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This dissertation is composed of research studies that contribute to three research areas 

including social context-aware computing, internal context-aware computing, and human 

behavioral data mining. In social context-aware computing, four studies were conducted. First, 

mobile phone user calling behavioral patterns are characterized in forms of randomness level 

where relationships among them are then identified. Next, a study was conducted to investigate 

the relationship between the calling behavior and organizational groups. Third, a method is 

presented to quantitatively define mobile social closeness and social groups, which are then used 

to identify social group sizes and scaling ratio. Last, based on the mobile social grouping 

framework, the significant role of social ties in communication patterns is revealed. In internal 

context-aware computing, two studies were conducted where the notions of internal context are 

intention and situation. For intentional context,the goal is to sense the intention of the user in 

placing calls. A model is thus presented for predicting future calls envisaged as a call predicted 

list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As 

an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the 

callers within the next hour(s), which is useful for scheduling and daily planning. As an outgoing 

call predictor, CPL is generated as a list of numbers/contacts that are the most likely to be dialed 

when the user attempts to make an outgoing call (e.g., by flipping open or unlocking the phone). 

This feature helps save time from having to search through a lengthy phone book. For situational 

context, a model is presented for sensing the user’s situation (e.g., in a library, driving a car, etc.) 

based on embedded sensors. The sensed context is then used to switch the phone into a suitable 



alert mode accordingly (e.g., vibrate mode while in a library, handsfree mode while driving, 

etc.). Inferring (social and internal) context introduces a challenging research problem in human 

behavioral data mining. Context is determined by the current state of mind (internal), 

relationship (social), and surroundings (physical). Thus, the current state of context is important 

and can be derived from the recent behavior and pattern. In data mining research area, therefore, 

two frameworks are developed for detecting recent patterns, where one is a model-driven 

approach and the other is a data-driven approach. 
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CHAPTER 1

INTRODUCTION

Context-aware computing, a relatively new research area in computer science that refers

to a computing paradigm in which a single or multiple computing devices (e.g., computer,

sensor, handheld device) senses the user’s context and responses to that context to support

the user in carrying out everyday life activities. The idea of context-aware computing is

originated from ubiquitous computing, which was first introduced by Mark Weiser (1) as a

computing paradigm that made multiple computing devices available throughout the physical

environment and effectively invisible to the user. Recently, it is also referred to as pervasive

computing and ambient intelligence. The current research areas include software design (e.g.,

(2; 3; 4; 5; 6)), privacy and security (e.g., (7; 8; 9; 10; 11)), ubiquitous data access (e.g.,

(12; 13; 14; 15; 16)), sensing (e.g., (17; 18; 19; 20; 21)), resource scarcity (e.g., (22; 23; 24;

25; 26)), wearable computing (e.g., (27; 28; 29; 30; 31)), user interfaces (e.g., (32; 33; 34; 35;

36)), mobile social software (e.g., (37; 38; 39; 40; 41)), and context-aware computing (e.g.,

(42; 43; 44; 45; 46)).

The term context-aware computing was introduced in 1994 by Schilit et al. (47) who

defined “context” as where you are, who you are with, and what resources are nearby.

Schilit et al. divided context into three categories: computing context (network connectivity,

communication costs, communication bandwidth, nearby resources e.g., printers, displays,

workstations), user context (user’s profile, location, people nearby, current social situation),

and physical context (lighting, noise levels, traffic conditions, temperature). This ground-

breaking research leads to several attempts to formally define context as follows:

• In 1999, Schmidt et al. (48) defined context as “knowledge about the user’s IT

device’s state including surroundings, situation, and location.”
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• In 2000, Chen and Kotz (49) defined context as “the set of environmental states and

settings that either determines an applications behavior or in which an application

event occurs and is interesting to the user.” They divided context into four cate-

gories: computing context, user context, physical context, and time context (time

of a day, week, month, and season of the year) by adding the “time context” to the

original definition proposed by Schilit et al..

• In 2001, Dey (50) defined context as “any information that can be used to char-

acterize the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including

the user and applications themselves.”

• In early 2003, Hofer et al. (51) divided context into physical and logical context,

where the physical context was defined as a representation of environment sensors,

while the logical context was defined as a representation of more abstract informa-

tion about the environment.

• Later in 2003, Prekop and Burnett (52) divided context into external and internal

context, where the external context referred to the context that can be measured by

hardware sensors (e.g., location, light, air pressure), whereas the internal context was

defined as the context that is specified by the user or identified by by monitoring

user interations (e.g., the user’s goals, tasks, business processed, the user’s state

emotional state).

• In 2005, Bradley and Dunlop (53) divided context into several categories: task con-

text (the functional relationship of the user with other people and objects and the

benefits or constraints this relationship places on the user achievement of his or her

goal), physical context (the environmental location, including the orientation, posi-

tion, state, and purpose of those objects and the types of information they transmit

through audio and visual means, odor, texture, temperature, and movement.), social

context (the relationship with; dialogue from; and density, flow, noise, and behavior

of surrounding people), temporal context (what gives a current situation meaning,
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based on past situations/occurrences; expected future events; and the higher level

temporal context relating to the time of day, week, month, or season), cognitive

context (the users cognitive processing abilities), and application context (the ca-

pabilities and limitations of both the application and the sources from which data

are derived).

• In 2007, O’Connor et al. (54) defined context as “an abstraction of environmental

situations (recognizable by sensors) that have similar meaning.” The environmental

situations refers to distinct states in which the environment can be.

• In 2008, Han et al. (55) divided context into physical, internal, and social context.

Physical context referred to real world nearby user, making up of physical things,

such as computer, print, fax, building and so on. Internal context was composed by

abstract things inside people, such as feeling, thought, task, action, interest and so

on, which was very related to people. Social context meant user’s social surrounding,

that was to say, social relationship of user. It consisted of persons related to user.

As the context-aware computing research continues to evolve, I believe that the definition

of the “context” will continue to move towards the inferential center.

1.1. Context-aware Mobile Computing

In mobile computing area, the context is sensed and used to enable mobile device to

better serve for the user. Mobile device observes, records, and analyzes its user’s behavior,

and responds to the context of the user with minimum user interaction to assist the user

by providing information, helping the user making decision, reminding the user of special

events, and so on.

1.2. Motivation

People increasingly engage in and rely on mobile phone communications for both personal

and business purposes. Hence mobile phones become an indispensable part of life for many

people. As mobile networks are expanding rapidly to facilitate the rising number of mobile

phone population, more services are expected to be offered (56; 57). To meet this need,
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mobile computing research has been focused on developing technologies for handheld devices

such as mobile phones, notebook computers, and mobile IP (e.g., (58; 59; 60; 61)). Today,

emphasis is increasing on context-aware computing, which is aimed to build the intelligence

into mobile devices to sense and respond to the user’s context (e.g., (62; 63; 64; 65; 66; 67;

68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79)).

Inferring the context is a challenging task. When humans talk with humans, they are able

to user implicit situational information, or context, to increase the conversational bandwidth.

Unfortunately, this ability to convey ideas does not transfer well to humans interacting with

computers (50). It becomes even more difficult especially when a computer tries to determine

the context of a human who does not necessarily try to interact with it. Context-aware mobile

computing thus requires a blend of the interdisciplinary computing knowledge and domain

areas.

Today’s mobile technologies suggest that the future of the context-aware mobile comput-

ing applications is leaning towards real-time social and internal context with minimum user

interaction. To move forward in this direction, this dissertation is centered around designing

and building the models for inferring social and internal context of the mobile phone users.

The challenges in the study include data collection, verification, and validation methodology.

In addition, due to the human-centric nature of the context-aware computing paradigm, it

faces a big challenge in dealing with the complexity and dynamics of human behavior. To

extract what in a human mind, one must incorporate a mechanism that characterizes human

dynamics (i.e., changes and trends in behavior), which appear to be one of the top challenges

of human behavioral data mining.

This dissertation is aimed to provide methods and algorithms for inferring and analyzing

social context, frameworks for internal context-aware mobile applications, and data mining

techniques for human behavioral data.

Context-aware computing services can offer contextually relevant information to the users

to facilitate their daily life activities, but at the same time, the risks of data misuse threaten

the information privacy of individual users as well as the service providers’ business model.
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Without a secure infrastructure and privacy-preserving contextual information sharing sys-

tems, there is potential of misuse of data and technology. I are aware of the issue, and at the

same time, not wanting to let my design to be limited by these concerns. I believe that the

use or misuse of technology will continue to be a human issue that is not easily discerned.

There are always a positive side as well as a negative side of each technology. Therefore, in

dissertation, the frameworks that I are developing is done hoping that the users will benefit

most from them.

1.3. Contributions

This dissertation makes contributions to three major areas:

(1) Social computing: The contributions in social computing area are centered around

mining mobile phone call logs to extract and analyze hidden patterns for better

understanding of mobile phone user behavior as well as face-to-face/mobile social

context. As the results, I have carried out the following studies:

(a) Quantifying randomness in calling behavior of a mobile phone user : I analyze

the behavior of mobile phone users and identify behavior signatures based on

their calling patterns. I quantify and infer the relationship of the user’s ran-

domness level using information entropy based on the user’s location, time of

the calls, inter-connected time, and duration of the calls.

(b) Inferring organizational groups using mobile phone call logs: I develop a model

for inferring face-to-face organizational groups based solely on mobile phone call

logs using kernel-based näıve Bayesian learning. I also introduce normalized

mutual information for feature selection process.

(c) Identifying mobile social group sizes and their successive ratio: I develop a

mobile social grouping scheme, which allows us to derive the social group sizes

and scaling ratio. The results are compared with the face-to-face’s. I conclude

that social mobile network is a subset of the face-to-face social network, and

both groupings are not necessary the same, hence the scaling ratios are distinct.
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(d) Revealing the impact of social context on calling patterns: I reveal the significant

role of social context on similarity in calling patterns and inter-connect time.

I also show that social tie and mobile life pattern can be predicted accurately

with a discrete Markov model and a Moving Average model, respectively.

(2) Context-aware mobile computing: The contributions in context-aware computing

area are focused on determining the internal context of the mobile phone user. my

notion of context is defined as (i) intention of the user/callers i.e., what number

to be dialed/received, and (ii) state of mind of the user regarding the alert mode

i.e., what alert mode (vibrate, handsfree, ringer) to be set. Within this scope, the

following models have been developed to sense and respond to the user context:

(a) A model for predicting incoming calls for the next 24 hours: I develop a model

for sensing caller intention of making phone calls to the user by predicting

incoming calls for the next 24 hours based on call history. The predictor can

be used to assist daily scheduling.

(b) A model for listing potential callers and callees : I design a call predictor based

on näıve Bayesian classifier that makes use of the call logs to predict incoming

as well as outgoing phone calls. As an incoming call predictor, my model makes

use of the user’s call history to generate a list of numbers/contacts that are the

most likely to be the callers within the next hour. On the other hand, when

the user wants to make an outgoing call (e.g., the user flips open the phone

or unlocks the phone, etc.), the outgoing call predictor generates a list of most

likely number/contacts to be dialed.

(c) A model for context-aware alert mode control : I develop a context-aware mobile

computing model that intelligently configures the mobile phone alert mode

according to the user’s context (e.g., in a meeting, in a movie theater, driving,

etc.). I propose a three-step approach in designing the model based on the

embedded sensor data from accelerometer, GPS antenna, and microphone of a

G1 phone.
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(3) Human behavioral data mining: Dealing with human behavioral data is inevitable

in designing a context-awareness system. Human behavioral data is a stream data

at a variety rate. This rate of data generation depends on the type of behaviors that

are being monitored. The changes in the recent data are normally more significant

than the old data. Especially, human behavior tends to repeat periodically, which

creates a pattern that alters over many periods due to countless factors. Generally,

future behavior is more relevant to the recent behavior than the older ones. Thus,

my contributions in this area are concentrated in designing frameworks for detect-

ing adequacy and recent pattern of human behavioral data. The frameworks are

useful for predictive modeling and dimension reduction for human behavioral data

in context-aware system.

(a) A framework for detecting adequacy of temporal data: I develop a framework

for detecting the adequacy of historical data (how much of the historical data is

enough) to capture a caller’s calling behavior. This adequate amount of histor-

ical data is empirical proven to be more relevant to the future caller behavior

than considering the entire historical data and hence useful for constructing a

predictive model for caller behavior. This framework can also be used for any

type of temporal data.

(b) A framework for detecting recent pattern of temporal data: I design a framework

for detecting recent pattern of human behavioral time series data. Human

behavioral data are usually high-dimensional time series. Thus, the detected

recent pattern is used for dimension reduction to improve the efficiency of

computation and indexing. This framework can also be used for any type of

time series data.

1.4. Dissertation Road Map

This dissertation discusses methods for sensing and mining social and internal context of

a mobile phone user. The content in this dissertation is organized into 11 chapters.
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• Chapter 1 (Introduction): In this chapter, I give an overview of context-aware mobile

computing. In this overview, I review previous attempts to define and provide a

characterization of “context” and context-aware computing. Furthermore, I describe

the motivation of my studies and outline the contributions of this dissertation.

• Chapter 2 (Behavioral Entropy of a Mobile Phone User): In this chapter, I carry out

a behavior analysis of mobile phone users and identify behavior signatures based on

their calling patterns. I quantify and infer the relationship of a person’s randomness

levels using information entropy based on the location of the user, time of the call,

inter-connected time, and duration of the call. I use real-life call logs of 94 mobile

phone users collected at MIT by the Reality Mining Project group for a period of

nine months. I am able to capture the user’s calling behavior on various parameters

and interesting relationship between randomness levels in individual’s life and calling

pattern using correlation coefficients and factor analysis. This study extends our

understanding of cellular phone user behavior and characterizes mobile phone users

in form of randomness level.

• Chapter 3 (Inferring Social Group using Call Logs): For a given call log, how much

can we say about the person’s social group? Unnoticeably, phone user’s calling

personality and habit has been concealed in the call logs from which I believe that

it can be extracted to infer its user’s social group information. In this chapter, I

present an end-to-end system for inferring social networks based on “only” call logs

using kernel-based näıve Bayesian learning. In addition, I introduce “normalized

mutual information” for feature selection process. my model is evaluated with actual

call logs and it yields promising results.

• Chapter 4 (Mobile Social Group Sizes and Scaling Ratio): In this chapter, I present

a method to quantify mobile social closeness and describe a social grouping scheme,

which is then used to identify social sizes and scaling ratio. my social grouping

approach has been validated with the real-life datasets with high accuracy. With

my mobile social grouping results, I identify a group sizes’ scaling ratio of close to
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“8” based on two different analyses where one is based on mean group sizes and the

other is based on all raw group clusters. my results are compared with the findings

from previous studies of face-to-face social groups. I draw a conclusion that the

mobile social network is a subset of the face-to-face social network, where both have

distinct groupings and constant group sizes’ scaling ratios.

