal sends back a 200 OK message (acknowledg-

ment) for the call termination request, and thus the call is terminated.
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CHAPTER 3

UNWANTED CALL DETECTION FRAMEWORK

A solution for filtering unwanted calls must include models that help in filtering

calls which create nuisance to the callees, or attempt to exploit network level in-

frastructure. While junk VoIP calls from unauthorized callers and unnecessary calls

from legitimate callers create nuisance to callees, malicious VoIP traffic can compro-

mise network devices. For limiting these calls, we propose a framework that analyzes

incoming VoIP calls for unwanted behavior.

Figure 3.1. Unwanted voice call detection framework

The unwanted call detection framework given in Figure 3.1 primarily in-

volves four behavior learning models for filtering unwanted calls that attempt to either

exploit network level infrastructure or create nuisance to the callees. The models are

explained as follows:
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• VoIP Spam Detection: We propose a VoIP spam detector (VSD) that an-

alyzes incoming VoIP calls for spam behavior. Spam detection involves a

multi-stage adaptive model for detecting VoIP spam calls. The model in-

cludes static checking of wanted and unwanted calling entities encoded in

white- and blacklists, social notions of trust and reputation based on history

of calling parties, and domain level knowledge integration by learning from

others experience (Chapter 4).

• Proactive Nuisance Detection: We propose a Nuisance Detector (ND) that

screens incoming call traffic for filtering unwanted calls to the callee. ND

proactively infers the nuisance of incoming calls based on caller’s previous

behavior, the callee’s tolerance (inferred using past calls from the caller), and

presence (mood or state of mind), and the social closeness between the caller

and callee. In addition to these factors, ND considers other behavioral pat-

terns of communication between the caller and the callee such as periodicity

and reciprocity for inferring the nuisance of voice calls. Based on the inferred

nuisance, the ND makes a decision to forward the call to the callee (Chapter

5)

• Automatic Threshold Calibration: We propose an automatic calibration

mechanism for re-computing optimal threshold value of filters after each call.

The calibration mechanism uses Receiver Operating Characteristics curves

(ROC) for computing optimum threshold value. The computed optimum

threshold is then used as the filter threshold for the next incoming call. Au-

tomatic calibration mechanism is even more helpful when the filter is config-

ured with multiple thresholds where manually updating them for optimizing

accuracy is a complex process. Dynamically updating the thresholds of the

filter helps in fast learning of the caller and the callee’s mutual behavior, and

converging to the optimum performance (Chapter 6).
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• Network Level Risk Management: We propose a network level risk manage-

ment mechanism of prioritizing end host vulnerabilities for patch manage-

ment and penetration testing processes. The mechanism involves adaptive

computation of risk level of VoIP network components (such as SIP proxy,

end VoIP phones). The computed risk level is then used for prioritizing

vulnerabilities that need immediate patching. This prioritization scheme is

particularly necessary in context of everyday emerging exploits and patches

released by VoIP infrastructure vendors (Chapter 8).

All the above models are primarily driven by the feedback from the called

parties. For an incoming call, VSD computes the probability of the call to be spam

and then compares it to a predetermined threshold to make a decision to forward

the call or quarantine it (thus establishing the authenticity of the caller). After the

authenticity of the caller is established, ND infers the nuisance associated with the

call using the nuisance detection model. ND then compares the inferred nuisance

with a predetermined threshold to make a decision to forward the call to the callee’s

phone or to his voicemail. When the callee receives the call (either to the phone

i.e., when the phone rings, or to his voicemail box), he can give a feedback about

the validity of the call. This feedback is then used for updating the history of the

caller with respect to the callee. This updated history is then used for inferring spam

and nuisance behavior next time a call comes in from that caller. The feedback from

the callee can also be used for dynamically updating the threshold (or thresholds)

of VSD and ND using the automatic calibration mechanism. In addition, a network

component can give feedback about abnormal behavior (e.g., that it is exploited). In

this case, the network level risk management mechanism can be used for updating

the risk levels of other network components, and a decision can be taken for patching

network components that need immediate attention.
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CHAPTER 4

VOIP SPAM DETECTION

4.1. Introduction

The possibility of VoIP network replacing the PSTN network depends on enhanc-

ing the existing IP network to carry voice traffic. With the usage of IP network to

carry voice traffic, existing problems on the IP network holds for the VoIP network

too. One of the major issues that current IP networks face is controlling spam - the

unsolicited (bulk) e-mail. Spam control has been perceived to be one of the most

important problems of research with the traditional e-mail systems. Many techniques

have been designed to avoid e-mail spam. However, such techniques often have lim-

ited application to avoid voice spam because of real time considerations. For example,

a spam call from a telemarketer if not filtered before it reaches the end user makes

the phone to ring instantly. In this context, the end user has to answer the call in

real-time and it would be very frustrating to know that the call is of least importance.

On the contrary, a spam e-mail from a telemarketer sits in the inbox until the enduser

checks his e-mails. In addition, content filtering is not useful in VoIP spam analysis

as media flows in after the two parties (i.e., calling party and the called party) have

agreed upon to start the communication and would be too late to filter the call. This

inability to filter VoIP calls poses a serious challenge of detecting spam in real time

with the available signaling messages.

To realize the objective of receiving only genuine VoIP calls from any per-

son anywhere in the world, we must replace static junk-call filtering mechanisms with

c©[2007] ACM. Reprinted with permission from - P. Kolan, R. Dantu, ”Socio-Technical Defense

against Voice Spamming”, ACM Transactions on Autonomous and Adaptive Systems (TAAS) March

2007, Vol 2, Issue 1
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adaptive learning systems. These systems, apart from learning spam behavior, should

incorporate human behavioral models of how the call recipients (called parties) de-

termine whether to answer call. For example, whenever a phone rings, depending on

our state of mind, we determine whether the call is from a trusted party. If we do not

know the calling party, we guess the calling party’s reputation. After picking up the

call, we ask the calling party some questions and move forward only when satisfied

with the calling party’s response. Therefore, a mechanism for filtering VoIP spam

calls has to take into account the presence of the called party (e.g., state of mind,

location, time), the rate of incoming calls from the calling party, trust and reputation

between calling party and the called party. We describe a multi-state adaptive spam

filtering mechanism that computes the trust (estimated using Bayesian theory) and

reputation of the calling party (using reputation graphs based on called party’s social

network). We have integrated these factors within our adaptive learning system to

facilitate deciding whether to accept/reject a call or forward it to voice mail.

4.2. Background

There exists lot of literature in the field of trust and reputation computation

([63],[45], [50], [6], [42], [101], [89], [90], [96], [97], [55], [100], [73], [37]). Rahman et al

[63] presents a distributed trust model for computing trust of entities in online trans-

actions. The trust model adopts a recommendation protocol where a source entity

requests its trusted entities to give recommendations about a target entity for a given

trust category. When the source entity receives all the recommendations, it computes

a trust value to the target entity based on the received recommendations. Lei et al

[45] presents a distributed trust model organized as a Trust Delegation Tree (TDT)

in e-commerce applications. The paper presents a trust management model for com-

puting different trust levels such as direct trust based on history, indirect trust based

on trusted intermediaries’ recommendations, and trust authorization levels using del-

egation certification chains. Marsh [50] describes trust formalism for computing and
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updating trust between two agents. The trust mechanism involves the computation

of types of trust such as basic trust (based on accumulated experiences), general trust

independent of context, and situational trust that takes into account a specific situa-

tion. Cahill et al [6] presents a trust model for secure collaborations among pervasive

entities. The paper presents a trust model in which a source principal makes a decision

whether to interact with a target principal based on current trust value he holds with

the target principal for that particular action, and the risk in communicating with

the target principal. Krukow et al [42] discusses the importance of probabilistic mod-

els in logic reasoning. The paper presents a probabilistic trust model for computing

the predictive probability of a principal behavior i.e., the probability with which the

principal’s next interaction will have a specific outcome. Zimmerman [101] describes

a web of trust model where users can exchange PGP keys among themselves to trust

each other. The exchanged keys are signed by each user, and at any time, the trust-

worthiness of users that have signed the keys can be established. However, the users

are required to create their own security and trust policies. The web of trust model

is not scalable and is not used with very large systems such as the Internet. Wang et

al [89] and Wang et al [90] present a Bayesian trust model for inferring the trust of

agents participating in an online transaction. The proposed trust mechanism involves

deriving Bayesian Networks for trust inference and using the past transaction history

to update the available trust information. In addition, the trust model incorporates

a mechanism for evaluating the recommendations of other agents and updating its

trust values towards them. Yu et al [96] and Yu et al [97] describe a trust framework

for classifying agents to be trustworthy based on quality of recent transactions. The

agents provide thresholds for differentiating trustworthiness of agents into trustwor-

thy, non-trustworthy and unclear classification groups. The framework assumes that

an agent belongs to one of these groups when the probability of service between that

group and latest group is greater than a give threshold. In addition, the framework

gives preference to direct interaction information before taking into account indirect
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information from witnesses.

Mui et al [55] presents a computational model for inferring trust and reputa-

tion of a given source. The model infers trust as a dyadic quantity between trustor

and trustee and is computed based on the reputation data of the trustee. The paper

further defines the reputation score as a quantity embedded in the social network of

the trustor and past transactions with the trustee. Zacharia et al [100] and Zzcharia

et al [99] present two reputation mechanisms ”Sporas” and ”Histos” for inferring the

reputation of agents in an online community. Sporas is a reputation computation

system where the agents rate each other after the completion of the transaction and

the reputation values are updated. This update is less when the agent’s reputation is

high. Histos is a reputation computation mechanism that performs a recursive per-

sonalized rating inference of agents that have communicated with the target agent.

This recursive inference is achieved by deriving a weighted graph with nodes as the

agents and the links connecting them as personalized ratings given by the parent node

to the child node of the link. Sabater et al [73] presents a survey on computational

trust and reputation models that are of specific application in the field of distributed

Artificial Intelligence. The paper describes different classification aspects based on

which the models can be classified and provides a review on sample models in the area

of trust and reputation computation research. Josang et al [37] presents a compre-

hensive survey of trust and reputation models in Internet transactions. The survey

describes the trust and reputation semantics existing in the literature of trust and

reputation inference. The paper also describes the existing problems and solutions

for aggregation trust and reputation metrics. All these trust and reputation inference

techniques have been used to solve problems in different problem domains such as

e-commerce, peer-to-peer networks, and spam filtering.

Spam filtering for the present day e-mail infrastructure has been well addressed

in current literature ([74],[85], [75], [10], [67], [27], [80], [11], [91], [24]). Designers of
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spam filters have used a wide variety of filtering mechanisms such as text classifica-

tion, rule-based scoring systems, Bayesian filtering, pattern recognition, and identity

verification. Sahami et al [74] describes a Bayesian trust model for filtering spam e-

mails. The paper proposes that incorporating domain specific features in addition to

identifying various textual phrases, and probabilistically inferring the spam behavior

of the constructed message vector leads to a more accurate spam analysis. Soon-

thornphisaj et al [85] presents a spam filtering technique that constructs the centroid

vector of the incoming e-mail and checks for its similarity between the centroid vec-

tor of spam class and legitimate class e-mails. Sakkis et al [75] suggests probabilistic

inference for calculating the mutual information index (MI) for feature selection. Us-

ing this, a vector of attributes having the highest MI scores is constructed for spam

identification. The memory-based algorithms then attempt to classify messages by

finding similar previously received messages and using them for classification. Cohen

[10] recommends spam filtering based on a set of rules for identifying the message

body content. Features of the message are identified and scored to compute the total

spam score of the e-mail spam message and the messages having a score more than

a given threshold is identified as a spam e-mail. Large quantities of spam and legit-

imate messages are used to determine the appropriate scores for each of the rules in

the rule-based scoring systems. Rigoutsos et al [67] suggests pattern discovery scheme

for identifying unsolicited e-mails by training the system with a large number of spam

messages. The system matches the e-mail message with the available patterns; more

the patterns are matched more is likelihood that the message is spam.

Golbeck et al [27] presents an algorithm for inferring reputation relationships.

This is achieved by constructing social network of people connected with each other.

Every user in the social network is attributed with a reputation score. For a given

message from the email sender, the receiver infers the weighted average of its neigh-

bor’s reputation ratings to the email sender. The neighbors in turn infer the weighted

average of their neighbors’ reputation rating for the e-mail sender and this continues
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until the e-mail sender is reached. Seigneur et al [80] discusses the establishment

of identities of e-mail senders using trustworthy e-mail addresses. The identities of

the parties are established by exchanging hashes of previously exchanged e-mails.

In turn, a Challenge Response system is discussed for challenging the party to es-

tablish its identity. The paper also discusses a Trust/Risk Security framework for

inferring whether the incoming e-mail is spam or not. The framework proposes to

use a Bayesian spam filter for trust inference. In addition, the framework uses a

static model for choosing a finite set of recommenders for making a recommendation.

Identity verification mechanisms help in establishing that the caller is the person who

he claims to be. However, Identity based mechanisms are not a complete solution for

filtering spam especially in cases of dynamically changing behavior and preferences

of people involved in communication. Damiani et al [11] suggests a P2P framework

for detecting e-mail spam messages. A P2P network consisting of user-tier nodes,

mailers (mail servers), and super peers exchange communication among themselves

for tagging and updating incoming e-mail messages as spam. This is achieved by

constructing message digests of incoming messages and checking for similarity with

other spam message digests. Wattson [91] presents a spam filtering mechanism based

on sender identity verification and disposable e-mail addresses. The mechanism pro-

poses a multi stage architecture consisting of black- and white-listing procedures,

sender identity verification, and challenge response systems. The cumulative infer-

ence of all the stages dictates whether the incoming e-mail is spam or not.

Foukia et al [24] presents a collaborative framework for spam control in dis-

tributed administration domains. The framework involves mail servers collaborating

with each other to exchange spam control information. The proposed framework in-

volves spam control processes at both the incoming and outgoing mail servers. The

servers that participate in this information exchange are rewarded and traffic re-

strictions are imposed on those e-mail servers that do not participate. All the above

proposed techniques attempt to classify incoming email as spam based either on static
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rule-checking, learning spam behavior from the email’s contents, or through identity

verification. However, these techniques cannot be directly used for filtering real-time

junk voice. Unlike e-mail spam messages, VoIP calls are real-time and have to be

filtered in real-time. In e-mail, people do not exhibit dynamic changes in behavior.

Even if the people exhibit dynamic changes in behavior, the e-mails from them do

not pose a nuisance to the end user. However, in case of VoIP, real-time voice calls

from people exhibiting dynamic changes in behavior creates a lot of nuisance to the

called party.

While spam in e-mail is effectively addressed, little work exists on analyzing

spam in VoIP networks. The SIP spam draft (Rosenberg et al [71]) discusses spam

in VoIP networks. Rebahi et al [65] present a spam filtering solution using reputa-

tion relationships. The mechanism proposes to build a social network of people that

can issue recommendations regarding a given source. Macintosh et al [48] present a

statistical detection technique by analyzing the incoming traffic distribution of the

VoIP calls. An abnormal deviation from the normal call distribution is considered to

be SPIT traffic. Shin et al [83] presents a spam filtering approach where the calls are

analyzed based on their incoming rate. If the incoming rate is greater than predeter-

mined short-term and long-term thresholds, the call is blocked and branded as spam.

We believe that a spam solution for analyzing incoming voice calls is not only confined

to limiting the rate of calls. The solution should also consider the social authenticity

(trust and reputation), social connectivity, and the inherent need in accepting the

incoming call based on called party’s presence.

4.3. VoIP Spam Detector

The network diagram shown in Figure 4.1 is partitioned into network segments

such as the call-receiving domain hereafter referred to as V SDdomain (circled part in

Figure 4.1) i.e., the domain for which the VSD acts as a spam detector, and the call-

generating domains i.e., the domains from which calls would be generated to an end

33



user in the V SDdomain. This V SDdomain consists of all the VoIP users whose calls are

analyzed by the VSD for spam behavior. V SDdomain can be scaled to different network

sizes. For example, the V SDdomain can be an enterprise having a Class B network

such as the domain www.unt.edu (University of North Texas with an IP address range

129.120.xxx.xxx), or a scaled down domain such as the computer science department

at UNT (with an IP address range 129.120.60.xxx or 129.120.61.xxx). At any level,

VSD analyzes and filters the call for the users inside the network (or domain). Calls

are generated from an end user outside or inside V SDdomain through the VSD. Each

IP phone in V SDdomain includes a SPAM button to allow the called party (callee) to

give feedback to the VSD.

Figure 4.1. Voice Spam Detector for computing the spam probability

of incoming calls. The VSD can be deployed either in a VoIP proxy

server (e.g., at the enterprise perimeter) or in an end VoIP phone. In

any case, VSD analyzes the incoming and outgoing calls based on end

users’ preferences

On receiving a call, VSD analyzes the spam level of the incoming call (the associ-

ated spam probability) using the VoIP spam-detection model presented in Section 4.4.

The VSD then compares the call’s computed spam level with a predetermined thresh-

old value to decide whether to block or forward the call to the callee. The threshold

value (permissible limit) is chosen by giving preference to legitimate calls over spam
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calls, i.e. the number of spam calls that can be forwarded so as to minimize false pos-

itives (legitimate calls being blocked). The main aim of any spam-filtering technique

should be to minimize false negatives (spam calls let in as legitimate) while keeping

the false positives to zero.

The call processing depends on the callee’s reaction to the incoming calls. The

VSDdomain users are equipped with spam-recognition capabilities. The callee re-

ceives the call, experiences it, and gives feedback to the VSD about the nature of call

(whether it is a spam call or a legitimate call). This feedback is as simple as pressing a

spam button either during the call or just after termination. This feedback resembles

the way e-mail users give feedback about spam e-mail by clicking a SPAM button

on their web browser. The VSD learns about the spam behavior of call participants

(such as user, host and domain) based on callee’s feedback. If the callee responds

with a feedback that the current call is spam, the VSD updates the calling party’s

(caller’s) history for future spam analyses. Future calls from the caller will have a

high spam probability and a higher chance of being stopped at VSD. On the other

hand, if the callee responds with a positive experience (non-spam), the caller’s history

is updated to depict more legitimacy for next incoming calls from the caller.

4.4. VoIP Spam Detection Framework

VoIP spam detection cannot be achieved using a single detection method. The

detection needs to occur at several stages of call processing to achieve a high degree

of accuracy.

4.4.1. Architecture

The architecture for spam detection process should take into account the callee’s

preferences of wanted and unwanted calls, his presence of mind, the trust and rep-

utation he has for the caller. The basic architecture for spam detection is shown in

Figure 4.2. Each stage in the architecture diagram represents a technique based on
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which the call would be quarantined by employing a specific set of mechanisms and

user feedback. Each stage computes the possibility that the call is spam and the

collective inference of all stages provides a measure of the call’s probability of being

spam. Based on this inference, a decision is made to forward or quarantine the call.

Figure 4.2. Functional Elements of VSD. The diagram describes a

logical view of a multi-loop feedback control process. Each stage em-

ploys a specific set of mechanisms for computing the incoming call’s

spam level. Each stage computes a spam level based on its specific

features. A collective inference from all of the stages represents an

incoming call’s spam level

4.4.2. Functional Elements in Voice Spam Detection

As depicted in Figure 4.2, a number of techniques are used to achieve a composite

measure of a call’s spam level. This section provides a description of these techniques.

Presence: Whenever we receive a voice call, whether we answer it or not depends on

our state of mind. This state of mind can change depending on several factors such

as location, the time, and our mood. To provide the VSD with parameters for deter-

mining their state-of-mind, end users can configure their phones with modes such as
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do-not-disturb-me, follow-me, and 911-emergency-modes depending on their prefer-

ences and needs. One such example of integrating state-of-mind with filtering process

is to synchronize the system with the end user’s calendar. The filtering process that

takes place during this stage is based on static and dynamic rules configured by the

end user.

Rate Limiting: Based on known traffic patterns, signatures can be used to detect the

rate of incoming calls. For example, velocity and acceleration values (first and second

order derivative) of the number of arriving calls from a given user/host/domain can

be used as a detection mechanism. When the velocity/acceleration reaches a certain

threshold, the drop rate can be updated through feedback control. As expected, the

earlier we detect a change in the incoming pattern based on signatures, the earlier

there will be a reduction in the spread of spam. Once spamming is identified, the

filter can use Proportional Integral Control (PID), a feedback control, to reduce the

velocity of spreading. This method of detection is useful not only in deterring spam-

ming attacks but also in averting DOS attacks. Some preliminary investigation on

the effectiveness of this detection method is presented in Dantu et al [16].

Black and White Lists : Most of the present day spam filters conduct static checking of

a set of signatures (a set of valid and invalid entities such as a user, host and domain).

The spam filter uses these signatures to allow or block calls. Whitelist represents the

set of entities from which the callee is always ready to receive calls. Similarly, black-

list represents the set of entities from which the callee prefers not to receive calls.

Depending upon the callee’s specifications, the calls with the specified entities will be

allowed or denied calling. Such lists are customized i.e. each callee has the flexibility

of specifying a set of whitelist and blacklist entities. The legitimate and spam entities

in each of the callee’s whitelist and blacklists will differ from other callees’ lists, and

thus, will not influence the call forwarding or blocking of other callees i.e. each end

user is guaranteed of forwarded or denied calls based on a customized list.

The VSD constructs black- and whitelists using callee’s feedback. If the callee’s

37



feedback for a forwarded call indicates spam, the VSD adds the call entities to the

blacklist. Future calls from any entity on the blacklist are blocked at the VSD. On

the other hand, if the callee responds with a legitimate-call feedback, the call entities

are added to the callee’s whitelist, and calls from them are forwarded to the callee.

Trust : Learning the caller’s spam and legitimate behavior over time allows us to make

many intelligent decisions regarding the call. This process of observing the caller’s

behavior constitutes the trust level the caller has built with the callee. Trust as such

represents an abstract modeling of the caller’s and the callee’s past mutual behavior.

This trust information can be used to classify an incoming call as spam or legitimate.

When the VSD needs to compute the trust of an incoming SIP voice call, it

checks for previous trust information associated with the call participating entities

such as the call source (calling user, calling host, call-generating domain), partici-

pating proxies in routing with the help of fields such as from, to, record route, and

via. The call’s trust level is then computed using Bayesian inference techniques (see

Section 4.4.3.1). If the call is forwarded to the callee, VSD updates the history of the

caller to appropriately reflect the callee’s feedback. At times, it is possible that due

to unavailability of previous transactions, VSD cannot compute a trust value. In this

case, we infer the caller’s reputation from callee’s neighbors.

Social Networks and Reputation: Social networks can be used to represent user re-

lationships that can be derived along the network paths. These social networks can

be used to infer the associated relations between the elements in the network. These

relationships are transitive and transparent. If Alice is related to Bob and Bob is

related to Charles, then with a reasonable degree of confidence, Charles can derive

the trust information of Alice from Bob. With respect to a VoIP service user, the

user’s social network represents the associated and trusted neighbors from whom the

user is willing to receive calls. While the trust is computed based on history, we de-

rive reputation from trusted peers. The reputation of the call source can be inferred

based on the previous experience of those trusted peers (Section 4.4.3.2) with that
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call source.

It is highly imperative for spam filters to be integrated with human behavioral

aspects and principles to mimic the way humans’ answer calls from wanted people.

Applying these social notions of trust and reputation helps in identifying the social

community and the relative closeness among the members of the community. Such

information can then be used to improve the accuracy of identifying unwanted calls.

4.4.3. Trust and Reputation in Voice Calls

Formal models of trust have been proposed in security and in social sciences ([64],

[32], [58]). These papers, however, do not address the social notions of trust and

reputation for solving real-time problems such as spam. The trust and reputation

formalism presented here precisely addresses this problem. In particular, we attempt

to address the following

(1) Formalism structured on human intuitive behavior for detecting spam based

on trust (direct) and reputation (indirect) relationships with the caller.

(2) A quantitative model based on the formalism that computes the number of

spam calls required to move a caller from a whitelist to a blacklist and vice

versa.

For defining the quantitative model, we use Bayesian inference techniques to compute

and update the trust and reputation based on intuitive considerations. Variants of

Bayesian estimation methodologies have been used in solving a multitude of problems

relating to probabilistic reasoning and statistics. We believe that these Bayesian anal-

ysis and inference techniques would aid in automated and adaptive learning of spam

behavior. This formalism for voice calls is integrated into VSD (Section 4.3). In Ap-

pendix A, we present the terminology adopted for the formalism. In Section 4.4.3.1,

we present the trust formalism that describes a model for computing and updating

trust based on callee’s feedback. Section 4.4.3.2 presents a reputation formalism for

inferring and updating reputation based on callee’s feedback. Section 4.4.3.3 explains

39



the integration of the above models of trust and reputation for computing the spam

probability of the call.

4.4.3.1. Trust. Trust has been traditionally used in solving the problem of au-

thentication in application areas such as ad-hoc and peer-to-peer systems. Social

notions of trust can be used in inferring the spam behavior of voice calls. To begin,

we define trust in context of analyzing voice calls by modifying the definition given in

Wang et al [90] as a callee’s belief in caller’s capabilities, honesty and reliability based

on his/her own direct experiences. In context of voice calls, trust refers to caller’s

capability, honesty, and reliability in making legitimate calls to the callee. This trust

of the incoming call is based on the trust of the individual participants of the call and

the callee’s experiences towards those call participants.

Property 1 : Trust level of a voice call depends on the call participants.

The trust T of the incoming SIP voice call depends on the trust of individual call par-

ticipants. A call participant can be a user, a host, a domain, or an intermediate proxy.

Property 2 : Trust is derived from the caller’s past behavior.

Trust for a call participant is accrued over a period of time based on its past behavior.

For each call participant i, we denote a call set Ci = {Ni,s, Ni,v} the spaminess and

legitimateness of participant i. The spaminess Ni,s represents the total number of

past spam calls and legitimateness Ni,v represents the total number of past legitimate

calls from the call participant. The higher a call participant’s spaminess, the higher

are the chances that the call having this call participant will be filtered. Similarly,

the higher the legitimateness, the higher the chances that VSD will forward the call

having this call participant to the callee. The initial values of Ni,s, and Ni,v of a

call participant i are defined by Ni,s, Ni,v = 1 when VSD has no history for the call

participant. For incoming calls from the caller, VSD increments Ni,s for every spam
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call and Ni,v for every legitimate call with respect to the callee. This spaminess and

legitimateness of individual call participants helps in computing the overall trust of

the incoming call.

The trust of the incoming call is inferred from D = f(C, NS, NV ) where NS

and NV represents the total number of spam and legitimate calls processed by VSD.

C represents the set of call sets of all participants i.e., C = {C1, C2 ... Cn} where n

is the number of call participants. D is defined as the distrust of the call. The higher

the distrust of the call, the lower is the trust level associated with it. D ∈ [0 1], i.e.,

the distrust of the call lies in the range [0 1]. The distrust D of the incoming call

is dependent on the spaminess and legitimateness of all the call participants and is

computed using Bayesian Analysis. This is represented by

D = f(C, NS , NV )

i.e. D = f({N1,s, N1,v},{N2,s, N2,v},{N3,s, N3,v}......{Nn,s, Nn,v}, NS , NV )

where the function ”f” is defined as (detailed probabilistic model is explained in

Appendix B)

(1) D =

(

n∑
i=1

Ni,s

n∑
i=1

(Ni,s + Ni,v)

)(
n∏

i=1

Ni,s

Ni,s + Ni,v
)

(

n∑
i=1

Ni,s

n∑
i=1

(Ni,s + Ni,v)

)(
n∏

i=1

Ni,s

Ni,s + Ni,v

) + (

n∑
i=1

Ni,v

n∑
i=1

(Ni,s + Ni,v)

)(
n∏

i=1

Ni,v

Ni,s + Ni,v

)

Higher the value of D, higher is the chance that the call is going to be filtered.

The simple Bayesian equation shown above helps us in computing the distrust of the

incoming call. Though we have carried out a treatment of simple Bayesian analysis

for processing calls, we believe that the results are valid even for different variants of

Bayesian analysis and techniques.
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Definition 1 : Trust level T is a direct measure of distrust and is equal to 1 - D.

The distrust D given in Equation (1) helps in computing the value of trust for the

incoming call. This computation is a direct measure of distrust D and is equal to the

value 1- D.

Axiom 1 : Callers can be grouped based on their calling patterns.

In real world, we remember people such as our friends, family members, neighbors,

and unwanted callers who can be grouped into white, grey and black lists. The mem-

bership of these lists varies depending upon our mood, past experience, current needs

and distrust. In addition, we have different levels of tolerance for people belonging

to different groups. For example we can assign some ranges of distrust levels to these

lists as follows.

D =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 − 0.01 Whitelist

0.01 − 0.99 Greylist

0.99 − 1.0 Blacklist

A caller in a callee’s blacklist can be a user who has had a spam behavior for a

long time such that the caller’s distrust was as high as 0.99. However, a reasonable

number of legitimate calls from the caller can decrease this distrust value. If the

distrust falls below a threshold of 0.01, then the caller can be added to the callee’s

whitelist. In addition, the above scale can also be used when quarantining incoming

calls. For example, with a distrust value more than 0.99, the incoming call can be

directly blocked, and for distrust less than 0.01, the call can be directly forwarded.

The computed distrust (Property 2) after integrating with reputation inference (Sec-

tion 4.4.3.2) is compared with a predetermined threshold configured by the callee and

a decision can be made whether to forward the call to the callee or to filter it. If the

call is filtered, then it can be sent to the voicemail box or completely blocked depend-

ing upon the callee’s customized options. Alternatively, if the call is forwarded to the

callee, then the callee can answer the call and give feedback to the VSD. The callee
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responding with a spam or legitimate call feedback constitutes the explicit feedback.

However, another type of feedback can be inferred from the callee’s calling behavior.

It is the implicit feedback available to the VSD when the callee makes outgoing calls

(here, the role of the callee changes to a caller). In this case, the VSD updates the

history of the called parties with respect to him. There is a marked difference in the

way trust is updated based on implicit and explicit feedback and is explained in the

following property.

Property 3 : Trust can be derived from incoming as well as out-going calls. Every

wanted or legitimate incoming call translates to an additive increase in trust whereas

an outgoing call results in an exponential increase.

For a given callee, trust is a function of both incoming and outgoing calls. It is normal

that the trust we have towards people we call is greater than the trust we attribute to

people who call us. The trust we bestow on people who receive calls from us increases

exponentially with every outgoing call whereas the trust attributed to people who call

us increases additively. We incorporate this behavior into VSD as follows.

For a positive feedback from the callee for the present call, the distrust D for the next

call from the caller would be updated by

D = f({N1,s, N1,v+1},{N2,s, N2,v+1},{N3,s, N3,v+1}......{Nn,s, Nn,v+1}, NS, NV +1

)

And if the call is spam, as specified by the callee, distrust D is updated by

D = f({N1,s +1, N1,v},{N2,s+1, N2,v},{N3,s+1, N3,v}......{Nn,s+1, Nn,v}, NS+1, NV

)

But, for an outgoing call, trust is increased exponentially and is represented by

D=f({N1,s, N1,v�ek1�},{N2,s, N2,v�ek2�},{N3,s, N3,v�ek3�}......{Nn,s, Nn,v�ekn�}, NS,

NV )

We believe that ki ≥ 0 and is proportional to individual trust Ti of the call participant

i for i = 1..n, i.e., the amount of exponential increase is in the order of trust of the

respective call participant.
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Therefore, ki ∝ Ti for i = 1..n.