• Chapter 5 (Mobile Social Context and Communication Patterns): In this chapter,

I reveal the significant role of social context (described in Chapter 4) on similarity

in calling patterns and inter-connect time. my results show that (i) the closer the

social tie, the higher the similarity, (ii) a closer tie implies higher reciprocity, and

(iii) the inter-contact time increases as social closeness becomes distant.

• Chapter 6 (Call Predictor: Phone Call-based Daily Planner): In this chapter, I

present a model for call predictor that computes the probability of receiving calls

and makes prediction of incoming calls for the next 24 hours, based on caller behavior

and reciprocity.

• Chapter 7 (Call Predicted List: List of Potential Callers and Callees): In this

chapter, I describe a model for a incoming/outgoing call predictor based on the

näıve Bayesian classifier. As an incoming call predictor, my model makes use of the

user’s call history to generate a list of numbers/contacts that are the most likely

to be the callers within the next hour. On the other hand, when the user wants

to make an outgoing call (e.g., the user flips open the phone or unlocks the phone,

etc.), the outgoing call predictor generates a list of number/contacts to be called.

• Chapter 8 (Context-aware Alert Mode for a Mobile Phone): Forgetting to switch

to vibrate mode while in a movie theater or a meeting, and taking the risk of

picking up a phone call while driving can be avoided if the phone is smart enough to

recognize its user’s situational context. As the first step towards that direction, in

this chapter, I present a design of a model that can intelligently switches the alert

mode according to the user’s context. The alert mode is to be set according to the
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recognized context state as vibrate, handsfree, and ringer mode. I describe a three-

step approach in design based on the embedded sensor data from accelerometer,

GPS antenna, and microphone of a G1 phone. I have evaluated my model in several

aspects using training and testing data collected from participating subjects. Based

on the experiments, my model has shown promising results.

• Chapter 9 (Adequacy of Data for Characterizing Caller Behavior): In this chapter,

I describe a method for characterizing caller behavior based on caller’s call arrival,

inter-arrival, and talk time using probabilistic approach. A probabilistic model is

generally used to predict or estimate the future observation, which is conditioned

by a knowledge of the historical data. The question is how much historical data is

adequate? I answer this question by presenting a technique to detect and compute

the adequate amount of historical data to capture the caller behavior. In fact, this

adequate amount of historical data has been proven empirically to be more relevant

to the future caller behavior than considering the entire historical data. Hence it is

useful for constructing a predictive model for caller behavior. In addition, I show

the improvement in the performance of a Call Predictor (described in Chapter 6)

when applying adequacy of data.

• Chapter 10 (A Recent-pattern biased Dimension-reduction Framework for Time

Series Data): High-dimensional time series data need dimension-reduction strategies

to improve the efficiency of computation and indexing. In this chapter, I present a

dimension-reduction framework for time series data. Generally, recent data are much

more interesting and significant for predicting future data than old ones. The basic

idea is to reduce to data dimensionality by keeping more detail on recent-pattern

data and less detail on older data. I distinguish my work from other recent-biased

dimension-reduction techniques by emphasizing on recent-pattern data and not just

recent data. I experimentally evaluate my approach with synthetic data as well as

real data. Experimental results show that my approach is accurate and effective as

it outperforms other well-known techniques.

10



• Chapter 11 (Conclusion): In this chapter, I conclude this dissertation with a sum-

mary of the contributions and a vision of the future studies.
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CHAPTER 2

BEHAVIORAL ENTROPY OF A MOBILE PHONE USER

2.1. Introduction

Mobile phone has moved beyond being a mere technological object and has become an

integral part of many people’s social lives. This has had profound implications on both how

people as individuals perceive communication as well as in the patterns of communication

of humans as a society. In this chapter, I try to capture the behavior of phone users based

on their calling patterns and infer trend of behavior dependencies using techniques such as

Entropy, principal factor analysis, and correlation function. I present a new method for

precise measurement of randomness of phone user based on their calling patterns such as

location of the call, talk time, calling time, and interconnected time; and infer relationship

among them.

Recently there has been increasingly growing interests in the field of mobile social network

analysis, but due to the unavailability of data, there have been far fewer studies. The Reality

Mining Project at Massachusetts Institute of Technology (MIT) (80) has made publicly

available large datasets from their projects. I implement my techniques on the Reality

Mining dataset which was collected over nine months by monitoring the cell phone usage of

84 participants. The information collected in the call logs includes user IDs (unique number

representing a mobile phone user), time of call, call direction (incoming and outgoing),

incoming call description (missed, accepted), talk time, and tower IDs (location of phone

users). These 84 phone users are students, professors, and staffs.

Using purely objective data first time the researchers can get an accurate glimpse into

human behaviors. My interest in this data set is to study the behavior of the phone user

using information theory, data mining, and data reduction techniques.
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In (81), the authors attempted to quantify the amount of predictable structure in an

individual’s life using entropic metric and discovered that people who live high-entropy lives

tend to be more random or less predictable than people who live low-entropy lives. This raises

the question about how this entropy-based randomness level is related to the randomness

level in calling behavior. Does it mean that people who have high-entropy lives also have

high-entropy calling patterns? To answer this question, I find it interesting to study the

relationship between the randomness level in individuals life and calling pattern.

2.2. Randomness Level Computation

While individual phone user’s calling behavior is random, some users might be more

predictable than others. Being more predictable can also mean being less random. To

quantify the randomness or amount of predictable structure in an individual calling pattern,

the information entropy can be used.

The information entropy or Shannon’s entropy is a measure of uncertainty of a random

variable. The information entropy as given in Equation (1) was introduced by Shannon

(82), where X is a discrete random variable, x ∈ X, and the probability mass function

p(x) = Pr{X = x}.

(1) H(X) = −
∑

x

p(x) log2 p(x).

The calling pattern can be observed from the calling time, inter-connected time (elapsed

time between two adjacent call activities), and talk time (duration of call). Let C , I , and T be

random variables representing calling time, inter-connected time, and talk time respectively.

The entropy of calling time can be calculated by Equation (2).

(2) H(C) = −
24
∑

c=1

p(c) log2 p(c),

where the probability p(c) is a ratio of the number of calls during cth hour slot to the total

number of calls of all time slots (N).

Similarly, the entropy of inter-connected time can be calculated by Equation (3) where

p(i) is a ratio of the number of inter-connected time whose value is in the interval [i − 1, i)
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to N − 1.

(3) H(I) = −
∑

i

p(i) log2 p(i).

Likewise, the entropy of the talk time is given by Equation (4) where p(t) is a ratio of

the talk time whose value is in the interval [t− 1, t) to N .

(4) H(T ) = −
∑

t

p(t) log2 p(t).

By the same token, the randomness in the individual life’s schedule (location), H(L) can

also be quantified using information entropy which is defined in Equation (1).

2.3. Result and Analysis

Based on my real-life call logs of 84 users, I infer the relationship between the randomness

based on the underlying parameters by computing the correlation coefficient (83). Correla-

tion coefficient is a number between -1 and 1 which measures the degree to which two random

variables are linearly related. A correlation coefficient of 1 implies that there is perfect linear

relationship between the two random variables. A correlation coefficient of -1 implies that

there is inversely proportional relationship between the two random variables. A correlation

coefficient of zero implies that there is no linear relationship between the variables. As a

preliminary result shown in Table 2.1, it can be observed that the randomness based on

location(H(L)) and calling time(H(C)) show high correlation as well as the H(I) and H(T )

pair.

Table 2.1. Result of correlation coefficient

H(L) H(C) H(I) H(T )

H(L) 1.0000 0.4651 -0.4695 -0.4642

H(C) 0.4651 1.0000 -0.2218 -0.3502

H(I) -0.4695 -0.2218 1.0000 0.2197

H(T ) -0.4642 -0.3502 0.2197 1.0000
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Next, I perform factor analysis in order to further study the relationship of the random-

ness levels (entropy) based on the underlying parameters. The main application of factor

analysis is: (i) to reduce the number of variables and (ii) to detect structure in the relation-

ship between variables, that is to classify variables (84). In my analysis I use it for both the

purposes. The flow diagram of the principal factor analysis is shown in Fig. 2.1.

Two principal factors are selected based on the Scree plot (85). The principal factor plot

of the entropy based on four parameters lying on the first and second factor is shown in

Fig. 2.1. It can be observed that the H(L) and H(C) are positively lying on the first factor

whereas the H(I) and H(T ) are positively lying on the second factor. Since the first and

second factor are orthogonal i.e., uncorrelated, one can notice two established relations; one

is between H(L) and H(C), and the other one is between H(I) and H(T ).

Figure 2.1. Flow diagram for principal factor analysis on calculated entropy.

Factor analysis generally is used to encompass both principal components and principal

factor analysis. The Eigen values for a given factor measures the variance in all the variables

which is accounted for by that factor as stated in Table 2.2. If a factor has a low eigen
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value, then it is contributing little to the explanation of variances in the variables and may

be ignored as redundant with more important factors.

Table 2.2. Total variance explained

Factor Initial Eigen Values Extraction

Total Variance(%) Cumulative(%) Total Variance(%) Cumulative(%)

1 1.59 39.95 39.95 0.92 23.20 23.20

2 1.02 25.61 65.57 0.29 7.26 30.46

3 0.73 18.24 83.81 - - -

4 0.64 16.18 100.00 - - -

Eigen value is not the percent of variance explained but rather a measure of amount of

variance in relation to total variance (since variables are standardized to have means of 0

and 1, total variance is equal to the number of variables).

Initial eigen values and eigen values after extraction (extracted sums of squared loadings)

are same for Principal Component Analysis (PCA) extraction (86), but for factor analysis

eigen values after extraction will be lower than their initial counterparts.

Scree plot was developed by Cattell (85) for selecting the number of factors to be retained

in order to account for most of the variation. In my analysis, based on Kaiser’s criterion

(87) the first two factors whose eigen values are greater than 1 (as listed in Table 2.2) are

selected based on the scree plot shown in Fig. 2.2.

The plot of the entropy based on four parameters lying on the first and second factor is

shown in Fig. 2.3. It can be observed that the entropy based on location and calling time

are positively lying on the first factor whereas the entropy based on inter-connected time

and talk time are positively lying on the second factor. Since the first and second factor are

orthogonal i.e., uncorrelated, one can notice two established relations; (i) between entropy

based on location and calling time and (ii) entropy based on inter-connected time and talk

time.

16



1 2 3 4

0.6

0.8

1

1.2

1.4

1.6

Factor Number

E
ig

e
n
 V

a
lu

e

Figure 2.2. Scree plot.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Factor 1

F
a
c
to

r 
2

H(C) H(L)

H(I)

H(T)

Figure 2.3. Principal factor plot.

The scatter plots in Fig. 2.4 also confirm my findings by showing the proportional

relationships between pairs (H(L), H(C)) and (H(I), H(T )), and inversely proportional re-

lationships among other pairs. The trend (linear-fitting) line is shown in red to emphasize

the direction of the relationship, directly proportional (increasing) or inversely proportional

(decreasing). Note that the linear fitting is obtained by the least square fitting method (88).
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Figure 2.4. Scatter plots showing relationships among H(L), H(C), H(I),

and H(T ) with the linear trend lines.

The results based on the correlation coefficients, factor analysis, and scatter plots tell us

that there is a high correlation in the randomness in phone user’s location and calling time,

as well as high correlation in the randomness in phone user’s inter-connected time and talk

time. This draws the conclusion of my study that phone users who have higher randomness

in mobility tend to be more variable in time of making calls but less variable in time spent

talking on the phone and the time between connection (idle time). By the same token,

the phone users who spend higher random amount of time talking on the phone (connected
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time) tend to also be more variable in idle time but not less random in mobility and time of

initiating the calls.

I believe that this finding can also be useful for the phone service providers in offering

right plans for the right customers based on customer’s calling behavior, e.g., suppose that

a customer has increasingly high randomness in mobility, service provider might offer this

customer a whenever-minute plan which would fit his calling pattern (high H(L) implies

high H(C)).

2.4. Conclusion

In this chapter, I have presented and analyzed cellular phone user behavior in forms

of randomness level using information entropy based on user’s location, time of call, inter-

connected time, and duration of call. I am able to capture the relationship of the user’s

randomness level based on the underlying parameters by utilizing the correlation coefficient

and factor analysis.

Based on my study, the user’s randomness level based on location has high correlation

to the randomness level in time of making phone calls and vice versa. My study also shows

that the randomness level based on user’s inter-connected time has a high correlation to the

randomness level in time spent talking on each phone call.

A knowledge of the randomness levels of a phone user behavior and their relationships

extends our understanding in the pattern of user behavior. I believe that this work can also

be extended to predict what services that are suitable for the user. This study will also be

useful for the future research in this area.
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CHAPTER 3

INFERRING SOCIAL GROUPS USING CALL LOGS

3.1. Introduction

Social network describes a social structure mode of social entities and the pattern of inter-

relationships among them. A social network can be either face-to-face or virtual network in

which people primarily interact via communication media such as letters, telephone, email,

or Usenet. Knowledge of social networks can be useful in many applications. In commerce,

viral marketing can exploit the relationship between existing and potential customers to

increase sales of products and services. In law enforcement, criminal investigation concerning

organized crimes such drugs and money laundering or terrorism can use the knowledge of

how the perpetrators are connected to one another to assist the effort in disrupting a criminal

act or identifying additional suspects.

Social computing has emerged recently as an exciting research area which aims to develop

better social software to facilitate interaction and communication among groups of people,

to computerize aspects of human society, and to forecast the effects of changing technologies

and policies on social and cultural behavior. One of the major challenges in social computing

is obtaining real-world data. Quite often, analysis is based on simulations.

With rapidly increasing number of mobile phone users, mobile social networks have gained

interests from several research communities. I also find it interesting to study the relation-

ships between mobile phone users’ calling behaviors and their social networks. With avail-

ability of real-life data of mobile phone users’ call logs collected by Reality Mining project

group (81), it allows us to carry out my analysis and experimental results in this paper in

which I propose an end-to-end system for inferring social networks based solely on call logs.

I believe that phone user’s calling personality and habit has been unnoticeably concealed in

the call logs from which it can be extracted to infer its user’s social networks information.
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To the best of my knowledge, no scientific research has been reported in classifying social

networks/groups based solely on call logs.

3.2. System Overview

The system described here is intended to perform social networks/groups classification

based on personal phone records. The input is phone records or call logs showing pertinent

information (number dialed, duration, time of communications, etc.). The call logs is then

transformed into knowledge useful for the classifier by extracting calling patterns and select-

ing useful features. The kernel-based näıve Bayesian classifier is used to perform supervised

classification based on computed probability using kernel density estimator.