For defining the trust Ti of individual call participant i, we compute the dis-

trust Di of the call participant. Trust is then inferred directly from the distrust value

and can be safely assumed to be equal to 1 - Di. The distrust Di for call participant

i (variant of appendix B for one random variable) is given by

(2) Di =
(

Ni,s

NS
)(

Ni,s

Ni,s+Ni,v
)

(
Ni,s

NS
)(

Ni,s

Ni,s+Ni,v
) + (

Ni,v

NV
)(

Ni,v

Ni,s+Ni,v
)

Computing individual distrust for each call participant helps to identify the

amount of spam behavior associated with that call participant. In addition, this

computation assists in reducing false alarms i.e. the total number of false positives

and false negatives (for example, using the composite distrust computation D along

with distrusts of individual call participants for filtering spam calls). Therefore, for i

= 1..n, the lower the value of Di from Equation (2), the higher is the value of ki and,

therefore, the higher the increase in trust level and vice versa. Trust can be updated

by computing the distrust (as shown in Equation (2)) for every incoming call passing

through the VSD.

Based on the above constructs, we can derive a quantitative model using

Bayesian estimation that computes the number of spam or legitimate calls required

for moving the caller among the lists defined in Axiom 1. To achieve this, the current

behavior of a call participant, i.e., the spaminess and legitimateness of a call partic-

ipant based on its past behavior must be computed. We, as humans, do this in our

daily life as well. When receiving a voice call, we check the caller-id of the incoming

call and intuitively estimate the likelihood of the call being spam based on the caller’s

trustworthiness and past behavior.

Lemma 1 : A participant’s spaminess can be inferred from its past calls and current

distrust.
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Let Di be the distrust of a call participant ”i” for its past total calls Ni,B where

Ni,B = Ni,s + Ni,v where Ni,s and Ni,v represent the spaminess and legitimateness

associated with the call participant; then,

Ni,s = h1 (Ni,B, Di, NS, NV )

Ni,v = h2 (Ni,B, Di, NS, NV )

where the functions h1 and h2 are derived by solving the two equations

(3) Ni,B = Ni,s + Ni,v

and Di =
(

Ni,s
NS

)(
Ni,s

Ni,s+Ni,v
)

(
Ni,s
NS

)(
Ni,s

Ni,s+Ni,v
)+(

Ni,v
NV

)(
Ni,v

Ni,s+Ni,v
)

from Equation (2)

From above we have

Di =
(

Ni,s
NS

)(
Ni,s

Ni,s+Ni,v
)

(
Ni,s
NS

)(
Ni,s

Ni,s+Ni,v
)+(

Ni,v
NV

)(
Ni,v

Ni,s+Ni,v
)

=⇒ Di =
NV (Ni,s)2

NV (Ni,s)2+NS (Ni,v)2

=⇒ (Ni,v)
2 =

NV (Ni,s)2(1−Di)

NSDi

=⇒ (Ni,v)2

(Ni,s)2
= NV (1−Di)

NSDi

=⇒ (Ni,v)2

(Ni,B−Ni,v)2
= NV (1−Di)

NSDi
from (3)

=⇒ (Ni,B−Ni,v)2

Ni,v)2
= NSDi

NV (1−Di)

=⇒ Ni,B

Ni,v
= 1 +

√
NSDi

NV (1−Di)

(4) =⇒ Ni,v =
Ni,B

1 +
√

NSDi

NV (1−Di)

From Equation (3) Ni,s = Ni,B − Ni,v

=⇒ Ni,s = Ni,B − Ni,B

1+

r
NSDi

NV (1−Di)

(5) =⇒ Ni,s =
Ni,B

1 +
√

NV (1−Di)
NSDi

Therefore, given distrust Di and past number of calls Ni,B for a call participant

i, we can find Ni,s and Ni,v, i.e. the call participant’s spaminess and legitimateness.

Deriving Ni,s and Ni,v for a given distrust and total past calls helps us to compute
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the number of spam or legitimate calls required to move a caller from one list (e.g.,

whitelist) to another (e.g., blacklist) defined in Axiom 1 as shown in lemma 2.

Lemma 2 : The number of calls (NCF ) needed to identify spam depends on the

caller’s distrust and the callee’s tolerance.

In reality, it is highly likely that people will change their behavior such as legitimate

callers generating unwanted calls or unsolicited callers making legitimate calls. In

this context, we derived a quantitative model that computes the number of spam

calls required to categorize a caller to a blacklist. This is more necessary in VoIP

than in e-mail. In the case of e-mail, it would not be a serious nuisance to the callee

if the spam filter doesn’t stop spam emails (false negatives). But, spam calls become

a greater nuisance in case of VoIP because the callee must answer the call in real

time. For deriving NCF , assume that N
′
S and N

′
V represent the total number of spam

and legitimate calls processed by the VSD. In this lemma, consider that three call

participantscalling user, calling host, and call-generating domainare used to compute

an incoming call’s distrust value. Assume

Spaminess of user (N1,s) = N
′
1,s, and legitimateness of the user (N1,v) = N

′
1,v

Similarly, spaminess of host (N2,s ) = N
′
2,s, and legitimateness of host (N2,v ) = N

′
2,v

Spaminess of domain (N3,s ) = N
′
3,s, and legitimateness of domain (N3,v ) = N

′
3,v

Therefore, the current distrust (DC) based on the spaminess and legitimateness of

the three call participants of the incoming call derived using Equation (1) is given by,

DC =

(

3∑
i=1

N
′
i,s

3∑
i=1

(N
′
i,s + N

′
i,v)

)(

3∏
i=1

N
′
i,s

N
′
i,s + N

′
i,v

)

(

3∑
i=1

N
′
i,s

3∑
i=1

(N
′
i,s + N

′
i,v)

)(

3∏
i=1

N
′
i,s

N
′
i,s + N

′
i,v

) + (

3∑
i=1

N
′
i,v

3∑
i=1

(N
′
i,s + N

′
i,v)

)(
3∏

i=1

N
′
i,v

N
′
i,s + N

′
i,v

)

46



=⇒ DC =

(

3∑
i=1

N
′
i,s)(

3∏
i=1

N
′
i,s)

(

3∑
i=1

N
′
i,s)(

3∏
i=1

N
′
i,s) + (

3∑
i=1

N
′
i,v)(

3∏
i=1

N
′
i,v)

=⇒ DC =
N

′
1,sN

′
2,sN

′
3,s(N

′
1,s+N

′
2,s+N

′
3,s)

(N
′
1,sN

′
2,sN

′
3,s(N

′
1,s+N

′
2,s+N

′
3,s))+(N

′
1,vN

′
2,vN

′
3,v(N

′
1,v+N

′
2,v+N

′
3,v ))

(6) =⇒ DC

1 −DC
=

N
′
1,sN

′
2,sN

′
3,s(N

′
1,s + N

′
2,s + N

′
3,s)

N
′
1,vN

′
2,vN

′
3,v(N

′
1,v + N

′
2,v + N

′
3,v)

Now, assume that there were NCF number of spam calls from the call partici-

pants (i.e., the calling user, calling host, and call-generating domain) after which the

calls are filtered. Therefore, because of linearly updating the history of each call par-

ticipant based on feedback from the callee, the history of the three call participants

is given by

Spaminess of user (N1,s ) = N
′
1,s + NCF and legitimateness of user (N1,v ) = N

′
1,v

Spaminess of host (N2,s ) = N
′
2,s + NCF and legitimateness of host (N2,v ) = N

′
2,v

Spaminess of domain (N3,s ) = N
′
3,s + NCF and legitimateness of domain (N3,v ) =

N
′
3,v

Total spam calls processed by VSD = NS +NCF and total number of legitimate calls

processed by VSD = NV + NCF .

Therefore, the final distrust level (DF ) after NCF number of spam calls from the three

call participants, is given by

DF =

(

3∑
i=1

(N
′
i,s + NCF )

3∑
i=1

(N
′
i,s + NCF + N

′
i,v)

)(

3∏
i=1

(N
′
i,s + NCF )

N
′
i,s + NCF + N

′
i,v

)

(

3∑
i=1

(N
′
i,s + NCF )

3∑
i=1

(N
′
i,s + NCF + N

′
i,v)

)(

3∏
i=1

(N
′
i,s + NCF )

N
′
i,s + NCF + N

′
i,v

) + (

3∑
i=1

N
′
i,v

3∑
i=1

(N
′
i,s + NCF + N

′
i,v)

)(

3∏
i=1

N
′
i,v

N
′
i,s + NCF + N

′
i,v

)

=⇒ DF =
(N

′
1,s+NCF )(N

′
2,s+NCF )(N

′
3,s+NCF )(N

′
1,s+N

′
2,s+N

′
3,s+3NCF )

(N
′
1,s+NCF )(N

′
2,s+NCF )(N

′
3,s+NCF )(N

′
1,s+N

′
2,s+N

′
3,s+3NCF )+(N

′
1,vN

′
2,vN

′
3,v(N

′
1,v+N

′
2,v+N

′
3,v))
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=⇒ (N
′
1,s+NCF )(N

′
2,s+NCF )(N

′
3,s+NCF )(N

′
1,s+N

′
2,s+N

′
3,s+3NCF )

N
′
1,vN

′
2,vN

′
3,v(N

′
1,v+N

′
2,v+N

′
3,v)

= DF

1−DF

Using Equation (6), we have

(7)
(N

′
1,s+NCF )(N

′
2,s+NCF )(N

′
3,s+NCF )(N

′
1,s+N

′
2,s+N

′
3,s+3NCF )

N
′
1,sN

′
2,sN

′
3,s(N

′
1,s+N

′
2,s+N

′
3,s)

= DF (1−DC)
(1−DF )DC

For solving Equation (7) for NCF , we require the values of N
′
i,s and N

′
i,v

for i=1..3. N
′
i,s and N

′
i,v are dependent on the distrust of participant i and its past

calls N
′
i,B for i=1..3 as presented in Lemma 1. Substituting N

′
i,s and N

′
i,v for i =

1..3 with the current distrust DC and final distrust DF in Equation (7), the number

of calls NCF required to move from distrust DC to distrust DF can be computed.

Using Equation (7), the number of spam calls required to move a caller from a given

list (e.g., whitelist) to another list (e.g., blacklist) can be computed by assuming the

values of current distrust (DC) and final distrust (DF ) based on the values defined

for the lists in Axiom 1.

Corollary 1 : The number of spam calls (NCF ) required by VSD to identify a new

spammer is 3.

Equation (7) is used for computing the number of spam calls required by the VSD for

moving the distrust of an incoming call from DC to distrust DF . For a new spammer

from a new host and domain, the spaminess and legitimateness for each call partic-

ipant in the call is equal to 1 i.e. N
′
1,s = N

′
1,v = N

′
2,s = N

′
2,v = N

′
3,s = N

′
3,v = 1

(Property 2). These values if substituted in Equation (1) would result in an initial

distrust value DC = 0.5. Therefore, substituting above values, the value of DC , and

threshold T = 0.99 (therefore DF = 0.99) to directly get filtered in Equation (7), we

get a value of NCF = 3 i.e. VSD takes 3 spam calls to move from initial probability
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of 0.5 to the threshold probability DF = 0.99. This is experimentally validated in

Section 4.5.2.1. In practice, the value of NCF depends on the threshold value.

Note 1 : In this lemma, we assume that the number of spam calls from the host and

domain are same as the number of spam calls from the user (NCF ). However, it is

quite possible that there might be different user accounts on the same IP phone and

many hosts in the same domain. In this situation, depending upon the spam behavior

of other users, the spam histories of the host and domain change. Therefore, at any

instant, the number of calls required to cross the threshold would be dependent on

the spaminess and legitimateness of each of the call participants as is modeled using

Equation (1).

Note 2 : The quantitative model computes the number of spam calls required to cat-

egorize a caller into blacklist by increasing the call participants’ spaminess. A similar

model can be used to compute the number of legitimate calls required to categorize

the caller into a whitelist. However, in this case, the spaminess remains the same and

legitimacy of the call participants change i.e., after NCF number of legitimate calls,

the spaminess Ni,s remains N
′
i,s , but the legitimateness Ni,v changes to N

′
i,v + NCF

for each call participant i for i = 1..3.

Note 3 : The number of call participants for analysis can be extended from the three

participants of calling user, calling host, and call-generating domain to include other

call participants such as the source and intermediate proxies. In this case, to catego-

rize a caller into blacklist, NCF would be a function of the individual spaminess of all

the ”n” call participants i.e., given spaminess Ni,s for i = 1..n and the distrusts DC

and DF , the number of spam calls NCF can be computed. Similarly, to categorize a

caller into a whitelist, NCF would be a function of the individual legitimateness of all

the ”n” call participants, i.e., given legitimateness Ni,s for i = 1..n and the distrusts

DC and DF , the number of legitimate calls NCF can be computed.

Note 4 : Corollary 1 is a specific case for a new spammer who does not have history of

calling any of the users inside the V SDdomain. Due to this, we initialize the spaminess
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and legitimateness of the call participants from this new caller to be 1 and derive a

value of NCF = 3. However, for calls from other callers that have a history of calling

users inside the V SDdomain, the value of NCF depends on the previous spaminess

and legitimateness of the incoming call’s participants. Higher spaminess compared to

legitimateness of the call participants results in a value of NCF less than 3, and higher

legitimateness compared to spaminess of call participants results in a value of NCF

greater than 3. To generalize, for a call from new spammer with n call participants,

the spaminess and legitimateness of each call participant can be initialized to a value

1 for computing the value of NCF .

The above quantitative model is derived based on an assumption that there

are spam or legitimate calls from the caller to the callee. However, it is possible that

a callee does not receive a call from the caller for a long time. In this case, the trust

level of the caller fades over time.

Property 4 : We forget bad and good experience over time, and as a result, in the

absence of any transactions, trust fades.

Trust is accrued over a period of time. This accrued trust is a representation of the

caller’s past behavior. But, in absence of calls from the caller over a period of time,

the trust decreases, i.e., trust fades with time. This fading of trust is exponential

(Palla et al [59]). If the last transaction with the caller was at time tp in the interval

{t1,tn} such that t1,,tp,,tn, then, the trust value will decay over the time period ∆ =

tn − tp. This can be represented by Ti,n = Ti,pe
−∆t where Ti,p and Ti,n represent the

trust for a given call participant ”i” for i = 1..n at time periods tp and tn respectively.

This fading of trust over a period of time for a caller is as shown in Figure 4.3.

All the above notions of trust can be applied only when there is an available caller

history for the incoming call. But, in everyday life, we receive calls from individuals

who are calling for the first time (e.g., unknown callers - strangers). We lack a prior
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Figure 4.3. Trust fades with time. In the absence of transactions,

trust decreases exponentially in the order of elapsed time

calling history for them. In this case, we must rely on reputation or on recommenda-

tions based on word of mouth.

4.4.3.2. Reputation. It is a human tendency to rely on the opinions of trusted peo-

ple regarding an individual’s trustworthiness (usually referred to as the individual’s

reputation) in addition to one’s own experience. Knowing the individual’s reputa-

tion becomes even more necessary when we have no previous experience with that

individual. Inferring reputation for detecting the spam behavior of a call is useful

particularly in cases when neighbors have first-hand experience with the caller. Here

we present a model for inferring reputation and updating it based on callee’s feed-

back. But, first, we define reputation of a call participant as a notion or report of its

propensity to fulfill the trust placed in it (during a particular situation); its reputation

is created through feedback from individuals who have previously interacted with the

call participant (Goecks et al [26]).

The reputation of a call participant is inferred based on the recommendations

of the neighbors of the callee (e.g., other employees in the enterprise) as given in Ono

et al [57]. These neighbors can in turn poll their neighbors for the call participant’s

reputation. This reputation mechanism can be integrated into the functionality of

VSD. For this integration, instead of the actual callee seeking the recommendations

regarding each call participant, the VSD seeks recommendations about the caller’s
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domain proxy from its own neighboring domain proxies. The neighboring proxies, in

turn, seek the recommendation of their neighboring proxies until the caller’s domain

proxy is reached. VSD then infers the reputation of the caller’s domain proxy based

on these recommendations using Bayesian Networks inference techniques. For this,

with respect to a domain proxy, a graph can be generated using the neighboring prox-

ies that can be used in deriving the caller’s domain reputation. For example, consider

an example ring proxy network topology (Lancaster [44]) graph given in Figure 4.4.

For the given topology graph in Figure 4.4, reputation is inferred using

Figure 4.4. Reputation inference for a call from domain X4 to domain

X1. The proxy topology for reputation takes into account the intercon-

nection among domain proxies that are in all the possible paths from

the caller’s domain proxy to VSD. This topology can then be used

for propagating and updating reputation information using Bayesian

Networks based on an observed evidence of spam based on callee’s feed-

back

Bayesian networks. For a call from a domain (X2, X3 or X4) to a user inside X1

(V SDdomain), the reputation of the domain can be updated by feedback from the end

user i.e., the evidence is propagated throughout the Bayesian network (detailed prob-

abilistic model is explained in Appendix C). For a call from domain X4 to domain
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X1, the reputation of domain X4 can be inferred by computing P (X1|X4), i.e. the

posterior probability of X1 given an event that a call has been generated at X4.

P (X1|X4) = P (X1, X2|X4) + P (X1,∼ X2|X4)

(8) i.e.P (X1|X4) = P (X1|X2)P (X2|X4) + P (X1| ∼ X2)P (∼ X2|X4)

where

P (X1|X2) = P (X1, X3|X2) + P (X1,∼ X3|X2)

(9) P (X1|X2) = P (X1|X2, X3)P (X3) + P (X1|X2,∼ X3)P (∼ X3)

and

P (X1| ∼ X2) = P (X1, X3| ∼ X2) + P (X1,∼ X3| ∼ X2)

(10) = P (X1| ∼ X2, X3)P (X3) + P (X1| ∼ X2,∼ X3)P (∼ X3)

(11) P (X3) = P (X3, X4)+P (X3,∼ X4) = P (X3|X4)P (X4)+P (X3| ∼ X4)P (∼ X4)

Solving Equations (8)- (11) gives the reputation P (X1|X4) of domain proxy

X4. The inferred reputation of caller’s domain is then updated based on callee’s feed-

back. The reputation for the caller domain that is inferred can then be used either

for increasing or decreasing the trust level (See Section 4.4.3.3) of the incoming call.

Property 5 : Trust and reputation levels increase additively and decrease multi-

plicatively.

In our daily life, we slowly gain trust but we develop distrust quickly. We model this

intuitive behavior in updating the trust and the reputation values. However, previ-

ously in the chapter we have adopted a linear model in updating trust (or distrust).

Here, we present an alternative model for updating trust. The type of update model
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to be used depends on the sensitivity of the underlying application.

For a legitimate-call feedback from a callee, the distrust D is decreased as shown

below (increasing the legitimateness decreases the distrust)

D = f({N1,s, N1,v + T1},{N2,s, N2,v + T2},{N3,s, N3,v + T3}......{Nn,s, Nn,v + Tn},
NS, NV + 1 )

Similarly, reputation is additively increased for good behavior. For the graph

topology in Figure 4.4, the parameters for each node are updated additively for a

legitimate call. For example, for a legitimate-call feedback from callee for a call from

domain X4 to domain X1, the parameters of each node are updated as follows:

Node X2 : P (X2|X4) = P (X2|X4) + r1 P (X2| ∼ X4) = P (X2| ∼ X4) − r1

Node X3 : P (X3|X4) = P (X3|X4) + r1 P (X3| ∼ X4) = P (X3| ∼ X4) − r1

Node X1 : P (X1|X2, X3) = P (X1|X2, X3) + P (X1|X2)
Sinf

s1 + P (X1|X3)
sinf

S1

P (X1|X2,∼ X3) = P (X1|X2,∼ X3) + P (X1|X2)
Sinf

s1 − P (X1|X3)
Sinf

s1

P (X1| ∼ X2, X3) = P (X1| ∼ X2, X3) − P (X1|X2)
Sinf

s1 + P (X1|X3)
Sinf

s1

P (X1| ∼ X2,∼ X3) = P (X1| ∼ X2,∼ X3) − P (X1|X2)
Sinf

s1 − P (X1|X3)
Sinf

s1

where r1 and s1 are constants and Sinf = P (X1|X2) + P (X1|X3) .

Alternatively, for a spam call, both the trust and the reputation levels decrease mul-

tiplicatively. This is represented as follows

D = f({N1,s +J1D1, N1,v},{N2,s +J2D2, N2,v},{N3,s +J3D3, N3,v}......{Nn,s +JnDn,

Nn,v}, NS + 1, NV )

where Di is the associated distrust and Ji is multiplicative constant for updating

distrust for a call participant i for i = 1..n. In the basic case, JiDi = 1 for i = 1..n

for experimenting with a linear increase in distrust.

Similarly for reputation, the parameters for each of the nodes in the graph

topology would be updated for a spam-call feedback from the callee as follows

Node X2 : P (X2|X4) = P (X2|X4) − r2 P (X2| ∼ X4) = P (X2| ∼ X4) + r2

Node X3 : P (X3|X4) = P (X3|X4) − r2 P (X3| ∼ X4) = P (X3| ∼ X4) + r2

Node X1 : P (X1|X2, X3) = P (X1|X2, X3) − P (X1|X2)
Sinf

s1 − P (X1|X3)
Sinf

s1
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P (X1|X2,∼ X3) = P (X1|X2,∼ X3) − P (X1|X2)
Sinf

s1 + P (X1|X3)
Sinf

s1

P (X1| ∼ X2, X3) = P (X1| ∼ X2, X3) + P (X1|X2)
Sinf

s1 − P (X1|X3)
Sinf

s1

P (X1| ∼ X2,∼ X3) = P (X1| ∼ X2,∼ X3) + P (X1|X2)
Sinf

s1 + P (X1|X3)
Sinf

s1

where Sinf = P (X1|X2) + P (X1|X3). r2, s2 are constants such that r2 > l1r1 and

s2 > l2s1 and l1, l2 > 1. The two constants l1 and l2 are the multiplicative constants

and are configured based on callee’s preferences. The other constants r1, r2, s1, s2

are configuration parameters of VSD and can be initialized based on criteria such as

the maximum number of calls that can be allowed from a spam domain and spam

host. The updated values for the reputation parameters are in turn substituted in

Equations (8)- (11) to result in a new set of updated reputation values for the nodes

X2, X3, and X4 (represented by P (X1|X2), P (X1|X3) and P (X1|X4) respectively).

For a given set of initial or prior probabilities for the topology graph nodes represent-

ing the reputation of those domains, and for a spam call from domain X4 to domain

X1, the Bayesian inference calculations shown above would decrease the reputation

for X2 , X3 and X4 proxies and increase the reputation for a legitimate call for the

same domain proxies. For every incoming call, this adaptive update of reputation is

derived for all the domains in the probable path from the source domain proxy to VSD.

Property 6 : With no prior experience, we rely on reputation. After multiple

transactions with the caller, trust takes precedence and the influence of reputation

decreases.

Many a times, trust and reputation are used to represent human belief. Trust repre-

sents a caller’s past behavior whereas reputation signifies social status. While trust is

computed, reputation is derived. Figure 4.5 presents a trust-and-reputation-influence

plot based on human intuitive behavior in estimating the belief we place in individu-

als.

With no available history or experience, we rely mostly on the caller’s reputation.

Once we start receiving calls from the caller, trust would have more influence than
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Figure 4.5. Real life influence of trust and reputation. With no pre-

vious experience one relies mostly on reputation or recommendations.

With increasing experience, the influence of trust increases and that of

the reputation decreases

reputation. This is particularly useful when our main goal is to define customized

filters as the needs and perceptions of people change.

4.4.3.3. Integrating Trust and Reputation. The trust and reputation models de-

fined in Section 4.4.3.1 and Section 4.4.3.2 are integrated as functional working mod-

ules in our voice-spam-filter analysis as shown in Figure 4.6.

For an incoming call, the spam level of the call can be computed using

distrust D of the call by taking into account the spam and legitimate histories of

the call participants. The reputation module infers the reputation (R) of the source

domain and then augments the distrust (D) based on inferred reputation. As shown

in Figure 4.6, the final spam behavior (pc) in filtering is a result of the analysis of the

incoming call by applying the principles of distrust and reputation. For the above

analysis, the filter formal notation can be summarized as follows,

D = (C, Ns, Nv): Distrust computation based on history of call participants.

R = [P (X1|X2), P (X1|X3), P (X1|X4)] - Reputation analysis for the 4-node graph
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Figure 4.6. Integration of trust & reputation. The trust is either

increased or decreased based on reputation of caller’s domain. The

collective inference of these two stages results in a decision as to whether

forward or quarantine the call

shown before where X1 is the VSD and X2, X3, X4 are the domain proxies.

pc = (D,R) : a correlation between the trust and reputation analysis. This tells us

how the distrust D is updated based on reputation analysis. In this chapter we have

used a simple linear update based on the extent of deviation in reputation of a domain

from its initial reputation.

F = (pc, Y ): F represents a Forward / Reject decision by comparing the final spam

level of the call (pc) with the assumed threshold Y (defined in Axiom 1). F can be a

simple Boolean function resulting in True (call is spam - filter the call) or False (call

is not spam - forward the call).

In the above sections we have discussed an evidence-based filtering technique

for filtering VoIP spam calls. In the next section, we compare our methodology with

the existing evidence based techniques.

4.4.3.4. Comparison of Evidence Based Filtering Techniques. The VoIP spam de-

tection framework discussed previously in the chapter can be compared with some
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of the existing evidence based spam filtering approaches used in e-mail. Table 4.1

presents a tabular qualitative comparison of the features and techniques supported

by different approaches.

Table 4.1. Qualitative comparison of techniques used by existing

spam filtering approaches.

Features P1 P2 P3 P4 P5 P6

Trust computation framework using past history � � � �

Reputation inference based on recommendations � � � �

Rate Limiting �

Presence or context information for real-time analysis �

Blacklists and whitelists for signature based detection � � �

Community experience � �

Feedback control � �

Identity Verification � �

Collaborative analysis � � �

Adaptive and real-time usage � �

Distributed Solution � �

Challenge and Response techniques � �

P1: Golbeck et al [27] P2: Seigneur et al [80]

P3: Wattson[91] P4: Damiani et al [11]

P5: Foukia et al [24] P6: Our proposed VoIP spam filtering framework

4.5. Experimental Results

VoIP deployment is still at its inception. No VoIP corpus exists for testing a

detection mechanism. So, to test our proposed VoIP spam-detection framework, we

use randomly generated data for the network setup defined in Figure 4.1. The end
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users in the call-generating domains and V SDdomain (the enterprise network) are ei-

ther real SIP IP phones or soft clients compliant with SIP RFC ([70]). End users

outside the V SDdomain use randomly generated usernames and IP addresses to form

a from SIP URI. The end users inside the V SDdomain can receive calls forwarded by

the VSD and also generate a call to a randomly selected user outside the V SDdomain.

The call-generation process uses a Bernoulli distribution. Calls are generated with an

average rate of 8 calls/minute. Neither the VSD nor the V SDdomain end users have

any knowledge of the call-generation process. A random subset of users, hosts, and

domains outside the V SDdomain are configured to be spam entities before the start

of experiments. We ran the experiments with 6 users inside the V SDdomain and 40

users outside the V SDdomain. The V SDdomain is configured to be a domain with 5

Class C networks. For a given user inside the V SDdomain, Figure 4.7 compares the

number of total calls and spam calls from all users outside the V SDdomain, and the

number of filtered calls by the VSD.

4.5.1. VSD Architecture: Collaboration between Different Filtering Techniques

In our architecture, filtering techniques employed at each stage of spam analysis

include spam and legitimate signatures (black- and whitelists), trust, and reputation

of the calling party. While most current spam filters employ blacklisting as their

sole means of stopping junk calls, blacklisting coupled with trust and reputation in-

ference techniques increases the filter accuracy as shown in Figure 4.8. The figure

presents the number of spam calls blocked using the three stages of analysis. It can

be observed that the number of spam calls blocked using blacklisting, trust and repu-

tation is approximately 97.16% compared to 4.25% if only blacklisting is implemented.
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Figure 4.7. Comparing the total calls generated, generated spam calls

and filtered calls. The VSD continuously tries to catch up with gener-

ated spam

4.5.2. Accuracy of the Voice Spam Detector(VSD)

The VSD’s accuracy can be estimated by comparing the rate of spam with the

rate of filtered calls.

4.5.2.1. Accuracy during learning period. Initially, VSD has no knowledge of spam

but learns the callers’ behavior using feedback from the end users. This learnt be-

havior is used for blocking spam calls. The number of spam calls filtered by the VSD

increases with time and, ultimately, tries to catch up with the generated spam calls.

Figure 4.9 presents the total number of spam and filtered calls from all the callers to

a particular user inside the V SDdomain. VSD catches up with spammers during its

learning period. After the learning period, VSD has an accuracy of 97.6%, a false

positive percentage of 0.4% with 2% of spam calls forwarded to the end user (false

negatives). After 16 time units (Figure 4.9), the filter locks-in with the spammers,

thus, improving the accuracy of detection.
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Figure 4.8. Spam Calls blocked by VSD for different stages of anal-

ysis. Filter performance improves significantly when the three stages

(blacklisting, trust, and reputation inferences) are used collectively to

infer the spam behavior of incoming calls. Data for the plots include

spam calls generated by 40 users outside the V SDdomain to a user inside

the V SDdomain

Similar behavior of filter locking-in with a spammer for a given user inside

the V SDdomain can be observed in Figure 4.10. The figure depicts the VSD’s accuracy

during the lock-in period for an end user inside the V SDdomain from a particular

caller. It presents the learning period when the spam calls are generated from that

caller. For a caller who is repeatedly spamming the end user, the filtered-calls curve

catches up with the spam-calls curve after the 3rd call, i.e., the caller’s 3rd spam

call is automatically filtered. The rate of filtered calls from then on equals the rate

of generated spam calls, resulting in minimum false alarms (validating Corollary 1).

Next we study the accuracy of the filter during the lock-in period.

4.5.2.2. Accuracy during lock-in period. After the learning period, the number

of filtered calls will be close to the number of spam calls. During this time, VSD
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Figure 4.9. Spam Detection Accuracy increases with time. The num-

ber of filtered spam calls increase with time as VSD learns the behavior

of calling entities. This learned knowledge results in the VSD filtering

more and more spam until it catches up with the generated spam

may filter other calls (creating false positives) or may let the spam calls reach their

destination (false negatives).

Figure 4.11 is a magnified version of Figure 4.9 during the lock-in period. This

graph describes the rate of spam calls versus the rate of filtered calls from all callers

to a given user inside the V SDdomain during the lock-in period. At any time, the

difference between the spam and filtered calls provides the number of false alarms.