Figure 3.1. System overview.
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3.3. Dataset

Every day phone calls on the cellular network include calls from/to different sections of

our social life. We receive/make calls from/to family members, friends, supervisors, neigh-

bors, and strangers. Every person exhibits a unique traffic pattern. Unnoticeably, phone

user’s calling personality and habit has been concealed in the call logs from which we believe

that it can be extracted to infer its user’s social networks information. To study this, I use

the real-life call logs of 94 individual mobile phone users over the course of nine months

which were collected at Massachusetts Institute of Technology (MIT) by the Reality Mining

project group (81). Call logs were collected using Nokia 6600 smart phones loaded with

software written both at MIT and the University of Helsinki to record minutely phone in-

formation including call logs, users in proximity, locations, and phone application currently

being used. Of 94 phone users, 25 were incoming Sloan business students while the remain-

ing 69 users were associated with the MIT Media Lab. According to MIT (81), this study

represents the largest mobile phone study ever in academia and the data collected can be

used in a variety of fields ranging from psychology to machine learning. There are some

research works conducted by the Reality Mining project group using this dataset involves

relationship inference, user behavior prediction, and organizational group dynamics.

As previously mentioned, my interest and the focus of this chapter is to extract the phone

user’s behavior concealed in the call logs and attempt to accurately classify user into be-

longing social networks. With MIT dataset, classification can be performed to differentiate

phone users from the Media Lab and from Sloan. As described earlier, MIT dataset consists

of more than just call logs but location information and others. In order to be more gen-

eralized, only call logs are considered for my study as currently call logs are only accessible

feature from service providers (e.g., billing, online account).

Due to missing information on the dataset which leaves us 84 users instead of 94 users, I

then have 22 Sloan users and 62 Media Lab users. Of 62 Media Lab users, 20 users are clearly

marked as students. I believe that even though all 62 users are with Media Lab, sub-social

groups can be formed such as students, faculty, and staff, which exhibit slightly different
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calling behavior. Therefore I choose to perform classification between clearly marked Media

Lab students and Sloan students.

3.4. Feature Extraction

The main goal is to find some features from the call logs (raw data) that can solidly

differentiate Media Lab students and Sloan students. For the data extraction process, I try

to retrieve as much as possible useful features from the call logs. There might not be one

dominate feature that captures entire calling behavior but combination of those characterize

the core behavior structure. There are 11 features extracted and listed in Table 3.1 along

with some statistical analysis (i.e., averages (Avg.) and standard deviations (Std.)) where

feature descriptions are listed in Table 3.2.

From the first glance of these features and their statistics, it is clear that there are

differences between two social networks however the differences are not adequately large

enough to differentiate them based on each individual feature.

Table 3.1. Extracted features

Features Media Lab Sloan

Avg. Std. Avg. Std.

All calls 9.670 6.902 14.168 7.264

Inc calls 2.920 2.542 3.756 2.197

Out calls 6.750 4.501 10.413 5.549

Missed calls 8.708 6.167 12.810 6.718

All talk 246.716 304.899 196.966 260.884

Inc talk 140.906 109.479 172.518 111.427

Out talk 272.599 367.231 207.328 320.731

All call time 12.934 1.671 14.571 2.120

Inc call time 13.164 1.775 14.591 2.226

Out call time 12.881 1.752 14.583 2.121

Ent call time 6.137 0.683 4.059 0.553
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Table 3.2. Extracted feature descriptions

Features Feature description

All calls The total number of all calls per day including incoming, outgoing,

and missed calls.

Inc calls The number of incoming calls per day.

Out calls The number of outgoing calls per day.

Missed calls The number of missed calls per day.

Inc talk The total amount of time spent talking on the phone (call duration)

per day (in seconds) including both incoming and outgoing calls.

Out talk The amount of time spent talking (in seconds) per day on the incoming

calls.

All call time The amount of time spent talking (in seconds) per day on the outgoing

calls.

Inc call time The time that calls either received or made, ranging between 0 and 24

(0AM – 12PM).

Out call time The arrival time of incoming calls, 0-24 (0AM – 12PM).

The last feature in Table 3.1 and 3.2 is information entropy (82) which is a measure of

the uncertainty of a random variable. In my case, this random variable is calling time. The

entropy of a variable X is defined by Equation (5) where xi ∈ X and P (xi) = Pr(X = xi).

(5) H(X) = −
∑

i

P (xi) log2(P (xi)).

Assessment based on these extracted features is that Sloan students tend to make more

phone calls than Media Lab students, whereas Media Lab students like to talk (or spend

time) on the phone longer on outgoing calls but talk less on incoming calls than Sloan

students. Sloan students spend time on the phone later in the day (about 2:30PM) than

Media Lab students (about 1PM). Lastly, the randomness in calling time of Media Lab

students is higher than Sloan students.
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3.5. Feature Selection

So far, I have extracted features from raw data (call logs) and I need to select the useful

features for classification. This section discusses how to evaluate the usefulness of features

for classification. In general, for classification task as I try to assign an unknown sample to

different classes which have different characteristics. My goal is to find a character (e.g., a

set of features) of the unknown sample that mostly identifies its belonging class among other

classes. This set of features need to have high degree of difference (or low degree of similarity)

to other classes to be considered as a “good” set of features. If I adopt the correlation between

two random variables as a goodness measure, the above definition becomes that a feature is

good if it is highly correlated with the belonging class but not highly correlated with other

classes.

There are two main approaches to measure the correlation between two random variables.

One is based on classical linear correlation and the other is based on information theory. The

first approach is the well known linear correlation coefficient(r). For any pair of random

variables (X, Y ), r can be computed by (6).

(6) r =

∑

i (xi − x̄i) (yi − ȳi)
√

∑

i (xi − x̄i)
2
√

∑

i (yi − ȳi)
2
,

where x̄i is the mean of X, and ȳi is the mean of Y . The value of r is between -1 and

1. A correlation coefficient of 1, -1, and zero implies perfect linear relationship, inversely

proportional relationship, and no linear relationship between the two variables respectively.

It is symmetrical measure for two variables. There also exists other measures in this cate-

gory which are basically variations of r, such as least square regression error and maximal

information compression index (89). There are several benefits of choosing linear correla-

tion coefficient as a goodness measure for feature selection such as it helps remove features

with correlation close to one from selection and retain other features with low correlation.

However, in the reality it is not safe to always assume “linear” relationship between features.

Linear correlation measures may not be able to capture the correlations that are not linear

in nature.

25



Another approach to measure the correlation which is based on information theory can

overcome this shortcoming. I adopt the concept of information entropy which is given in

Equation (5) which measures the degree of uncertainty between two random variables. In-

formation theory (90) defines conditional entropy of a random variable given another with

a joint distribution P (xi, yj) as follows.

(7) H(X|Y ) = −
∑

i

∑

j

P (xi, yj) log2(P (xi|yj)).

Another important definition is mutual information which is a measure of the amount

of information that one random variable contains about another random variable which is

given by Equation (8).

(8) I(X; Y ) = −
∑

i

∑

j

P (xi, yj) log2(
P (xi, yj)

P (xi)P (yj)
).

Given Equation (5) and Equation (7), it is straightforward to derive Equation (9).

(9) I(X; Y ) = H(X) −H(X|Y ).

Mutual information is also referred to as information gain(91) which can be interpreted as

a measure of the amount by which the entropy of X decreases reflects additional information

about X provided by Y .

Theorem: The mutual information is symmetrical for two random variables X and Y which

can be proved as follows.

Proof: To show that I(X; Y ) = I(X; Y ).

I(X; Y ) = H(Y ) − H(Y |X)

= H(Y ) − (H(X, Y ) −H(X))

= H(X) + H(Y ) −H(X, Y )

= H(X) − H(X|Y ) �

For fairness in comparisons, normalization is needed. Therefore the normalized mutual

information can be derived as
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(10) INor(X; Y ) =
H(X) − H(X|Y )

H(X)
,

where denominator H(X) is a scale factor to normalize it to [0, 1].

3.6. Kernel-Based Näıve Bayesian Classifier

The approach to classification taken here is based on Bayes rule (92) of conditional

probability which is given by Equation (11).

(11) P (Y |X) = P (Y )
P (X|Y )

P (X)
,

where P (Y |X) is the a posteriori probability which is the probability of the state of nature

being Y given that feature value X has been measured. The likelihood of Y with respect

to X is P (X|Y ) which indicates that other things being equal, the category Y for which

P (Y |X) is large is more “likely” to be the true category. P (Y ) is called a priori probability.

The evidence factor, P (X), can be viewed as a scale factor to guarantee that the posterior

probabilities sum to one.

Suppose now that I have N input features, X = {x1, x2, .., xN}, which can be considered

independent both unconditionally and conditionally given y. This means that the probability

of the joint outcome x can be written as a product,

(12) P (X) = P (x1) · P (x2) · · · P (xN)

and so can the probability of X within each class yj ,

(13) P (X|yj) = P (x1|yj) · P (x2|yj) · · · P (xN |yj).

With the help of these it is possible to derive the basis for the näıve Bayesian classifier(93)

as follows,

(14) P (yj|X) = P (yj)
P (X|yj)

P (X)
= P (yj)

N
∏

i=1

P (xi|yj)

P (xi)
.

The designation näıve is due to simplistic assumption that different input attributes are

independent.

27



From Equation (14), the classification is then based on the likelihood function given by

Equation (15).

(15) L(yj|X) =
N
∏

i=1

P (xi|yj).

Most applications that apply näıve Bayesian classifier derive likelihood function from

the actual data or assumed parametric density function (e.g., Gaussian, Poisson). Another

approach to derive likelihood function is by using non-parametric density estimation. The

most popular method is the kernel estimation which is also known as the Parzen window

estimator (94) as follows,

(16) f(z) =
1

Mh

M
∑

k=1

K

(

z − zk

h

)

,

where K(u) is kernel function, M is the number of training points, and h is the bandwidth

or smoothing parameter. The most widely used kernel is Gaussian of zero mean and unit

variance (N(0, 1)) which is defined by Equation (17).

(17) K(u) =
1√
2π

e−u2/2.

The choice of the bandwidth h is crucial. Several optimal bandwidth selection techniques

have been proposed ((95)). In this study, I use AMISE optional bandwidth selection using

the Sheather Jones Solve-the-equation plug-in method which was proposed in (96).

Kernel density estimator provides smoothness to likelihood function with continuous

attributes rather than relying on discrete ones. Now the likelihood function in (15) becomes

(18) L(yj|X) =
1

Mh

N
∏

i=1

(

M
∑

k=1

K

(

yj − zi
k

h

)

)

,

where zi
k is training point k of feature i.

3.7. Implementation and Results

To evaluate my proposed system, I continue my implementation from data extraction

process in section 3.4. Recall that I have 11 extracted features from the call logs. Now I

need to select useful features based on normalized mutual information as discussed in section
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3.5. Based on Equation (10), normalized mutual information is computed for each feature

and plotted in Fig. 3.2 for comparison. If normalized mutual information of 0.5 is chosen as

a threshold, then I have six featured selected with the highest degree of discriminancy.
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Figure 3.2. Result of normalized mutual information.

The six selected features with their corresponding normalized mutual information are

listed in ascending order in Table 3.3. Recall that less normalized mutual information implies

higher order of discriminancy or most useful feature for classification.

The useful features have been selected, before reaching classifier feature normalization

is needed. The reason for normalization is to reduce the noisiness of features since non-

normalized features have different ranges and are measured in different units. Thus, selected

features are normalized to [0, 1].

Features are now ready to be fed to classifier which operates in two modes; training and

testing. I use 50% of my feature set as training data and the other 50% as testing data. I

implement my proposed method of using kernel-based näıve Bayesian classifier with selected

six features based on normalized mutual information. The performance of my proposed
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Table 3.3. Selected features based on normalized mutual information

Features Normalized Mutual Information

All call time 0.169

Inc call time 0.220

Out call time 0.328

All calls 0.357

Ent call time 0.388

Missed calls 0.450

method is measured by the accuracy rate which is a ratio of correct classified users to the

total testing users.

For performance comparison purposes, I also implement näıve Bayesian classifier using all

11 extracted features, näıve Bayesian classifier using six selected features, and kernel-based

näıve Bayesian classifier using all 11 extracted features to compare with my method. The

result is shown in Table 3.4, among four approaches, my approach has the best performance

with accuracy rate of 81.82%. Näıve Bayesian classifier using all 11 extracted features,

näıve Bayesian classifier using six selected features, and kernel-based näıve Bayesian classifier

using all 11 extracted features perform at accuracy rates of 59.09%, 68.18%, and 77.27%

respectively.

Table 3.4. Performance comparison

Methods Accuracy Rate (%)

Näıve Bayes with all features 59.09

Näıve Bayes with six selected features 68.18

Kernel-based näıve Bayes with all features 77.27

Kernel-based näıve Bayes with six selected features 81.82

In addition, to evaluate the effectiveness of the six selected features based on normal-

ized mutual information, I sort all 11 features based on normalized mutual information in
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ascending order and monitor the changes in accuracy rate as more ascending sorted features

taken into account. I monitor both kernel-based näıve Bayesian and classical näıve Bayesian

approach which are shown in Fig. 3.3. Accuracy rate of both methods continue to increase

up to when six features are taken into account, then accuracy rate decreases. The accuracy

rate continues to decrease after more than six features taken for näıve Bayesian classifier

whereas the accuracy decreases from six to seven features and stays constant until all 11

features are taken into account for kernel-based näıve Bayesian classifier.
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Figure 3.3. Change of accuracy according to number of features selected.

Figure 3.3 tells us that the selected six features listed in Table 3.3 are indeed useful

features for classification. Including more features for classifier does not mean better per-

formance. In fact, it may degrade the performance of classifier with its noisiness and low

degree of discriminancy.