Initially, the filter starts learning the spam behavior and, therefore, fewer spam calls

are filtered, resulting in false negatives. After considerable learning, the rate of filtered

calls will almost be equal to the rate of spam calls. Later, it is also possible that the

VSD will filter more calls than the actual generated spam calls in that time period
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Figure 4.10. Spam Detection Accuracy increases with time. The

graph presents the learning period for the user with respect to a partic-

ular caller outside the V SDdomain. Initially, spam calls are forwarded,

but the VSD learns the caller’s spam behavior during the learning pe-

riod and starts to filter the caller’s calls. All spam calls starting with

the caller’s 3rd spam call are directly filtered.

resulting in false positives. This can happen in a random setting because some non-

spam users can accrue spam behavior by sharing resources (e.g., hosts, domains) with

the spammers.

4.5.2.3. Improving the accuracy of VSD. Filtered calls are fewer than the number

of spam calls before lock-in because the VSD’s knowledge regarding the spammers is

insufficient. This is the period where false negatives appear. This is represented by
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Figure 4.11. Small number of false alarms after the learning period.

VSD, after learning the caller’s spam behavior, filters most of the spam.

After the learning period, the calls filtered by VSD are almost same as

the spam calls but with very few false alarms (we say that the filter

locks in with the spammer

the false alarms curve below the x-axis as shown in Figure 4.12. The curve tends to

zero-in when the VSD has the complete history of all the callers so that every spam

call can be right away stopped. At times, it can happen that some of the legitimate

callers accrue spam behavior by using spam resources (e.g., spam host, spam domain

etc.). Because of this, it is possible that the filter blocks more calls than actual spam

calls thereby creating false positives represented by the error curve above the x-axis

as shown in Figure 4.12.

In view of the above scenarios, we believe that in addition to using feed-

back from the end user regarding false negatives (like a spam button), using feedback

about the false positives would prove to be equally effective for spam learning. This

feedback mechanism is similar to e-mail where a filtered email is routed to a junk-mail

folder. Instead of directly blocking the filtered calls, the VSD would forward the sus-

picious call to the callee’s voice-mail box. The callee would have added flexibility of

looking at the calls in his voice-mail box and reporting the validity of the calls to the
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Figure 4.12. Small number of false alarms after the learning period.

A false negative (spam classified as legitimate) results in ringing the

phone and a false positive (legitimate classified as spam) is diverted

to the voice mail box. In both cases, the VSD updates the history

based on the end-user’s feedback. The feedback can either be explicit

feedback (when end-user presses the spam button) or implicit feedback

(when the end-user calls back the caller). Hence, user feedback can be

used to reduce error and to keep false alarms to a minimum.

VSD. For example, the callee could inform the VSD that a call in the voice-mail box

is legitimate. The VSD can then update the legitimate history of that caller. This

update can be a linear decrease in distrust or complete spam history reset. In this

chapter we have used the linear decrease in distrust update procedure. Alternatively,

the callee could also respond saying that the call is a spam call or could immedi-

ately purge the call from the voice-mail box. In this case, the VSD will implicitly

understand that the call was indeed spam and that the filter accurately judged the

spam behavior of the call. With this kind of callee response, the filter can reduce the

number of false positives. As a result, the curve in Figure 4.12 drops to the actual

spam-call curve. This process repeats and, eventually, the filter converges with the
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zero line locking-in closely with the spammers.

4.6. Sensitivity Analysis

While considering the accuracy of the filter, it is important to analyze the impact

of the configuration parameters. In this section, we analyze the effect of parameters

such as spam volume and the network size on the filter’s accuracy.

4.6.1. Spam volume versus Accuracy

Property 7 : More the amount of spam, the easier it is to detect it. We may

receive more spam because of an increasing number of spammers in the call-generating

domains outside the V SDdomain (e.g., telemarketing company with huge employee

base) or because the amount of traffic generated by spammers is significantly higher

than that of legitimate callers. We have observed that for a given number of calls,

VSD takes less time to learn spam behavior when the volume of spam calls is high

than when the number of spam calls is low. This relationship between spam volume

and the VSD’s spam-detection capability can be proved using an analytical model.

For proving this relation, two different percentages of spam (x% and y% of spam

processed by VSD such that x < y) can be individually substituted in Equation (1)

as shown in Appendix D. We further support the analytical model in D by presenting

our experimental results for spam-detection capability for varied amounts of spam.

To measure this capability, we plot the rate of false negatives for varying amounts of

spam.

Figure 4.13 describes the plot for rate of false negatives versus the amount

of spam generated from the calling domain. As the amount of spam increases, the

number of false negatives decreases, i.e., the filter’s spam-detection capability in-

creases. It can be inferred that the detection capability increases with increasing

spam encountered, but at the same time the filter shows as much capability with a
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Figure 4.13. False negatives decrease when the VSD encounters more

spam. The greater the number of spammers among the users generat-

ing calls, the higher is the probability that the incoming call is spam.

Therefore, the chances that the VSD will filter the call are higher. This

larger number of spammers also reduces the chances that the VSD will

forward the spam, i.e., there are fewer false negatives

smaller percentage of spam when it has more time (more calls) for learning. The de-

tection capability based on the experimental results can be compared with that of the

analytical model. The detection capability based on experimental results is directly

derived from the false negative rate shown in Figure 4.13. The detection capability

based on an analytical model can be obtained by substituting different values for Ni,s

and Ni,v (such that the sum of them is always a constant) for a call participant i for

i = 1..n in Equation (1).

Figure 4.14 presents the plot for a comparison between the spam-detection

capability based on the analytical model and our experimental results. The spam-

detection capability based on experimental results shows similarity with that of the

analytical model. However, the increase in the spam-detection capability for larger

amounts of spam might result in a few more false positives. This increase can be

represented by plotting the false positive rate using RoC curves for two amounts of

spam as shown in Figure 4.15. The figure represents the false positive rate for 20%

and 40% of spam in the total traffic processed by VSD. It can be observed that as

67



Figure 4.14. Experimental Accuracy vs. Analytical Detection Ca-

pability with respect to amounts of spam.

the amount of spam increases the false positive rate increases. This happens in a

random setting because as the number of spammers increase, the percentage of non-

spam or legitimate users decreases. Due to this, the legitimate users begin to accrue

spam behavior by using resources (e.g., host and domain etc.) used by the spammers.

This results in the legitimate users getting filtered at the VSD thus resulting in more

false positives. Taking into account the feedback about filtered calls as described in

Section 4.5.2.3 can reduce these false positives.

4.6.2. Network Size versus Accuracy

Another important parameter that can affect the filter’s accuracy is network size.

The users registering for VoIP services might have dynamic addresses because of the

end hosts running the DHCP protocol. Because of this, every time a user connects

to the VoIP network, it might have a different Class B or Class C network address

(mostly a different Class C). In this event, the number of available IP addresses in
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Figure 4.15. Experimental Accuracy vs. Analytical Detection Ca-

pability with respect to amounts of spam.

the address space greatly affects estimating the spam behavior of the users in the

networks inside a VoIP domain. For a smaller number of networks inside a VoIP

domain, VoIP users have a more limited set of IP addresses to use for connecting to

the network. In this case, the behavior of a spammer having an IP address within

this address space can be learned more quickly than is the case when the spammer

is in a network with more available IP address space. Catching a spammer who is

within a large IP address space becomes more difficult than in the case of a smaller

IP address space. We validate this by plotting the number of filtered calls by VSD

from the same set of spammers for two sizes of call-generating domains (5 and 10

Class C network domains).

4.6.2.1. Network Size versus Blocked or Filtered Calls. Figure 4.16 gives the num-

ber of spam calls filtered for two different sizes of networks. For the same set of

spammers, the time taken by VSD for learning spam behavior from a network size of

10 Class C networks is higher when compared to time taken for a network of size 5

Class C networks.

The detection capability for network sizes based on the above experimental results

and analytical model can be plotted as shown in Figure 4.17. The graph for the
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Figure 4.16. Spam calls filtered with increasing network size. For

a same set of spammers distributed across differently sized networks,

VSD is more capable of differentiating spam for smaller-sized networks

than larger networks

analytical model is generated by assuming that a fixed number of spammers are

distributed over different network sizes. Due to this distribution, the amount of spam

varies for each unit of network size i.e., for the same set of spammers, the spam

generated for each unit of network size (e.g., 1 Class C network) in smaller-sized

networks is higher when compared to the amount of spam generated for each unit

of network size in large-sized networks. Alternatively, the detection capability based

on experimental results is directly inferred from the experimental results presented

in Figure 4.16.

Figure 4.17 shows the relationship between detection capability and net-

work size based on our analytical model and experimental results. From Figure 4.16

and Figure 4.17, we note that, for a given time period and number of calls, spam

detection capability is lower for large-sized networks when compared to small-sized

networks. However, spam detection capability is better even for large-sized networks
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Figure 4.17. Blocked spam calls for increasing scalability on call

generation. The detection capability based on experimental analysis is

similar to that of the analytical model.

when the filter encounters large number of calls from spammers. In any case, irrespec-

tive of the network size, VSD identifies spammers if it receives a sufficient number of

calls from those spammers. This can be observed in our daily life as well. It is easy

to detect spam from telemarketers from the same company when compared to the

telemarketers spread across the country.

4.6.2.2. Network Size versus False Alarms. Here we consider the effect of network

size with respect to false alarms.

Figure 4.18 represents false negative rates for differing network sizes. As

the network size increases, VSD takes more time in learning the spam. We need to

note that the spam probability of an incoming call depends on the call participants’

history. Due to a smaller number of spam calls in each unit-sized networks (e.g., 1

Class C network), it is highly likely that most of the non-spammers have created good

will and a legitimate behavior. This will decrease the spam-probability of an incoming
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Figure 4.18. Increasing false negatives with increasing network size.

The false negatives for small-sized networks are fewer than those iden-

tified within larger-sized networks due to the smaller number of spam

calls at any given time.

call and allow spam to go through VSD. Therefore, with an increasing network size,

the allowed spam will increase, i.e. number of false negatives increases. We believe

we can further reduce the false negatives if we consider the experiences of others (i.e.

neighbors) along with the experiences of the caller. It is highly likely that if a set

of users receive spam from a source, the same source will spam other users in the

same domain. So, integrating domain-level knowledge can improve the performance

of VSD.

4.7. Integrating Domain Level Knowledge(We Learn from Others’ Experiences)

It is frequently observed that spammers usually spam more than one user in a

domain. This is certainly true for broadcast spammers who spam all the users in

a domain. For example, a telemarketer would broadcast messages to many users in

the domain. Nearly all the recipients of the messages will consider them to be spam.

VSD can take advantage of this behavior to identify more spam calls A domain-level

database (e.g., stored in a proxy server located in the enterprise’s perimeter) can be
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used for computing the distrust of incoming calls with respect to the callee’s com-

munity. This domain-level distrust can then be used to either increase or decrease

the distrust perceived by the callee (Section 4.4.3.3). However, in few cases, a callee

might want to receive calls that others in the community have categorized as spam.

For example, a callee in search of mortgage rates may want to receive broadcast calls

about mortgages even though the calls are considered to be spam by many other

members in the callee’s community. In this case, the customized filter options of the

callee (e.g., whitelist) can allow reception of calls of specific interest even when the

domain-level spam analysis reports that incoming call is spam. It is also possible

that the callee might not have a prior history of calls from such spammers. In this

context, if the call is filtered and directed to the callee’s voice-mail box, the callee can

provide feedback telling the VSD that the call is legitimate. This ensures that future

calls from that caller are directly forwarded. On the other hand, if the call is allowed

through to the callee and if the callee is interested in taking the call, the callee can

provide positive feedback about its legitimacy to the VDS and, thus, increase the

caller’s trust level relative to the callee.

Property 8 : Trusting a caller depends on the social experience of the callee’s

community.

Upon receiving a call, if the callee doesn’t have a prior experience with the caller,

the callee can use the social experiences of neighbors to determine if a call should

be accepted. These neighbors constitute the callee’s community. Some neighbors

may have first-hand experience with the caller. This can be taken advantage of for

identifying spammers who make spam calls to more than one member in the callee

community. In this scenario, the distrust of the incoming call with respect to all the

members in the callee’s community is given by

D = f({Nd
1,s, Nd

1,v},{Nd
2,s, Nd

2,v},{Nd
3,s, Nd

3,v}......{Nd
n,s, Nd

n,v}, NS , NV )

where Nd
1,s and Nd

1,v represents the spaminess and legitimateness of call participant i
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with respect to all the users inside the V SDdomain i.e. callee’s community. Simply, for

m number of callee community members, Nd
1,s =

m∑
k=1

Ni,s where N1,s is the spaminess

of the call participant i with respect to the community member k. Similarly, for m

number of callee community members, Nd
1,v =

m∑
k=1

Ni,v where N1,v is the spaminess

of the call participant i with respect to the community member k. However, N1,s

and N1,v may take different values when considered for different callees (community

members). In order to have a lighter notation, we avoided indexing N1,s and N1,v by

callee in the rest of the chapter, but Nd
1,s and Nd

1,v actually are
m∑

k=1

Nk
i,s and

m∑
k=1

Nk
i,v

respectively.

Note: The above scenario assumes that each member of the callee’s community

is of equal importance to the callee. It is quite possible that the callee himself has

different trust relationships with each community member. In this context, the callee

may find it more useful to obtain recommendations from all the community members.

The callee can then weigh the recommendations based on the trust relationships the

callee holds with each member who has responded to the request. The community

feedback to callee a about caller b can thus be represented by

T (a, b) = Φ(T (u1, b), T (u2, b), T (u3, b)T (um, b)) where T (uk, b) for k = 1..m represents

the trust of member uk towards caller ”b”.

The function Φ can be a simple weighted function as below

T (a, b) = W1T (u1, b) + W2T (u2, b) + W3T (u3, b) + WmT (um, b) such that W1 + W2 +

W3 + Wm = 1.

The weight constants W1, W2, W3, , Wm represent the trust for the callee towards each

of the community members.

Property 9 : The larger the community, the smaller the impact of an individual.

The callee requests the neighbors the trust values they associate for a caller when the

callee lacks first hand information about the caller. If the set of callee’s neighbors

who respond is large, the individual significance of each recommendation decreases.
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On the other hand, if the set of neighbors who respond to the request is small, the

weighted response of each neighbor has a more influential effect on the callee’s deci-

sions.

4.7.1. Increase in Performance of VSD by Integrating Domain Level Knowledge

To measure the increase in performance of VSD by integrating domain level knowl-

edge, we ran the experiment for 1500 calls with 6 users in the V SDdomain. VSD logs

the spam and legitimate calls to all the callees inside the V SDdomain. In addition to

computing the callee specific distrust value, the VSD also computes the call’s distrust

with respect to the callee’s community. The VSD then uses both the distrust values

for inferring the spam behavior of the call.

Figure 4.19. Increase in filter accuracy by integrating domain level

information. The broadcasting mechanism followed by many spammers

can be taken advantage of to block spam across the domain. Integrating

this knowledge helps in identifying true spam and, therefore, in reducing

false negatives
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Figure 4.19 represents the increase in the accuracy during the learning period

by integrating domain knowledge for a user inside the V SDdomain. It can be seen

that by integrating the domain level spam information for distrust computation, the

increase in performance of the VSD is as high as 100% (Figure 4.19a). In addition, as

shown in Figure 4.19b, a marked improvement is observed in the false negative rate

by integrating domain knowledge.

As described in the previous sections, VSD learns the spam behavior of the

people calling the callees. However, it is possible that when the available information

for spam filtering is insufficient, some of the spam calls (3 as proved in 4.4.3.1) are

let through the VSD. All the calls that are let through the VSD are analyzed by

nuisance detector (ND) as a result of which the number of spam calls reaching the

callee decreases further. In addition to spam calls, the callee would not like to receive

calls from legitimate callers at a given instant. In this case, the nuisance detector

filters unwanted calls from legitimate callers too.
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CHAPTER 5

PROACTIVE NUISANCE COMPUTATION

5.1. Introduction

We communicate with people around us in different ways. Prominent among

these communication methods are face-to-face interactions, e-mail and telephonic

communications. All the three types of communication methods possess favorable

and unfavorable facets in their ease of use and comfort to the people communicating.

Face-to-face interactions provide a flexibility of real-time communication but require

the two parties to be in the same location. While e-mail eliminates geographic lim-

itations, it is not real time. Telephonic conversation solves both the problems of

geographic limitations and real-time communication.

With a flexibility of comfort and ease of use, the telephone mode of communi-

cation is widely preferred over other communication modes. However, this ease of use

in real-time communication brings challenges that are not really pertinent in e-mail

communications and face-to-face interactions. One problem that the people using a

telephone communication mode experience is eliminating unwanted calls. Initially,

unwanted calls were understood to be voice calls from unknown people i.e., strangers.

But, over time, the meaning of ”unwanted” changed and became subjective e.g., tele-

marketing calls from valid sales personnel in different corporations and organizations,

calls from people calling about previously opted-in services like mortgage, newslet-

ters, discussions etc. People interested in those services viewed them as wanted calls,

but those calls are unwanted to others.

c©[2007] ACM. Reprinted with permission from - P. Kolan, R. Dantu, J.W. Cangussu, ”Nuisance

Level of a Voice Call”, To appear in ACM Transactions on Multimedia Computing, Communications,

and Applications (TOMCCAP) Oct 2007.
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While a solution for inferring the associated spam behavior for incoming voice

calls on a VoIP network is explained in Chapter 4, there is no reported work on esti-

mating the end user’s eagerness or reluctance in receiving the incoming voice call. We

believe that each voice call is associated with certain degree of nuisance to the callee.

This degree of nuisance increases if the callee does not know the caller. However,

voice calls from known people too are associated with some nuisance. In this case,

the nuisance depends on the presence of the callee. For example, corporate execu-

tives may resent a call from an employee when at home, but would like to receive

such calls when at office. As predicted in Canny [7], future communication systems

will be context-aware and built based on the end user’s behavior, needs and wants.

Proactively estimating the nuisance based on the caller’s past behavior, the tolerance

and presence of the callee helps limit unwanted calls. To realize this objective, we

propose a model for computing the nuisance for incoming voice calls to a callee. To

test our model, we collected real-time voice calling patters of several individuals at

our university. We, then, validated our computational model using the collected call-

ing patterns and individuals’ feedback.

5.2. Background

Literature on spam filtering exists for e-mail infrastructures([74], [76], [53], [85],

[75], [10], [67]) and VoIP ([71], [83]). But, neither the e-mail nor the VoIP anti-spam

solutions advocate the computation of nuisance due to unwanted messages or calls by

using end user’s behavior and context. Some literature in social science ([30], [49])

discusses the social closeness of people based on amount of time and intensity (fre-

quency) of communication. Granovetter et al [30] suggested that the time spent in a

relationship and the intensity along with the intimacy and reciprocal services form a

set of indicators for social tie. The paper predicts that the strength of an interpersonal

tie is a linear combination of amount of time, the emotional intensity, the intimacy

(mutual confiding) and the reciprocal services in a relationship. Marsden et al [49]
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evaluates the indicators and predicators of strength (tie) described in Granovetter et

al [30]. The paper concludes that ”social closeness” or ”intensity” provides the best

indicator of strength or tie. However, none of these researchers based their discussion

of social tie or degree of nuisance on the amount of connectivity occurring within

voice calling patterns. Eagle [21] describes how the telephone communication data

can be used to infer structural relationships between the subjects in communication.

A detailed study of social network dynamics using the telephone communication data

is presented. Khalil et al [38] and Khalil et al [39] describe the need of context aware

mobile devices for reducing cell-phone interruptions. All these solutions discuss the

context awareness of mobile phones. But, none of these solutions advocate the learn-

ing of mutual communication behavior between the caller and the callee to infer the

callee’s interest or reluctance in receiving voice calls from that caller.

We believe that a solution for estimating the callee’s reluctance in receiving

incoming voice calls depends on the caller’s past behavior with the callee and the

callee’s tolerance based on his mental and physical presence. One way of inferring

this reluctance in receiving voice calls is to compute a degree of nuisance associated

with them. To our knowledge, no work reports computing the nuisance of a voice call

using socio-technical methods. In this chapter, we present a model for estimating the

nuisance value of an incoming call by inferring the social closeness between the caller

and the callee, caller’s past behavior, callee’s presence and tolerance. Section 5.3

presents the architecture of a Nuisance Detector (ND) that computes the nuisance of

incoming voice calls. Section 5.4.2 describes a model for inferring the social closeness

of callers using real-life calling patterns. Section 5.4.3 describes a nuisance computa-

tion model based on the inferred closeness and behavioral patterns between the caller

and the callee.
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5.3. Nuisance Detector

The Nuisance Detector (ND) for computing the nuisance of an incoming voice call

can be deployed either in conjunction with perimeter controllers such as voice spam

filters or firewalls, or in end systems such as voice phones. The basic architecture of

the Nuisance Detector is shown in Figure 5.1.

For every incoming call, the Nuisance Detector computes the nuisance of the

Figure 5.1. Architecture of Nuisance Detector (ND). The ND infers

the nuisance of incoming calls based on the past call history (incoming

and outgoing calls) and the feedback given by the callee to those calls

from that caller

call based on the callee’s past history with the caller (Callee’s Past History) and the

previous outgoing calls from the callee to the caller (Callee’s Outgoing Calls). Both

these histories are maintained by the ND by logging the call specific information for

every call received and made by the callee. The computed nuisance is checked with

a pre-configured threshold value to make a decision as to whether to forward the call

or reject it. When the analysis results in

(1) Accept : The call is forwarded to the callee. The callee’s phone rings and the

callee answers the call. The callee can then press a configured ”unwanted-

call” button on the IP phone to provide the feedback (the spam button

discussed in Chapter 4 can be the unwanted cll button) to the ND about the
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nuisance of the call. The ND then logs this feedback to use when inferring

the nuisance value for subsequent calls from that caller.

(2) Forward to voice-mail : A decision is made to directly forward the call to

voice-mail of the callee if the computed nuisance of the call is greater than

the threshold configured by the callee. The callee would have an added

flexibility of giving a feedback about the nuisance of the calls in his voice-

mail box. Similar to the feedback about accepted calls, the ND logs the

feedback information to use for subsequent calls from that caller.

(3) Reject : A decision is made to reject the call when the caller is in the blacklist

of people configured by the callee. In this case, all the calls from the caller

are directly blocked unless the callee removes the caller from the blacklist.

The above model of callee giving a feedback to the ND about the nuisance

of every call for distinguishing wanted callers from unwanted callers is already demon-

strated in Chapter 4. However, it is not always imperative that the callee answers

every call and gives a positive or negative feedback. The callee’s presence (mood or

state of mind) plays a major role in deciding whether to answer the call. For example,

to an incoming call, an executive in the middle of a meeting may ignore the call, ac-

tivate silent mode or forcefully disconnect it. The executive might still like to receive

such calls when his presence changes e.g., he is ready to take calls as the meeting

has finished. In this case, if the executive doesn’t answer the call, the ND should not

increase the degree of nuisance for next calls from the caller. Alternatively, possibly

the executive doesn’t answer the call because it is truly unwanted. We, therefore,

require a mechanism that distinguishes the feedback in such ambiguous cases. To

eliminate this ambiguity, callee’s presence information can be integrated with the ND

to reduce untimely calls (presence subscription in Figure 5.1).

81



5.4. Nuisance Detection Framework

To receive calls just from wanted people at a preferred time, static filtering tech-

niques have to be integrated with behavior learning models. These models should

incorporate mechanisms for inferring the callee’s presence and tolerance towards the

caller, the caller’s previous behavior, and, finally, the caller’s social closeness to the

callee. However, social closeness depends on the other three constructs of callee’s

tolerance and presence along with the caller’s previous behavior.

5.4.1. Presence, Tolerance and Behavior

In our daily life, when we answer a phone call, we always try to estimate the

importance of the call before answering it. We base this estimation on

• Presence: Our mood or state of mind based on context (situational, spatial,

temporal). For example, when we are getting ready for a meeting, we would

like to only receive calls of relevance to the meeting. A call from a friend or

even from a family member is unwanted at that instant.

• Caller behavior : While we would normally receive a friend’s call, if that

friend makes repeated calls, we usually tend to ignore some of those calls.

The caller’s behavior influences our decision whether to answer the call or

reject it even if the caller is closely related to us.

• Tolerance: Every one of us inherently assigns a level of tolerance to every

caller we expect to receive calls. This tolerance dictates the extent to which

we acknowledge the caller. This level of tolerance is more for our own family

members and friends compared to other people like neighbors or distant

relatives, i.e. we have more tolerance to behavioral fluctuations to calls from

close people such as family members and friends compared to others.

All the above three parameters of caller behavior, the callee’s presence and

tolerance dictate the social closeness of the caller to the callee. Quantitative measure-

ment of social closeness is a complex and challenging task. There are many works in
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the literature in social networks for measurement of social ties ([30], [49]). In addition

to presence, expected behavior and tolerance, other parameters such as physical prox-

imity between caller and callee, multiplexity (interaction in multiple contexts), and

reputation of caller to the callee could be very useful for further investigations and

characterization of social closeness. However we cannot consider all these parameters

mainly because they cannot be directly extracted form the calling patterns.

5.4.2. Social Closeness

We in our social life talk to different people at different instances. These people

constitute our social network. However, most of the time, we are connected with a

small group of individuals within our social network such as family members, friends,

neighbors and colleagues. Based on this social connectivity, we can divide our social

network members into four broad categories.

• Socially Close Members: These are the people with whom we maintain the

highest socially connectivity. Most of the calls we receive on a PSTN network

(Public switched telephone network) or a cellular network come from indi-

viduals within this category. We receive more calls from them and we tend

to talk with them for longer periods. We even tolerate abnormal changes in

behavior (in the pattern of calling) from this group of people. In essence,

these people exhibit least fluctuations in behavior and we have maximum

tolerance for them. e.g., family members, friends and colleagues.

• Socially Near Members: People in this category are not as highly connected

as family members and friends, but when we connect to them, we talk to them

for considerably longer periods. Mostly, we observe intermittent frequency

of calls from these people. Although we have near to maximum tolerance

while we talk to socially near individuals, we seldom acknowledge abnormal

changes in behavior from them e.g., neighbors and distant relatives.
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• Opt-in’s : These individuals have less connection with our social life. These

people call us with less frequency. We acknowledge them rarely. Among

these would be, for example, a newsletter group or a private organization

with whom we have previously subscribed. We still receive calls but we do

not acknowledge them often and have less tolerance towards their behavior

e.g., discussion groups.

• Opt-out’s : We are least connected to the people belonging to this group.

These individuals have no previous interaction or communication with us.

We have the least tolerance for calls from them. We find any abnormal

behavior from these people extremely unacceptable. e.g., strangers, telemar-

keters, fund raisers

The classification of social network members into these four categories helps

us understand the closeness of those people. However, the closeness of people changes

depending upon our presence. Figure 5.2 presents the relation between social close-

ness, tolerance, and behavior for two temporal presence factors (personal time, pro-

fessional time).

As shown in Figure 5.2, during non-work hours (personal presence), we have

more tolerance and high acceptance in behavior for closely related social network peo-

ple such as family members and friends. We have high tolerance but a relatively less

behavior acceptance for socially near members such as neighbors and acquaintances.

Alternatively, we have low tolerance for behavior of other people belonging to the

group of Opt-ins and Opt-outs. However, during work hours (professional presence),

we prefer to receive calls from secretaries, boss, clients, and customers and may resent

unnecessary calls from family members or friends. Clearly, the social closeness and

tolerance we have with the people change based on their behavior and our presence.

ND can use the presence information of the callee to limit unwanted calls. One way

of integrating the presence information of the callee is to synchronize the ND with

callee’s calendar (scheduled events). This would enable the ND to allow calls from
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Figure 5.2. Relationship between Tolerance, Behavior, Closeness and

Presence. Our closeness, tolerance and acceptance in behavior change

for different presence factors

family members or friends and give less preference to calls from other people when the

calendar indicates personal time. Similarly, when the calendar indicates work hours,

ND gives more preference to calls from secretaries, colleagues and less preference for

calls from family members and friends. However, in both the cases, ND infers all the

factors of behavior, tolerance, closeness and presence to compute nuisance value of

incoming calls. In this chapter, we considered one single presence factor of personal

time (inferred using personal cellular calling patterns) for computing the nuisance

value. For testing this model, we collected data from real-life individuals as discussed

in Section 5.4.2.1. In Section 5.4.2.2, we present a model for inferring social closeness

of all the callers based on their behavior (frequency of calls to and from the callee)

and callee’s tolerance (talk-time with the caller). The collected data from real life
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individuals helped us validate the relation between the behavior, tolerance and close-

ness shown in Figure 5.2. In Section 5.4.3, we present a nuisance computation model

that takes into account the inferred social closeness and other behavioral patterns

between the caller and the callee.

5.4.2.1. Real-life data sets. Every day calls on the cellular network include calls

from different sections of our social life. We receive calls from family members, friends,

supervisors, neighbors, and strangers. Every person exhibits a unique traffic pattern.

Calls to our home from neighbors and business associates may not be as frequent as

those from family members and friends. Similarly, we talk for longer periods to fam-

ily members and friends compared to neighbors and distant relatives. These traffic

patterns can be analyzed for inferring the closeness to the callee. This closeness rep-

resents the social closeness of the callee with the caller on the cellular communication

network.

To study closeness the people have with their callers, we collected the calling

patterns of 20 individuals at our university. The details of the survey are given in

Dantu et al [19]. We found it difficult to collect the data sets because many people

are unwilling to give their calling patterns due to privacy issues. Nevertheless, the

collected datasets include people with different types of calling patterns and call dis-

tributions.

As part of the survey, each individual downloaded two months of telephone

call records from his online accounts on the cellular service provider’s website. Each

call record in the dataset had the 5-tuple information as shown below:

Call record: (date, start time, type, caller id, talk-time) where

date: date of communication

start time: the start time of the communication

type: type of call i.e., Incoming” or Outgoing”

caller id : the caller identifier

talk-time: amount of time spend by caller and the individual during the call
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We then used the collected data for deriving the traffic profiles for each caller

who called the individuals. To derive the profile, we inferred the frequency (number

of calls in unit time interval) and talk-time (total time of communication during that

time interval). Figure 5.3 shows an example traffic profile (frequency and talk-time

patterns) for one individual communicating with his family member, friend and su-

pervisor. The patterns are plotted with a 1-day time interval for a total of 61 time

intervals (2 months).

Figure 5.3. Calling patterns for 61 days. The calling patterns repre-

sent the frequency and talk-time patterns between the callers and one

of the 20 individuals who participated in the survey.

Once we derived the traffic profiles of all the callers for each individual, we used

these profiles for inferring the closeness of the callers calling them. In this chapter, to

discuss the model for inferring social closeness, we present the calling patterns of three

individuals that belong to these three types of people who had varied connectivity

(call distribution) with their callers.

(1) Least-connected: These people have the least distributed calls from their

callers. The majority of their communication occurs with a small number of
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people from their closely connected social network members (family members

and friends). Their amount of communication with other people is highly

limited.

(2) Moderately-connected: These people have moderate call distribution with

others on the cellular network. They have reasonable distribution of calls

from socially closest members such as family members and friends and not

so minimal communication with neighbors and acquaintances.

(3) Highly-connected: These people are highly connected with different social

network members on the cellular network. Nearly all the calls to and from

these people are highly distributed across types of callers defined before in

this section. They have similar distribution of calls towards people such as

family members, friends, neighbors and business associates.

To infer the closeness of callers to each individual, we analyzed the incoming

and outgoing calling patterns separately. Analyzing incoming and outgoing calling

patterns helped us understand the closeness of callers exhibiting different behavioral

patterns.

5.4.2.2. Inferring social closeness from calling patterns. For inferring the social

closeness of the callers based on their calling patterns, we define the parameters such

as behavior and tolerance that form the basis for calculating the nuisance of the in-

coming call. These parameters of behavior and tolerance can be effectively described

using the frequency and talk time of calls between the caller and the callee. We can

reasonably assume that the higher the frequency of accepted calls from a particular

caller, the more likely that the caller is among the callee’s closely-connected peo-

ple. Similarly, lower the frequency of accepted calls from a particular caller, more

likely the caller is not among the callee’s closely-connected people. However, as we

noted earlier, it is also quite possible that some of our socially closest people have

least communication with us on the cellular network because they use other modes of

communication such as e-mail and face-to-face interactions. Therefore, to effectively
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categorize the people in our social network, we computed the expected behavior of a

caller based on the coefficient of variation in call frequency normalized by the max-

imum value (other normalization methods such as z-score have been considered but

results were not satisfactory). In addition, we computed the tolerance based on the

normalized talk-time spent during the communication. Irrespective of the frequency

of calls from callers, a change in call frequency of socially close members is lower

(and, therefore, high expected behavior) when compared to socially distant members.

Similarly, we normally have high tolerance to family and nearest friends. This can be

explained by examining the duration of calls from our telephone bills. We usually ex-

pend more talk time for calls with callers belonging to the socially closest and socially

near groups. Comparatively, we have lower talk-time (and therefore least tolerance)

for phone calls with callers belonging to Opt-in and Opt-out groups.

Closeness of least-connected individual :

Figure 5.4 represents frequency and talk-time patterns for a least connected individual

from 3 types of callers in his social network for a total time period of 61 days.

Figure 5.4. Calling patterns for a least-connected individual from

three types of callers. The individual has considerably more calls from

the socially closest member compared to others
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From Figure 5.4, the least-connected individual has more calls from a caller

belonging to the family and friends group compared to other callers such as neighbors,

and acquaintances. By analyzing the complete calling patterns, we inferred that

the majority of calls to the least connected individual are from a group of family

members and friends. We observed that the individual had relatively less number of

calls from other people. Using the above frequency and talk-time patterns separately

for incoming and outgoing calls, we computed the expected behavior and tolerance

values for every caller. The computed values are then used for positioning those callers

into different quadrants. Figure 5.5 describes the grouping of the callers for the least-

connected individual based on his incoming” calling patterns. In Figure 5.5, the space

position on the 2D plot is based on the computed values of expected behavior and

tolerance, and they are colored based on the individual’s feedback. From Figure 5.5, it

can be inferred that the least-connected individual has few callers with high expected

behavior and high tolerance. In addition, the above mechanism for grouping callers

into four quadrants can be used for quantizing the social closeness of all callers to

the least-connected individual based on incoming calling patterns. We quantitatively

define the closeness of the caller to be equal to the distance from the origin to the

caller’s position on the 2D plot.

Social Closeness(SC) = Distance from origin

(12) Therefore, SC =
√

Tolerance2 + Expected Behavior2

Similar to the grouping of callers based on incoming calls, we can group

the people receiving calls from the least-connected individual i.e., using the outgoing

calling patterns of the individual.

Figure 5.6 represents the classification of people receiving calls from the

least-connected individual. It can be observed that few people receive calls regularly
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Figure 5.5. Grouping of callers for the least-connected individual

based on his incoming calling patterns. The individual accepted calls

regularly from two callers. Calls to the individual from other people

are not regular

Figure 5.6. Grouping of callers for least connected individual based

on his outgoing calling patterns. The individual made calls regularly

to few people and calls to other people are not regular.

(high expected behavior) and maximum talk-time (high tolerance) from the least-

connected individual. Similar to the quantitative measurement for social closeness
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based on the incoming call patterns, Figure 5.6 allows us to estimate the social close-

ness of the people receiving calls from the least-connected individual.

The classification of people based on incoming and outgoing calling patterns

can be analyzed for establishing a final classification. This final classification repre-

sents the actual closeness in principle between the caller and the callee on the cellular

network. We use a simple preference-based selection (as shown in Figure 5.7) that

takes into account the nearest social closeness classification among the incoming and

outgoing classification mechanisms.

The selection process can be defined as follows:

Figure 5.7. Grouping of callers for least connected individual based

on his outgoing calling patterns. The individual made calls regularly

to few people and calls to other people are not regular.

Preference based selection: For all callers Ci for i=1..n to a given callee, if Ci ∈ Qs

based on incoming classification and Ci ∈ Qt based on outgoing classification for s,t

= 1.. 4 in Figure 5.7, then Ci ∈ Qmin(s,t) in the final classification.

We used the above selection mechanism for grouping of people communicating

with the least-connected individual. Figure 5.8 represents the final classification of

the callers into four different quadrants for the least-connected individual.

To this point we have focused on the classification of a least-connected in-

dividual. To demonstrate how this classification mechanism allows us to generate
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Figure 5.8. The classification of callers for the least-connected indi-

vidual based on his incoming and outgoing calling patterns.

effective classifications, we briefly present the final classification for a moderately-

connected and highly-connected individual.

Closeness of a moderately connected individual :

Figure 5.9(a) presents the frequency and talk-time plots for an individual who is

moderately-connected with his social network members. An analysis of the calling

patterns of this individual determined that he had moderate call distribution with

his family members, friends and other socially connected people like neighbors, ac-

quaintances and opt-in callers. However, this individual had relatively more number

of calls distributed across different groups compared to that of the least-connected

individual. We validate this call distribution across different groups by plotting the

expected behavior with tolerance and use the feedback given by the actual individual.

Figure 5.9(b) represents the grouping of the people making and/or receiving

calls to/from the moderately-connected individual. Note that the maximum distri-

bution of calls and talk time is from his family members and this individual has the

least tolerance for Opt-out callers (like telemarketers). Unlike the least-connected

individual, it can be observed that the moderately-connected individual had more
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Figure 5.9. The classification of people communicating with the

moderately-connected individual based on his incoming and outgoing

calling patterns.

people distributed across the four quadrants.

Closeness of a highly connected individual :

Figure 5.10(a) represents the frequency and talk-time plots of a highly-connected

individual for three of his callers belonging to different groups. It can be observed

that the frequency of calling from a caller belonging to the group of neighbors and

acquaintances is comparable to the frequency of calling from a family member. Fig-

ure 5.10(b) represents the final classification of the people making and/or receiving
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calls to/from the highly-connected individual. Clearly, this individual is socially well-

connected on the cellular network with considerable number of people with similar

calling distribution across four quadrants.

Figure 5.10. The final classification of callers for the highly con-

nected individual based on his incoming and outgoing calling patterns.

We validated the inferred social closeness of all the people using the feedback from

the individuals.

Validation of results : We interviewed the individuals about their social association

with the people they communicate on the cellular network. During the interview

process, they identified the family members, friends, neighbors, acquaintances, and

business associates. Here, we present the comparison of our inferred social closeness

and perceived closeness (based on the feedback) of the three individuals described in

Section 5.4.2.2. Table 5.1 compares results from our analysis with their feedback. For
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example, our analysis for the highly-connected individual resulted in a classification

of 12 socially closest members, 15 socially near members, 31 socially distant members,

and 7 socially farthest members. But, the highly-connected individual responded with

a feedback that he talked to 12 socially closest members, 13 socially near members,

32 Opt-in members, and 8 Opt-out members.

We noticed some errors in our analysis, but we attribute these errors to two factors:

Table 5.1. Validating computed closeness with perceived closeness of

the individuals.

Least Connected Moderately Connected Highly Connected

Individual Individual Individual

Group Our Individual’s Our Individual’s Our Individual’s

Analysis Feedback Analysis Feedback Analysis Feedback%

Socially Close 2 3 8 7 12 13

Socially Near 2 1 19 17 15 13

Opt-ins 4 9 7 10 31 32

Opt-outs 44 39 24 24 7 8

Error(%) 9.6 5.0 3.0

(1) Use of other communication means: Personally close members might not

always be the socially closest on the cellular network. They may be commu-

nicating using other modes such as face-to-face or e-mail. We have restricted

our classification to the calling patterns observed on the cellular network. It

does not necessarily depict the actual personal closeness the individuals may

have with their callers.

(2) Unavailability of sufficient calling patterns: Our analysis is based on the

calling patterns for a period of 2 months. However, using calling patterns

for an extended period of time considerably increases the social network

inference.
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Accuracy in inferring Social Closeness is more with calling patterns for an ex-

tended period of time:

With the availability of calling patterns for an extended period of time, our model

for inferring social closeness based on frequency and talk-time patterns showed a

marked improvement in accuracy. To determine the improvement in accuracy, we

requested the least-connected individual to provide us with an additional month of

phone records (for a total period of 3 months). With this additional information,

we again analyzed the least-connected individual’s calling patterns. Then, we plot-

ted the final classification of all the people communicating with the least-connected

individual as shown in Figure 5.11.

Figure 5.11. Grouping of callers for the least-connected individual

after the end of 3-month period. The social closeness inferred using

three months of data showed a marked improvement compared to the

social closeness inferred using only 2 months of calling data.

To validate the results, we again interviewed the individual about the social

closeness of all the callers after the end of third month. Table 5.2 presents a compari-

son of the inferred social closeness with the perceived closeness of the least-connected

individual for a total time of 2 and 3 months respectively. It can be observed that
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the error in the classification based on the computed social closeness using calling

patterns has reduced from 9.6% to 3.8% when we have more available data. It can

also be observed that the number of people in the groups has changed from the end of

second month to the end of the third month. This is possible because callers exhibit

different frequency patterns. There might be callers who called infrequently during

the first two months but the number of their calls increased in the third month and

vice versa. We have validated the movement of callers among different groups with

the least-connected individual. At any instant, the snapshot of closeness based on fre-

quency and talk-time analysis represents the closeness callers have with the individual

on the communication network.

Table 5.2. The accuracy in inferring the social closeness is more with

available calling patterns for an extended period of time. The accu-

racy of inferring social closeness improved for least-connected individual

when we had calling patterns for extended time.

2 months of 3 months of

calling patterns calling patterns

Group Our Individual’s Our Individual’s

Analysis Feedback Analysis Feedback

Socially Close 2 3 3 3

Socially Near 2 1 1 1

Opt-in’s 4 9 20 21

Opt-out’s 44 39 28 27

Error(%) 9.6 3.8

Our model for inferring the social closeness of people making and/or receiv-

ing calls using the frequency (intensity) and talk-time (time spent in a relationship)

can be used for computing the nuisance value of incoming calls. As proposed in Gra-

novetter et al [30], a relationship’s strength depends on intensity, time spent in the

98



relationship, the intimacy and reciprocal services. In this chapter we define a nuisance

model that takes into account the frequency and talk-time patterns, social closeness,

periodicity, and reciprocity (reciprocal services shown by the callee for previous calls)

with the caller.

5.4.3. Nuisance Computation

Nuisance can be defined as an unwanted activity. In case of voice calls this refers

to receiving unwanted calls. As described in Section 5.4.1, nuisance depends on be-

havior, tolerance, presence, and closeness. These parameters of behavior, tolerance,

presence and closeness can be used to infer different behavioral parameters that af-

fect the nuisance. These behavioral parameters, defined next, are: (i) Unwantedness

(U), (ii) Wantedness (W), (iii) Presence (PRES), (iv) Periodicity (PER), and (v)

Reciprocity (REC). Therefore, nuisance can be defined as a function F of these pa-

rameters (η=F(U,W,PRES,PER,REC)).

a) The unwantedness or unwillingness (U) based on the ”incoming” call patterns.

Nuisance is directly proportional to the unwantedness shown by the callee in re-

ceiving voice calls; i.e., nuisance η ∝ U where U represents the unwantedness.

This unwantedness in receiving voice calls is inversely proportional to

(i) Expected Behavior based on ”incoming” calling patterns (EBI). This ex-

pected behavior is inferred using the frequency patterns as discussed in Sec-

tion 5.4.2.2.

(13) U ∝ 1

EBI

(ii) Tolerance based on ”incoming” calling patterns (TI). The tolerance level for

the caller can be inferred using incoming talk-time patterns of the callee as

discussed in Section 5.4.2.2.

(14) U ∝ 1

TI
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(iii) Social Closeness based on ”incoming” calling patterns (SCI). The higher the

social closeness, the lower is the unwantedness and vice versa.

(15) U ∝ 1

SCI

However, SCI =
√

T 2
I + EB2

I (see Section 5.4.2.2) where EBI and TI repre-

sent the expected behavior and tolerance on the ”incoming” calling patterns

respectively.

(16) U ∝ 1√
T 2

I + EB2
I

From Equations (13), (14), and (16), we have

U ∝ 1

TIEBI

√
T 2

I +EB2
I

(17) η ∝ 1

TIEBI

√
T 2

I + EB2
I

b) The wantedness (W) to communicate based on the ”outgoing” call patterns. The

higher the wantedness shown by the callee in communicating to the caller, the

lower is the nuisance and vice versa i.e., η ∝ −W . This wantedness in receiving

voice calls is directly proportional to

(i) Expected Behavior based on ”outgoing” calling patterns (EBO). The higher

the expected behavior, the higher is wantedness and vice versa.

(18) W ∝ EBO

(ii) Tolerance based on ”outgoing” calling patterns (TO). The higher the toler-

ance, the higher is the wantedness and vice versa.

(19) W ∝ TO

(iii) Social closeness based on ”outgoing” call patterns (SCO). The higher the

social closeness on the outgoing calling patterns, the higher is the wantedness

and lower the nuisance and vice versa. Therefore W ∝ SCO

Similar to the equation deduction shown in step 1, SCO =
√

T 2
O + EB2

O
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where EBO and TO represent the expected behavior and tolerance on the

”outgoing” calling patterns respectively.

(20) Therefore W ∝
√

T 2
O + EB2

O

From Equations (18), (19), and (20), we have

W ∝ TOEBO

√
T 2

O + EB2
O

(21) η ∝ −TOEBO

√
T 2

O + EB2
O

c) Presence (PRES): Presence depends on the callee’s immediate context. One aspect

of presence (mood information) can be extracted directly from the calling patterns.

This mood information can be inferred by analyzing the calling patterns to see the

number of calls accepted by the callee during a given time period. Nuisance is

inversely proportional to elapsed time since the last call i.e., the smaller the time

since last call, the higher is the nuisance and vice versa. The nuisance in this case

is a function of both the factors of time since the last call from the actual caller

(τ1) and the time since the last call from any caller (τ2). Every day, we base our

decision to answer a call on the above two time factors.

(22) PRES1 ∝ 1

τ1
and PRES2 ∝ 1

τ2

d) Periodicity of the caller(PER): Periodicity is the regularity in which the callee

has accepted calls from a caller. We can derive the periodicity information from

the calling patterns by analyzing the accepted calls by the callee in a given time

interval (such as 15 minutes, 1 hour or 1 day). By inferring the periodicity during

the time interval of the present call, the nuisance of the call is updated. Nuisance

decreases with increasing periodicity. The higher the periodicity, the lower is the

nuisance and vice versa.

(23) PER ∝ P (tP )

where tP is the time interval for which the periodicity is sought.
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e) Reciprocity shown by the callee to the calls from the caller(REC: Reciprocity

signifies the callees eagerness in responding to the previous calls initiated by that

caller. Nuisance decreases with increasing reciprocity. The higher the reciprocity,

the lower is the nuisance and vice versa. This reciprocity information can be

deduced from the average or the most probable (median) response time to a call

from the caller in the past. Reciprocity is inversely proportional to the response

time i.e., the longer the time for response from the callee to the caller, the lower

is the reciprocity and vice versa.

(24) REC ∝ 1

λ(tR)

where λ is the average or median response time by the callee to a call from the

caller in the time window tR.

From Equations (17), (21), (22), (23), and (24) we can infer the final nuisance

equation to be

η = WI
1

TIEBI

√
T 2

I +EB2
I

−WOTOEBO

√
T 2

O + EB2
O +WP,1

1
τ1

+WP,2
1
τ2
−WPEP (tP )−

WR
1

λ(tR)

where WI , WO, WP,1, WP,2, WPE , and WR are the weight constants for Unwantedness,

Wantedness, Presence based on last call from the caller, Presence based on last call

from any caller, Periodicity and Reciprocity respectively. This equation allows us to

plot the nuisance value over a specified time period. To present the accuracy of the

nuisance computation model, we chose the least-connected individual (discussed in

Section 5.4.2.2) to be a representative of the all the individuals. Figure 5.12 represents

the nuisance value for one caller in each of the quadrants Q1, Q2 and Q3 for the least-

connected individual. The nuisance is plotted for a total period of 61 days based on

frequency and talk-time patterns.

It can be observed from Figure 5.12 that the nuisance value for a call

from a closely-connected caller is lower than the nuisance posed by a caller who is
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Figure 5.12. Computed nuisance for three different types of callers

for the least connected individual during the two month period.

relatively distant. In addition to the nuisance value for three callers belonging to

three different quadrants, we present nuisance plots for three socially close callers

of the least-connected individual as shown in Figure 5.13. The plots represent the

nuisance for a period of 61 days (2 months).

Figure 5.13. Nuisance for calls from three socially close callers to

the least-connected individual.
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We used the above model for inferring the nuisance of calls to all the individ-

uals who gave us the data. To validate the nuisance plots, we showed the frequency

and talk-time patterns from three of their socially close callers to the individuals

and asked them to rate their perceived nuisance on a scale of Low, Medium Low,

Medium, Medium High, and High. We also gave them an option to rate the nuisance

to be ”Not Sure.”. The individuals were asked to rate the nuisance for an interval

period each of 1 week. Based on the above directions, the individuals rated the nui-

sance values on the above scale over a period of 2 months (about 9 weeks). Here we

present the validation of our computed nuisance for three individuals (least-connected,

moderately-connected, and highly-connected individuals discussed in Section 5.4.2.2)

based on their feedback in Table 5.3.

Table 5.3. Validating computed nuisance with perceived nuisance of

individuals. For a period of 9 weeks, three individuals (least-connected,

moderately-connected and highly connected) rated their nuisance for

three of their socially closest callers. ”Hit” represents a match of our

computed nuisance with their perceived nuisance and a ”Fail” repre-

sents a mismatch between our computed nuisance and their perceived

nuisance

Least Connected Moderately Connected Highly Connected

Individual Individual Individual

Caller Hit Fail Unsure Hit Fail Unsure Hit Fail Unsure

1 7 1 1 8 1 10 8 1 10

2 7 2 0 9 0 0 8 1 10

3 8 0 1 8 1 0 9 0 0

Error(%) 11.1 7.4 7.4

We have examined the feedback from all the individuals about their per-

ceived nuisance for their callers. Based on their feedback, we observed the minimum
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and maximum accuracy of our nuisance model to be at 88% and 95% respectively.

We have shown the application of the nuisance model with real-life voice call

data on the cellular network. We believe that the real advantage of the nuisance

model can be taken for reducing unwanted voice/video calls on the open Internet.

5.4.4. Applicability to Voice over IP

Using a VoIP service (lot cheaper than landline and wireless cellular services), a

person can call any other person having any of the three voice services (landline, cel-

lular, VoIP). This advantage of cheaper call rates and flexibility in use brings forward

lot more issues and challenges that have to be addressed before complete deployment

of VoIP systems. One major issue that hinders a successful deployment of VoIP is

VoIP spam commonly referred to as SPIT (Spam over Internet Telephony). Inter-

net being open and free, it is easier to create and transmit SPIT traffic towards the

VoIP infrastructure. An analysis [71] indicates that IP-based SPIT is roughly three

orders of magnitude cheaper to send than traditional circuit-based telemarketer calls.

Therefore, computing nuisance for voice calls using VoIP is far more necessary com-

pared to other voice communication medium such as cellular, landline. For realizing

this objective, the calculated spam level of the call (discussed in Chapter 4) can be

integrated with the nuisance computation model described in this chapter. As shown

in Figure 5.14, VSD analyzes the incoming call for its trustworthiness based on the

callee’s preferences. While the untrusted calls are dropped, the trusted calls are an-

alyzed by the Nuisance Detector to infer the nuisance. In addition, the initial three

spam calls required to learn the behavior of a spammer by VSD could be directly

filtered by the Nuisance Detector thereby reducing the false negatives. In brief, the

social authenticity of the caller is established by the trust and reputation relation-

ships as specified in Chapter 4, and proactive behavior prediction (using closeness and

nuisance computations) is achieved based on the previous history of calling patterns

with the caller using the Nuisance Detector. This approach would provide a complete

solution for deciding whether to allow a call to be forwarded to the callee. By using
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factors such as previous behavior, tolerance, and presence, this pro-active approach

results in the phone learning over a period of time the wantedness of calls from a

caller to a callee. In essence, the solution would enable the phone to ring only when

the callee would have liked to receive the call.

Figure 5.14. A VoIP specific solution for integrating Nuisance De-

tector with a VoIP spam filter for filtering unwanted calls in addition

to proactively inferring the imminent need to forward the call to the

callee based on past mutual behavior and present context of the callee

Integrating VSD and ND into a single filtering process would limit more

number of unwanted calls reaching the callee than VSD or ND could attain indi-

vidually. The VSD and ND can compute the probability of the call to be spam

and unwanted respectively. The computed probabilities are compared to predeter-

mined threshold values to make a decision whether to forward the call to the callee

or quarantine it. Frequently it is observed that the filter administrators configure

these threshold values who have minimum knowledge about the callees’ preferences.

The configured thresholds play an important role in the decision making process, and

have to be dynamically updated for fast and adaptive learning of caller and callee

behavior.
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CHAPTER 6

AUTOMATIC CALIBRATION USING RECEIVER OPERATING

CHARACTERISTICS CURVES

6.1. Introduction

With increasing number of applications providing value added services, system

administrators find it increasingly difficult to maintain a network infrastructure’s

inherent security. In response, developers are defining security defenses to protect

applications and the infrastructure providing those application services. One such

line of defense is an application-level filter. Application filters are used for quarantin-

ing unwanted traffic or requests in types of traffic such as HTTP (Hypertext Transfer

Protocol), SMTP (Simple Mail Transfer protocol), and SIP (Session Initiation Pro-

tocol) traffic. Depending on the type of application, the respective filter needs to

employ different filtering techniques for quarantining unwanted traffic. These filter-

ing techniques can be broadly classified into two types.

• Signature-based filtering: These filtering mechanisms implement static check-

ing of incoming traffic for patterns that do not change over a specific time

period. Therefore, the filter just needs a static collection of signatures it

can use for detecting anomalies. For example, an HTTP application filter

can use a compilation of virus signatures to check for traces of virus in the

incoming HTTP traffic. The challenge in such filtering techniques is that the

c©[2007] IEEE. Reprinted with permission from - P. Kolan, R. Vaithilingam, R. Dantu, ”Auto-

matic Calibration using Receiver Operating Characteristics Curves”, In Proceedings of 2nd Interna-

tional Conference on Communication Systems Software and Middleware (COMSWARE) Jan 2007,

Page(s): 1-8.
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filter requires constant updating with the signatures of new viruses. How-

ever, with the number of viruses or worms increasing every day, these filtering

techniques are inadequate.

• Dynamic Behavior-based filtering: With these filtering mechanisms, the fil-

ter observes abnormal changes in behavior over a period of time and makes

a decision to forward or quarantine the request. This mechanism is par-

ticularly useful when behavioral changes exist in one or more entities that

participate in the traffic. For example, an e-mail filter checks for the spam

nature associated with an incoming e-mail message by analyzing the behav-

ior of entities such as the e-mail sender and the e-mail forwarding SMTP

proxies. When the cumulative spam behavior of all the participating entities

exceeds a predetermined threshold, the filter blocks the e-mail, sending it to

the intended recipient’s junk folder.

Many of the existent application level filters use these dynamic behavior filtering

mechanisms. The filter administrators configure the tolerance limits that are gener-

ally referred to as threshold values. The filter uses these thresholds to infer the end

user’s tolerance in accepting the unwanted behavior exhibited by different partici-

pating entities. Many a times, incompetent filter administrators configure the filter

with inappropriate threshold values because of a multitude of reasons. These rea-

sons range from the administrators being unaware of optimum threshold values to

constantly changing end user preferences. This results in a decrease in the accuracy

of the filter. However, most filter administrators conduct due diligence for inferring

the optimum threshold value using various techniques. One such technique widely

used by the filter administrators to analyze filter accuracy and determine optimum

threshold is ROC (Receiver Operating Characteristics).

Traditionally, ROC has been used to analyze filter performance. Filter accu-

racy is determined by comparing false positives (messages mistakenly classified as

unwanted) with true positives (genuinely unwanted messages). ROC uses both the
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filter classification and the true Classification feedback provided by the end user (or

the user personalized database) to determine which classifications are false positives.

ROC then analyzes these false positives and true positives to calculate an optimum

threshold value that the filter administrator can use to configure the filter. The op-

timum threshold may be used for some time (usually until the accuracy decreases)

before an administrator repeats the manual threshold update. During this interval,

when the threshold is fixed, it is highly possible that many entities’ behavior changes

from wanted to unwanted and vice versa. Therefore, even though the filter admin-

istrators configure the threshold value at regular intervals, problems with mistaken

classification remain because of dynamic behavior changes.

We believe that because mistaken classification decreases a filter’s accuracy

significantly, we require a filter that can learn and adjust quickly to the participat-

ing entities’ changing behaviors. To achieve this objective, we propose a model for

automatic calibration, using ROC and end-user feedback to converge quickly on the

optimum threshold.

6.2. Background

A number of researchers have studied Receiver Operating Characteristics curves

[23][94][5][31]. Fawcett [23] details the basic understanding of ROC curves. In addi-

tion, Fawcett lists performance measuring algorithms that can be used for determining

a classifier’s accuracy by plotting the ROC curves. The classifier analysis provided

by the proposed algorithms can also be used to configure application parameters for

optimum performance. Wright[94] justifies use of ROC in finding a filter’s optimal

threshold in SDT (Signal Detection Theory). This paper suggests that ROC offers a

principle graphical device for analyzing filter accuracy. The paper further supports

the assertion with a brief discussion of ROC curves and how the optimum decision

criterion can be reached. Bradley[5] investigates the area beneath the ROC curves

as a performance measure for machine-learning algorithms using real-world medical

diagnostic data. The paper compares the results of this study with that of other
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conventional methods to show the effectiveness of ROC analysis. Hanley [31] ex-

plores the possible relation between the areas under the ROC curve with application

performance in the field of medical diagnosis. The paper specifies that the area un-

der the ROC curves can be an effective mechanism for measuring system accuracy.

The paper supports this by comparing the analysis using area under ROC with a

well-established non-parametric Wilcoxon statistic [[84], [92]]. Each of these methods

provides a solution for non real-time evaluation of system performance using the ROC

curves. We believe that the non real-time solution for analyzing system accuracy can

be automated for real-time feedback. This real-time feedback can then be used to set

filter parameters so that the filter learns quickly and adjusts itself accordingly.

6.3. Receiver Operating Characteristics Curves

ROC curves use true classification based on a real end user’s feedback to estimate

false and true positives during classification. The inferred accuracy helps an adminis-

trator to set a suitable threshold value that minimizes false alarms. Figure 6.1 shows

a basic example of a non real-time ROC analysis process, highlighting the sequential

transactions that take place when computing the optimum threshold value using the

non real-time ROC.

(1) The application filter receives a request for service. The filter processes the

request using available knowledge based on previous learning by computing

a score value (S) for determining the request to be unwanted. Based on

the score value and previously configured threshold value, the filter decides

whether to acknowledge the request or not.

(2) The filter then informs the end user about the classification decision (for an

e-mail application, the spam filter forwards genuine messages to the Inbox

and spam messages to the Junk folder).

(3) The application filter logs the score value in a predefined database.
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Figure 6.1. Non real-time analysis using ROC curves for an applica-

tion classifier. Analyzing the incoming request, the classifier computes

the score (S) for the request. Using a pre-configured threshold for the

score (S) to signal if the message is unwanted, the filter decides whether

to forward or reject the request and makes the end user aware of the

decision. The end user gives feedback (True Classification (TC )) about

the request which the filter logs in addition to its classification. When

the filter performance falls below the desired accuracy, the administra-

tor runs the threshold update algorithm for optimum threshold (opt(T))

to increase the filter’s the accuracy.

(4) The end user then gives feedback (either explicitly by letting the filter knows

about the true classification or implicitly when the user is satisfied with the

filter classification). The application logs the true classification information

with the score value generated by the filter.

(5) The filter administrator analyzes the filter’s accuracy at regular intervals.

(6) If satisfied with the accuracy, the administrator does not change the filter

threshold. However, when the administrator finds an unacceptable decrease

in accuracy when using the preconfigured threshold, the administrator in-

vokes ROC to compute a new optimum threshold.

(7) The administrator manually feeds the optimum threshold to the filter.
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This series of transactions occurs every time the administrator updates the filter

with a new optimum threshold. This analysis of filter accuracy using ROC does

reduce the number of false alarms. However, the reduction is not considerable when

participating entities change their behavior frequently. Also, manually updating the

thresholds using ROC proves to be cumbersome, particularly when it has to be done

frequently. Therefore, we require an automated calibration mechanism that adjusts

to participating entities’ changing behavior in real time.

6.3.1. Need for Automatic Calibration

Different filters use different criterion to optimize. This criterion depends on the

underlying application’s sensitivity, the end-user’s preferences, such as mood, and on

presence (situational, temporal, and spatial). For example, a non real-time e-mail

filter analyzes the incoming e-mail traffic for spam messages and attempts to mini-

mize false alarms. Even if the filter fails to correctly classify an e-mail message, the

nuisance created because of misclassification is negligible. However, if the underlying

application is a voice-call filter, the analysis for unwanted calls must be conducted

in real time. Unlike with e-mail messages, nuisance because of improperly classi-

fied voice calls is high. Consider, for example, the nuisance felt by an executive in

a meeting (false negative) who receives a junk voice call, or a husband waiting to

hear from his hospitalized wife who never receives the call (false positive) because

the filter has quarantined it. Therefore, in these cases, we need an adaptive voice-

application filter that adjusts automatically to the caller’s changing behavior and end

user’s preferences. Although some adaptive filters do analyze the service-requesting

user’s behavior, we believe that addition of automatic calibration of a filter’s thresh-

old can be used to integrate the end user’s threshold preferences, resulting in a more

accurate filter.

6.3.2. Automatic Threshold Calibration Complements an Adaptive Filter

Many adaptive filters learn and update themselves based on the behavior of

service-requesting entities. But, none advocate automatic learning and update of
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thresholds based on end user’s preferences. These adaptive filters are usually config-

ured with a static threshold for identifying unwanted behavior. This static threshold

is updated only when classification accuracy decreases. However, using an automatic-

calibration mechanism, we can adaptively calibrate thresholds to accurately reflect

the end users’ tolerance, presence, and other preferences. Therefore, the automatic

calibration process can be used as a complementary solution to make a filter more

adaptive. This adaptive learning of the end user’s preferences can be coupled with

the learning about the service-requesting entities (as normal adaptive filters do) to

result in a complete solution for limiting unwanted requests.