3.8. Conclusion

According to the CTIA (97), there are currently 243 million mobile phone subscribers in

the US. With a current population of around 300 million and assuming that the CTIA figure
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implies unique subscribers, about two in every three Americans own a mobile phone. With

this widespread use of mobile phones, it becomes valuable source of information for social

networks analysis. In this section, I analyze social networks based on mobile phone’s call

logs, and propose a model for inferring groups. I describe data pre-processing process which

consists of data extraction and feature selection in which I introduce a technique for selecting

features using normalized mutual information that measures degree of disciminancy. With

its symmetrical and linearity-invariance property, I show that it makes normalized mutual

information suitable for my feature selection process. I adopt the classical näıve Bayesian

learning and introduce kernel density estimator to estimate the likelihood function which

improves accuracy of the classifier with its smoothness. My model is evaluated with real-life

call logs from Reality Mining project group. The performance is measured by the accuracy

rate. The results show that my model performs at accuracy rate of 81.82% which is highest

among other models (Näıve Bayesian classifier using all extracted features, näıve Bayesian

classifier using six selected features, and kernel-based näıve Bayesian classifier using all ex-

tracted features). I believe that my model can also be useful for other pattern recognition

and classification tasks.
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CHAPTER 4

MOBILE SOCIAL GROUP SIZES AND SCALING RATIO

4.1. Introduction

Humans are evolving as fundamentally social creatures. Our belief and behavior have

been shaped by our social context. Understanding social context and its structure can help

unfold the concealed patterns that assemble our behavior. As our technology advances, we

have created different ways of social networking. Besides the conventional face-to-face social

networking, we are now interacting with people on online and mobile networks, which inherit

some face-to-face social networking fundamentals and also introduce some new elements and

concepts. As mobile networks expand rapidly to facilitate the rising number of mobile phone

population, the more mobile social services are being developed and offered. Understanding

the mobile social network is the first and an essential step towards creating an intelligent

functionality that indeed enhances quality of life with a system that comprehends behavior

and context of its user(s).

Human social grouping patterns have been studied extensively in both sociology (98) and

social anthropology (99) (100). Dunbar (101) proposed that humans had a cognitive limit of

about 150 on the number of individuals with whom coherent personal relationships could be

maintained. Later, Zhou et al. (102) identified a social group scaling ratio of “3” as social

network members were divided into six groups based on social connectivity with group sizes

of about 3-5, 12-20, 30-50, 150, 500, and 1,000-2,000 people.

To the best of our knowledge, no scientific research has been reported in identifying mobile

social group sizes and its scaling ratio, thus it is very interesting and important to investigate

it for a better understanding of the mobile social network and a useful comparison to the

face-to-face social network. The result of the investigation can also be related to behavioral

grouping signatures, cognitive process of human brains for social closeness, and mechanisms
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governing the human grouping dynamics. In this section, we mine mobile social network

data by presenting a simple but efficient method to quantitatively define social closeness and

social grouping, which are then used to identify social sizes and scaling ratio.

4.2. Mobile Social Closeness and Grouping

Literatures in social science ((103),(104)) discussed the social closeness of people based

on amount of time and intensity of communication. Granovetter et al. (103) found that

the time spent in a relationship and the intensity along with the intimacy and reciprocal

services formed a set of indicators for social tie. The paper predicted that the strength of

an interpersonal tie was a linear combination of amount of time, the emotional intensity,

the intimacy (mutual confiding) and the reciprocal services in a relationship. Marsden et al.

(104) evaluated the indicators and predicators of strength (tie) described by Granovetter et

al. (103), and concluded that “social closeness” or “intensity” provided the best indicator

of strength or tie. Marsden etl al.’s conclusion was derived based on the survey study of

2,329 human subjects who were drawn from three cross-sectional surveys conducted at two

American cities (Detroit, Aurora) and a small city in the Federal Republic of Germany.

Responders were asked to identify their three closest friends and report characteristics of

these persons such as age, occupation, religion, and so on.

In mobile social network, amount of time and intensity of communication can be mea-

sured by call duration (talk time) and call frequency (number of phone calls). In our daily

life, we communicate with people in the mobile network at different instances. These people

constitute our mobile social network. Based on amount of time and intensity of communi-

cation with these people, our mobile social network can be divided into three broad groups:

Group 1: Socially Closest Members

These are the people with whom we maintain the highest socially connectivity. Most of

the calls we receive, come from individuals within this category. We receive more calls from

them and we tend to talk with them for longer periods. Typically, the face-to-face social tie

of these people is family member, friend, and colleagues.

Group 2: Socially Near Members
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People in this group are not as highly connected as family members and friends, but when

we connect to them, we talk to them for considerably longer periods. Mostly, we observe

intermittent frequency of calls from these people. These people are typically neighbors and

distant relatives.

Group 3: Socially Distant Members

These individuals have less connection with our social life. These people call us with less

frequency. We acknowledge them rarely. Among these would be, for example, a newsletter

group or a private organization with whom we have previously subscribed. This group also

includes individuals who have no previous interaction or communication with us. We have

the least tolerance for calls from them e.g., strangers, telemarketers, fund raisers.

We quantitatively define the social closeness between user i to user j from perception of

user i (S(i, j)) by Equation (19).

(19) S(i, j) =
√

(1 − F (i, j))2 + (1 − T (i, j))2,

where F (i, j) is the normalized call frequency (normalized to the maximum call frequency

among all users with whom user i communicate) between user i and user j which is given

by Equation (20), and T (i, j) is the normalized call duration or talk time (normalized to the

maximum talk time among all users with whom user i communicate) between user i and

user j, which is given by Equation (21). The reason for normalization here is to align all

associated users (callers and calles) of the user i onto a reference scale ranging from zero to

one where zero means the minimum and one means the maximum. As they are on the same

scale, it is thus convenient to compare in a more systematic way.

(20) F (i, j) =
f(i, j)

max
k∈Ui

{f(i, k)} ,

(21) T (i, j) =
t(i, j)

max
k∈Ui

{t(i, k)} ,

where f(i, j) is the total number of calls or call frequency between user i and user j, t(i, j)

is the total call duration or talk time between user i and user j, and Ui = {1, 2, ..., N} is the
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set of all users associated with user i (i.e., all users who have made/received calls to/from

user i with total of N users).

As F (i, j) and T(i,j) are normalized values that lie between zero and one, thereby S(i, j)

has values in the range [0,
√

2], which indicates the mobile social closeness between user i

and user j from user i’s perspective where 0 implies the closest and
√

2 implies the farthest

relation. Based on this quantity, we can categorize all users associated with the user i into

three social groups using a simple algorithm given in Fig. 4.1. (where Fig. 4.2 shows

graphical illustration).

Algorithm 1. Social Grouping

Input: Social Closeness (S(i, j)), F (i, k), and T (i, k) for k ∈ Ui

Output: Social Group that user j belongs to, according to user i (G(i, j))

1. Compute µF and µT , the means of F (i, k) and T (i, k) respectively for k ∈ Ui

2. Compute R, the Euclidean distance from (µF , µT ) to (1,1).

3. IF S(i, j) ≤ R/2

4. G(i, j) = 1;

5. ELSE IF R ≥ S(i, j) > R/2

6. G(i, j) = 2;

7. ELSE IF S(i, j) > R

8. G(i, j) = 3;

9. END IF

10. Return G(i, j);

Figure 4.1. Algorithm for social grouping.

As social closeness and social group are defined according to the perception of user

i, therefore using analogy of the circle, user i can be referred to as a center user, where

the distance from the center of the circle (center user) represents the closeness of social

relationship to other associated users.
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Figure 4.2. Graphical illustration for identifying boundaries of mobile social groups.

Property 1. Social closeness is typically not symmetric but can be symmetric under a

specific condition.

Social group is based on social closeness which is measured by amount of time and

intensity of communication between the center user and associated user. Social closeness

is computed according to the center user’s perception of each associated user compared to

all other associated users. Since different center users may have different associated users

with different amount of time and intensity of communication, thus social closeness is not

symmetric. For example, user j is perceived by user i as a member of group 1, however user

i is perceived as a member of group 2 of user j since user j has other associated users to

whom user j communicate more than user i.
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From Equations (19), (20), and (21); S(i, j) can be defined as

(22) S(i, j) =

√

√

√

√(1 − f(i, j)

max
k∈Ui

{f(i, k)})2 + (1 − t(i, j)

max
k∈Ui

{t(i, k)})2,

and S(j, i) can be defined as

(23) S(j, i) =

√

√

√

√(1 − f(j, i)

max
m∈Uj

{f(j, m)})2 + (1 − t(j, i)

max
m∈Uj

{t(j, m)})2.

Since f(i, j) = f(j, i) and t(i, j) = t(j, i), Equation (23) can be rewritten as

(24) S(j, i) =

√

√

√

√(1 − f(i, j)

max
m∈Uj

{f(j, m)})2 + (1 − t(i, j)

max
m∈Uj

{t(j, m)})2.

If social closeness is symmetric, i.e., S(i, j) = S(j, i), then

(25)
√

√

√

√(1 − f(i, j)

max
k∈Ui

{f(i, k)})2 + (1 − t(i, j)

max
k∈Ui

{t(i, k)})2 =

√

√

√

√(1 − f(i, j)

max
m∈Uj

{f(j, m)})2 + (1 − t(i, j)

max
m∈Uj

{t(j, m)})2,

where equality holds if and only if max
k∈Ui

{f(i, k)} = max
m∈Uj

{f(j, m)} and max
k∈Ui

{t(i, k)} =

max
m∈Uj

{t(j, m)}.

Note: Symmetry of the social closeness here means that the social closeness between the

user i and j perceived by the user i (S(i,j )) is the same as the social closeness perceived

between the user i and j perceived by user j (S(j,i)). For example, suppose there are

Subj. #1 and Subj. #2 who have been communicating with each other via mobile phones

so that they have established a mobile social relationship. In other words, Subj. #1 is

an Associated User of Subj. #2 and Subj. #2 is also an Associated User of Subj. #2.

Suppose we ask each subject (independently) to quantitatively identify the social closeness

between them with a value from 0 to
√

2(where 0 implies the closest and
√

2 implies the

furthest). If Subj. #1 thinks that the social closeness between him and Subj. #2 is S(1,2),

and Subj. #2 thinks that the social closeness between him and Subj. #1 is S(2,1). We

say that social closeness between Subj. #1 and Subj. #2 is “symmetric” if S(1,2) =

S(2,1). According to Eq. 22, the social closeness (S(i,j )) depends on four parameters: call

frequency between user i and user j (f(i, j)), call duration between user i and user j (t(i, j)),
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the maximum call frequency among all Associated Users with whom user i communicate

(max
k∈Ui

{f(i, k)}), and the maximum call duration among all Associated Users with whom

user i communicate (max
k∈Ui

{t(i, k)}). Likewise, the social closeness (S(j,i)) from the user j ’s

perception depends on the same aforementioned parameters but from user j ’s perspective:

f(j, i), t(j, i), max
m∈Uj

{f(j, m)}, and max
m∈Uj

{t(j, m)}– as given by Eq. 23. Since the call frequency

between user i and user j (f(i, j)) is always equal to the call frequency between user j

and user i (f(j, i)) i.e., f(i, j) = f(j, i), and the call duration between user i and user j

(t(i, j)) is always equal to the call duration between user j and user i (t(j, i)) i.e., t(i, j) =

t(j, i) – as shown in Eq. 24, therefore this symmetry can only occur when max
k∈Ui

{f(i, k)} =

max
m∈Uj

{f(j, m)} and max
k∈Ui

{t(i, k)} = max
m∈Uj

{t(j, m)} – as shown in Eq. (25) . A symmetric social

closeness is rare beacuse it can only happen under the mentioned condition (max
k∈Ui

{f(i, k)} =

max
m∈Uj

{f(j, m)} and max
k∈Ui

{t(i, k)} = max
m∈Uj

{t(j, m)}).

Property 2. Social closeness and social group change over time.

In our daily life, relationships inevitably change over time. Meeting new people with

whom the closer relationships established and not keeping in touch with whom the relation-

ships become further are part of our social life. It is inherently true in mobile social network

that social closeness changes over time. Situations bring people together and take them

apart. These situations can be work, school, hobby, or any event in life. As soon as the

phone numbers have been exchanged or given, a new social member may arise and possibly

gain closer relationship as time progresses. Thus social closeness and social group change

over time.

4.2.1. Datasets

In this study, we use two sets of real-life call logs of 30 combined users with nearly

3,000 associated callers/calees and over 46,000 call activities. Our first dataset consists of

three-month call logs of 20 individual mobile phone users, which were collected at University

of North Texas (UNT) during summer of 2006. These 20 individuals were faculty, staff,

and students. These call logs were collected as part of the Nuisance Project (105), where
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Kolan et al. (105) studied the nuisance level associated with each phone call. Our second

dataset consists of three-month call logs of ten mobile phone users, which were collected

during summer of 2008 at UNT. These ten subjects were also faculty, staff, and student. In

addition, during our second dataset collecting process, we interviewed the subjects about

the social closeness for all of his/her associated users by having the subjects identifying the

perceived social group for each associated user. As the result, our second dataset includes an

additional information on social group corresponding to each associated user. The details of

the data collecting process are described in (106). The survey is included in the Appendix

B.

As part of the data collecting process for both datasets, each user downloaded three

months of detail telephone call records from his/her online accounts on the mobile phone

service provider’s website. Each call record in the dataset had 5-tuple information as follows

(an example call record is shown in Fig. 4.3):

Call record: {Date, Start time, Type, User ID, Talk time} where

• Date – date of call

• Start time – start time of call

• Type – type of call i.e., “Incoming” or “Outgoing”

• User ID – caller/callee identifier

• Talk time – duration of call (in minutes)

4.2.2. Validation of Social Grouping

To validate the accuracy of our social closeness/group computation, we use the second

set of our data, which contains social group information. We are able identify social groups

correctly with the overall accuracy rate of 93.8%. The detailed result is shown in Table 4.1,

which presents the number of correct classification (Hit), the number of incorrect classifica-

tion (Miss), and the accuracy rate ( Hit
Hit+Miss

) for each center user.

Based on the follow-up interviews with these ten subjects, most of “Miss” are caused by

confusion between the face-to-face social closeness and mobile social closeness. For example,

one of the subjects indentifies his roommate as a group 1 member but since the subject sees
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Figure 4.3. An example of call record. Note that User IDs have been mod-

ified to protect privacy.

his roommate quite often thus the subject does not make/receive many phone calls to/from

him. As the result, his roommate is classified to group 2 based on our calculation (Equation

(19)) but identified as group 1 member by the subject. To avoid the biased feedbacks from

the subjects, we do not provide any information about our social closeness computation or

much more details about the three social groups than the description provided earlier in

this section. Nevertheless, we believe that we have a good result in accuracy rate and, in

addition, we do not have a single incorrect classification that misses more than one level of

social group.

Furthermore, as stated by Property 2 that social relationships change over time. With

our real-life datasets, we thus further experimentally validate Property 2 by showing an

example of an actual social-group plot of a randomly selected center user from our datasets

in Fig. 4.4, from which we can see that the associated user 8 used to be a member in group 1

(Fig. 4.4(a)) but as time progresses, he/she has changed calling behavior towards the center

user (or the center user changes his/her calling behavior towards the associated user 8) by

which furthers relationship apart and leads the user 8 to become a member of group 2 at 30

days later (Fig. 4.4(b)).