6.4. Automatic Calibration using RoC

An automatic-calibration mechanism that infers the optimum threshold value us-

ing ROC analysis after every request is shown in Figure 6.2. The figure represents

the sequential transactions that take place when the filter uses adaptive calibration

mechanism.

(1) The application filter receives a request for service. Using available knowl-

edge, the filter computes a score value S for the request to be unwanted.

Based on a predetermined threshold value and computed score, the filter

makes a decision whether to acknowledge the request or not.

(2) The filter then informs the end user about the classification decision.

(3) The application filter logs the score value in a predefined database.

(4) The end user gives feedback about the validity of the request. The application

logs the true classification information with the score value generated by the

filter.

(5) Using the end user’ feedback, the application’s integrated ROC module re-

computes the optimum threshold. This re-computation results in a slight
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Figure 6.2. Automated calibration of filter threshold using real-time

analysis of filter performance using ROC curves. The inbuilt ROC

module in the application re-computes the optimum threshold value

after the completion of every request, based on end user’s feedback.

The computed optimum threshold is used as the filter threshold for the

next incoming request. This eliminates the manual updated process by

the administrators as the filter adjusts quickly and optimizes its per-

formance.

threshold increase when a just completed request is classified as a false posi-

tive. Alternatively, the re-computation results in a slight threshold decrease

when the just completed request is classified as a false negative. Once com-

puted, the new threshold value is fed back to the filter. The application uses

the new threshold to categorize the next incoming request as either wanted or

unwanted. Unlike the manual update of the filter’s threshold, the automatic

calibration enables the filter to be updated with the optimum threshold for

every service request.

With considerable learning, the filter converges on an optimum threshold irrespec-

tive of the initially configured threshold, i.e., the filter accuracy is least dependent

on the initial threshold value. Thus, this real-time analysis of ROC after the end of

every request enables the filter for fast and adaptive learning during dynamic behav-

ior changes. We tested the automatic-calibration mechanism with a VoIP spam filter

(VSD discussed in Chapter 4)and describe our results in Section 6.5.
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6.5. VoIP Spam Filtering using Automatic Calibration

To demonstrate the applicability of automatic calibration in a real-time scenario,

we integrated the scenario it VSD. The interface diagram for this intgration is shown

in figure 6.3.

Figure 6.3. The interface diagram for integrating the automatic ROC

calibration mechanism into a SIP application (a VoIP spam filter) for

filtering voice calls.

6.5.1. Automatic Threshold Calibration is Not a Bottleneck for VoIP Spam Filter

Performance

The threshold-update process using the automatic-calibration mechanism is con-

ducted real-time using the end user’s feedback either during the call or after the call

is terminated. Therefore, there is nor setup delay during the call generation process.

6.5.2. VoIP Spam Filtering is Threshold Dependent

VSD computes the probability of the incoming call to be spam, and compares

the probability with a threshold value configured by the VSD administrator. The

configured threshold represents the VSD’s sensitivity. This threshold is to be appro-

priately configured when analyzing real-time voice calls. In context of dynamically
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changing callers’ behavior and the end user’s preferences, it becomes more necessary

to use dynamically changing thresholds for incorporating those behavioral changes.

For achieving this, we can integrate VSD with the automatic-calibration mechanism

to optimize the accuracy (i.e, number of false positives and false negatives). However,

we always make a tradeoff between the false positives and false negatives for a given

threshold.

6.5.3. Tradeoff between False Positives and False Negatives for a Given Threshold

All spam filters aim at minimizing false alarms during the classification process.

However, it is difficult to optimize the false positives and false negatives at the same

time. It is understood that there is always a tradeoff between false positives and false

negatives for a given threshold [[78],[95]]. Scott[78] explains the tradeoff between false

positives and false negatives and suggests that a proper choice of threshold depends

on which among the false positives or false negatives we optimize. Yih[95] presents

the above tradeoff for an e-mail spam filter and attempts to reduce false negatives,

keeping the false positives to minimum. This relation between the false positives,

false negatives, and threshold is particularly true with spam behavior associated with

a SPIT call. The computed spam score S for a SPIT call is compared to the preset

threshold value (TP ) to make a decision whether to allow or reject the call. For a

threshold (T > TP ), the call participants have an extra tolerance of (T − TP ) for the

call to be forwarded to the end user. This results in more false negatives as real spam

calls have extra tolerance to get filtered. Because of this extra tolerance, the filter

classifies fewer valid calls as spam i.e., fewer are false positives. This, in turn, results

in fewer spam calls being filtered. Similarly, for a threshold (T < TP ), i.e., for a lower

end user tolerance value, more calls are filtered. However, a majority of the filtered

calls constitute falsely classified valid calls (false positives). Therefore, the threshold

value that will be configured must be carefully chosen to either limit false positives

or false negatives.

Taking the above tradeoff into consideration, we studied the performance of VSD
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by integrating the calibration mechanism. For this, we present the performance of

the spam filter in three cases: false positives with T < opt(T ), false negatives with

T > opt(T ) and filtered calls with T > opt(T ) where opt(T ) represents the optimum

threshold. The other three cases of false negatives with T < opt(T ), filtered calls

T < opt(T ) and false positives with T > opt(T ) are trivial. The reason is as follows:

For a configured threshold of T < opt(T ), there would be least false negatives because

of lesser tolerance (lower threshold). For a configured threshold T < opt(T ), the

number of filtered calls are very high . However, lot of them would be false positives

as the threshold used is less than the optimum threshold. Similarly, for a configured

threshold of T > opt(T ), there would be least false positives as the tolerance is very

high. The call participants can get through the filter even with more spam behavior

resulting in less false positives.

Figure 6.4. Simulation model for testing improvement in the VSD’s

accuracy using the automatic calibration. Calls are generated among

the users in different domains and VSD domain. The VSD analyzes for

spam calls from the spam entities (some end users, hosts, and domains

that are initially configured to be spam).

For analyzing VSD’s performance using the automatic-calibration mecha-

nism, we constructed a simulation model for generating random voice calls. Figure 6.4

presents a simulation model that consists of call generating users, the call receiving
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users and the VoIP spam detector (VSD). As shown in Figure 6.4, the VoIP spam

Detector acts as a spam call filtering device for the users behind it (users inside the

VSD domain). Calls are generated randomly (using a random user-id and a random

IP address) among the users outside and inside the VSD domain. The call-generation

process strictly follows a Bernoulli distribution. Calls are generated at an average

rate of 8 calls per minute and all the experiments were run for a total of 2000 calls.

Upon receiving a call to a user inside the VSD domain, the VSD analyzes the

spam behavior associated with that call as described in Chapter 4. By comparing the

computed score to a predetermined threshold value, the VSD then decides to forward

the call to the user if the score is less than the given threshold or to the user’s voice

mail if the score is greater than the configured threshold. Users within the VSD

domain are equipped with spam recognition capabilities. When these users receive

the call forwarded by the VSD (either to the voice phone or voicemail), they give the

feedback about the validity of the call to the VSD. The VSD then updates the call

participants’ history based on this feedback. This history is later used for computing

the spam score for later calls from those call participants.

Using the described simulation setup, we conducted experiments with varying thresh-

olds and examined the filter performance (false positives, false negatives, filter calls,

etc.) with and without automatic calibration. We conducted a non real-time analysis

using ROC after 2000 calls (i.e. without using the automatic calibration mecha-

nism) and observed that the filter delivered optimum performance at a threshold

of 0.03 (opt(T)). Therefore, we present the benefit of using the automatic calibra-

tion mechanism in improving the accuracy of the filter for two different thresholds of

0.01(< opt(T )) and 0.05(> opt(T )).

Figure 6.5 presents the improvement in false positives when the VSD used

the automatic calibration of filter threshold. In this experiment, we used an initial

threshold of T = 0.01. It can be clearly observed that the total number of false posi-

tives with automatic calibration resulted in far fewer false positives as the VSD quickly
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Figure 6.5. Improvement in false positives due to automatic calibra-

tion for a threshold T = 0.01 (< opt(T )). Because of a static threshold

lower than the optimum threshold, the filter classified many valid calls

as spam, i.e. false positives. However, using the automatic calibration,

the filter quickly converged to optimum threshold and showed near op-

timal performance.

converged to the optimum threshold value of 0.03. Without the automatic calibration

of threshold, the false positives were high because of lower (static) threshold than the

optimum value. In this case, we noticed that every call from call participants having

a low spam score was filtered. This is possible because legitimate call participants

inherit spam behavior by appearing with spam call participants. Therefore, when the

cumulative spam score of a call from these call participants exceeds the threshold T,

the call is filtered. However, the end user reports the call as non-spam in feedback to

the VSD which then categorizes it as false positive. While we observed a considerable

increase in the filter’s performance in minimizing false positives for a lower threshold

T < opt(T ), we also observed an increase in the filter’s performance in minimizing

false negatives for a threshold T > opt(T ) as shown in Figure 6.6. From Figure 6.6,
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it can be observed that the number of false negatives because of automatic calibra-

tion is lower when compared to the number of false negatives when VSD did not use

automatic calibration.

Figure 6.6. Improvement in false negatives due to automatic calibra-

tion for an initial threshold T = 0.05(> opt(T ))

When VSD is integrated with the automatic-calibration mechanism, the

filter threshold automatically decreases due to the recomputation of the optimum

threshold. As a result, the spam filter forwards fewer spam calls, i.e., fewer are false

negatives. As mentioned previously, the number of false positives and false negatives

is always a tradeoff with a given threshold value. When using automatic calibration,

the filter showed better performance in false positives for an initial threshold (T =

0.01 < opt(T ) as shown in Figure 6.5) and in false negatives for an initial threshold

(T = 0.05 > opt(T ) as shown in Figure 6.6). However, in both the cases, performance

increased with regard to the total number of false alarms when we used the automatic-

calibration mechanism as shown in Figure 6.7.

From Figure 6.7, we show that the number of false alarms when VSD uses

automatic-calibration mechanism is lower than the number of false alarms without au-

tomatic calibration. We ran these experiments with thresholds lower than and higher
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Figure 6.7. Fewer false alarms occur when the filter uses automatic calibration.

than the optimum threshold. In both cases, the number of false alarms calculated

by the VSD is lower when VSD uses the automatic calibration. Irrespective of its

initially configured threshold, the VSD quickly converges to the optimum threshold

and, therefore, the number of false alarms is less. In addition, VSD showed consid-

erable improvement in filtering spam calls for an initial threshold greater than the

optimum threshold value as shown in Figure 6.8.

Figure 6.8 presents the improvement in filtered spam calls by automatically

calibrating the threshold for an initial threshold of T = 0.05 which is more than the

optimum threshold of 0.03. Without automatic calibration, VSD uses a statically con-

figured threshold to filter calls. It is lot harder to filter calls with a higher threshold.

However, with a spam filter integrated with an automatic-calibration mechanism, for

every incoming call to the spam filter, the filter is updated with the optimum thresh-

old value. In this case, the recalculated optimum threshold results in a decrease in

the threshold value; therefore, more calls are filtered. Using the automatic-calibration
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Figure 6.8. The improvement in filtered spam calls due to automatic

calibration for a threshold T = 0.05(> opt(T )).

mechanism, the filter showed an improvement as high as 100 % in filtering actual spam

calls. This is due the filter converging with the optimum threshold from the initially

configured higher threshold value.

The plots presented so far (F igure 6.5 − F igure 6.8) reflect improvement in

VSD’s performance when we implemented automatic calibration. In addition au-

tomatic calibration showed greater accuracy in classification compared to a manual

threshold-update procedure. This relation between the false positives and the update

period can be inferred from Figure 6.9. The figure represents the plot for false pos-

itives when the automatic-calibration mechanism is integrated into the VoIP spam

filter and run at specific regular intervals (similar to a manual threshold update by fil-

ter administrators when they find a decrease in the filter’s accuracy ). The spam filter

showed increase in accuracy when it is quickly updated with the optimum threshold

value.

The filter showed the best performance when we integrated the automatic-

calibration mechanism as integration involves real-time threshold value updates. Ta-

ble 6.1 shows the spam filter’s accuracy with the interval update process.
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Figure 6.9. A lower time period for the update process results in a

lower number of false positives. The automatic-calibration mechanism

shows the highest performance as it involves real-time update for every

call.

Table 6.1. Accuracy due to updating the filter with optimum thresh-

old values at differing intervals.

Threshold Update Accuracy % Std. Error

Static 37.2 0.05

Automatically calibrated using ROC 97.2 0.04

Manual update every 200 calls 95.8 0.005

Manual Update every 400 calls 94.4 0.06

Manual Update every 500 calls 94.1 0.06

Manual Update every 1000 calls 92 0.08

Actual precision of classification for updating optimum threshold values at

regular intervals is shown in Figure 6.10. From Figure 6.9, Table 6.1 and Fig. 6.10,

it can be observed that the VSD’s performance with false positives is better when we

calibrate the threshold automatically after every call. The filter showed the highest

precision when it used the automatic calibration. The classification precision is also
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greater for shorter intervals when compared to longer intervals. In addition, frequently

recompiling and updating the optimum threshold at short intervals when compared

to longer intervals results in faster convergence.
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Figure 6.10. The classification precision due to updating the filter

with optimum threshold values at differing intervals.

6.5.4. Automatic Threshold Calibration for Multiple Thresholds

Many adaptive filters use multiple thresholds for inferring unwanted behavior of

a service-requesting entity. Updating multiple thresholds manually and frequently

for optimizing filter performance is a time intensive, and sometimes, very frustrating

process. The time required to manually update thresholds for optimum performance

would be a polynomial increase in the order of the number of thresholds. We believe

that the automatic-calibration mechanism can be effectively used with filters having

multiple thresholds. To investigate this, we experimented with a variant of VSD

where it independently assesses the spam behavior associated with individual call
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participants. For simplicity, we configured the VSD to analyze 3 call participants:

the calling user, the call host, and the call-originating domain. We used 3 initial

threshold values: T1, T2 and T3. For reference, a nonreal-time analysis resulted in

optimum threshold values of 0.25(opt(T1)-user), 0.5(opt(T2)-host) and 0.5(opt(T3)-

domain). Similar to the analysis described in earlier experiments, the total number

of false positives, false negatives, and filtered spam calls is plotted for the filter us-

ing multiple thresholds. Figure 6.11 represents the improvement in false positives,

false negatives, and filtered spam calls when the 3 threshold values are independently

and automatically calibrated using the automatic-calibration mechanism. With a

multiple-threshold setting, the filter showed better performance by automatic cali-

brating of the multiple threshold values after the end of every call the spam filter

processed than it achieved without automatic calibration. As the multiple thresholds

are independently calibrated after the end of every call, the maximum increase in

time required for updating the threshold would be a linear increase in the order of

number of thresholds.

The VSD and ND can benefit by using the automatic calibration mechanism

for dynamically updating their threshold values. This dynamic update of thresholds

will enable the VSD and ND to deliver optimum performance. In addition to us-

ing the automatic calibration mechanism for learning the communication behavior of

callers and callees, the VSD and ND can benefit from the set of social communica-

tion relations between the callers and the callees. These relations define the possible

communication patterns, and therefore can provide further evidence for limiting un-

wanted calls. For defining these communication patterns, we discuss a formalism of

communication behavior between callers and callees in next chapter.
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Figure 6.11. The spam filter’s performance improvement configured

with 3 threshold values for inferring the spam behavior of the calling

user, call host and call-originating domain separately.
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CHAPTER 7

CALL ALGEBRA

7.1. Introduction

The people individuals communicate with on communication networks such as

PSTN and on cellular networks range from close or well-known associates such as

family members to strangers who may even be spammers and telemarketers. Each

individual callee employs differing types of connectivity and call distribution with

each type. Based on our investigation of recent research and our own work, we be-

lieve that a human-social dynamics exists in the ways humans make and receive calls

between individuals and groups. This dynamics depends mostly on the type of indi-

viduals communicating with each other. We believe that this human-social dynamics

can be used for solving multitude of problems related to identification of wanted calls

and solicited callers.

In this chapter, we discuss this dynamics in three sections. In Section 7.2,

we enumerate normal calling patterns that exist between a specific callee and those

that callee calls on the communication network. Here, we discuss the calling patterns

between the callees and all the individuals they communicate on the voice commu-

nication network. These calling patterns dictate the callee’s normal communication

behavior in a day-to-day life. We use these calling patterns to establish algebraic

rules that define the communication behavior between the individuals. Based on the

communication behavior between the callees and the individuals they communicate,

we can construct matrices based on fundamental calling patterns such as frequency

and talk-time. Using the constructed matrices, we derive operations in Section 7.3

c©[2008] IEEE. Reprinted with permission from - P. Kolan, R. Dantu, ”Call Algebra”, To appear

in Proceedings of Fifth Consumer Communications and Networking Conference (CCNC) Jan 2008.
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to define meaningful calling constructs that can be used to judge the legitimacy of

the communicating parties. Finally, in Section 7.4, we discuss how these communi-

cation patterns and operations can be grouped for solutions to some of the existing

IP telephony problems.

7.2. Communication Patterns

A social and human dynamics exists in the way callers and callees exchange real-

time voice calls. This dynamics, of course, differs depending on the type of person we

are communicating with at any specific time on the voice network. For example, we

spend considerable time communicating with family members, friends, and distant

relatives. Alternatively, we have an insignificant amount of communication with

strangers such as telemarketers and fund-raisers. However, within this broad range of

activity, we can draw some general conclusions about the types of calls that occur. In

this section, we present a formalism that represents the social and human dynamics

that occur when people make and receive calls from individuals who communicate

with them from time to time. To present this formalism, we first define a basic call

operation.

Definition 1 : A call is a real-time operation between communicating parties.

A simple call (C ) between two communicating parties A and B can be represented

as an operation (Φ) between two parties as shown below

C = Φ(A, B)

Definition 2 : A conference call is a multimedia communication between two or more

communicating parties. A conference call can be represented as

ConferenceCall = Φ(A, B, ...K)

where A,B,...K are the communicating parties involved in the call.

Next, we present how the calls are generated and handled between the communicating
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parties.

Definition 3 : A unicast call is a call which involves only two communicating

parties.

In this call, one party generates the call. The second party receives it. This call can

be shown as follows

UnicastCall = Φ(A, B) = A → B

Definition 4 : A broadcast call is call from a caller to all the individuals within a

callee’s community.

Such calls frequently are telemarketer or spam calls. However, we note that a broad-

cast call is equivalent to the caller generating a unicast all to each community member.

For ”M” number of callee’s community members, a broadcast call from caller P can

be represented as follows

P → A

P → B

.

.

P → M

i.e. (P → A) ∪ (P → B) ∪ ..... ∪ (P → M) where A,B,..M are all of the callee’s

community members.

Definition 5 : A multicast call is a call from a caller to a multicast group who are

members of community.

When a caller makes a conference call to subscribed individuals in the callee’s com-

munity, then it is termed as a multicast call. Similarly to a broadcast call, a multicast

may be the equivalent to the caller making a unicast call to each individual in the

multicast group. This multicast call can be represented as
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P → A

P → B

.

.

P → G

i.e. (P → A)∪ (P → B)∪ .....∪ (P → G) where A,B,..G are a set of callee’s commu-

nity members.

Although call distributions (Def. 3 - 5) signify the type of calls from the callers

to one or more of the callee’s community members, other calling patterns exist that

represent how a callee handles a call from a caller.

Definition 6 : A forwarded call is a call from a caller forwarded by a callee to

another callee.

Forwarded calls are frequently observed when the caller fulfills his communication

by communicating with a callee who was referred by another callee. For example, a

company employs a receptionist (A) who receives all incoming calls. The receptionist,

however, forwards each call to its intended callee (B) within the company. A simple

call forward (divided into two legs) can be represented as follows

Leg 1: P → A

Leg 2: A → B

Thus the communication between the communicating parties can be represented

as

Φ(P, A, B) = P → A → B

Definition 7 : A returned-call is a responding call by a callee to previous call from a

caller.
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Such returned calls frequently are in response to previous conversations/calls in voice

mail boxes. For example, a callee (A) was unable to receive a call from caller P. P

leaves a recorded message in A’s voice mail box. At a later time, caller A returns P’s

call. A simple returned-call can be shown as follows

Leg 1: P → A

Leg 2: A → P

This communication between the communicating parties can be represented as

Φ(P, A) = P → A → P

Definition 8 : A conference join is a service where in an individual can join in a con-

ference or the members already in the conference can join the individual.

Group communication is often preferred when multiple individuals exchange similar

information. Therefore, communicating parties organize conference calls and par-

ticipants join and leave the conference call based on their needs and interest. A

conference join can happen in two ways:

An individual joins an already progressing conference

P → (A, B, ...K)

A member of an ongoing conference invites an individual to join in the conference

(A, B, ...K) → P

We now have defined how the calls are created, distributed, and handled

between the communicating parties. Using this call-distribution and call-handling

formalism, we can derive algebraic rules that represent the possible communication

patterns between the callees and types of individuals they communicate on a voice

network.
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7.2.1. Algebraic Rules

Using the call definitions discussed before, we can derive algebraic rules that

represent possible communication patterns between callees and types of individuals

they communicate on the VoIP network. We discuss the communication patterns

based on the type of individuals the callee communicates on the voice network. As

we observed in Chapter 5, we can divide the individuals communicating with a callee

into four broad categories.

(1) Socially Close Members: These are the people with whom the callee main-

tains the highest socially connectivity. Most of the calls the callee receives

come from individuals within this category. The callee receives more calls

from them and spends more time talking to them e.g., family members,

friends, and colleagues

(2) Socially Near Members: People in this category are not as highly connected

as family members and friends, but when the callee connects to them, the

callee talks to them for considerably longer periods e.g., neighbors and distant

relatives.

(3) Opt-ins: These individuals have less connection with the callee’s social life.

The callee acknowledges the calls from these individuals rarely e.g., discussion

groups and newsletters.

(4) Opt-outs: These people are least connected people with the callee on the

communication network and the number of calls the callee has accepted from

these individuals is bare minimum e.g., strangers, telemarketers, fund raisers.

For each type, we derived algebraic relations that describe the communication

the type’s callers have with a callee or the callee’s community members. We enumer-

ated the communication patterns for such relationships as associative, distributive,

and commutative. Consider a community with m members, and each member having

a maximum of n people in each of the four groups defined before. The individuals

communicating with a callee Ri for i=1..m are represented by Sijk (caller k belonging
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to group number j of community member Ri for i=1..m, j=1..4 and k=1..n). Using

the above categorization, we can derive algebraic rules for people belonging to a spe-

cific type of caller.

7.2.1.1. Socially Close members. The socially closest members of a callee’s com-

munity are people with the most connectivity to a callee. The callee frequently

communicates with and may spend significant time interacting with these people.

Using our Algebraic rules, we describe the connectivity a callee has with members of

the socially close Community.

(1) Calls from socially close members are distributive.

Calls from a member of a socially close community to a callee and to a callee’s

community members are distributive. When a socially close caller intends to convey

information to a set of callees, the caller can create a conference [Si1k → (R1, R2, ...Rl)

to communicate with them, or the caller can make unicast calls to the callees to con-

vey the information individually. This distributive relation can be represented as

Si1k → (R1)

Si1k → (R2)

Si1k → (R1, R2, ...Rl) =.

.

Si1k → (Rl)

In either case, the callee will have similar willingness/interest for completing the call.

Therefore, we have

Si1k → (R1, R2, ...Rl) = (Si1k → R1)∪ (Si1k → R2)∪ .....∪ (Si1k → Rl) for i,l∈1..m &

k ∈ 1..n.
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(2) Calls from socially close members are commutative.

Calls between a callee and any socially-close members are commutative, i.e., a bidi-

rectional call-generation process and reception pattern is observed. We can represent

this commutative relation as follows

Si1k → Rl = Rl → Si1k

i.e. Φ(Si1k, Rl) = Φ(Rl, Si1k) for i,l∈1..m & k ∈ 1..n

(3) Calls from socially close members are associative.

When a socially close member A intends to communicate with two callees B and C,

then A places a call to one callee and then invites the second callee to join the con-

ference. For example, a socially close caller Si1k can communicate with two callers Rl

and RK in both the ways as shown below

(a) Caller Si1k makes a call to Rl first and then to Rs. This can be represented by

(Si1k → Rl) → Rs for i,l,s∈1..m & k ∈ 1..n

or

(b) Callee Rl makes a call to Rs and then Si1k joins the conference Si1k → (Rl →
Rs)for i,l,s∈1..m & k ∈ 1..n

In either way, the willingness/interest of all the three participants will be same.

Therefore, we have

(Si1k → Rl) → Rs = Si1k → (Rl → Rs) for i,l,s∈1..m & k ∈ 1..n i.e. the calls are

associative.

7.2.1.2. Socially Near members. Socially near members of a callee’s community

are the people, with whom the callee has a relatively low connectivity but has high

tolerance to calls from them, i.e., the callee usually spends considerable time with

people belonging to this group. The connectivity the callee has with the people in
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this group is relatively less than that of the people in the socially close group.

(1) Calls from socially near members are distributive.

Whenever, a socially near member of a callee’s community intends to communicate

with a callee or some of the callee’s community members (e.g., callee’s socially close

members), the socially near member can create a conference to communicate with

them [Si2k → (R1, R2, ...Rl)] or make calls to them individually and communicate

with them. Therefore,

Si2k → (R1)

Si2k → (R2)

Si2k → (R1, R2, ...Rl) =.

.

Si2k → (Rl)

In either case, the callee will have similar willingness/interest for completing the call.

Therefore, we have

Si2k → (R1, R2, ...Rl) = (Si2k → R1)∪ (Si2k → R2)∪ .....∪ (Si2k → Rl) for i,l∈1..m &

k ∈ 1..n.

(2) Calls from socially near members are commutative.

There is always a mutual call-generation behavior between a callee and socially near

members, i.e., the socially near members make calls to the callee and the callee also

makes calls to them. Therefore, based on this mutual calling behavior, we can show

a commutative relation as follows

Si2k → Rl = Rl → Si2k

i.e. Φ(Si2k, Rl) = Φ(Rl, Si2k) for i,l∈1..m & k ∈ 1..n

(3) Calls from socially near members are associative.

Whenever a socially near member intends to communicate with two callees, he can
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either call one callee and invite the other [(Si2k → Rl) → Rs], or join in a confer-

ence call that is already in progress in between the two callees [Si2k → (Rl → Rs)].

In either case, the socially near member can convey his information to the intended

callees.

Therefore, (Si2k → Rl) → Rs = Si2k → (Rl → Rs) for i,l,s∈1..m & k ∈ 1..n i.e. the

calls are associative.

7.2.1.3. Opt-ins. Opt-ins are people with whom a callee has minimal connectivity.

A callee rarely acknowledges calls from the people belonging to this group.

(1) Calls from opt-in callers are not distributive.

Opt-in callers are callers from whom a callee may occasionally solicit information.

At the time of the solicitation, the callee considers the calls from opt-ins reasonable.

Depending on the callee who has acknowledged, the opt-in callers make calls to them

individually All the calls from them to each callee are simple one-to-one calls. There-

fore, the calls from opt-in callers are not distributive.

(2) Calls from opt-in callers are limited commutative.

Callees do not often acknowledge calls from opt-in callers. However, when calls from

opt-in callers are of situational interest, callees communicate with the opt-in callers.

Compared to the socially close and socially near members, the callees show least

communication behavior with opt-in callers. Therefore, calls from opt-in callers are

limited commutative. This communication behavior can be shown as follows

Si3k → Rl = Rl
l→ Si3k

i.e. Φ(Si3k, Rl)
l
= Φ(Rl, Si3k) for i,l∈1..m & k ∈ 1..n i.e., calls from

opt-in callers are limited commutative.
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(3) Calls from opt-in callers are not associative.

As nearly all the calls from the opt-in callers are unicast calls, only rarely will opt-in

callers intend to communicate with two callees at the same time. No opt-in callers

would organize or join conferences. Therefore, the calls from the opt-in callers are

not associative.

7.2.1.4. Opt-outs. Opt-outs are callers with whom a callee has the least connec-

tivity. The callee never acknowledges communication with members of this group.

As a result of this behavior, opt-outs have a call distribution as described below.

1. Calls from opt-out callers are distributive.

When an Opt-Out caller intends to communicate with all the members of a callee’s

community, the caller generates a conference call (easily possible with in VoIP net-

works by building a VoIP broadcast client) [Si4k → (R1, R2, ...Rl)], or the Opt-Out

caller can make a unicast call to each callee, described as [Si4k → (Rl)] for i,l∈1..m

& k ∈ 1..n. Therefore,

Si4k → (R1)

Si4k → (R2)

Si4k → (R1, R2, ...Rl) =.

.

Si4k → (Rl)

i.e. Si4k → (R1, R2, ...Rl) = (Si4k → R1)∪(Si4k → R2)∪ .....∪(Si4k → Rl) for i,l∈1..m

& k ∈ 1..n.

(2) Calls from opt-outs are not commutative.

As a rule, callees do not want to receive the types of calls distributed by opt-out

members. Virtually no one calls back opt-out callers. Therefore, this communication
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is never commutative.

(3) Calls from opt-out callers is not associative.

As discussed above, calls from opt-out members are least sought. The callees do not

get together to accept calls from opt-out callers. Therefore, these calls are not asso-

ciative. However, it has been observed that individual callees might be interested in

some services an opt-out member may provide. In this case, if an individual callee

opts in for a specific service, the opt-out caller would then jump into the opt-in group

of that callee. Therefore, at any instant, the snapshot of members in the opt-out

group are the people who are of negligible interest to both the callee and members of

the callee’s calling community. None of the callees shows an interest in communicat-

ing with the opt-out community.

All the above rules describe the calling patterns callees have with their social

network members. We can analyze these calling patterns with some operations to

generate meaningful call-constructs that can be used to provide solutions to a num-

ber of current telephony problems.

7.3. Operations based on Calling Patterns

Current research problems in telephony applications deal with identifying the le-

gitimacy of the incoming calls and the callers making those calls. This is necessary

because unwanted callers such as spammers and phishers can use real-time voice

communication for spamming users and extracting confidential information for their

personal and organizational benefit. In this section, we describe operations on the

caller-callee calling patterns. All these operations provide filtering characteristics that

can be used for identifying the legitimacy of incoming calls and the callers making

those calls.

The fundamental parameters that we can extract based on communication be-

tween a caller and a callee are frequency, duration, time-of-arrival, and inter-arrival
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time. Based on these communication parameters, we can define caller-callee matrices

that describe the communication between multiple callers and callees (e.g., the callee

and the callee’s community members). For m callees (Ri for i = 1..m) inside the

callee’s community and p callers ({Sl}l=1..p = {Sijk}i=1..m,j=1..4,k=1..n i.e., all callers to

all callees) making calls to the callees in the community, a matrix for parameter X

based on the communication between the callers and the callees can be shown as in

Figure 7.1

The matrix SRX represents the communication matrix of parameter X between the

Figure 7.1. A parameter matrix based on calls generated from callers

to callees.

callers and the callees where X can be any of frequency, duration, time of arrival,

inter-arrival time etc. Each element SiRj in the matrix represents a normalized value

of communication parameter X from caller Si to callee Rj for i=1..p and j=1..m.

Based on the above representation, we can construct parameter matrices such as fre-

quency (SRF ), duration (SRD), time of arrival (SRT ), and inter-arrival time (SRI)

parameters. However, it is also possible that the callee’s community members gen-

erate calls to the callers (outgoing calls). Based on this, we can define outgoing

communication parameter matrices such as RSF , RSD , RST , and RSI . Using these

incoming and outgoing matrices, we derived operations for detecting wanted calls

between the communicating parties.
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7.3.1. Connectivity

Connectivity represents the amount of communication the parties have in a voice

network. This amount of communication can be measured based on the extent of

frequency and duration of calls between the parties. We argue that higher the con-

nectivity, higher will be the trust between the caller and the callee. Similarly, the

higher the connectivity of callers towards a specific group of callees, the higher will

be the trust of those callers with respect to those callees. The frequency and duration

matrices such as SRF , SRD, RSF , and RSD can be used for deriving the amount of

connectivity between the callees and the callers.

7.3.1.1. Connectivity based on Incoming Calls. The matrices SRF and SRD can

be used for determining the connectivity of the callers to the callees based on incom-

ing calls. For example, consider the multiplication operation between the frequency

matrix and the transpose of the duration matrix.

SRF ∗ SRT
D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(S1R1)F (S1R2)F . . . (S1Rm)F

(S2R1)F (S2R2)F

. .

. .

. .

(SpR1)F (SpR2)F . . . (SpRm)F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(S1R1)D (S2R1)D . . . (SpR1)D

(S1R2)D (S2R2)D

. .

. .

. .

(S1Rm)D (S2Rm)D . . . (SpRm)D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The result of the above matrix operation is a matrix CS such that each

element of the matrix is equal to

CS
i,j = (SiR1)F ∗ (SjR1)D + (SiR2)F ∗ (SjR2)D + ...(SiRm)F ∗ (SjRm)D

i.e. CS
i,j =

m∑
k=1

[(SiRk)F ∗ (SjRk)D] for i,j ∈ 1..p. The leading diagonal elements of

the resultant matrix CS (i.e. elements CS
i,j such that i=j for i,j ∈ 1..p) has p number

of elements since the matrix CS is a pxp matrix. Each element of the diagonal (CS
i,j)
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represents the connectivity of the caller Si with respect to all the callees. We can

infer that, based on the frequency and duration patterns, the higher the value of the

diagonal element, the higher is the connectivity of the respective caller towards all

the callees.

7.3.1.2. Connectivity based on Outgoing Calls. Similar to the operation shown for

incoming calls, we can use the matrices RSF and RSD to establish the connectivity

of callees based on the outgoing calls. Consider a matrix CR that is equal to the

product of RSF and transpose of RSD. Each element in the resultant matrix can be

represented by CR
i,j =

p∑
k=1

[(RiSk)F ∗ (RjSk)D] for i,j ∈ 1..m. The diagonal elements

in the matrix CR (i.e. elements CR
i,j such that i=j for i,j ∈ 1..m) has m number of

elements as the size of the matrix CR is mxm. Each element of the diagonal represents

the connectivity of a callee with respect to all the callers. And, higher the connectivity

of a callee, higher is the trust of the callee with respect to all the callers.

While the connectivity gives information about the direct trust based on past

communication, we can derive more legitimacy information based on forwarded calls

by deducing the reputation of callers and callees.

7.3.2. Reputation

Reputation represents social status. It is derived based on recommendations from

trusted peers. However, with respect to calling patterns, we believe that the reputa-

tion can be derived based on the preference (addressed using call forwarding) of calls

from the callers and the callees.

7.3.2.1. Reputation based on Incoming Calls. The reputation of the callers can be

derived using multiplication operation between the SRF and RSF matrices. For the

matrix DR = SRF ∗ RSF , each element of the matrix is represented as

DR
i,j = (SiR1)F ∗ (R1Sj)F +(SiR2)F ∗ (R2Sj)F + ...(SiRm)F ∗ (RmSj)F =

m∑
k=1

[(SiRk)F ∗
(RkSj)F ].

From the above equation, we can observe that every call from a caller Si to a callee
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Rk for k ∈ 1..m, the callee forwards the call to another caller Sj for i, j ∈ 1..p. It can

be observed that all the non-diagonal elements represent this call forward relation as

shown in Figure 7.2.

Figure 7.2. A call forward relation for calls from callers.

We believe this is call-forward function represents the reputation of the caller.

Therefore, DR
i,j of matrix DR gives the reputation of caller Si for i,j ∈ 1..p & i 
= j.

7.3.2.2. Reputation based on Outgoing Calls. We can derive reputation of callees

using the same RSF and SRF matrices by performing the multiplication operation

RSF ∗SRF . The result of this multiplication operation is a matrix DS such that each

element DS
i,j can be represented as DS

i,j =

p∑
k=1

[(RiSk)F ∗ (SkRj)F ]. Each non-diagonal

element of the matrix DS (DS
i,j such that i 
= j for i,j ∈ 1..m) represents the call-

forward function for all calls from Ri to Rj by Sk i.e. DS
i,j represents the reputation

of Ri for i,j ∈ 1..m & k ∈ 1..p.

The connectivity and reputation information provides a measure of legitimacy

of calls. In addition to these measures, we can also derive functions for parame-

ters such as reciprocity and periodicity. Integrating these functions with operations

such as connectivity and reputation can result in separating wanted calls and wanted

callers.
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7.3.3. Reciprocity

Reciprocity represents the response shown by one party to calls from another

party. This reciprocity can be established using the SRF and RSF matrices.

7.3.3.1. Reciprocity based on incoming calls. The reciprocity shown by callees can

be determined using a multiplication operation between the SRF and RSF matrices.

For the matrix DR = SRF ∗ RSF shown in 7.3.2.1, each element of the matrix is

represented by DR
i,j = (SiR1)F ∗(R1Sj)F +(SiR2)F ∗(R2Sj)F +...(SiRm)F ∗(RmSj)F =

m∑
k=1

[(SiRk)F ∗ (RkSj)F ]. In matrix DR, the diagonal elements are of the form DR
i,j =

m∑
k=1

[(SiRk)F ∗ (RkSi)F ] for i ∈ 1..p (since i=j). We note that when we extract the

diagonal elements, the ith diagonal element represents the call-back function to the

caller i.e., the value of the ith diagonal element represents the reciprocity shown by

the callees to calls from caller Si for i ∈ 1..p as shown in Figure 7.3

Figure 7.3. A call back relation by callees for calls from callers.

7.3.3.2. Reciprocity based on Outgoing Calls. Similar to the derivation shown for

reciprocity shown by callees, each diagonal element DS
i,j of matrix DS = RSF * SRF

gives the reciprocity shown by callers to calls from callees.

Although the parties show eagerness to return the unanswered calls, they often tend

to acknowledge calls mostly during some defined intervals. These intervals can be

described by computing periodicity of the incoming or outgoing calls.
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7.3.4. Periodicity

Periodicity represents the regularity in which the callees accept/make calls from/to

the callers. It is of common observation that people prefer defined intervals for com-

municating with other parties (e.g., after-work hours) and resent calls during other

intervals (e.g., work hours). Therefore, the periodicity information can be used for

understanding the callees’ eagerness in receiving calls at different times. One way of

defining a periodicity matrix is as follows: Define matrix M such that each element

in the matrix is defined by

Mijk = Number of calls received by callee j from caller i at time unit k for i ∈ 1..p, j

∈ 1..m, k ∈ 1..nt where nt is the number of time units in a given day. The value of

nt may depend on the resolution required by the application e.g., nt= 24 time units

(1 hour interval) or nt=96 time units (15 min interval). Using the above matrix M,

we can derive a periodicity matrix P t at a given time unit t. Each element in the

periodicity matrix i.e. P t
i,j represents the periodicity of the calls from caller Si to

callee Rj for i ∈ 1..p, j ∈ 1..m at time interval t and is defined as follows

P t
i,j =

Mijt

nt∑
k=1

Mijk

We can extend the matrix P t and define a matrix P
′
such that each element

of the matrix P
′
is defined as follows

P
′
i,j = Periodicity of caller Si at time unit Tj for i ∈ 1..p, j ∈ 1..nt. Each element of

the matrix can be expressed as per
Tj

i i.e. periodicity of caller Si at time unit Tj for i

∈ 1..p, j ∈ 1..nt. The matrix P
′
can be shown as in Figure 7.4

Even though we can define a caller’s periodicity at a given time unit, we

have observed that callers have significant call distribution only during specific time

periods. We can derive the most probable times during which a caller or a group

of callers have a high call distribution using the P
′

matrix. For this, however, we
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Figure 7.4. A periodicity matrix based on calls from callers to callees.

needed to formulate a technique to reduce the number of columns of the matrix but

still create a sub-matrix that preserves the information represented in the P
′
matrix.

For this reduction, we apply the Eigen principles to construct Eigen vectors of the

matrix P
′
[60] and define sub-matrices of the form

Figure 7.5. Inferring most-probable-times during which callers gen-

erate calls.

From the resulting matrix, we can infer that the set of callers {Sa, Sb,..Sl}
where a, b,..l ∈ 1..p have significant calling distribution during the time intervals {Td,

Tf , ..Tg} for d, f,..g ∈ 1..nt. Using the same procedure, we can define sub matrices

and infer the most probable times during which the callers have significant calling

patterns.

Understanding the eagerness using reciprocity and periodicity computation
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helps in inferring the legitimacy of communicating parties. In addition to these con-

structs, we can derive call constructs based on call distribution. Examining the

distribution of calls from callers to callees provides additional information during

filtering processes. For example, it is highly unlikely that legitimate callers make

broadcast calls to all the members in the callee’s community. Further, the calling

patterns from a legitimate caller to a callee rarely coincide with the calling patterns

from the same caller to other callees in the community. Alternatively, it is frequently

observed that spammers make broadcast calls, and their calling patterns to commu-

nity wide callees are similar (e.g., by sharing callee lists). Therefore, here we discuss

some call constructs such as similarity and correlation that account for call distribu-

tion information. We can integrate these constructs along with legitimacy providing

parameters such as connectivity, reputation, reciprocity, and periodicity for making

high accuracy decisions.

7.3.5. Similarity

Similarity represents the commonality in call distribution. Two callers are said

to be identical if they have equal calling distribution across a set of callees in the

callee’s community. We can determine similarity in call distribution using ”rank” of

SRF and RSF matrices. We believe that a case scenario for the ”rank” of a matrix

provides information about the similarity of the people in making calls.

Rank is defined as the number of independent rows or columns in the given

matrix. Additionally, Row Rank represents the number of independent rows and

Column Rank represents the number of independent columns in a given matrix. De-

pendency in the rows or columns occurs if one or more of the rows or columns is or

are a multiple (dependent) on other rows or columns, respectively.

Consider as a case scenario where a row is equal (multiple by 1) to another

row in a simple SRF matrix. If two callers Si and Sj have equal values to all callees

(i.e. the two rows for the callers are same in the SRF matrix), then it represents that

the two callers have equal calling distribution to all the callees. In this case, the two
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callers are similar in call generation. As the row rank of the above matrix gives the

number of independent rows, then (p - row rank) callers are similar to at most (p-

row rank) callers in the given matrix where p is the total number of callers.

Note: Similar to the above discussion, we can determine callees having similar calling

distributions using the RSF matrix and its row-rank.

7.3.6. Correlation

Callers are not always strictly similar. However, two or more callers might have

a similar pattern in their call distribution. We can find the set of callers having this

similar pattern by defining the amount of correlation between the callers. Consider

an SRF matrix. Using this matrix, we can find the correlation (for example, using

Pearson correlation coefficient) between two callers Si and Sj for i,j ∈ 1..p based on

their call distribution to m callees Rj for j ∈ 1..m. If the call distribution by two

callers towards all the callees represent two random variables XI and XJ , then the

Pearson correlation coefficient can be computed as follows

Pearson’s Coefficient (σ) = XIJ√
XII∗XJJ

where XII =

m∑
k=1

(SiRk)
2 −

(
m∑

k=1

(SiRk))
2

m

XJJ =
m∑

k=1

(SjRk)
2 −

(
m∑

k=1

(SjRk))
2

m

XIJ =
m∑

k=1

(SiRk)(SjRk) −
(

m∑
k=1

(SiRk))(

m∑
k=1

(SjRk))

m

The Pearson correlation always lies in the range [-1 1]. A value of 1 repre-

sents a perfect correlation (both the variables change in the same way) and a value

of -1 represents a perfect negative correlation (both the variables change in the op-

posite way). A value of near about 0 for the Pearson coefficient represents minimal

correlation. Therefore, this coefficient value represents the amount of similarity the
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two callers have in their call distribution.

The similarity and correlation information is useful for determining the extent

to which the callers have similar call distribution. These call distributions between

the callers and the callees can be a uniform or a random distribution. It is generally

observed that callees acknowledge calls from caller who have uniformly distributed

calls than the caller who calls randomly. In this scenario, it can be helpful to un-

derstand the randomness in call distribution so that more appropriate customized

filtering policies can be formulated. Here, we discuss a measure for determining the

randomness in calling patterns using entropy computations.

7.3.7. Entropy

Entropy is used for measuring randomness [21]. Using the SRF matrix, we can

infer the entropy based on the frequency communication patterns. Entropy as de-

scribed by Claude Shannon [81] is given as

H(x) = −
n∑

i=1

p(i)log2p(i)

Each p(i) in the above equation can be computed by dividing a given time period

(e.g., 1 day) into n intervals (e.g. 24*60 = 1440 intervals with an interval size of 1

minute). By observing the frequency over an extended period of time (e.g. 6 months),

each p(i) for i=1..1440 can be computed as follows

p(i) =
No of calls from caller at time i

T otal number of calls from caller at all time intervals

All the computed p(i) for i=1..n can be substituted in the Shannon entropy equation

to result in an entropy value. The higher the entropy value, the higher is the random-

ness. Similarly, the lower the entropy value, the lower is the randomness. Therefore,

using the computed entropy, we can segregate callers with non-periodic behavior from

callers with periodic behavior.

So far, we have discussed algebraic rules that represent the calling patterns
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between the callers and callees in 7.2. In 7.3, we discussed matrix operations for de-

riving useful information about calling patterns. We can use the algebraic rules and

matrix operations for solving important problems such as detecting spam and botnets.

7.4. Applications

One of the important problems in IP telephony research is the task of identifying

unwanted calls. For detecting these unwanted calls, solutions have to be devised for

a number of problems such as determining the legitimacy of the callers, and pro-

actively estimating the callee’s interest in receiving calls from different callers. In this

section, we discuss some problems and derive solutions to those problems using the

rules and operations we have discussed before. The solutions to the problems can be

collectively applied to result in a comprehensive solution for identifying wanted calls

from legitimate callers.

(1) Spam Filtering: Incoming calls from spammers and phishers are considered

to be spam and are unwanted to the callee. Therefore, it is highly desirable

to filter these unwanted calls even before they reach the end callee. Here we

present steps for designing a real-time spam filtering application that filters

unwanted spam calls. The procedure outlined here is an example, but a

detailed solution can be found in chapter 4.

(a) Determine callers’/callees’ connectivity using frequency and duration

communication patterns based on incoming/outgoing calls between the

callers and callees as shown in 7.3.1.

(b) Define a trust matrix F such that each element Fij represents the per-

ceived trust of caller Si by callee Rj and computed using the connectivity

of callers to callees based on incoming and outgoing calls.
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(c) Define a reputation matrix M such that each element Mij represents

the reputation of caller Si with respect to callee Rj as shown in Sec-

tion 7.3.2.1.

(d) Define a spam probability matrix L such that each element Lij represents

the spam probability of caller Si as perceived by callee Rj. Each Lij is

computed using the trust and reputation values. One way of computing

the spam probability is using a correlation function between the trust

and reputation i.e. Lij = 1 − (αFFij + (1 − αF )Mij)

(e) Define thresholds for the inferred spam probabilities.

(f) Categorize callers as spammers or legitimate callers using the spam prob-

ability values and the determined threshold values.

(2) Identifying Broadcast spammers or broadcast callers: A kind of spammers

(e.g., telemarketers) broadcasts calls to all the members in the callee’s com-

munity. These kinds of spammers attain their objective (personal or orga-

nizational gain) by attempting to communicate with every member in the

community. In this context, it can be useful if the incoming calls are identi-

fied to be generated from broadcast spammers so that they can be proactively

filtered before they reach the callees. Identifying broadcast spammers can

help quarantine unwanted calls destined to all callees in the community. We

can derive the set of broadcast callers using the SRF matrix. When a caller

Si has calls equally distributed across the callees (SiRj) = (SiRk) ∀ j, k ∈
1..m & i ∈ 1..p, then the caller Si is a broadcast caller. Additionally, if a

group of callers are similar (i.e. they have same call distribution across the

callees as shown in Section 7.3.5), and each of them are broadcast callers,

then the group of callers share the same callee list and most likely broad-

casting from the same domain. The group of broadcast callers can be callers

that are close to the callee in the callee’s social network or farther away. In
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this case, the connectivity and the reputation of the callers can be inferred

to check if they are legitimate or spam callers.

(3) Defining Social Groups: We enumerate steps for classifying callers into four

social groups as defined in Section 7.2.1. The procedure outlined here is an

example, but a detailed solution can be found in Chapter 5.

(a) Derive closeness of each caller to the callee based on the incoming calls.

For deriving this closeness, construct a matrix GI such that each element

GI
ij =

√
(SiRj)2

F + (SiRj)2
D for i ∈ 1..p & j ∈ 1..m. Each element GI

ij

represents the closeness of caller Si to callee Rj for i ∈ 1..p & j ∈ 1..m

based on ”incoming” calls to callee.

(b) Derive closeness of each caller to the callee based on the outgoing calls.

For deriving this closeness, construct a matrix GO such that each element

GO
ij =

√
(RiSj)2

F + (RiSj)2
D for i ∈ 1..m & j ∈ 1..p. Each element GO

ij

represents the closeness of callee Rj to caller Si for i ∈ 1..m & j ∈ 1..p.

(c) A caller’s closeness to a callee depends on the closeness based on in-

coming and outgoing calls from and to the callee. This dependency can

be a simple correlation function such as αGCI + (1 − αG)CO where CI

represents Closeness based on incoming calls and CO represents close-

ness based on outgoing calls. The factor αG can be customized based

on callee’s preferences.

(d) Define thresholds for closeness (e.g., 0.9-1.0: socially close, 0.7-0.9: so-

cially near, 0.5-0.7: opt-in, 0-0.5: opt-out.)

(e) For each callee Rj, sort all the callers based on their closeness and group

them into different groups using the thresholds defined above to result

in social groups.

(4) Nuisance Computation: Every real-time call is associated with certain amount

of nuisance. This nuisance is less for calls from close people such as family

members and friends compared to calls from people such as strangers and
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telemarketers. Integrating nuisance computation in unwanted call filtering

processes helps in pro-actively identifying the callee’s eagerness in receiv-

ing incoming voice calls. The nuisance for an incoming voice call can be

computed as follows (procedure outlined here is an example, but a detailed

solution can be found in Chapter 5)

(a) Define a matrix W that provides information about the callees’ eager-

ness in receiving calls. Each element of the matrix Wij for i ∈ 1..p & j

∈ 1..m represents the callee Rj ’s eagerness in receiving voice calls from

caller Si. For computing Wij, determine the connectivity of caller Si

towards callee Rj based on incoming and outgoing calls. The eagerness

of callee Rj to receive calls from caller Si depends on the amount of

connectivity the caller has with the callee.

(b) Define a reciprocity matrix DR such that each diagonal element DR
ij

represents the reciprocity shown by callee Rj for calls from caller Si for

i ∈ 1..p & j ∈ 1..m as shown in Section 7.3.3.

(c) Define a Periodicity matrix P such that each element Pijk represents the

periodicity of calls from caller Si to callee Rj for i ∈ 1..p, j ∈ 1..m, k ∈
1..nt.

(d) Using the matrices W, DR, and P, define a nuisance matrix N. Each

element of matrix Nij represents the nuisance for callee Rj because of

calls from caller Si for i ∈ 1..p & j ∈ 1..m. One example of nuisance

computation is Nij = 1
Wij+DR

ij+Pij

(e) Define thresholds for nuisance values of different categories of people

such as socially close, socially near to customize the filter for receiving

selective calls.

(5) Botnets identification:Botnet is a term used for collection of compromised

systems (known as ”bots”) that are used as a starting point for generating

attacks. VoIP spammers can use bots as a starting point for generating
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spam calls. We can design an application that identifies bots using time

series analysis. The procedure outlined here is an example, but a detailed

solution can be found in [61].

(a) Define a matrix B which records the communication parameters for the

calls originating from all the hosts (used by the callers to generate calls).

Assume that there are a total number of q distinct hosts that are used

for generating calls. Each element of matrix B (i.e., Bij) represents

the normalized value of communication parameter j for j ∈ 1..np (np

is the number of parameters where a parameter can be time-of-arrival,

frequency, duration etc.) of host i.

(b) Derive Eigen vectors of matrix B. Define a set of Eigen vectors [e
′
1, e

′
2, ..e

′
k]

i.e., the first k prominent Eigen vectors that describe the data values in

matrix B [60].

(c) Extract the sub matrix H from matrix B that constitutes the normalized

values of k parameters that the above Eigen vectors correspond. The

matrix H would be then a qxk matrix with each element Hij representing

the normalized value of parameter j from host i.

(d) Compute the correlation matrix (X ) using the above Eigen matrix. Each

element of matrix X (i.e., Xij) represents the correlation of host i with

host j for i ∈ 1..q, j ∈ 1..k i.e., correlation of two hosts with respect

to k parameters. The correlation can be computed using the Pearson’s

correlation coefficient discussed in Section 7.3.6.

(e) Using the correlation values in matrix X, we can use existing clustering

techniques such as K-means, Fuzzy C-means, and Hierarchical clustering

to cluster hosts with high correlation. Using the classification based on

above techniques, all botnets are clustered into a group [61].

(6) Prediction: Prediction, one critical research, deals with estimating a future

pattern using learning based on past patterns. We believe that prediction
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can be researched in context of real-time calls too. It would be very helpful

if an application can be designed that predicts whether a particular caller

of a given type (e.g., spam, legitimate, socially close, socially near) would

call at a given time with a maximum probability and minimum amount of

error. Knowing well in advance that a caller would be making a call to

him, the callee can make appropriate policies for granting or denying access.

Here, we discuss a prediction model that can be used to determine future

communication patterns.

(a) Define a matrix A such that each element of the matrix (Aij) represents

the entropy of caller Si with respect to callee Rj for i ∈ 1..p, j ∈ 1..m

using the frequency matrix SRF . Using the entropy values, we can find

the callers that are more predictable.

(b) Similarly, define a matrix T such that each element of the matrix Tij

represents the entropy of caller Si with respect to callee Rj using the

inter-arrival time patterns given in the SRI matrix. Using this, we can

predict the time at which a caller or callers is going to call.

Integrating the VSD and ND with the formalism discussed in this chapter

will help the filters increase their overall performance. The filters can benefit from the

enumeration of communication patterns between the callees and the callers calling

them as discussed in 7.2. In addition, the operations presented in 7.3 and probable

solutions for some applications presented in 7.4 can be applied for solving some of

the existing IP telephony research problems.

All the above discussed solutions account for determining the possibility of the

incoming call to be unwanted. In addition to unwanted calls to callees in a VoIP

network, there can be unwanted (malicious) VoIP traffic coming into a network that

attempts to compromise VoIP network devices. Many articles explain how intruders

break into systems [9] [36]. For adequate security management, there is a need to

frequently monitor the risk levels of critical network infrastructure and take remedial
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actions for preserving the security of the network [20] [98] [72]. We need adaptive risk

computation processes as the risk management at one part of the network influences

the chances of exploits at other parts of the network. For example, patching a firewall

by closing access to port ssh (port 22) limits the possibility of exploiting an internal

ssh server. In lieu of this, we present a risk management technique for dynamically

updating risk levels of network infrastructure devices given evidence (e.g., evidence

of an attack or that of an applied patch).
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CHAPTER 8

NETWORK RISK MANAGEMENT

8.1. Introduction

The increase in the size of an enterprise VoIP network is an ever-growing process.

With the increase in number of hosts connected to the network, there is always a

mounting risk of protecting computers from the outside attacks. Intelligent hackers

can create malicious VoIP traffic for compromising VoIP network devices. Improp-

erly configured VoIP network hosts result in increased host vulnerabilities, making

more hosts susceptible to outside attacks. Accurate vulnerability analysis requires a

deep understanding of both failure and attack modes and their impact on each net-

work component, as well as the knowledge of how components interact during normal

and attack modes of operation. For managing the security of a network, security

administrators identify security holes by probing the network hosts; assess the risk

associated with the vulnerabilities on the computer hosts, and fix host vulnerabilities

using patches released by the vendors.

We see frequent release of patches from product vendors to reduce the effect

of vulnerability once it is reported. The product vendors, for vulnerability assess-

ment, focus on active prevention methodologies to close vulnerabilities before they

are exploited. Patching network hosts supplies a short-term solution for avoiding

attacks, but this solution requires closing vulnerabilities in the network hosts and

its components. Unfortunately, patching end hosts involves a great deal of human

c©[2005] Springer. With kind permission of Springer Science and Business Media, reprinted from

- R. Dantu, P. Kolan, ”Risk Management using Behavior based Bayesian Networks”, Lecture Notes

in Computer Science (LNCS) April 2005, volume 3495/2005, Pages 115-126.
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intervention, time, and money. It requires the administrative staff to frequently mon-

itor end systems using a set of monitoring tools to identify and prevent intrusion.

However, capabilities for preventing attacks worsen when state-of-the-art monitoring

tools cannot effectively identify new vulnerabilities.

Clearly, security administrators need an effective method to manage the risk

presented by the identified vulnerabilities so that they can determine which vulner-

abilities to address first. Risk management refers to the process of making decisions

that minimize the effects of vulnerabilities on the network hosts. However, in the

context of high-exploit probability, risk management is a nightmare to plan with.

And also, identifying new exploits and vulnerabilities is difficult. For many years,

security engineers have performed risk analysis using economic models for the design

and operation of risk-prone, technological systems using attack profiles [20][35][66].

Based on the type of attacker identified, security administrators formulate effective

risk management policies for a network. Simultaneously, a great deal of psycholog-

ical and criminological research has been devoted to the subject; but the security

engineers do not use these studies. Many articles explain how intruders break into

systems [9][36]. Companies like Psynapse, Amenaza, and Esecurity have built prod-

ucts using the behavior of intruders. To our knowledge, no work has been reported

on integrating behavior-based profiles with sequences of network actions to compute

resource vulnerability. Thus, the overall goal of this research is to estimate the risk

to a critical resource based on attacker behavior and a set of vulnerabilities that the

attacker can exploit. This approach implies a more fine-grained repertoire of risk mit-

igation strategies tailored to the threat rather than using blanket blocking of network

activity as their sole response.

8.2. Background

Considerable work has been reported on attacker profiles and risk management.

Jackson[35] introduces the notion of behavioral assessment to determine the intent
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behind the attack. The proposed Checkmate intrusion detection system distinguishes

legitimate use from misuse through behavior intent. But, the paper does not discuss in

detail the vulnerable device identification based on the assessed behavior. Rowley[72]

views risk analysis as involving threat identification, risk assessment, and steps to

be taken for risk mitigation. The potential threats are identified and an estimate of

the damage each threat could pose is calculated. Although these studies individually

discuss about the behavior and risk, none of them attempt to integrate risk analysis

with attacker behavior and the sequence of network actions that can be performed

by the attacker. We believe that there is a need for integrating risk mitigation strate-

gies with attacker (e.g., hacker) behavior to help reduce the possibility of impending

attacks.

The psychological and criminological research on hacker community defines cat-

egories of hackers such as novices, crackers, and criminals based on their intent, skill,

and attack proficiency. We believe this research can provide insights into attacker

profiling that we can use to improve the risk analysis of network systems. Rogers[69]

proposes categorizations of a hacker community and advises hacker profiles derived

from intruder behavior. Yuill[98] profiles detection of an on-going attack by develop-

ing a profile of the attacker using the information the attacker reveals during attacks.

Kleen[40] developed a framework for analysis of hackers by reviewing existing hacking

methods, classifications and profiles, with the goal of better understanding their val-

ues, skills and approaches to hacking. In addition to the above studies, several works

in the literature focus on hacker profiles [41][66][68], but none of them tie the profiles

to exploits in the network. All the theories proposed account for the hacker behavior

but do not attempt to relate the hacker behavior with exploits and vulnerabilities.

In addition to research that has attempted to categorize network attackers,

researchers have been examining the feasibility of using graphing techniques to rep-

resent network actions. An attack graph represents all the possible network actions
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that can be used to compromise a network component, or exploit a given vulnera-

bility. Each node in the attack graph represents a network action and a sequence of

network actions from the root to the leaf node represents a successful attack. Attack

graphs are beginning to be used to formalize the risk for a given network topology

and exploits. Sheyner[82] models a network by constructing an attack graph using

symbolic-model-checking algorithms. Moore[54] documents attacks on enterprises in

the form of attack trees, where each path from the root to the end node documents

how an attacker could realize his desire of exploiting the host and network. However,

current research [54][82][86] does not combine the attacker’s behavior with these graph

transitions. Loper[47] and McQuade[51] indicate that mapping network actions to so-

cial motives is sustained by the available data. Our mechanism marries profiling with

chain of exploits, and detects highly vulnerable resources in the network. In addition,

behavior profiles are used for calculating the trust of a given attack path. Our work

uses theory from criminology, statistical analysis, behavioral-based security, and at-

tack graphs to develop a model for risk management.

8.3. Risk Management

Increasingly, attack graphs (or attack trees) are being formalized to provide mod-

els for representing system security. An attack graph can be created using network

topology, interconnection between hosts, and various vulnerabilities of each host

[54][82][86]. The attack graphs represent a sequence of network actions for exploit-

ing each network resource and, ultimately, the whole network. We used these attack

graphs to calculate the vulnerability level and risk to a critical resource in a given

VoIP network for a number of attacker profiles. Our procedure consists of five steps

which we repeatedly execute until we achieve an optimum security. Our hypothesis

is that a relationship exists between network actions and social behavior attributes

of the attackers.

159



8.3.1. Step 1: Creation of an Attacker Profile

The profile of an attacker gives the attacker’s expendable resources. Among these

resources can be cost, computer and hacking skills, time, attitude, tenacity, perse-

verance, and motives (such as revenge or reputation) that the attacker would expend

when exploiting a vulnerability. Each attack profile has distinct behavioral attribute

values for attacker resources. For example, a corporate espionage agent has more

money compared to a script kiddie who hacks systems for fun with little or no money.

In another example, a corporate insider has more knowledge regarding the enterprise

network topology - a valuable resource - whereas external hackers may have only a ba-

sic understanding of the topology they are attacking. Once we identify an attacker’s

resources, we can assign attribute values to those resources. For example, one way of

assigning relative attributes for a profile who has low level of skill (e.g., 0.2), medium

level of attitude (e.g., 0.6) and high level of time (e.g., 0.8).