As texting becomes a popular mobile means of communication, one may be curious

about how to apply the proposed computational framework to the coexistence of the texting
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Table 4.1. The result of validation of social group calculation, which includes

the number of correct/incorrect classification (Hit/Miss) based on our social

closeness calculation and group classification, and the accuracy rate for each

user

User Hit Miss Accuracy Rate (%)

1 60 5 92.31

2 57 6 90.48

3 48 5 90.57

4 141 13 91.56

5 127 8 94.07

6 188 11 94.47

7 88 3 96.70

8 80 6 93.02

9 62 1 98.41

10 87 4 95.60

Overall 938 62 93.80

Mean 93.80 6.20 93.72

Std. Dev. 44.82 3.61 2.64

information in the call logs. According to our definition of social closeness (Eq. 19), the social

closenss can be estimated based on the intensity of communication, which can be measured

by call duration and call frequency. With texting, the frequency can simply be measured

by the number of communications via texting (both incoming and outgoing textings). Even

though there is no explicit form of duration of the texting, the length of the texting (number

of characters typed) can be the counterpart of call duration. Such that the social closeness

computation given in Eq. 19 can be rewritten as

S(i, j) = WV

√

(1 − FV (i, j))2 + (1 − TV (i, j))2 + WT

√

(1 − FT (i, j))2 + (1 − TT (i, j))2,
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Figure 4.4. (a) Social relationship at time T and (b) social relationship at

30 days later (T + 30).

where subscripts V and T represent Voice and Text respectively. The varaibles WV and

WT are the the weights of voice and texting communication means, social closeness is thus

estimated based on both mobile means with either same (WV = WT = 0.5) or different

contributing load WV 6= WT and WV + WT = 1) to the social closeness. These weights can

be further studied and determined with the most suitable values.

One may also raise an issue of communication intensity being a subjective judgement.

Clearly, it is true. This means that the definition of high and low intensity in communication

completely depends on the perception of each individual subject. If we were to acquire the

feedback about the communication intensity from two different subjects: Subj. #1 and

Subj. #2 given that these two subjects know each other and have been communicating via

mobile phones. The feedbacks from both subjects may be different because “the intensity

is a subjective judgement” e.g., Subj. #1 may say that he/she has high communication

intensity with Subj. #2 but on the other hand, Subj. #2 may think that he/she has

low communication intensity with Subj. #1. The perceived intensity levels are different

because each subject makes decision on the intensity after comparing the intensity level

of the other subject with other associated contacts (other persons with whom the subject

has been communicating via mobile phone). Therefore, the perceived intensity is estimated
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based on the subject’s past communications with all contacts. The subject is thus the center

(reference) point of perception. According to our study, the feedback and computation are

done based on “one” reference point of view – the Center User who gives the feedback from

his/her perception about the communication intensity between him/her and each of his/her

Associated Users (callers/callees). We do not compare one subject’s perceived intensity

against another but based on one subject’s perceived intensity (and computed intensity),

we classify the social groups. Thereby, it is true that intensity is a subjective judgement,

however it does not after our results as we take this perceived intensity as a ground truth for

verifying our computation, not to argue that one subject’s perceived intensity is the same

as or different from another’s. We consider each individual subject independently (from the

others).

For a possibility of some comfusion in feedback-based evaluation of our social grouping

scheme and its accuracy calculation, we note the following. The goal of our study is to

construct a computational model that estimates the human’s perceived mobile social tie,

and then use the verified model to infer other useful characteristics of mobile social group

structure. The feedback from the human subjects is the actual perception or the ground truth

or the reality (see Response of Comment #4) that is used to evaluate our model. We further

investigate about the group sizes and their successive ratio upon the validated social closeness

and social grouping algorithm. To reemphasize on the correct and incorrect classification of

our social grouping scheme, we revisit our conducted survey study process and the evaluation

process. In our mobile social survey, we recruit ten mobile phone users who are faculty, staff,

and students in computer science and engineering department at University of North Texas.

We obtain three-month call logs from each subject who is then asked to identify his/her

perceived social tie of each Associated User in the call logs. Information about definition of

the social tie is given to the subject as described in Appendix C. In our validation process,

for each subject (Center User), we use our social closeness and grouping model to compute

the social tie for each Associated User, then compare this computed value against the actual

feedback from the subject. The accuracy rate of our model is computed for each subject
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as the ratio of the number of correct classified Associated Users to the total number of

Associated Users. For example, suppose a given subject has five Associated Users and our

model computes the social tie (group) as 1, 2, 3, 3, 3 for each Associated User respectively.

Then we check these computed values against the actual perceived social tie from the subject,

suppose the subject’s feedback shows the social tie as 1, 2, 2, 3, 3 for each Associated User

respectively. Such that the accuracy rate can be computed as (Number of corrected social

tie base on our model)/(Total number of Associated Users) = 4/5 = 80%

4.3. Social Group Sizes and Scaling Ratio

Based on the social closeness and group inference in the previous section, it is straight-

forward to find social group sizes for any given center user.

In our social world, people who know a lot of people and have many friends are typically

socially active. On the other hand, people who are socially less active tend to have smaller

social network. It is inherently the case for mobile social network. Since activeness of a

phone user (center user) is related to social group sizes, we define activeness of a center user

by number of outgoing calls per day. Based on this definition, center users can be divided

into three categories:

(1) Low active users: center users who have less than six outgoing calls per day.

(2) Medium active users: center users who have between six to ten outgoing calls per

day.

(3) High active users: center users who have more than ten outgoing calls per day.

Table 4.2 summarizes the result of social group sizes based on our entire datasets (30

mobile phone users) by listing the mean group sizes for each social group and each category

of the center users based on the activeness. It can be observed that the mean group sizes

have scaling ratio of 8.

For low active users, group 1 has mean size of 1.00 (SL
1 = 20), group 2 has mean size of

8.67 ≈ 8 (SL
2 = 23), and group 3 has mean size of 63.33 ≈ 64 (SL

3 = 26). Thus, scaling ratio

for low active users is approximately
SL

i+1

SL
i

= 23 = 8.
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Table 4.2. The mean group sizes of each social group for low, medium, and

high socially active center users

Social Group Mean Group Sizes

Low Active Users Medium Active Users High Active Users

1 1.00 1.50 2.00

2 8.67 11.83 16.91

3 63.33 90.83 126.64

For medium active users, group 1 has mean size of 1.50 ≈ 20.5 (SM
1 = 20.5), group 2 has

mean size of 8.67 ≈ 23.5 (SM
2 = 23.5), and group 3 has mean size of 90.83 ≈ 26.5 (SM

3 = 26.5).

Hence scaling ratio is medium active users is approximately
SM

i+1

SM
i

= 23 = 8.

For high active users, group 1 has mean size of 2.00 (SH
1 = 21), group 2 has mean size

of 16.91 ≈ 16 (SH
2 = 24), and group 3 has mean size of 126.64 ≈ 128 (SH

3 = 27). Similarly,

scaling ratio for high active users is approximately
SH

i+1

SH
i

= 23 = 8.

From the results of all three categories of center users, it is very interesting to see that

activeness of center user indeed reflects the social group sizes and the same scaling ratio is

found for every category, that is

(26)
SL

i+1

SL
i

=
SM

i+1

SM
i

=
SH

i+1

SH
i

= 8.

Besides a simple analysis based on the mean group sizes, we further employ a more

systematic method of analysis that uses raw group sizes. We thus consider all 90 grouping

clusters in our dataset, which are shown in Fig. 4.5 (in semi log scale) where the sample

distribution can be represented as a sequence of Dirac’s delta functions given by Eq. (27).

(27) f(s) =
N
∑

i=1

δ (s − si) ,

where δ is Dirac’s delta function and N is the number of grouping clusters.

Note that the main idea is to instead of considering the mean group sizes, take into

account each individual group size such that the scaling ratio is derived from the raw data.

To do so, we need to lay out our raw data and extract the pattern from which the scaling
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ratio can be obtained. To lay out our data, each group size of all 90 data points (three social

groups of 30 Center Users) is plotted onto a simple Center User-versus-Group Size plot (Fig.

4.5), which provides us a graphical representation of the distribution of the data. The plot

is in semi log scale because the clusters of soical group sizes appear to be separated by some

exponential constant. Thereby a semi log scale better represents the data distribution than a

linear scale that would have depicted a non-periodic signal or less periodic signal. To extract

the pattern from this data distribution plot, we choose to estimate this raw distribution with

a Gaussian kernel density estimator such that the data distribution can be transformed to a

probability density function (pdf) from which the scaling ratio can be obtained by extracting

the periodicity of the signal (pdf).

Figure 4.6 shows the probability density function (pdf) f(s) estimated by a Gaussian

kernel estimator (107) with zero mean, unit variance, and AMISE optimal bandwidth se-

lection using the Sheather Jones Solve-the-equation plug-in method (96). From Fig. 4.6, it

can be observed that there are three main clusters of the local peaks of f(s) around 2, 10,

and 80. These clusters represent the cummulative frquency of raw data distribution in Fig.

4 of three social groups. Eventhough the peaks seem to spread out, the three clusters can

still be observed. With the obtained pdf, the challenge here is to extract a possible period-

icity in the ln s variable, which is called “log-periodicity” (108), e.g., if the previous scaling

ratio in Equation (??) is true, then the periodic oscillation of f(s) can be expressed in the

variable ln s with the expected mean period of ln 8 = 2.08. We use generalized q-analysis

or (H, q)-analysis (109), which has been shown to be very efficient for finding periodicity

(102). The q-analysis is a natural tool for describing discrete scale invariance (110) (111).

The (H, q)-analysis consists in constructing the (H, q)-derivative, which is given by Equation

(28).

(28) DH
q f(s)∆

f(s) − f(qs)

[(1 − q)s]H
.
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Figure 4.5. Distribution of group sizes in our dataset.
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Figure 4.6. The pdf (f(s)) obtained from Gaussian kernel density estimation

of group size s.

The (H, q)-derivative has two control parameters; the discrete scale factor q derived to

characterize the log-periodic structure and the exponent H introduced to allow us to detrend

f(s) in an adaptive way.
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Figure 4.7. The highest peak of Lomb power is found at H = −0.7 and q = 0.62.

To extract the log-periodicity in f(s), we then use a Lomb periodogram analysis (112).

The Lomb periodogram or Lomb power P (ω) is given by Equation (29).

(29) P (ω) =
1

2σ2

{

[
∑

s f(s) cos ω(s − τ (ω))]
2

∑

s cos2 ω(s − τ (ω))
+

[
∑

s f(s) sinω(s − τ (ω))]
2

∑

s sin2 ω(s − τ (ω))

}

,

where σ2 is the variance of f(s) and τ (ω) is given by Equation (30).

(30) τ (ω) =
1

2ω
arctan

{∑

s sin 2ωs
∑

s cos 2ωs

}

.

We test for the statistical significance of possible log-periodic oscillations. For each (H, q)

pair, the highest peak P (H, q) and its associated angular log-frequency ω(H, q) in the Lomb

periodogram are obtained. The basic criterion used to identify a log-periodic signal is the

strength of the Lomb periodogram analysis, i.e., the height of the spectral peaks. Figure 4.9

presents the Lomb periodograms of the (H, q)-derivative DH
q f(s) for different pairs of (H, q)

with −1.0 ≤ H ≤ 1.0 and 0.5 ≤ q ≤ 1.0. The highest Lomb power is found at H = −0.7

and q = 0.62 (shown Fig. 4.7) where its DH
q f(s) is shown in Fig. 4.8. The highest peak is at

ω = 2.99 with Lomb power of 53.25. The preferred scaling ratio is thus λ = e2π/ω = 8.17 ≈ 8,

which is consistent with the previous result using mean group sizes.
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Note for the readers who are not familiar with the generalized q-analysis: The goal of

applying the generalized q-analysis here is to extract the (most probable) periodicity of the

signal (f (s), shown in Fig. 4.6) obtained from the raw data of social group sizes (shown
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in Fig. 4.5). The criterion used to identify the most probable periodicity is the strength

of the Lomb power (given by Eq. 29). It appears in Fig. 4.7 that the highest Lomb

power is found at H = -0.7 and q = 0.62 where its corresponding angular log-frequency

is ω(H = −0.7, q = 0.62) = 2.99(shown in Fig. 4.9). Therefore, the log-periodicity is

lnλ = 2πω → λ = e2πω = e2π(2.99) = 8.17 ≈ 8.

4.4. Related Work

Closeness in face-to-face social networks has been studied in psychology, from which

various definitions (113) (114) (115), components (116) (117), classifications of closeness

(118) (119), and social support (120) have been defined.

As online social networking is gaining popularity, online social analysis has also been

extensively studied and the results have been reported in several literatures, among which

discussed about social closeness in online communities (121) (122) (123). To our knowledge,

no scientific research has been reported in quantifying closeness in mobile social networks.

Mobile social closeness has been mentioned to be an important component of interaction

syntax for mobile social software in (124) but never once defined. A literature that has come

close to defining mobile social closeness is (125), in which the authors measured the closeness

centrality for mobile phone users based on the definition proposed by Freeman in (126).

There have been research studies in social group sizes and scaling ratio in sociology (98),

social anthropology (99) (100), and psychology (127) (102) in face-to-face social networks

but not in mobile social networks.

4.5. Discussion

Social networking is a process of initiating, developing, and maintaining the relationships.

With the advance in our technology, we are now interacting with people in online and

mobile networks besides the conventional face-to-face social networks. Despite the different

setups, these three networks share common members e.g., we often have friends with whom

we contact in the face-to-face network as well as in online and mobile network. Figure

4.10 shows a Venn diagram of these social networks that shares common members in the
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overlapping areas. Since almost all of the mobile members are initiated through the face-to-

face networks, the overlapping area between the mobile and face-to-face network is relatively

larger than the overlapping area between the online and the face-to-face network where

several online social members are people with whom we have never met in person. However,

we occasionally communicate with people on the mobile phone with whom we have never

met (e.g., job interviews by phone, customer service calls, etc.), which thus results in a small

non-overlapping area between the mobile and face-to-face network.

Figure 4.10. Venn diagram of three social networks

Mobile social relationships (mostly) are initiated through the face-to-face social networks.

Mobile social relationships are developed and maintained with the intensity of communi-

cation, which also strengthen the face-to-face relationships. Thus, despite a small non-

overlapping area between the mobile and face-to-face social network, mobile social network

is (roughly) a subset of the face-to-face social network.

For face-to-face social networks, Zhou et al. (102) found a scaling ratio close to “3” based

on the results of the previous studies of social grouping (127)(128)(129), which divided social

members into six groups with different group sizes as described in Table 4.3.

According to Dunbar’s number (101) (“150”), which indicates the number of individuals

with whom a stable inter-personal relationship can be maintained, we thus restrict our
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Table 4.3. Face-to-face social grouping

Group Name Group size Description

1 Support clique ((128)(129)) 3-5 A group of individuals from

whom the subject would ask

personal advice or help in

times of severe emotional

and financial distress.