Figure 8.1. Network Diagram

8.3.2. Step 2: Creation of Attack Graphs

Once we created the attacker profiles, we develop attack graphs to aid in our

analysis of the risk. For a given network topology as shown in Figure 8.1, we can

derive the sequence of network actions that can be executed to exploit various network

host vulnerabilities or attacks.
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Figure 8.2. An example attack graph with a chain of exploits

Figure 8.2 is an attack graph that represents the network actions that can

be executed to perform different attacks such as Toll Fraud and Dos. Each node

in the graph represents a network action and a path from root to leaf represents a

successful attack. Using this graph, we can learn how intruders culminate a sequence

of state transitions to successfully achieve an attack. For example, an attack path

(see Figure 8.2) can be a sequence of events such as: impersonate the redirection

server, eavesdrop the communication parameters, and finally terminate the session

causing a session termination attack.

8.3.3. Step 3: Assigning Behavior Attributes to Attack Graph Nodes

For a given attacker profile, we can assign the attack graph nodes using a set of

behavior attributes such as computer and hacking skills, time, attitude, tenacity, cost

of attack, and techniques for avoiding detection. For understanding these attributes,

we conducted an online survey that helped us identify the values for attributes such

as skill, time, and attitude for people with varied behavior (Appendix E). Using

the assigned behavior attributes, we construct individual profile attack graphs by

documenting attack paths that different profiles can execute. For example, Figure 8.3

represents attack graphs constructed for two example profiles A and B respectively
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for three attributes of skill, time and attitude. A measure of these attribute values

gives the amount of risk associated with the profile.

Figure 8.3. Attack paths from Figure 8.2 for two example profiles (3

Tuple skill, time, attitude).

8.3.4. Step 4: Risk Computation

In this step, using the set of paths, attributes, and attacker profile, we calculate

a risk level for critical resources. For this, we discuss a Bayesian networks-based

estimation technique to calculate a resource’s aggregated risk value. We mark a

resource as attack prone if this risk value exceeds a predetermined threshold value.

8.3.4.1. Bayesian Networks for Risk Inference. A Bayesian network is a graphical

model for showing probabilistic relationships among a set of variables (representing

nodes) in a graph. Each node is represented by a random variable that is associated

with a set of Probability Distribution Functions. Therefore, the attack graphs can

be modelled as Bayesian Networks by reducing them to causal graphs and associate

the graph nodes with probabilities. Using monitoring or intrusion detection systems,
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protocol state machines and traffic patterns observed between states in the state ma-

chine, the initial subjective beliefs can be formulated. Any deviation from normal

behavior gives the evidence for inferring the posterior probabilities using Bayesian

inference techniques. Using Bayesian statistics, we can quantify the available prior

probabilities or knowledge based on the evidence collected at any node. The evidence

thus collected updates the subjective belief about all other random variables’ (nodes’)

probability distributions. The posterior probability distributions of the graph nodes

represent the updated subjective beliefs of the ability of the attacker to compromise

respective network actions. These updated probability values represent the updated

risk levels associated with the network resources. These posterior probability calcu-

lations are done before and after the exploits are patched to estimate the new risk

level of the critical resources.

Figure 8.4. Representing Conditional Probability.

Figure 8.4 is a simple Bayesian network with three nodes. For this network, the

joint probability distribution function can be shown to be

P (A, B, C) = P (A|B)P (B)P (C|B)

Therefore, for a set of variables in X = X1, X2, ...Xn, the probability distribution

would be

P (X = X1, X2, ...Xn) =

n∏
i=1

P (Xi|parents(Xi))

8.3.4.2. Inference Based on attacker profiles. We can initialize a given profile’s

attack graph using different methods such as expert knowledge, past observations.

In this dissertation, we discuss an initialization technique using a survey (Appendix

E). This initialization helped us assign behavior attribute values. However, in this

chapter, we use an example assignment of values of behavioral resources for different
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profiles. For example, consider the attack-graph of profile A in Figure 8.3 for a

quantifying variable ”attitude” required to carry out the Toll Fraud, Dos, and Session

Termination attacks (represented by nodes N, O, and R).

Figure 8.5. A small Bayesian Causal graph.

Assume each of the nodes of the profile attack graph to be associated with

two states ”yes” or ”no,” and the initialized probability values to the nodes be as

shown in Figure 8.5. With available initial knowledge, we compute the posterior

probability for observed evidence. If an attacker generates an high volume of CAN-

CEL messages represented by node D, then we can calculate the probability that the

attacker can carry out the Toll Fraud attack at node N using P (N |D) as given below.

(25)

P (N |D) = P (N, K|D) + P (N,∼ K|D) = P (N |K)P (K|D) + P (N | ∼ K)P (∼ K|D)

whereP (K|D) = P (K, E|D) + P (K,∼ E|D)

(26) i.e.P (K|D) = P (K|D, E)P (E) + P (K|D,∼ E)P (∼ E)
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P (K|D, E) = P (K, F |D, E) + P (K,∼ F |D, E)

i.e.P (K|D, E) = P (K|D, E, F )P (F ) + P (K|D, E,∼ F )P (∼ F )

(27) (0.48)(0.3) + (0.47)(0.7) = 0.473

andP (K|D,∼ E) = P (K, F |D,∼ E) + P (K,∼ F |D,∼ E)

i.e.P (K|D,∼ E) = P (K|D,∼ E, F )P (F ) + P (K|D,∼ E,∼ F )P (∼ F )

(28) (0.6)(0.3) + (0.17)(0.7) = 0.299

(29) ThereforeP (K|D) = (0.473)(0.2) + (0.299)(0.8) = 0.3338

SimilarlyP (∼ K|D) = P (∼ K, E|D) + P (∼ K,∼ E|D)

(30) i.eP (∼ K|D) = P (∼ K|D, E)P (E) + P (∼ K|D,∼ E)P (∼ E)

whereP (∼ K|D, E) = P (∼ K, F |D, E) + P (∼ K,∼ F |D, E)

i.e.P (∼ K|D, E) = P (∼ K|D, E, F )P (F ) + P (∼ K|D, E,∼ F )P (∼ F )
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(31) = (0.52)(0.3) + (0.53)(0.7) = 0.527

andP (∼ K|D,∼ E) = P (∼ K, F |D,∼ E) + P (∼ K,∼ F |D,∼ E)

i.e.P (∼ K|D,∼ E) = P (∼ K|D,∼ E, F )P (F ) + P (∼ K|D,∼ E,∼ F )

(32) = (0.4)(0.3) + (0.83)(0.7) = 0.701

(33) ThereforeP (∼ K|D) = (0.527)(0.2) + (0.701)(0.8) = 0.6662

Therefore, finally by using Equations (25), (29) and (33), we get

(34) P (N |D) = (0.62)(0.3338) + (0.41)(0.6662) = 0.48

i.e., given that the attacker carries out the network action represented by node

D, the probability the attacker will eventually carry out the Toll Fraud attack repre-

sented by node N is equal to 0.48.

For patch-management purposes, it would be useful to know an exploit’s

actual cause so that it can be patched to prevent the attack in the first place. We can

estimate this by calculating the probability of the occurrence of a given cause based

on observed evidence. For example, in Figure 8.5, if we have evidence regarding a

Toll Fraud attack represented by node N, then we can compute the probability that

the attacker generated CANCEL messages to deluge the proxy represented by node

D using P (D|N). From Bayes theorem we have

(35) P (D|N) =
P (D)P (N |D)

P (N)
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We already have P (N |D) = 0.48 from (8)

andP (N) = P (N, K) + P (N,∼ K) = P (N |K)P (K) + P (N | ∼ K)P (∼ K)

(36) whereP (K) = P (K, D) + P (K,∼ D) = P (K|D)P (D) + P (K| ∼ D)P (∼ D)

We have P (K|D) = 0.3338 using (2) and (5)

andP (K| ∼ D) = P (K, E| ∼ D) + P (K,∼ E| ∼ D)

(37) i.e.P (K| ∼ D) = P (K| ∼ D, E)P (E) + P (K| ∼ D,∼ E)P (∼ E)

whereP (K| ∼ D, E) = P (K, F | ∼ D, E) + P (K,∼ F | ∼ D, E)

i.e.P (K| ∼ D, E) = P (K| ∼ D, E, F )P (F ) + P (K| ∼ D, E,∼ F )P (∼ F )

(38) = (0.32)(0.3) + (0.45)(0.7) = 0.411

P (K| ∼ D,∼ E) = P (K, F | ∼ D,∼ E) + P (K,∼ F | ∼ D,∼ E)

i.e.P (K| ∼ D,∼ E) = P (K| ∼ D,∼ E, F )P (F ) + P (K| ∼ D,∼ E,∼ F )P (∼ F )

(39) = (0.7)(0.3) + (0.49)(0.7) = 0.553

Therefore, P (K| ∼ D) = (0.411)(0.2) + (0.553)(0.8) = 0.5246

and P (K) = (0.3338)(0.1) + (0.5246)(0.9) = 0.50552 =⇒ P (∼ K) = 1 − P (K) =

0.49448
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Therefore, P(N) = (0.62)(0.50552) + (0.41)(0.49448) = 0.5161

Therefore, P (D|N) = 0.1∗0.48
0.5161

= 0.09300 i.e., given the leaf node N in Figure 8.5

has been carried out, the probability that the root node D has been used is 0.093. We

perform this analysis for each node in the attack graph, documenting the posterior

probabilities of all nodes obtained using our analytical model. We validated these

estimated (posterior probability) values using HUGIN DEMO [33]. HUGIN employs

Bayesian inference techniques to create and test belief networks. Depending on the

graph structure and initial values for each node encoded in CPT (Conditional Prob-

ability Tables), HUGIN initializes the graph. For given evidence at a node, HUGIN

re-computes and updates the probability values of all nodes. At any given time, the

new probability values portray the nodes’ current vulnerability level. Our analytical

model takes into account any value of new evidence in the range [0 1]. We do this by

using available prior probabilities depicted in the CPT tables as shown in Figure 8.5

and Bayesian inference along with the conditional probability analysis. Here we show

the proof of our analytical model for extreme values and validate using HUGIN for

observed evidence. Table 8.1 gives the posterior probabilities of all other nodes of the

attack graph represented in Figure 8.5 given evidence at the leaf node N using our

analytical model and HUGIN.

For given evidence that the network action of compromising network re-

sources represented by leaf nodes in the graph is observed, we document the posterior

probabilities of the root nodes of the graph along all the attack paths.

Table 8.2 presents the computed posterior probability values for a given

profile and attack path DN of Figure 8.5. This procedure is performed for all attack

paths and profiles that can achieve an effective attack. Hence, for a given resource,

we can infer all the probable attack paths that can lead to successful exploitation.

Similar to the graph shown in Figure 8.5 and using our analytical model, we can

periodically update the risk estimate for the entire attack graph shown in Figure 8.2.
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Table 8.1. Computed probabilities of nodes in Figure 8.5 using our

analytical model and HUGIN for given evidence of an attack at node

N.

Node Our Analytical Model Hugin

D 0.093 0.095

E 0.1948 0.196

F 0.297 0.306

K 0.412 0.425

O 0.55 0.543

R 0.17 0.199

Table 8.2. Bayesian probability at the root node of attack path given

evidence at the leaf.

Path Skill Time . . .

1 0.182 0.33 0.093

2

...

Consider that the conditional probability tables for the nodes depicted in Figure 8.2

are as shown in tables given in appendix F. With these values in the CPT tables,

the graph can be initialized based on the parent child relationships. The probability

values based on this initialization is given in Table 8.3.

Now, with the initial values established, we can compute the posterior

probability values of all the nodes given evidence at any part of the graph. Example,

for observed evidence that the network actions represented by one or more root nodes

have been compromised, the probability with which the attacker can perform the

network action represented by node P is given in Table 8.4.
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Table 8.3. Initialized values using initial values in CPT tables.

Node Prob. Node Prob. Node Prob.

A 0.4 B 0.63 C 0.34

D 0.424 E 0.51 F 0.3180

G 0.4192 H 0.3537 I 0.4826

K 0.5058 L 0.3594 M 0.5232

N 0.3971 O 0.3409 R 0.5474

S 0.5203 T 0.5477

Table 8.4. Probability of exploitation of node N.

Node Our Analytical Model

A 0.6571

B 0.3407

C 0.3408

A&B 0.3427

B&C 3406

A&C 003428

A&B&C 0.3426

8.3.4.3. Relating Risk, Behavior and Penetration. As we described before, we be-

lieve that sequence of network actions carried out by an attacker relates to social

behavior. We attempt to derive the relation between vulnerability of a given resource

and the network penetration an attacker can achieve in exploiting the network. The

penetration represents the depth of the graph the attacker can achieve using his avail-

able resources. This can be computed by initializing the probability of each node in

each attack path and inferring the posterior probability given evidence at a node,

usually the leaf node i.e. the node representing the final network action for a success-

ful attack. Figure 8.6 is a part of an attack graph of Figure 8.2 and the probabilities
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of the nodes are represented using Conditional Probability Tables (CPT). The CPT

tables give the probability of nodes given the value of its parents. Assume each node

to be in one of two states, either yes or no.

Figure 8.6. Example sub-attack graph from Figure 8.2

For inferring network penetration, we consider five nodes (B, G, L, R and

S) and three profiles of attack behavior. These profiles are Opportunists-people with

criminal behavior (e.g., Corporate Insiders- attackers having access to network re-

sources, Corporate Espionage - spies), Hackers-people with hacking behavior, and

Explorers-people who are liberal minded and believe in open doors. For the five

nodes in analysis, assume that the CPT tables would be as shown in Table 8.5 and

Table 8.6 for the chosen three profiles. In reality, initialisation of CPT tables is carried

out by analyzing a statistical data from an interview or a survey (Appendix E).

The values reported within the CPT tables describe the behavior of each

profile. For example, those who fall within the profile of opportunists have more pro-

found knowledge of the corporate network topology than others who belong to the

other two profiles. Thus, the risk opportunists pose is greater than the risk posed
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Table 8.5. Probability of nodes B, G, L of Figure 8.6 given their

parents (B does not have a parent).

P(B) P(G) given P(G) given P(L) given P(L) given

Profile B=yes B=no G=yes G=no

Opportunities 0.8 0.75 0.82 0.85 0.7

Hackers 0.6 0.7 0.31 0.51 0.46

Explorers 0.4 0.52 0.36 0.48 0.32

Table 8.6. Probability of nodes R and S of Figure 8.6 given their parents.

P(R) given P(R) given P(S) given P(S) given

Profile L=yes L=no L=yes L=no

Opportunities 0.71 0.83 0.69 0.77

Hackers 0.3 0.57 0.52 0.63

Explorers 0.62 0.41 0.44 0.62

by the other profiled attackers. The probabilities of hackers being a risk are under-

standingly less compared to opportunists because of their limited resources. Liberals

possess the least skill, time, and attitude (Appendix E); hence, are of least risk to the

network. Thus, the probability that they will be successful is considerably lower than

those of the other categories. In Figure 8.6, for inferring the network penetration,

we compute the posterior probabilities of the nodes for evidence that an attacker

would be able to reach the leaf node and successfully executes an attack. These

posterior probabilities of the nodes represent a measure of the attacker’s ability to

compromise the network action represented by them. Using these posterior proba-

bilities, the network penetration can be directly inferred. For example, if evidence

regarding the happening of the network action represented by node S is observed,

then nodes B, G, L, and R are directly affected. The inferred posterior probabilities
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of the nodes directly affected by the observed evidence using our analytical model

(see Section 8.3.4.2) are given in Table 8.7.

Table 8.7. Bayesian Inference for directly affected nodes due to evi-

dence at node S.

Profile P(B) P(G) P(L) P(R)

Opportunities 0.8002 0.7609 0.7975 0.7343

Hackers 0.5991 0.5416 0.4395 0.4513

Explorers 0.3980 0.4112 0.3102 0.4751

The risk values shown in Table 8.7 can be plotted against network pene-

tration (level number of nodes B, G, L, and R from Figure 8.6) of the attacker.

Figure 8.7. Relating risk, behavior and penetration for an attribute

of all profiles.

Figure 8.7 represents the relationship between risk, behavior, and network

penetration for the three profiles. In reality, the CPT values will be a range instead

of a single value [47]. Assume that the conditional probability tables representing

a range of values for the five nodes in analysis (B, G, L, R and S) of Figure 8.6

are as given in Table 8.8 and Table 8.9 (α/β for each node represents the range of

probabilities in which the values of all attributes of the profile extend).
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Table 8.8. Given three profiles, range of probabilities of nodes B, G

and L of Figure 8.6 given their parents.

P(B) P(G) given P(G) given P(L) given P(L) given

Profile B=yes B=no G=yes G=no

Opportunities 0.8/0.92 0.75/0.87 0.82/0.94 0.85/0.97 0.7/0.82

Hackers 0.6/0.75 0.7/0.85 0.31/0.46 0.51/0.66 0.46/0.61

Explorers 0.4/0.65 0.52/0.71 0.36/0.56 0.48/0.73 0.32/0.67

Table 8.9. For given three profiles, range of probabilities of nodes R,

S of Figure 8.6, given their parents.

P(R) given P(R) given P(S) given P(S) given

Profile L=yes L=no L=yes L=no

Opportunities 0.71/0.83 0.83/0.94 0.69/0.82 0.77/0.89

Hackers 0.3/0.45 0.57/0.72 0.52/0.67 0.63/0.78

Explorers 0.62/0.84 0.41/0.63 0.44/0.68 0.62/0.81

For the values of the nodes given in the above conditional probability tables,

we can infer the posterior probability range of all the profiles. Table 8.10 represents

the inferred probability range for nodes B, G, L, and R for observed evidence at node

S.

Table 8.10. Inferred probability range of the three profiles for di-

rectly affected nodes B, G, L, and R.

Profile P(B) P(G) P(L) P(R)

Opportunities 0.8/0.92 0.76/0.874 0.7975/0.974 0.7343/0.835

Hackers 0.5991/0.75 0.57/0.75 0.45/0.61 0.43/0.55

Explorers 0.3980/0.649 0.4112/0.655 0.3102/672 0.4751/0.771
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From Table 8.10, we infer that for all attributes, the probability of node B

falls in the range [0.8, 0.92] for the opportunists and within the range [0.398, 0.649]

for the explorers. For the given profiles, the relation between the risk, behavior and

penetration looks as in Figure 8.8.

Figure 8.8. Relation between risk and network penetration

We can extrapolate the relationship depicted in Figure 8.8 for each of the

three profiles and attributes, as shown in Figure 8.9. The relationships shown be-

tween behavior, risk, and network penetration suggest that certain behaviors overlap

regardless of the type of threat.

Figure 8.9. Relation between risk, behavior and network penetration
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8.3.5. Step 5: Optimizing the Risk Level

Risk management is frequently conducted for limiting risk of network devices.

This risk management involves processes such as patching exploits or vulnerabili-

ties, changing network configurations (e.g., moving the firewall to another location in

the topology, changing the firewall rules, or deploying intrusion detection systems).

Managing risk (e.g., patching a host vulnerability) at one part of a network affects

the amount of risk at other parts. Our risk computation scheme (steps outlined in

Section 8.3.1 - Section 8.3.4) can be performed repeatedly to obtain an optimum risk

value.

Updating Risk after patching: Consider the attack graph represented in Figure 8.5.

From Section 8.3.4.2, we have used Bayesian inference techniques to infer the risk

associated with a given profile. Given that the root node D is exploited, we inferred

the Toll Fraud attack represented by node N will be carried out with a probability

of 0.48 (Equation (34)). And also, we inferred that, given that the leaf node N was

exploited, the probability that the root node D was used as a starting point for the

attack path is 0.093. Now, consider that we patch the proxy so that an attacker would

not be able to carry out the Toll Fraud attack (node N). By doing this, the attribute

values {skill, time, and attitude} are considerably reduced for node N. After reducing

the attribute values at node N, consider that the initial values of the nodes for the

same attribute value ”attitude” are as shown in Figure 8.10.

Now, with these values, we compute the new probability of Node N using

Bayesian inference techniques. Therefore, using Equations (25)- (34), we can derive

the new probability that the Toll Fraud attack at node N can be exploited given that

the attacker has exploited the root node D is given to be 0.0066. In addition, with

the above values of nodes and Equations (35)- (39), we can derive the probability

that the root node D was used given that the leaf node N was exploited is given to
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Figure 8.10. Modified attack graph of Figure 8.6 after patching N.

be 0.088. In this way we dynamically infer the risk and the new values represent the

updated risk levels for the observed evidence.

Inferring Network Penetration after patching: Network penetration also changes

as a result of patching. Consider we patch node R so that the attacker would not

be able to carry out the session termination attack. When a node is patched, the

probability values of nodes B, G, L and R for opportunists (such as corporate insiders

and espionage agents) would be same as shown in Table 8.5 and Table 8.6 because

patching does not affect their ability to penetrate. However, the values for two profiles

of hackers and explorers change. Assume that the changed probability values for the

two profiles Hackers and explorers are as given in Table 8.11.

Now with the above values after patching node R, the posterior probabilities

of nodes can be re-computed to result in updated values. These updated values are

different for the two profiles of hackers and explorers as shown in Table 8.12.

From Table 8.12, we can observe that the posterior probabilities of the

profiles of hackers and explorers are reduced, thus, decreasing the risk posed by them.

We can plot the above values of risk with the network penetration (level number of
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Table 8.11. Probability of node R (Figure 8.6) given its parents

after patching local over flow vulnerability for the two profiles that are

affected by the patching process.

P(R) given P(R) given

Profile L=yes L=no

Opportunists 0.71 0.83

Hackers 0.19 0.24

Explorers 0.01 0.005

Table 8.12. Updated node values due to evidence at node R after

patching local over flow vulnerability at node Q.

Before Patching After Patching

Profile P(B) P(G) P(L) P(R) P(B) P(G) P(L) P(R)

Opportunists 0.8 0.76 0.79 0.73 0.8 0.76 0.79 0.73

Hackers 0.599 0.54 0.43 0.45 0.599 0.54 0.43 0.218

Explorers 0.398 0.41 0.31 0.475 0.398 0.41 0.31 0.022

nodes B, G, L, and R from Figure 8.6) the profiles can attain. Figure 8.11 presents the

attainable network penetration of the three profiles after patching the local overflow

vulnerability at node Q.

It can be clearly seen that a marked difference is observed in the case of

profile of a hacker. This profile attacker is limited to a network penetration of level

3 when we patched node R, whereas when there was no patching involved, hackers

had a network penetration until level 4 (see Figure 8.7). The network penetration of

the other profile, Opportunists, is unaffected by patching in this instance (e.g. Cor-

porate Insiders have inside access even after patching). System administrators can,

however, limit network penetration possible by the people having opportunists’ pro-

file by formulating policy rules that restrict access to individuals who have displayed
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Figure 8.11. Network penetration of all the profiles after patching

the local overflow vulnerability

attributes similar to a opportunist. For example, a policy rule advocating an extra

line of defense may limit the access to the network by the opportunists and, thereby,

limit how deeply they can penetrate the network and, thus, reduce risk presented by

individuals who fit this profile.
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CHAPTER 9

VOIP CALL WEB INTERFACE

The VSD discussed in Chapter 4 is a passive SIP server that analyzes incoming

VoIP calls for spam behavior. If the call is identified to be spam, the call is blocked and

is not forwarded to the callee. Alternatively, if the call is designated as legitimate,

it is forwarded to the callee. It can be useful for the callee if an interface can be

provided that the callee can use for keeping track of the previous calls. To realize this

objective, we have built a web-interface to the VSD. Using this interface, the callee

would be able to

• 1. Keep track of all the allowed, filtered, blocked calls.

• 2. Configure set of legitimate and spam callers.

• 3. Configure customized filter options

Figure 9.1 represents the login screen for the web-interface. Here, a registered

user with VSD can use his username and password for logging into the interface.

Figure 9.2 represents the call-lists provided by the interface. The call lists that are

shown are the filtered calls (calls that have been designated as spam using adaptive

learning), blocked calls (calls that have been blocked based on the callee’s blacklist),

and allowed calls (calls that have designated as legitimate and forwarded to the callee).

The interface allows easy navigation and updating of call list records if in case the

callee intends to delete them.

Figure 9.3 represent the list of callers encoded into white and black list. Here,

the callee can configure his own set of wanted and unwanted people from whom they

would like to receive and resent calls respectively. The callers in the blacklist are

directly blocked at VSD and the call records are updated in the blocked calls list.
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Figure 9.1. Login screen for the web-interface

Figure 9.2. Previous call list of callee
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Alternatively, the callers in the whitelist are directly forwarded to the callee and the

call records in the allowed calls list is updated.

Figure 9.3. Callee’s callers List

Figure 9.4 represents a list of parameters the callee or the filter administrator will

be able to configure. These list of parameters include threshold values, set of spam

users, hosts, and domains. Depending upon these customized parameter values, the

VSD updates the spam and legitimate behavior of the call participants.

Therefore, using the interface, the callee can configure his own customized filtering

preferences. Depending upon the preferences, VSD learns the behavior of the callee

himself and the callers calling the callee.
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Figure 9.4. Configuration parameters
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CHAPTER 10

CONCLUSION

The research presented in this dissertation discusses models for identifying un-

wanted calls coming into a VoIP network. In this chapter, we first summarize all the

solutions presented in the previous chapters. Next, we discuss the applicability of the

solution in limiting unwanted voice calls. In addition, we present limitations of the

presented solution and suggestions to overcome them. Finally, we end the chapter by

describing the problems we faced during the course of this research work.

10.1. Summary

VoIP has become a key enabling technology for transmitting voice packets on the

open IP network. In addition, the Internet being an open network virtually elimi-

nates geographic limitations for placing calls. However, one challenge that the VoIP

networks face is the problem of unwanted calls. These calls can be SPIT calls from

spammers (unauthorized callers) or unwanted calls from legitimate callers who have

interacted with the callees in the past. For limiting these unwanted calls, we discussed

an unwanted call detection framework that analyzes incoming voice calls. This frame-

work involves a VoIP spam detector for detecting SPIT calls, a nuisance detector for

pro-actively inferring the nuisance of incoming calls, and an automatic threshold cal-

ibration mechanism for fast and adaptive learning of the mutual behavior between

the caller and the callee.

The VoIP spam detector includes a multi-stage adaptive model based on the

social notions of trust and reputation of the caller with respect to the callee. The

trust model involves a Bayesian learning mechanism for updating history and re-

computing the new trust values based on past transactions. The reputation model

involves a Bayesian Network mechanism for adaptively inferring the reputation of the
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caller domain. For this inference, the model takes into account the network topology

and draws inferences based on the parent child relationships that exist between the

nodes of the topology graph. VSD also takes into account the domain level trust

of the caller with respect to all the callee’s community members. Using these trust

and reputation models, the authenticity of the caller is established, and the VSD can

make a decision whether to forward the call or quarantine it.

The calls that are forwarded by the VSD are analyzed by the Nuisance De-

tector for inferring the nuisance associated with them. This nuisance estimation is

based on callers behavior, the callee’s tolerance and presence, and the social close-

ness between the caller and callee. We presented a statistical model for inferring the

caller’s behavior and the callee’s tolerance. In addition, we discussed a model for

inferring the social closeness of different callers calling a callee. Using the inferred

social closeness, we divided the callers making calls to the callee into four groups

• Socially close members

• Socially near members

• Opt-ins

• Opt-outs

The nuisance detector uses the inferred social closeness of the callers along with

other behavioral patterns (such as periodicity of the caller and reciprocity of the

callee) to compute the nuisance of voice calls from those callers. Inferring the nui-

sance of incoming voice calls helps in limiting unwanted calls from reaching the callee.

VSD and ND analyze and learn the behavior of callers over a period of time. For

their optimum performance, it is imperative that the filters also take into account the

callees’ preferences for quarantining incoming calls. However, due to rapidly changing

preferences of callees’, it is seldom observed that the filters’ performance is not opti-

mal. To overcome this limitation, we discussed an automatic calibration mechanism

using Receiver operating Characteristics Curves that can be used for dynamically

updating the thresholds of the VSD and ND for every call processed by them. The
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automatic calibration mechanism aids the VSD and ND to quickly converge to their

optimum threshold values thereby enabling both of them to deliver an optimum per-

formance.

The VSD and ND learn and update knowledge about spam and legitimate

callers from time to time. During this learning period, it is possible that the VSD

and ND might block calls from genuine callers and forward calls from spammers.

For reducing these false alarms, the detectors can benefit by integrating knowledge

about general calling patterns of the callees inside the callee-domain. To present these

calling patterns, we discussed a human/social dynamics that exist between communi-

cating individuals in the way calls are generated, handled, and received. We believe

that this dynamics can be used for detecting and filtering unwanted calls. To present

this dynamics, we first enumerated normal calling patterns that is observed between

callees and callers. Next, we discussed deriving some call-constructs (using opera-

tions on caller-callee communication matrices) that can be used for determining the

legitimacy of calls. Finally, we discussed how the calling patterns and operations can

be grouped to provide solutions for some existing IP telephony problems. The VSD

and ND can integrate this dynamics for fast and adaptive learning, and therefore,

result in minimal false alarms.

The VSD and ND are used for filtering unwanted calls to the end callee. In

addition to being unwanted, these calls can be a threat to network infrastructure.

Attackers can target network components by sending malicious calls in an attempt

to compromise those components. In this context, it would be imperative to guard

against malicious calls and frequently conduct vulnerability and risk analysis of net-

work devices. For this analysis, we discussed a network level risk management tech-

nique of prioritizing end host vulnerabilities by computing risk levels associated with

the network devices. The prioritization scheme uses a Bayesian network probabilistic

model for inferring the updated risk levels given evidence (e.g., evidence of an attack,

186



evidence of an applied patch). Using the computed risk levels, suitable security poli-

cies can be formulated for minimizing the risk and increasing the security of network

devices.

10.2. Applicability of the Presented Solution

The solutions we discussed in this dissertation collectively infer the possibility of

the call to be unwanted. While the VSD and ND are used for limiting unwanted calls

to an end callee, the risk management mechanism can be used for minimizing the

risk due to those unwanted calls. The spam detection framework is primarily used

for detecting calls from spam and legitimate callers, thus, establishing the callers

authenticity. The calls from authenticated callers are then processed by the ND for

pro-actively determining the eagerness of the callees in receiving calls from that caller.

The detection accuracy of VSD and ND can be optimized using automatic calibra-

tion of filter parameters, and knowledge integration of individuals communication

behavior. Integrating these models into filtering processes helps reduce the number

of incoming spam calls.

The VSD and ND can be deployed at any level of the network e.g. at the end

IP phone level or in the central call processing devices such as proxy servers and IP

PBXs. At any level, the VSD and ND learn and update their knowledge for limiting

unwanted calls to callees inside their influence-domain. However, it is often observed

that central VoIP devices process a large volume of call traffic when they are deployed

at higher network level e.g., a service-provider. Here, it is a challenge not to burden

the central devices with resource intensive operations for determining the legitimacy

of the incoming calls during time-restrictive transactions e.g., call-setup. In this case,

one way of easy integration of our proposed solutions is to perform filter operations

either during the call or after the call is terminated. As majority of our filter op-

erations are driven by callees feedback, the computations can be performed and the

results be logged for examining the next incoming calls from that caller.

All the solutions discussed in the dissertation present models for identifying
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unwanted calls on a VoIP network. However, we found some limitations in the appli-

cability of the discussed solutions.

10.3. Limitations

We have observed some limitations in different models we have discussed in this

dissertation. In this section, we present these limitations and make some suggestions

that can improve the accuracy of filtering processes.