2 Sympathy group ((128)(129)) 12-20 A group of individuals with

whom the subject has

special tie; these individuals

are typically contacted at

least once a month.

3 Overnight camp or Band ((127)) 30-50 A group of individuals from

whom the subject feels a

personal allegiance at a

given time.

4 Clan or Regional group ((127)) 150 A group of individuals with

whom the subject maintains

a coherent personal relationship.

5 Megaband ((127)) 500 A group of individuals with

whom the subject maintains

distant relationship.

6 Tribe ((127)) 1,000-2,000 A group of individuals with

whom the subject maintains

the furthest distant relationship.

attention to only the face-to-face social group 1 to group 4 for comparison with our findings

in this study.
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Let Fg and Mg denote the face-to-face social group g and the mobile social group g,

respectively. Figure 4.11 shows the group sizes of the face-to-face network comparing to the

mobile social network. From this comparison, it is straightforward to see that

(1) M1 ⊂ F1

(2) M2 ⊂ F1 ∪ F2

(3) M3 ⊂ F2 ∪ F3 ∪ F4

Therefore, we conclude our discussion that the mobile social network is a subset of the

face-to-face social network, and both groupings are not necessary the same (but relationships

can still be drawn, as shown above), hence the scaling ratios are distinct (“3” for face-to-face

and “8” for mobile social grouping).

Figure 4.11. Comparison of group sizes between face-to-face and mobile

social network

4.6. Societal Context

In this study, mobile social networking has been structured into three discrete hierarchies.

Group sizes and their successive ratios are presented. Group sizes vary depending on the

activeness of the users, but the ratio is nearly constant (close to eight). The findings of this

study can be beneficial to:
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(1) Mobile phone service providers: With the increase of mobile phone user population,

mobile phone service providers are competing to offer better services and plans

for their existing and especially potential customers. The success of “T-Mobile

myFaves” (130) (plan that allows the user to make unlimited calling to his/her

five favorite people) suggests that the emphasis of the future mobile phone services

will be on social context. Thereby ability to recognize mobile social groups and

sizes can indeed enrich the services e.g., personalized plans, per-social-group rates,

active/non-active social plans, etc.

(2) Privacy settings: Privacy concerns are rising as today’s telecommunication tech-

nologies allow people to be connected pervasively (131). Mobile phone becomes

more than just a voice communication device but camera, book, Internet browser,

and so on. With the user unaware, information being shared on a connected net-

work can be sensitive and private. Thus, an ability to recognize the user’s social

context can facilitate a context-aware mobile phone (132) to configure privacy level

appropriately.

(3) Anomaly detection: Mobile phone calls form a communication network. Anomaly

detection is to identify abnormal behavior occurring in the network. Anomalies

in the network usually mean frauds, congestion, or even terrorism. Social context

can be used to enhance anomaly detecting methods such as link-based (133) and

rule-based (134) mechanism.

(4) Phone call filtering: With a flexibility of comfort and ease of use, mobile telephony

is widely preferred mode over other communication modes e.g., e-mail, face-to-face

interaction. However, this ease of use in real-time communication brings challenges

that are not really pertinent in e-mail communications and face-to-face interactions.

One problem that mobile users experience is spam and unwanted calls (135). These

spam and unwanted calls can be mitigated by using social grouping scheme to

develop a protocol to allow/block phone calls based on social context (136)(105).
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(5) Epidemiology : Today’s mobile phones provide convenience by integrating traditional

telephony with handheld computing devices. However, the flexibility of running

third-party software also leaves the phone open to malicious viruses. In fact, in the

past few years hundreds of mobile phone viruses have emerged and spread through

various means such as SMS/MMS, Bluetooth, and traditional IP-based applications

(137). Integrating social group scaling ratio into the epidemiologic model can help

predict and estimate the spread of virus outbreaks. Recognition of social context

can also alleviate vulnerability of becoming infected.

(6) Business marketing: Acquiring new clients is one of the top priority in a business.

Marketing is a process to communicate to individuals and communities about the

existing and new products and services. To increase its effectiveness, social context

of the existing clients can be used to guide the direction of the marketing while

maintaining the marketing cost-efficiency. Social context has shown its positive

impact on marketing in previous studies in psychology and marketing research (138)

(139) (140) (141).

4.7. Limitations of the Study

Nevertheless, there are some limitations of this study, which can be pointed as follows:

(1) Diversity of the subjects : Our subjects were faculty, staff, and students, which

present homogeneous subjects. The result would be more generalized with more

diverse subjects (e.g., subjects with different backgrounds and life styles).

(2) Amount of data for analysis: Our analysis is based on the mobile phone’s call logs

over the course of three months. With the amount of call logs grows to four months,

five months, six months, and so on, the number of associated users also increases

as new social relationships are initiated. This limited amount of call logs does not

allow us to further study the impact of increase of the new social relationships to the

social group sizes and scaling ratio. On the other hand, as stated by Property 2 that

social closeness and social tie change over time, it is very interesting to investigate
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on what indicates the current relationships and with these current relationships,

would the group sizes and scaling ratio remain unchanged?

(3) Sample size: It is difficult to collect these call logs due to the privacy issues and

the subject’s unwillingness to participate in the survey due to the time-consuming

process. With our 30 mobile users, it might not completely represent the actual

mobile social networks but we believe that it is the first step towards further analysis

in this research study. Nonetheless, we will continue to collect more datasets for our

future studies.

(4) Characteristic of Associated Users: The call duration may depend on the character-

istic of the Associated Users (callers or callees) e.g., discursive, talkative, or cryptic.

Even though the social closeness computation is from the Center Users perspective

that means the duration of each call is influenced by the willingness of the Center

User, there are also call durations that are quite extensive and exceeding the Cen-

tere User’s willingness. These calls are typical as we all may have experienced in

our daily lives. Undoubtedly we believe that such calls exist in our dataset. We also

believe that the amount of these calls are relatively small because the Center User

usually learns from one or few of these calls and would try to avoid the similar situ-

ation (spending undesired long period of time on the phone talking with (listening

to) the persons). We are aware of these calls and we take them as noises or outliers

in our dataset. Since the characteristic of the Associated Users is not included for

analysis in our survey study, it thus notes another limitation of our study that we

would like to address in the future work.

(5) Diversity of situaional contexts : Sine our data are drawn from typical normal mobile

phone users (ordinary lives under no significant political situations or any extraor-

dinary circumstances e.g., natural disasters, big social/economical influences, etc.),

thereby the impact of these extraordinary circumstances is not evidenced and an-

alyzed in our present study. For example, suppose there is a subject who is under

an unusual situation such as political movements. He could be communicating with
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several new people (out of his usual daily life style). Intuitively, he forms new

relationships. According to our model, he establishes social ties. These new es-

tablished ties would become his current social ties within his current situational

context. Therefore, instead of what it should have been in his normal situational

context of 3, 24, and 192 as number of members in his group 1, 2, and 3 respectively,

it may be 6, 24, and 96 or else in this current abnormal situational context. We

speculate that with a wide range of diverse situational contexts, our model can still

be applied. However, the result in group sizes and scaling ratio might be different.

The grouping scheme could also be diffident as well. This is a very interesting issue

to be further investigated in our future work.

4.8. Conclusion

With the rapidly growing population of mobile device users, more new mobile social

services are being offered. Research and development in mobile social computing are thus

intensified. In this article, we present a simple but efficient method to quantitatively define

mobile social closeness, which is then used to categorize mobile social network into three

groups. Our social grouping approach has been validated with the real-life datasets with

a high accuracy rate. With our mobile social grouping results, we identify a group sizes’

scaling ratio of close to “8” based on two different analyses where one is based on mean

group sizes and the other is based on all raw group clusters. We carry out a discussion on

social networks. We point out the overlapping area (common members) between face-to-

face, online, and mobie social networks and draw a conclussion based on our findings that

the mobile social network is a subset of the face-to-face social network, where both have

distinct groupings and constant group sizes’ scaling ratios. In societal context, we show that

our findings can be benefitial to mobile phone service providers, privacy setting, anomaly

detection, phone call filtering, epidemiology, and business marketing.

Nevertheless, there are limitations in our study. Diversity of the study subject’s back-

ground is one the limitations since all of our subjects are faculty, staff, and students in the

department of computer science and engineering. Their similar backgrounds thus bound the
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generalization of our results. The amount of data for analysis is also crucial as described in

Property 2, thereby larger data (longer call logs e.g., six months, one year, etc.) would allow

us to study the impact of the increase of the new social relationships to the social group

sizes and scaling ratio. The characteristic of the Associated Users (callers/callees) also plays

an important role in social closeness computation as it does influence some call durations.

Without a survey study of the characteristic of the Associated Users, our findings are lacking

in this aspect. The privacy issue is the biggest obstacle in our survey study. We find that

it is very difficult to find a subject who is willing to share his/her calll logs and provide a

feeback about social relationships. Our study is therefore limited to 30 subjects who might

not completely be a representive of the entire mobile social networks but we believe that

they are a part of the first step towards further analysis in this research study.

As our future direction, we will continue to investigate on the correlation between the

mobile social group sizes and scaling ratio, and the increase of initiation of new social re-

lationship as time progresses. We will investigate on what and how to characterize the

current social relationships, in which we believe to play an important role in identifying the

underlying correlation.
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CHAPTER 5

MOBILE SOCIAL CONTEXT AND COMMUNICATION PATTERNS

5.1. Introduction

Concepts and techniques have been recently proposed to analyze complex systems to

provide new insight into the structure of social networks. Uncovering the communication

pattern in such networks is a key issue to characterize them. I investigate communication

patterns in mobile social networks based on my previous findings (142) of mobile social

closeness and grouping scheme.

5.2. Datasets

In this study, I use two sets of real-life call logs of 30 combined users with nearly 3,00

associated callers/calees and over 46,000 call activities. My dataset consists of three-month

call logs of 30 individual mobile phone users, which were collected at University of North

Texas (UNT) during summer of 2006 and summer of 2008. As part of the data collecting

process, each user downloaded three months of detail telephone call records from his/her

online accounts on the mobile phone service provider’s website. Each call record in the

dataset had 5-tuple information; Date, Start time, Type (Incoming or Outgoing), User ID,

and Talk time.

5.3. Mobile Social Closeness and Grouping

In our daily life, we communicate with people in the mobile network at different instances.

These people constitute our mobile social network. In my previous work (142), I showed that

based on amount of time and intensity of communication with these people, our mobile social

network could be divided into three broad groups:

Group 1: Socially Closest Members – These are the people with whom we maintain the

highest socially connectivity. Most of the calls we receive, come from individuals within this
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category. We receive more calls from them and we tend to talk with them for longer periods.

Typically, the face-to-face social tie of these people is family member, friend, and colleagues.

Group 2: Socially Near Members – People in this group are not as highly connected as

family members and friends, but when we connect to them, we talk to them for considerably

longer periods. Mostly, we observe intermittent frequency of calls from these people. These

people are typically neighbors and distant relatives.

Group 3: Socially Distant Members – These individuals have less connection with our

social life. These people call us with less frequency. We acknowledge them rarely. Among

these would be, for example, a newsletter group or a private organization with whom we have

previously subscribed. This group also includes individuals who have no previous interaction

or communication with us. We have the least tolerance for calls from them e.g., strangers,

telemarketers, fund raisers.

Social closeness between user i and user j from the user i’s perception (S(i, j)) can be

computed by Eq. 31.

(31) S(i, j) =
√

(1 − F (i, j))2 + (1 − T (i, j))2,

where F (i, j) is the normalized call frequency (normalized to the maximum call frequency

among all users with whom user i communicate) between user i and user j, which is given by

Eq. 32, and T (i, j) is the normalized call duration or talk time (normalized to the maximum

talk time among all users with whom user i communicate) between user i and user j, which

is given by Eq. 33.

F (i, j) =
f(i, j)

max
k∈Ui

{f(i, k)} ,(32)

T (i, j) =
t(i, j)

max
k∈Ui

{t(i, k)} ,(33)

where f(i, j) is the total number of calls or call frequency between user i and user j, t(i, j)

is the total call duration or talk time between user i and user j, and Ui = {1, 2, ..., N} is the

set of all users associated with user i (i.e., all users who have made/received calls to/from

user i with total of N users).
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5.4. Similarity in Calling Patterns

Daily, we receive calls from our social group members. Every per exhibits a unique calling

pattern. I have shown in my previous work (143) that the calling patterns (of Associated

Users) can be characterized by arrival time of the calls using kernel density estimator. I

believe that not only the calling pattern of each Associated User is unique but the calling

pattern from Center User to each Associated User is also unique. I also believe that there

exists some similarity in calling patterns between an Associated User and the Center User,

which may lead to a correlation between similarity in calling patterns and social closeness.

Calling pattern from user i to user j can be represented by Gaussian kernel estimation

as

(34) Ci,j(t) = f(hi,j [n]),

where f(·) is the Gaussian kernel estimator, and hi,j[n] is a histogram function of arrival

time of calls from user i to user j where n = {1, 2, 3, . . . , 24} is the hour slot.

For a given Center User i, Fig. 5.1 and Fig. 5.2 show three different calling pattern pairs;

Fig. 5.2(a) shows calling pattern from Center User i to Associated User a (outgoing calls to

a), Ci,a(t) and calling pattern from Associated User a to Center User i (incoming calls from

a), Ca,i(t) where user a is member of social group 1, Fig. 5.2(b) shows Ci,b(t) and Cb,i(t)

where user b is a member of group 2, and Fig. 5.2(c) shows Ci,c(t) and Cc,i(t) where user

c belongs to group 3. By visual inspection, one can observe that there is more similarity

in calling patterns between Center User i and member of group 1 than Center User i and

member of group 2, and even more as to compare to similarity between user i and member

of group 3.

I compute the similarity in calling patterns between user i and user j (Sim(i, j)) based

on Hellinger distance as follows.

(35) Sim(i, j) = 1 − d2
H(Ci,j(t), Cj,i(t)).
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Figure 5.1. Calling patterns (outgoing patterns are in red and incoming

patterns are in blue, the direction of the calling pattern can also be determined

by the arrow) between a Center User i and three different Associated Users

who are members of social group 1, 2, and 3.

Based on Eq. 35, I find that Sim(i, a) = 0.766, Sim(i, b) = 0.452, and Sim(i, c) = 0.125,

which confirm my observation.