1. VoIP Spam Detection Here are the limitations to the VoIP spam detection

framework presented in chapter 4.

• Identity : The VSD presented in Chapter 4 computes the probability of the

incoming call to be spam based on previous history between the caller and the

callee. For computing this spam level, VSD infers the previous history of the

calling source (calling user, calling host, and calling domain). The callers

with more previous spam history have a higher chance of getting filtered

at the VSD. However, if the spammers frequently change their identity, it

would be difficult for the VSD to identify the spammers, and therefore, some

of the spam calls get forwarded to the callees until the VSD has sufficient

knowledge to filter calls from them. For reducing the impact due to frequently

identity changing spammers, the VSD needs to be integrated with identity

establishment algorithms. For example, the VSD can be integrated with the

identity establishment mechanism discussed in [80] for maintaining the spam

history.

• Bayesian Networks: During reputation analysis, VSD constructs a domain

proxy graph and derives the reputation of the call-source using Bayesian

Inference techniques. In this dissertation, we have provided an example

proxy graph with 4 nodes and derived Bayesian equations for inferring the

reputation values, However, if the VSD is deployed at a level where the
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domain proxy graph constitutes large number of nodes (more number of

domain proxies), the derivation of reputation inference equations can be a

complex task. In this context, our framework can use the Bayesian inference

computation methodology defined in [8].

2. Pro-active Nuisance Computation

• Presence: In this chapter, we discuss integrating presence information for

pro-actively inferring the callees eagerness in receiving the incoming voice

call. To present the applicability of presence information, we discussed an

example of Personal Presence information using cell-phone calling patterns.

While the personal presence information provides considerable context in-

formation, ND can largely benefit by incorporating additional information

from more presence factors such as location and time. More fine classifica-

tion or different types of presence information can lead to an increase in filter

performance.

10.4. Problems Faced

During our research, we encountered few problems that I would like to mention.

Majority of the problems were during the data collection and analysis stages.

Real-time Data : VoIP is an emerging technology and is not yet vastly deployed.

There are only a few service providers that have started to provide VoIP services to

its customers. As VoIP is primarily used as a technology for voice communication,

the underlying data always constituted private and confidential information. It was

an impossible task for us to convince the service providers and get real-time data for

performance evaluation.

For some experiments related to nuisance computation, we approached different

individuals at our university for real-time cellular calling patterns. Most individuals

were reluctant to provide us with call-detail records that give us temporal and spatial

information. Finally, we could succeed to convince few of them to give us real-time
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cellular calling patterns only after elaborate discussions and showing proof of certifi-

cation from human rights organizations.

Result Validation: For few experiments (e.g., in chapter 5) discussed in this disserta-

tions, there are no available benchmarks for performance comparison. This is mainly

due to fact that the work is an entirely new area of research. In this case, the only

available option for us was to meet with each individual and get his feedback. As

most of our research involves filtering unwanted calls, the notion of an ”unwanted”

call depended on individual perception too. In some circumstances, it was difficult

to explain the individual the motivation behind the research and get ”appropriate”

feedback e.g., difference between personal relationships and communication relation-

ships.

For few other experiments (e.g., chapter 8) related to hacking behavior, risk,

and penetration, it was always hard to get a sincere feedback from the individuals.

Here, the individuals were not forthright and always had ethical answers for hacking

related questions. In this case, we had to tweak the questions and get appropriate

feedback.
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APPENDIX A 
 

VSD TERMINOLOGY 



• A caller/calling party is a person/entity generating a call.

• A callee/called party is a person/entity receiving a call.

• A call participant can be user, host, domain, proxy in the path, etc.

• Spaminess: Amount of spam behavior or the associated spam history. This

is given by the number of past spam calls.

• Legitimateness: Amount of valid behavior or the associated non-spam his-

tory. This is given by number of past legitimate calls.

• n: Number of call participants in an incoming call. n ∈ N (set of natural

numbers).

• i : Refers to the ith call participant.

• NS : Total number of spam calls processed by VSD. NS ∈ N.

• NV : Total number of legitimate calls processed by VSD. NV ∈ N.

• Ni,s: Spaminess of a call participant i. Ni,s ∈ N.

• Ni,v: Legitimateness of a call participant i. Ni,v ∈ N.

• Ci: A call set of participant i. The call set Ci for participant i is given by

{Ni,s, Ni, v}.
• C : Set of call sets of all participants. C = {C1, C2...Cn}.
• Ni,B: Total calls from a participant i. Ni,B is the summation of spaminess

and legitimateness of the participant, i.e., Ni,B = Ni,s + Ni,v. Ni,B ∈ N.

• m : Number of callee community members. m ∈ N.

• uk: kth member in the callee’s community such that 1 ≤ k ≤ m and k ∈ N.

• Nd
i,s: Spaminess (total spam calls) of a call participant i observed by callee’s

domain. The superscript d represents the domain-wide scope of i. Nd
i,s ∈ N.

• Nd
i,v:Legitimateness (total valid calls) of a call participant i observed by

callee’s domain. Nd
i,v ∈ N.

• Ti: Trust level of a call participant i. Ti ∈ [0 1].

• Ti,t: Trust level of a call participant i at time t . Ti,t ∈ [0 1].

• T : Trust of an incoming call. T ∈ [0 1].
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• D : The distrust of an incoming call . D ∈ [0 1].

• Di:The distrust level of a call participant i. Di ∈ [0 1].

• Dd:The distrust of an incoming call observed by callee’s community. Dd ∈
[0 1].

• NCF :Number of spam or valid calls that can move current distrust level DC

to a final distrust level DF . NCF ∈ N.

• R: Reputation of the calling party. R ∈ [0 1].

• pc:Spam probability of an incoming call based on trust and reputation. pc ∈
[0 1].

• Y : The callee’s tolerance (threshold) towards the spam behavior of the in-

coming call. Y ∈[0 1].

• F : Forward or Filter decision. This decision F can be simple Boolean function

resulting in True (filter the call) or False (forward the call). F ∈ {True,

False}.
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APPENDIX B 
 

NAIVE BAYESIAN PROBABILISTIC MODEL FOR COMPUTING SPAM PROBABILITY 
OF CALL 



Given an instance M for the incoming call and values of n1, n2, n3...nn to the fea-

ture variables, the probability of the instance M to have a classification CL can be

computed using Bayes theorem.

P (CL = clk|M = n) = P (CL=clk)P (M=n|CL=clk)
P (M=n)

Using a Nave Bayesian classifier (Good[29], SAHAMI et al [74]) that assumes

that every feature is conditionally independent of all other features, we have

P (M = n|CL = clk) =
n∏

i=1

P (Mi = ni|CL = clk)

Therefore,

P (CL = clk|M = n) =

P (CL=clk)

n∏
i=1

P (Mi = ni|CL = clk)

P (M=n)

From Bayes theorem, we also have

P(M=n) =
∑

k

P (M = n|CL = clk)P (CL = clk) for k different classifications of the

instance M.

Therefore, P (CL = clk|M = n) =

P (CL=clk)

n∏
i=1

P (Mi = ni|CL = clk)

∑
k

P (M = n|CL = clk)P (CL = clk)

We use the above Nave Bayesian Probabilistic model for inferring spam be-

havior of incoming calls. The model is used for classifying the incoming call instance

into two different classifications of call being spam or the call being legitimate.

For this, we define the features of call instance to be the calling user, calling

host and call-generating domain. Each of the above call features is independent to

others.

From the above equation, the probability of the call being classified as spam is given by
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P (CL = spam|M = n) =

P (CL=spam)

n∏
i=1

P (Mi = ni|CL = spam)

∑
ck∈{spam,legitimate}

P (M = n|CL = clk)P (CL = clk)

(40)

P (CL = spam|M = n) =

P (CL=spam)

n∏
i=1

P (Mi = ni|CL = spam)

P (CL=spam)

n∏
i=1

P (Mi = ni|CL = spam) + P (CL = legitimate)
n∏

i=1

P (Mi = ni|CL = legitimate)

Each term in the above equation can be computed by logging the feedback

from all the called parties for all the forwarded calls to them. In Equation (40),

P(CL=spam) represents the probability of spam calls processed by the VSD and it

can be estimated from the logged history.

i.e. P(CL=spam) = TotalSpamCalls
T otalSpamCalls+TotallegitimateCalls

= NS

NS+NV
where NS and NV rep-

resent the total number of spam and legitimate calls seen before respectively.

Similarly, P(CL=legitimate) = TotalLegitimateCalls
T otalSpamCalls+TotallegitimateCalls

= NV

NS+NV

However, for negligible NS compared to NV (i.e., when the number of observed

previous spam calls is negligible compared to legitimate calls), we have P (CL =

legitimate) → 1. In this case, every incoming call would be initialized to a high

legitimate probability when substituted in Equation (40). Therefore, in this context,

few spam calls go unnoticed resulting in false negatives.

Similarly, for a negligible NV compared to NS, (i.e., when the number of

observed previous legitimate calls is negligible compared to spam calls), we have

P (CL = spam) → 1. In this case, every incoming call would be initialized to a high

spam probability when substituted in Equation (40). In this context, legitimate calls

get filtered at the spam filter.

Therefore to reduce the influence of above two terms in call classification, we

compute those terms based only on the histories of the participating entities of the
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call such as the calling user, calling host and call-generating domain i.e.

P(CL=spam) = TotalSpamCallsfromcallparticipants
T otalSpamCallsfromcallparticipants+TotallegitimateCallsfromcallparticipants

and P(CL=legitimate) = TotalLegitimateCallsfromcallparticipants
T otalSpamCallsfromcallparticipants+TotallegitimateCallsfromcallparticipants

Therefore, P(CL=spam) =

n∑
i=1

Ni,s

n∑
i=1

(Ni,s + Ni,v)

andP (CL = legitimate) =

n∑
i=1

Ni,v

n∑
i=1

(Ni,s + Ni,v)

Also, probability for a call participant ni to be spam = P (Mi = ni|CL = spam) =

Ni,s

Ni,s+Nv
and probability for a call participant ni to be legitimate = P (Mi = ni|CL =

legitimate) =
Ni,v

Ni,s+Nv

Therefore, we have

P (CL = clk|M = n) =

(

n∑
i=1

Ni,S

n∑
i=1

(Ni,S + Ni,V )

)(

n∏
i=1

Ni,S

Ni,S + Ni,V
)

(

n∑
i=1

Ni,S

n∑
i=1

(Ni,S + Ni,V )

)(

n∏
i=1

Ni,S

Ni,S + Ni,V

) + (

n∑
i=1

Ni,V

n∑
i=1

(Ni,S + Ni,V )

)(
n∏

i=1

Ni,V

Ni,S + Ni,V

)
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APPENDIX C 
 

BAYESIAN NETWORK PROBABILISTIC MODEL FOR DERIVING REPUTATION 
INFORMATION 



A Bayesian network is a graphical model for showing probabilistic relationships

among a set of variables in a Directed Acyclic Graph (DAG). A Directed Acylic

Graph contains a set of nodes and directed links between them where each node is a

variable and the links connecting two nodes in a DAG are the dependencies existing

between those two variables. For an n node graph represented by n random variables

V1, V2, V3..., Vn, the probability distribution function would be equal to

P (V1, V2, V3..., Vn) = P (V1)P (V2|V1).....P (Vn|V1...Vn−1)

However, the values of a node are conditioned only on its parents

Therefore, P (V1, V2, V3..., Vn) =
n∏

i=1

P (Vi|parents(Vi))

where every joint probability P (Vi|Vj) can be expanded into sum of two joint proba-

bilities to include the parent of a variable and can be shown as

P (Vi|Vj) = P (Vi, Vk|Vj) + P (Vi,∼ Vk|Vj) for parent node Vk of Vi and i,j,k ∈ 1..n.

A conditionalized version of chain rule is given by

P (Vi, Vk|Vj) = P (Vi|Vk, Vj)P (Vk|Vj) for i,j,k ∈ 1..n.

The above chain rule can be used for deducing the posterior probability of a

random variable for observed evidence. IfP (Vi) for i =1..n represents the previous

subjective belief of a variable Vi, then P (Vi|Vj) represents the posterior probability of

Vi for an observed evidence at Vj i.e., the observed evidence at node represented by

variable Vj can be propagated throughout the graph by computing P (Vi|Vj) for i 
= j

and i,j ∈ 1..n.

For a given directed graph represented in Figure C.1, assume that the nodes

Figure C.1. Network Topology graph of domain proxies

represent the proxy nodes of domains that help in routing the call. Calls are generated
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from different users in different domains to an end user in the domain X1 for which

VSD acts as a spam filtering device. Assume P (Xi) represents the reputation (initial

subjective belief) of domain Xi for i=2..4 with respect to the VSD. Each value P (Xi)

for i = 2..4 ranges between 0 and 1.

Assumptions: The random variables associated with these proxy nodes are inde-

pendent. The reputation of a given domain Xi for i = 1..4 does not depend on the

reputation of other domain Xj for j = 1..4 and i 
= j. For observed evidence that a

call from domain X4 to X1 is spam (when the end user gives a feedback to the VSD

that the received call is spam), the updated reputation of domain X4 with respect to

VSD can be inferred by P (X1|X4). Using the conditionalized version of chain rule,

P (X1|X4) = P (X1, X2|X4)+P (X1,∼ X2|X4) = P (X1|X2)P (X2|X4)+P (X1| ∼ X2)P (∼ X2|X4)

where

P (X1|X2) = P (X1, X3|X2)+P (X1,∼ X3|X2) = P (X1|X2, X3)P (X3)+P (X1|X2,∼ X3)P (∼ X3)

and P (X1| ∼ X2) = P (X1, X3| ∼ X2)+P (X1,∼ X3| ∼ X2) = P (X1| ∼ X2, X3)P (X3)

+

P (X1| ∼ X2,∼ X3)P (∼ X3)

and P (X3) = P (X3, X4) + P (X3,∼ X4) = P (X3|X4)P (X4) + P (X3| ∼ X4)P (∼ X4)
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APPENDIX D 
 

ANALYTICAL MODEL FOR DERIVING RELATION BETWEEN AMOUNT OF SPAM 
AND SPAM DETECTION CAPABILITY 



To determine the relationship between the spam detection capability for varying

amounts of spam, assume that the filter processes x% and y% of spam in a given time

t. Assume that in both the cases the filter processes a total of t calls. Assume also

that x < y.

Now, for a call with n call participants, the distrust D is given by

D =

(

n∑
i=1

Ni,S

n∑
i=1

(Ni,S + Ni,V )

)(

n∏
i=1

Ni,S

Ni,S + Ni,V
)

(

n∑
i=1

Ni,S

n∑
i=1

(Ni,S + Ni,V )

)(

n∏
i=1

Ni,S

Ni,S + Ni,V

) + (

n∑
i=1

Ni,V

n∑
i=1

(Ni,S + Ni,V )

)(
n∏

i=1

Ni,V

Ni,S + Ni,V

)

from

Equation (1) in Chapter 4.

For both the amounts of spam, the factors

n∏
i=1

Ni,s

Ni,s + Ni,v
and

n∏
i=1

Ni,v

Ni,s + Ni,v

are constant as these two factors depend upon the spaminess and legitimateness of

individual call participants rather than the number of spam and legitimate calls pro-

cessed by the spam filter.

Therefore for x% of spam, distrust D is given by xa
xa+(t−x)b

where

n∑
i=1

Ni,s

n∑
i=1

(Ni,s + Ni,v)

= x (i.e, x% of calls are spam calls among the total calls), and a, b are assumed to
n∏

i=1

Ni,s

Ni,s + Ni,v
and

n∏
i=1

Ni,v

Ni,s + Ni,v
respectively. Similarly for y% of spam, the distrust

is given by ya
xa+(t−y)b

since

n∑
i=1

Ni,s

n∑
i=1

(Ni,s + Ni,v)

= y (i.e., y% of calls are spam calls), and

a,b are same as above.
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Now, xa
xa+(t−x)b

< ya
ya+(t−y)b

=⇒ xya + xb(t− y) < xya + yb(t− x)

=⇒ x(t− y) = y(t − x)

=⇒ x < y

Conversely, if x < y , then xa
xa+(t−x)b

< ya
ya+(t−y)b

i.e., the distrust for a call

for less previously observed spam(x%) by the VSD is less than distrust for the call

for more previously observed spam (y%). It is easy to filter out spam calls with

more spam behavior or distrust than the one’s with less spam behavior. As x < y,

therefore, it can be understood that more the amount of spam, easier to detect it.
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APPENDIX E 
 

SURVEY OF BEHAVIOR PROFILES 



E.5. Introduction

To better understand different types of attack behavior and to estimate the be-

havioral resources, we conducted an online survey. The details of the survey can be

found at [19]. The prime objectives of conducting the survey are to:

(1) Assign attributes for nodes in the attack graph : The nodes of the attack

graph given in Figure 2 of Chapter 8 represent different network actions for

exploiting a given vulnerability. Different profiles have different amounts of

resources for exploiting the network action. Establishing attribute values for

resources of different profiles enables us to infer profile capabilities.

(2) Analyze the relationship between behavior and network actions : Different be-

havior profiles have capabilities of exploiting different network actions based

on their available resources. Studying the relationship between behavior pro-

files and network actions helps in reducing profile based attacks.

(3) Understand the relationship between risk, network penetration and user pro-

files : Network penetration represents the depth an attacker can achieve with

his available resources in the attack graph. Different behavior profiles have

varied network penetration, and thus cause different types of risk to the un-

derlying network. Understanding the relation between the amount of risk and

network penetration for different behavior profiles aids in risk management

(e.g., penetration testing and patch management).

E.6. Participants

The survey of behavior profiles was organized among a set of participants with

computer knowledge ranging from novices to experts. A total of 59 participants took

c©[2007] IEEE. Reprinted with permission from - R. Dantu, P. Kolan, R. Akl, K. Loper, ”Classi-

fication of Attributes and Behavior in Risk Management Using Bayesian Networks”, In Proceedings

of Intelligence and Security Informatics (ISI) May 2007.
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the survey.

E.7. Survey

All the participants took a survey with questions divided into two parts. The

responses to the questions were used to infer different profiles and their capabilities

(or available resources) to exploit network actions. The two parts are described in

detail as follows.

E.7.1. Network Actions (Part I)

The first part of the survey consists of 14 questions for the participants to answer.

The set of survey questions are as follows

(1) What is your knowledge of scanning open ports?

(2) How often you change system files?

(3) How often you change read/write permission to files?

(4) How often you use ping to find out remote host is alive or not?

(5) How often you find IP address through DNS queries?

(6) How often you finger remote machine and gather useful information (e.g.,

list of tasks)?

(7) How often you kill a task?

(8) How often you use rlogin, ftp?

(9) How often you install tool kits down loaded from the web?

(10) How often you login as root or admin user?

(11) Do you use anonymous FTP any time?

(12) How often do you use anonymous usernames and passwords?

(13) Do you know there are some protocols/services that have default passwords?

(14) Do you know how to guess on what operating system the remote machine is

running?
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The 14 questions represent network actions that are concerned with day-to-day

operations for computer network penetration. The responses to these network actions

can be used for inferring the resources that are required to carry out the network

action. We identified three resources: skill, attitude and time-spent to be associated

with each of the 14 network actions. Skill defines the attacker’s ability to carry out

the network action. Attitude represents the attackers attack intent (or inclination)

in carrying out the network action. Finally time represents the amount of time the

attacker has for carrying out the attack.

For assigning attribute values for skill, attitude, and time for the survey participant,

we analyzed the responses to the survey. Each option for a given question is assigned

a score for skill, attitude and time. The sum of the scores of the selected options

by the participant gives the amount of skill, attitude, and time available with the

participant.

E.7.2. Behavior Profiles (Part II)

The second part of the survey consists of 32 questions. The responses to these

questions can be used to infer the behavior of the survey participant. The questions

the participants had to answer in Part II are as follows

(1) I would rather chat online than in person.

(2) Computers help me to feel in control

(3) I enjoy experimenting with computers

(4) I am more interested in how the Internet works than what can be found on

it.

(5) I enjoy exploring with others on computers

(6) I enjoy competing with others on computers

(7) If people don’t want others to get access to their computer or computer

systems, they should have better security.

(8) If your computer gets hit, you deserve it.
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(9) Information on computers should be free to anyone.

(10) It is morally okay to view information, even if you don’t have legitimate

access, as long as you don’t harm it.

(11) I would never do anything that is against the law on a computer.

(12) Computer-related laws are intended primarily to protect the rich and pow-

erful.

(13) Technology innovation depends on free and unlimited access to information.

(14) I enjoy flaming people in chat or on Email lists.

(15) It is okay to publicize computer security flaws to the public

(16) The best way to publicize a computer security flaw is to exploit it.

(17) It is okay to download computer security exploits and experiment with them

on your own machine.

(18) It is okay to download computer security exploits and experiment with them

on other people’s machines.

(19) It is okay to download computer security exploits and experiment with them

on other people’s machines, if you could be sure not to get caught.

(20) If you had obtained illegal access, it would be morally okay to publicize

income levels within a corporation.

(21) If you had obtained illegal access, it would be morally okay to publicize

income levels within a corporation, if you could be sure not to get caught.

(22) If you had obtained illegal access, it would be morally okay to publicize

confidential communications if they described unethical or illegal behavior.

(23) If you had obtained illegal access, it would be morally okay to publicize

confidential communications if they described unethical or illegal behavior,

if you could be sure not to get caught.

(24) If you had obtained illegal access, it would be a good idea to try to personally

profit from confidential information.
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(25) If you had obtained illegal access, it would be a good idea to try to personally

profit from confidential information, if you could be sure not to get caught.

(26) It is okay to harass someone who behaves poorly online.

(27) It is okay to harass someone who behaves poorly online, if you could be sure

not to get caught.

(28) It is okay to threaten someone who behaves poorly online.

(29) It is okay to threaten someone who behaves poorly online, if you could be

sure not to get caught.

(30) It is okay to use computer service without paying for it.

(31) It is okay to use computer service without paying for it, if you could be sure

not to get caught.

(32) It is okay to use computer service without paying for it because it is not

being used otherwise.

The extracted behavioral information from the responses of survey partici-

pants can be used for constructing profiles of people. In this survey, we assumed that

there are three kinds of people who attempt to penetrate or compromise resources

like networks and computers. These are people with hacker-behavior, opportunist-

behavior, and explorer-behavior. People differ in the mindset for attack behavior.

For example, a person with opportunist behavior may intend to be isolated and hid-

den, whereas a person with explorer behavior is someone who believes in open door

principles.

For classifying the participant into one of the three profiles, we assigned a score

to each option of a question in Part II of the survey. The sum of the selected option

scores by the participant to all the 32 questions is used to classify the participant into

one of the three profiles.
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E.8. Survey Results

Using the responses given in Part II, we divided the participants into three groups:

hacker, opportunist, and explorer-behavior. We analyzed the values of skill, attitude,

and time for the people in the three groups based on Part I of the survey. For inferring

these values, the median (or most probable responses) of all the people classified into

one group are taken into consideration. A normalized set of values in the range of

1-10 for the people in three groups are given in Table I.

Table E.1. Attribute values of network actions for the three behavior profiles.

Hacker Behavior Opportunist Behavior Explorer Behavior

Question Skill Attitude Time Skill Attitude Time Skill Attitude Time

1 9.198 8.431 9.043 10 8.796 10 8.221 8.686 7.913

1 9.198 8.431 9.043 10.000 8.796 10.000 8.221 8.686 7.913

2 8.346 7.628 7.913 10.000 8.796 10.000 5.414 6.058 4.957

3 9.198 8.431 9.043 10.000 8.796 10.000 6.817 7.372 6.435

4 8.346 7.628 7.913 10.000 8.796 10.000 4.010 4.745 3.478

5 7.494 6.825 6.783 6.917 7.263 6.087 5.414 6.058 4.957

6 7.494 6.825 6.783 10.000 8.796 10.000 4.010 4.745 3.478

7 7.494 6.825 6.783 7.945 7.774 7.391 5.414 6.058 4.957

8 7.494 6.825 6.783 10.000 8.796 10.000 4.010 4.745 3.478

9 7.494 6.825 6.783 6.917 7.263 6.087 5.414 6.058 4.957

10 9.198 8.431 9.043 7.945 7.774 7.391 9.624 10.000 9.391

11 7.494 6.825 6.783 6.917 7.263 6.087 4.010 4.745 3.478

12 7.494 6.825 6.783 6.917 7.263 6.087 4.010 4.745 3.478

13 6.642 6.022 5.652 6.917 7.263 6.087 4.010 4.745 3.478

14 6.642 6.022 5.652 5.890 6.752 4.783 4.010 4.745 3.478

From the computed score, we observed the following
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• Participants classified into the opportunist-behavior profile have higher atti-

tude, skill and time compared to participants belonging to other profiles.

• Participants with hacking behavior had intermediate values of skill, attitude,

and time among all the participants.

• Participants classified into the explorer-behavior profile have the least amount

of attitude among the participants of all the three profiles.

These observations can be clearly seen in Figure E.1 - Figure E.3. The x-axis

represents the network actions that we have outlined in Part I of the survey.

Figure E.1. Behavior attributes for Opportunist-behavior individuals

The attribute values of skill and attitude are higher for opportunists fol-

lowed by hackers then explorers. However, it can be observed that explorers have

high values of attributes for question #10, which inquires about the frequency with

which the participants logs into a system as root or admin user. More explorers use

root user to login compared to opportunists and hackers as they tend to believe in
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Figure E.2. Behavior attributes for Hacker-behavior individuals

Figure E.3. Behavior attributes for explorer-behavior individuals

open door policies.

In Table II, we sorted the sum of scores for attribute values in a descending

order of attitude, time (if any other participant have same value of attitude), and

then by skill (if there are any participants with same skill and attitude). Based on
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the above sort order, we observed that all the higher order participants are the peo-

ple with opportunist-behavior followed by people with hacking and explorer behavior.

This order justifies the classification that high attitude are the ones with opportunist

behavior and the ones with explorer behavior have lower values of attitude.

Table E.2. Attribute values and behavior classification of survey participants.

Participant ID Attitude Skill Time Behavior Classification

13 10.000 10.000 9.559 Opportunist

27 9.855 9.405 10.000 Opportunist

45 9.420 8.333 8.824 Opportunist

50 8.696 8.452 9.412 Opportunist

32 8.406 8.929 7.794 Opportunist

26 8.261 8.690 8.235 Opportunist

4 8.261 7.381 6.618 Opportunist

43 7.971 8.452 7.500 Opportunist

10 7.971 7.857 6.765 Opportunist

57 7.826 8.571 7.647 Opportunist

7 7.536 7.738 8.088 Opportunist

25 7.536 8.333 7.353 Opportunist

30 7.391 8.214 8.088 Opportunist

29 7.246 8.214 8.235 Opportunist

33 7.246 7.738 6.912 Opportunist

6 7.246 7.619 6.618 Opportunist

49 7.101 7.857 7.794 Opportunist

20 6.957 7.619 8.235 Opportunist

1 6.957 7.500 6.029 Opportunist

52 6.667 7.500 8.382 Opportunist
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Table E.3. Attribute values and behavior classification of survey par-

ticipants (Contd).

Participant ID Attitude Skill Time Behavior Classification

18 6.667 7.262 6.765 Opportunist

21 6.522 7.738 8.529 Opportunist

19 6.522 6.190 6.324 Opportunist

37 6.522 6.905 5.882 Opportunist

14 6.377 6.905 7.353 Opportunist

11 6.377 7.500 7.206 Opportunist

17 6.377 7.500 6.324 Opportunist

47 6.232 7.500 8.235 Hacker

8 6.232 6.429 7.647 Hacker

16 6.232 6.071 7.059 Hacker

24 6.232 7.262 6.618 Hacker

3 6.232 7.738 6.324 Hacker

34 6.087 7.381 7.941 Hacker

40 6.087 7.024 7.353 Hacker

53 6.087 7.143 5.882 Hacker

23 5.942 7.024 9.706 Hacker

58 5.942 6.667 7.647 Hacker

39 5.942 6.548 6.029 Hacker

48 5.652 6.905 6.765 Hacker

46 5.507 6.905 7.500 Hacker

In, conclusion, we hope our research will help in better understanding the

relationship between the attributes (such as skills, time, and attitude) required for

network penetration and the profiles (such as hackers, opportunists, and Explorer

behavior) of people that do the penetration.
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Table E.4. Attribute values and behavior classification of survey par-

ticipants(Contd).

Participant ID Attitude Skill Time Behavior Classification

59 5.507 6.190 6.029 Hacker

38 5.507 6.071 5.735 Explorer

51 5.362 6.548 7.941 Hacker

56 5.362 6.310 6.765 Hacker

42 5.362 6.310 6.471 Hacker

2 5.072 7.024 6.765 Hacker

12 5.072 6.071 6.324 Explorer

5 4.928 5.595 6.471 Explorer

28 4.928 6.190 5.441 Hacker

9 4.783 5.833 7.500 Explorer

54 4.783 4.762 5.294 Explorer

31 4.638 5.714 6.176 Explorer

55 4.638 5.238 5.588 Explorer

15 4.348 5.833 5.588 Explorer

36 4.348 5.357 5.000 Explorer

41 4.058 5.357 5.294 Explorer

35 4.058 5.714 5.147 Explorer

44 3.768 4.762 4.559 Explorer

22 3.478 3.810 4.706 Explorer
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APPENDIX F 
 

CONDITIONAL PROBABILITY TABLES FOR NODES OF ATTACK GRAPH 



Probabilities of nodes A, B, C

P(A) = 0.4

P(B) = 0.63

P(C ) = 0.34

Table F.1. Probabilities of node D

A P (D|A)

T 0.52

F 0.36

Table F.2. Probabilities of node E

A P (E|A)

T 0.72

F 0.37

Table F.3. Probabilities of node F

A P (F |A)

T 0.27

F 0.35

Table F.4. Probabilities of node G

B P (G|B)

T 0.36

F 0.52
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Table F.5. Probabilities of node H

B P (H|B)

T 0.35

F 0.36

Table F.6. Probabilities of node I

C P (I |C)

T 0.41

F 0.52

Table F.7. Probabilities of node L

G P (L|G)

T 0.22

F 0.46

Table F.8. Probabilities of node K

D E F P (K|D, E, F )

T T T 0.48

T T F 0.47

T F T 0.6

T F F 0.17

F T T 0.32

F T F 0.45

F F T 0.7

F F F 0.49

218



Table F.9. Probabilities of node M

H I P (M |H, I)

T T 0.35

T F 0.83

F T 0.72

F F 0.26

Table F.10. Probabilities of node N

K M P (N |K, M)

T T 0.48

T F 0.37

F T 0.59

F F 0.12

Table F.11. Probabilities of node O

K L M P (O|K, L, M)

T T T 0.22

T T F 0.28

T F T 0.33

T F F 0.7

F T T 0.54

F T F 0.28

F F T 0.32

F F F 0.41
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Table F.12. Probabilities of node R

K L H P (R|K, L, H)

T T T 0.34

T T F 0.16

T F T 0.7

T F F 0.83

F T T 0.29

F T F 0.49

F F T 0.24

F F F 0.74

Table F.13. Probabilities of node S

L P (S|L)

T 0.2

F 0.7

Table F.14. Probabilities of node T

M P (T |M)

T 0.5

F 0.6
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