For each Center User in my datasets, I compute similarity in calling patterns (Sim(i, j))

and social closeness (S(i, j)) for all Associated Users and then find their averages for each
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Figure 5.2. Calling pattern comparisons between Center User i to (a) mem-

ber of social group 1, (b) member of social group 2, and (c) member of social

group 3; where Ci,j(t) is the calling pattern from user i to user j.

social group. The result is shown in Fig. 5.3(a) where I can observe that as social closeness

becomes more distant, the similarity level in calling patterns decreases. This relationship

can also be estimated by a fitting curve of 5th degree polynomial. In addition, Fig. 5.3(b)

shows the average similarity level in calling patterns for each social group. This result is

consistent with result shown in Fig. 5.3(a) where group 1 is clustered around similarity level

of 0.8, group 2 is clustered around 0.4, and group 3 clustered around 0.1.
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Figure 5.3. (a) Similarity level in calling patterns and the corresponding

social closeness, (b) Similarity level in calling patterns and the corresponding

social groups.

In addition to my analysis of correlation between similarity in calling patterns and social

closeness/groups, I quantify Reciprocity (R(i, j)) as a level of interaction between the Center

User i and an Associated User j as follows.

(36) R(i, j) = F (i, j) · I(i, j),

where

I(i, j) = −fin(i, j)

f(i, j)
log2

(

fin(i, j)

f(i, j)

)

− fout(i, j)

f(i, j)
log2

(

fout(i, j)

f(i, j)

)

,(37)

F (i, j) is the normalized call frequency defined earlier using Eq. 32, fin(i, j) is the total

number of incoming calls from Associated User j to Center User i, fout(i, j) is the total

number of outgoing calls from Center User i to Associated User j, and f(i, j) = fin(i, j) +

fout(i, j). R(i, j) has value in the range of zero to one, where R(i, j) = 1 implies the highest

reciprocity (level of interaction) between user i and user j, and R(i, j) = 0 implies no

reciprocity.

R(i, j) is a product of a normalized call frequency (F (i, j)) and an Interaction Ratio

(I(i, j)). The F (i, j) indicates a level of interaction based on total number of calls between

Center User i and Associated User j with respect to all other Associated Users, I(i, j)
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quantifies the interaction level based on the number of exchanged calls between the two

users. This value lies between zero and one ([0, 1]). Fig. 5.4(a) depicts the graph of the

function I(i, j).

After computing R(i, j) for all Center Users in my datasets, I find hat the closer the

relationship, the higher the reciprocity between the Center User and the Associated User,

Fig. 5.4(b) indicates that reciprocity increases as social closeness becomes stronger. The

average reciprocity is 0.8442, 0.1008, and 0.0035 for groups 1, 2, and 3, respectively. These

results also imply that similarity in calling patterns increases with reciprocity.
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Figure 5.4. (a) Graph of function I(i, j) versus fin(i,j)
f(i,j)

, (b) Integration ratio

and the social groups.

5.5. Talk Time and Inter-Contact Time

Mobile phones have become indispensable within our social lives. We may spend differing

amounts of time talking during each phone call depending on situation, conversation, person,

and mood; however, in each instance, making or taking calls provides ways to establish,

maintain, and enrich our social ties with associated persons (based on Eq. 31). Making and

taking calls provides us ways to persist in our social ties (144).

I believe a correlation exits between talk time and inter-contact time. Making or taking

phone call is influenced by both recent talk time and social ties. To investigate this, I

generated histograms of the talk time (in minutes) versus time until the next call (incoming
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or outgoing) (in hours) for my entire dataset and Fig. 5.5, which is the average histogram

of all Center Users, presents my results for each of the three social group members. .

Figure 5.5. The histograms of the last talk time (minutes) versus time until

the next call (hours), averaged over all Center Users.

For the three social groups, there are more calls for shorter talk time, which is consistent

with my previous finding that talk time has exponential distribution (145). In addition, it

is clear that social group plays an important role in determining inter-contact time. My

results indicate that the inter-contact time increases as social closeness becomes distant. To

account for this, I developed a naive Bayesian classifier conditioned on social group. Using

two months of data from all Center Users to train the model, I were able to determine the

time until the next contact (less than 1 hour, within the next 1-5 hours, within the next

5-10 hours, or more than 10 hours) based on the last talk time (less than 1 minute, between

1-5 minutes, between 5-10 minutes, between 15-20 minutes, and more than 20 minutes) with

close to 70% accuracy over a following month.

5.6. Mobile Social Tie Prediction

Social closeness has been defined as an amount of communication intensity between the

Center User and Associated User. This intensity indicates social strength and tie. As I

showed in my previous work (142) that this social tie changes over time. Based on my

results, I believe that I can also predict this social tie. Social ties can be indicated by social
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group, which can be thought of as a state of social closeness at a given time. Change of

belonging social group of an Associated User can also be thought of as a change of state

of social closeness to the Center User. In my experiments, to predict social tie (group), I

developd a discrete Markov chain model (146) (illustrated in Fig. 5.6), where the social

group corresponds to the state of the process (S = {1, 2, 3}). The transition probability

matrix (P ) is given by Eq. 38, where pij is the transition probability from state i to j. The

fundamental property of Markov model is the dependency on the previous state (i.e. future

state only depends on the present state) that is P [S(t+1) = st+1jS(t), S(t−1), S(t−2), . . . ] =

P [S(t + 1) = st+1jS(t)], where S(t) corresponds to the state at time t.

Figure 5.6. Discrete Markov chain model for social tie prediction with

Markov states represent social groups.

(38) P =











p11 p12 p13

p21 p22 p23

p31 p32 p33











.

Eq. 39 gives the steady state probability matrix (Π) where πi is the steady state probability

of state i, which is given by Eq. 40.
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(39) Π = {π1, π2, π3}.

(40) πi = p1iπ1 + p2iπ2 + p3iπ3.

I can estimate the matrix P using many methods. Without loss of generality, the maximum

likelihood principle is applied to estimate P and Π. Each element of P and Π can be

estimated by Eq. 41 and Eq. 42, respectively.

(41) pij =
C(i, j)

∑

k C(i, k)
,

(42) πi =
C(i)

∑

k C(k)
,

where C(i, j) is the count of the number of times state j follows state i in the training data,

and C(i) is the count of the number of times at state i. After using the first six weeks of

data for training and the following two weeks for testing with two-week time unit (matrix P

and Π are sequentially recomputed every two weeks), I correctly determined social groups

for the following two weeks for all Associated Users for each Center User with 96.09% overall

average accuracy rate. Note that only Associated Users who established social ties with the

Center User within the first two weeks were considered in this experiment This ensured that

there was the same amount of training data for each Associated User (six weeks). The result

for each user is shown in Table 5.1.

5.7. Mobile Life Pattern Prediction

Much like web-based social networking, people virtually meet other people in mobile

world . Mobile life, then, exists as long as the user stays connected by either talking or

listening. I argue that each mobile phone user exhibits a unique mobile life pattern, which

reveals collective character, behavioral tendencies, and temperamental traits of that person

in the mobile world. This pattern can also hint at the real-life schedule and availability of

that person. I also argue that I can predict this mobile life pattern.
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Like other human behavioral patterns, mobile life pattern are periodic and changing.

Eagle and Pentland (81) uncovered two fundamental frequencies of human social behavior,

onebeing strongest at 24 hours (1 day) and the second strongest at 7 days. Although a 1-day

period does not provide an ample sample size, I can detect mobile life patterns for 7-day

period and then use these patterns as a training data to predict the mobile life pattern over

a subsequent week. For each week, I constructed a histogram of on-air time over an hour-

of-the-day scale (24-hour time slots). Then, I obtained a mobile life pattern by applying

Gaussian kernel estimation (see Fig. 5.7).

Figure 5.7. Process of obtaining a mobile life pattern.

Let a matrix X(w) contain histogram values {x1(w), x2(w), x3(w), . . . , x24(w)}, where

xt(w) denotes a histogram value of tth hour slot of wth week, t = {1, 2, 3, . . . , 24}, and

w = {1, 2, 3, . . . , n} where n is the total number of weeks of training data, as follows.
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(43) X(w) =

























x1(w)

x2(w)

x3(w)

...

x24(w)

























.

Let Zn be a matrix that contains {X(w)} as follows.

(44) Zn =
[

X(1) X(2) X(3) · · · X(n)

]

.

My goal here is to predict a matrix X(n + 1) based on Zn. A normal distribution can

be fairly assumed for xt(w) for each time slot t, such that a Moving Average (MA) model is

suitable for the task. Eq. 45 provides a simple MA model.

(45) xt(w) = ct + εt(w),

where {εt(w)} are uncorrelated random variables with mean 0 and variance σε2 and ct is an

unknown parameter, which can be estimated using the least-squares criterion by choosing ct

such that minimizes
∑n

w=1(xt(w) − ct)
2 and, hence, ĉt = 1

n

∑n
w=1 xt(w).

Once I computed the estimated matrix X̂(w), I could obtain the predicted mobile life

pattern by applying a kernel estimation function. I used the first two months of data as

the initial data for training the model I then made a prediction for each week of a following

month for each Center User. My prediction’s accuracy was measured using a similarity

measure based on Hellinger distance to determine similarity between the predicted mobile

life pattern and the actual pattern. similarity My approach accurately predicted mobile life

patterns with an average of 71.05% overall, I provide my results for each user in Table 5.1.
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5.8. Conclusion

Based on my mobile social grouping framework (142), I reveal the significant role of

social tie on similarity in calling patterns and inter-connect time. My results show that (i)

the closer the social tie, the higher the similarity, (ii) a closer tie implies higher reciprocity,

and (iii) the inter-contact time increases as social closeness becomes distant. I also show

that social tie and mobile life pattern can be predicted accurately. With a discrete Markov

model and a Moving Average model, social tie and mobile life pattern can be predicted with

96% and 71% accuracy rate, respectively.
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Table 5.1. The overall result of accuracy rate of social group and mobile life

pattern prediction.

User Accuracy Rate (%)

Social Group Prediction Mobile Life Pattern

1 96.00 77.44

2 100 82.23

3 100 70.77

4 96.55 62.74

5 88.24 65.82

6 100 73.41

7 84.62 65.18

8 96.22 85.86

9 87.88 63.76

10 95.74 66.43

11 96.30 77.91

12 92.31 51.89

13 98.00 66.93

14 100 80.25

15 94.44 70.56

16 96.00 67.06

17 97.78 68.90

18 98.00 88.37

19 97.50 81.82

20 91.67 76.38

21 94.74 61.13

22 90.00 64.96

23 100 61.90

24 100 70.12

25 100 60.97

26 97.72 89.05

27 96.55 72.67

28 100 73.10

29 100 57.88

30 96.30 75.89

Mean 96.09 71.05

Std. Dev. 4.11 9.15
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CHAPTER 6

CALL PREDICTOR: PHONE CALL-BASED DAILY PLANNER

6.1. Introduction

Prediction plays an important role in various applications. The prediction is widely

applied in the areas such as weather, environmental, economic, stock, disaster (earthquake,

flooding), network traffic, and call center forecasting (147)(148)(149)(150). Companies use

predictions of demands for making investment and efficient resource allocation. The call

centers predict workload so that they can get the right number of staff in place to handle

it. Network traffic prediction is used to assess future network capacity requirement and to

plan network development so as to better use of network resources and to provide better

quality of services. Prediction is also applied in the human behavior study by combining

the computer technology and social networks (86)(81)(151)(152). There is also some work

reported on telephone telepathy based on psychology (153).

Predicting the expected calls for a busy business executive can be very useful for sched-

uling a day. Match making services can use calling patterns for the compatibility studies

(154)(155). Moreover, the prediction of incoming calls can be used to avoid unwanted calls

and schedule a time for wanted calls. For example, the problem of spam in VoIP networks

has to be solved in real time compared to email systems. Compare receiving an email spam

at 2:00 AM that sits in the inbox until you open it the next morning to receiving a junk

phone call that must be answered immediately.

Over the past few years, there has been a rapid development and deployment of new

advanced phone features, including internet access, e-mail access, scheduling software, built-

in camera, contact management, accelerometers, and navigation software as well as the ability

to read documents in variety of format such as PDF and Microsoft Office. In 2005, Google

filed a patent including detail about the Google Phone (GPhone) that could predict what a
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user is searching for or the words they are typing in a text messages by taking into account

the user’s location, previous searching/messaging history, and time of the day. However,

none of these features offers ability to predict future calls.

Let us consider a simple caller-callee scenario shown in Fig. ??. In order to have an

efficient scheduling of transactions, the caller wants to know the willingness of taking calls

of the callee, which could be determined by the callee’s presence. At the same time, the

callee wants to know (predict) the incoming calling pattern (calling schedule) of the caller.

This raises two interesting problems; (i) predicting the incoming calling pattern of the caller,

and (ii) determining the presence of the callee. In this chapter, I attempt to solve the first

problem. The second problem and the proposed solution have been addressed in my other

work (156).

Figure 6.1. A simple caller-callee scenario.

To the best of my knowledge, no scientific research has been reported in predicting the

incoming calls for phone services. Predicting of incoming calls using just the call history is a

challenging task. I believe that this is a new area of research. One way of predicting incoming

calls from specified callers is to compute the probability of receiving calls associated with

them. In this chapter, I present a model for predicting the next-day calls based on caller

and user’s past history.
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6.2. Call Predictor

The Call Predictor (CP) for computing the probability of receiving calls from a specified

caller and making next-day call prediction can be deployed either in conjunction with perime-

ter controllers such as voice spam filters or firewalls, or in end systems such as multimedia

phones. The basic architecture of the CP is shown Fig. 6.2.

Figure 6.2. Architecture of Call Predictor (CP). The CP calculates the prob-

ability of receiving next-day calls from specified callers based on the past call

history (incoming and outgoing calls) and makes next-day call prediction. The

call database is updated with the actual call activities.

For any time that phone user requests for a call prediction of a particular caller, the CP

computes the probability of receiving calls of the next 24 hours based on the caller’s past

history (Caller’s incoming calls) and the previous outgoing calls from the phone user to the

caller (User’s outgoing calls). Both of these histories are maintained by the CP by logging

the call specific information for every call received and mode by the user. The computed

receiving call probability is checked with a preconfigured threshold value to make a decision

as to predict “call” or “no call” for each of the next 24 hours.
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6.3. Call Prediction Framework

To predict the future incoming calls, the behavior learning models must be used. These

models should incorporate mechanisms for capturing the caller’s behavior (based on call

arrival time and inter-arrival time), the user’s behavior (based on call departure time),

reciprocity (based on call inter-arrival/departure time), the probability model of receiving

calls from caller, and finally, the next-day call prediction.

6.3.1. Dataset

Every day calls on the cellular network include calls from different sections of our social

life. We receive calls from family members, friends, supervisors, neighbors, and strangers.

Every person exhibits a unique calling pattern. These calling patterns can be analyzed for

predicting the future calls to the callee.

To study calling pattern, I collected the actual call logs of 20 individuals at my university.

These 20 individuals are faculties, staffs, and students. I am in process of collecting many

more call logs. The details of the data collecting process are given in (154). I found it

difficult to collect the data set because many people are unwilling to give their call logs due

to privacy issues. Nevertheless, the collected datasets include people with different types of

calling patterns and call distributions.

As part of the data collecting process, each individual downloaded three months of detail

telephone call records from his/her online accounts on the cellular service provider’s web-

site. Each call record in the dataset had the 5-tuple information: Date, Start time, Type

(Incoming or Outgoing), Caller ID, and Talk time (call duration in minutes).

I then used the collected data for deriving the traffic profiles for each caller who called

the individuals. To derive the profile, I inferred the arrival time (time of receiving a call),

inter-arrival time (elapsed time between adjacent incoming calls), and inter-arrival/departure

time (elapsed time between adjacent incoming and going calls).
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6.3.2. Probability Computation

In our daily life, when we receive a phone call, at the moment of the first phone ring before

we look at the caller ID, we often guess who the caller might be. We base this estimation

on:

• Caller’s behavior : Each caller tends to have a unique calling pattern. These patterns

can be observed through history of calling time (we normally expect a call from a

caller who has history of making several calls at some particular time, for example,

your spouse likes to call you while you drive to work in the morning and after work

in the evening therefore when your phone rings while you are on the way to work or

back home, you likely to guess that it is a phone call from your spouse), periodicity

of call history (we can expect that a caller who calls periodically will repeat the

same pattern, for example, your friend calls you at about 2:00 PM every Tuesday

therefore you expect a call from him/her at about 2:00 PM for next Tuesday).

• Reciprocity : The communication activity patterns between the caller and the user

in the past. These patterns can be observed in terms of number of user’s outgoing

calls per caller’s incoming call and call inter-arrival/departure time.

The calling pattern based on caller’s call arrival time can be captured by using nonpara-

metric density estimation. The most popular method for density estimation is the kernel

density estimation (also known as the Parzen window estimator (94)) which is given by Eq.

46.

(46) a(x) =
1

Nh

N
∑

i=1

K

(

x − xi

h

)

.

K(u) is kernel function and h is the bandwidth or smoothing parameter. The most widely

used kernel is the Gaussian of zero mean and unit variance which is defined by Eq. 47.

(47) K(u) =
1√
2π

e−u2/2.

78



The choice of the function and h is crucial. Several optimal bandwidth selection tech-

niques have been proposed (157)(158). In this paper, I use AMISE optimal bandwidth selec-

tion using the Sheather Jones Solve-the-equation plug-in method (96). Fig. 6.3(a) shows an

example histogram of call arrival time. It should be noted that the widow of observation is

shifted to start at 5:00 AM and end at 4:59 AM in order to capture the entire calling pattern

in the middle. The corresponding estimated probability density function (pdf) using kernel

density estimation is shown in Fig. 6.3(b).

Figure 6.3. (a) An example histogram of call arrival time. (b) The estimated

probability density function using kernel density estimation of the example

histogram of call arrival time shown in Fig. 3(a). Note that observation

window is 5:00 AM to 4:59 AM.

I define a Call Matrix as a matrix whose entries are call indicators where rows are hours

of the day and columns are days of observation. The call indicator (CI ) indicates if there is

at least one incoming call or going call or both incoming and outgoing call or no call. CI ’s

values and its indications are given in Eq. ?? and an example Call Matrix of 15 days of

observation is shown in Fig. 6.4.
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(48) CI =



































0, no call

1, at least one incoming call

2, at least one outgoing call

3, at least one incoming and one outgoing call

Figure 6.4. An example Call Matrix of 15 days of observation.

The caller’s behavior can also be observed through the call inter-arrival time. However,

the inter-arrival time in our normal sense is the elapsed time between temporally adjacent

calls, which I believe that it does not accurately represent the caller’s behavior based on
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inter-arrival time. Due to the human nature that requires state of natural rest, sleeping

time causes the inaccuracy in the average inter-arrival time. In fact, it increases the average

inter-arrival time from the true value. Therefore, I believe that the more accurate angle

to observe calling pattern based on inter-arrival time is to scan over each hour of the day

through days of observation, i.e. capturing inter-arrival time patterns by observing each row

of the Call Matrix.

Let a random variable Xk be inter-arrival time of kth hour where k = 1, 2, 3, . . . , 24. A

Normal distribution N(µk, σ
2
k) is assumed for the call inter-arrival time since no information

is available that Pr(Xk = µk − c) < Pr(Xk = µk + c) or vice versa therefore it can be safely

assumed that Pr(Xk = µk − c) = Pr(Xk = µk + c) where µk is the mean and σ2
k is the

variance of inter-arrival time of kth hour, which can be calculated by Eq. 49 and Eq. 50

respectively.

(49) µk =
1

N − 1

N−1
∑

n=1

xk(n).

(50) σ2
k =

1

N − 1

N−1
∑

n=1

(xk(n) − µk)
2 .

N is the total number of calls and xk(n) is the nth inter-arrival time. The inter-arrival time

is now treated as a random variable Xk that consists of number of small random variables

{xk(1), xk(2), xk(3), ..., xk(N −1)}, is normal random variable, which has probability density

function (pdf) given by Eq. 51.

(51) ik(xk) =
1

√

2πσ2
k

e−(xk−µk)2/2σ2
k .

For example, if a caller calls on average every 3 days, the chances of receiving a call one

day earlier (day 2) or day one later (day 4) are the same.

As previously mentioned that receiving a call is influenced by not just caller’s behavior but

also reciprocity, one way to observe the calling patterns based on reciprocity is to monitor
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the number of outgoing calls per incoming call. This can give us a good approximation

of when the next incoming call can be expected. A normal distribution N(µk, σ
2
k) is also

assumed for the same reason as in the inter-arrival time case, where Yk is a random variable

representing the number of outgoing calls per incoming call of the kth hour where µk is the

mean and σ2
k is the variance of which can be calculated by Eq. 52 and Eq. 53 respectively.

(52) µk =
1

M

M−1
∑

n=1

yk(n).

(53) σ2
k =

1

M

M−1
∑

n=1

(yk(n) − µk)
2 .

M is the total number of incoming calls of kth hour and yk(n) is the number of outgoing

calls beween the nth and (n + 1)th incoming call. Therefore, the pdf is given by Eq. 54.

(54) nk(yk) =
1

√

2πσ2
k

e−(yk−µk)2/2σ2
k .

An example of calculating nk(yk) is shown in Fig. 6.5.

Figure 6.5. An example of calculating nk(yk) for one hour slot (5th hour) of

18 days of observation.

Another angle to observe the calling patterns based on reciprocity is to monitor the inter-

arrival/departure time. This gives us the chance (probability) of receiving a call from the

caller given the time of the last outgoing call to the caller.
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Let Zk be a random variable mapping to the inter-arrival/departure time of the kth hour.

A normal distribution N(µk, σ
2
k) is also assumed for the same reason previously mentioned.

The mean (µk) and variance (σ2
k) are given by Eq. 55 and Eq. 56 respectively.

(55) µk =
1

L − 1

L−1
∑

n=1

zk(n).

(56) σ2
k =

1

L − 1

L−1
∑

n=1

(zk(n) − µk)
2
.

L is total number of incoming calls of kth hour and zk(n) is the average inter-arrival/departure

time of the nth incoming call to all right-hand-side outgoing calls (in the Call Matrix’s row)

before reaching the (n + 1)th incoming call (an example is illustrated in Fig. 6.6). The pdf

of inter-arrival/departure time is given in Eq. 57.

(57) tk(zk) =
1

√

2πσ2
k

e−(zk−µk)2/2σ2
k .

An example of calculating tk(zk) is shown in Fig. 6.6.

Figure 6.6. An example of calculating tk(zk) for one hour slot (5th hour) of

18 days of observation.

From Eq.46, 51, 54, and 57, I can infer the probability of receiving a call from “Caller

A” of kth hour (PA(k)) as the average of the probability of receiving a call based on the
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caller’s behavior (arrival time and inter-arrival time) and the reciprocity (number of outgoing

calls per incoming call and inter-arrival/departure time), which is given by Eq. 58 where

k = 1, 2, 3, . . . , 24.

(58) PA(k) =
1

4
[ak(k) + ik(xk) + nk(yk) + tk(zk)] .

There is another group of callers who never receive any calls back from the user, i.e. no

reciprocity. More likely these callers are telemarketers or voice spammers. Since there is

no history of call interaction between the callers and the user, the Eq. 58 reduces to the

averaging over the probability based on only the caller’s behavior, which is given by Eq.

59. Likewise, for the regular callers where some hour slots (rows of Call Matrix) have no

reciprocity, Eq. 58 also reduces to Eq. 59.

(59) PA(k) =
1

2
[ak(k) + ik(xk)] .

To present the accuracy of the receiving call probability model, a phone user is randomly

selected to represent all the individuals. Fig. 6.7 shows 30 consecutive days of receiving

call probability calculation for an arbitrary caller where the receiving call probability is

represented with a green surface and the actual calls during these 30 days of observation are

represented with vertical black pulses.

It can be observed from Fig. 6.7 that most of the calls are received when the computed

receiving-call probability is high. At the same time, no call is received during 0:00 AM to

9:00 AM period where the probability of receiving call is low.

6.4. Performance Analysis

The CP is tested with the actual call logs. Its performance is then measured by false

positives, false negative, and error rate. A false positive is considered when a call is predicted

but no call is received during that hour. A false negative is considered when no call is
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Figure 6.7. A randomly selected phone user with 30 consecutive days of com-

puted receiving-call probability of an arbitrary caller plotted with the actual

received calls represented with vertical pulses. Top figure is the 3-dimensional

view. Bottom figure is the front view (looking from the first day of observa-

tion).

predicted but a call is received during that hour. Error rate is defined as a ratio of the

number of fault predictions to the total number of predictions.

An experiment is conducted with 20 phone users (as mentioned in Section 3.1). The call

logs of the first 2 months are used to train the CP, which is then tested with the call logs

of the following month (next 30 days). Each of the 30 days of testing, the new prediction is
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consequently made by the CP at midnight (0 AM) with all available call history (up to that

day) taken into account. The computed receiving call probability is checked with a threshold

value to make a decision as to predict “call” or “no call” for each of the next 24 hours. The

average number of calls per day is computed and rounded to the next largest integer M .

The threshold is dynamically set as M hour slots are selected to make “Call” prediction and

the rest of the (24 − M) time slots are predicted “No Call.” The experimental results are

shown in Table 6.1.

There are total of 151,008 predictions made with 8,095 total fault predictions. The

average false positive is 2.4416%, the average false negative is 2.9191%, and the average

error rate is 5.3606%. Therefore the overall average number of fault predictions per day (24

predictions) is 1.2866 and the average tolerance is 2.1246 hours. The average tolerance is a

measure of how far off (in hours) the predicted call from the actual call when fault prediction

occurs.

6.5. Conclusion

In this chapter, I propose a Call Predictor that computes receiving call probability and

makes the next-24-hour call prediction. The receiving call probability is based the caller’s

behavior and reciprocity. The caller’s behavior is measured by the caller’s call arrival time

and inter-arrival time. The reciprocity is measured by the number of outgoing calls per

incoming call and the inter-arrival/departure time.

The kernel density estimation is used to estimate the probability model for the calling

pattern based on caller’s arrival time. The normal distributions are assumed for the inter-

arrival time, number of outgoing calls per incoming call, and the inter-arrival/departure time.

The final receiving call probability model is the average of the receiving call probabilities

based on these four parameters.

To validate the model, the cell phone call records of real-life individuals at my university

are used to test the call predictor. The results show that the call predictor exhibits a

reasonably good performance with low false positives, false negatives, and error rate.
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Table 6.1. The experimental results of 20 phone users.

Phone Number of Number of False False Error Number of Average

user predictions fault positive negative rate fault tolerance

predictions (%) (%) (%) predictions (hours)

per day

1 6,432 332 2.5683 2.9214 5.4896 1.3175 1.9070

2 14,472 503 1.4486 2.2042 3.6528 0.8767 1.4618

3 1,968 133 4.0278 2.7183 6.746 1.6190 2.5676

4 13,512 609 1.9651 2.5916 4.5568 1.0936 1.8395

5 8,136 547 3.9371 4.2595 8.1966 1.9672 2.8694

6 5,616 579 6.4966 5.6342 12.1308 2.9114 2.7092

7 6,000 211 2.4096 1.6697 4.0793 0.9790 1.9995

8 10,178 178 1.1033 0.8860 1.9893 0.4774 1.3011

9 1,776 224 6.4342 8.1774 14.6117 3.5068 2.1220

10 8,352 659 3.4785 4.7221 8.2005 1.9681 2.8823

11 17,400 870 2.6798 2.5612 5.2409 1.2578 1.8337

12 2,088 67 2.6235 0.6944 3.3179 0.7963 1.5622

13 7,416 374 2.6365 2.9602 5.5968 1.3432 2.0133

14 3,720 167 2.6730 3.1831 5.8561 1.4054 2.3980

15 7,632 357 2.2900 3.0674 5.3574 1.2857 2.4452

16 19,416 1,090 2.7982 3.3569 6.1551 1.4772 2.7210

17 6,840 652 3.8854 5.6129 9.4984 2.2796 1.6221

18 2,808 216 3.5417 4.2014 7.7431 1.8583 1.8703

19 2,208 181 3.5779 4.6196 8.1975 1.9674 2.7001

20 5,040 146 1.0417 1.8750 2.9167 0.7000 1.6675

Clearly, there are still many parameters that need to be identified to capture the calling

patterns. This work is intended to be the first piece of many more to come in this new area
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of predicting future calls which can be useful to many applications such as planning a daily

schedule and preventing unwanted communications (e.g. voice spam). Also, the prediction

technique proposed here is preliminary and other approaches need to be considered in order

to minimize the number of false positives and negatives. I will continue to investigate other

parameters to characterize the behaviors of the phone users and explore other prediction

techniques to improve the performance of the call predictor as my future direction.
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CHAPTER 7

CALL PREDICTED LIST: LIST OF POTENTIAL CALLERS AND CALLEES

7.1. Introduction

With the rapid development of telecommunication technologies and the fast-growing

number of users on the networks, the cellular phone has moved beyond being a simple phone

and has become a mobile workstation and integrated into many parts of people’s lives. The

mobile phone is gradually becoming a ubiquitous computing device at this early stage of

the pervasive-computing era where handheld devices are precursors to a phase of ambient

computing that is always on, personalized, context-sensitive, and highly interactive.

Mobile (personal) phones record the history of our lives in the form of the call logs. By

utilizing call logs in computing human (user) behavior, I can enhance the usability of the

phone as it is becoming more than just a voice communication device and evolving into an

intelligent assistant to its user.

In this chapter, I design and evaluate a model that makes use of the call logs to predict

incoming as well as outgoing calls. With my model, the personal phone will become even

more personal as it learns and recognizes its user’s calling behavior as well as the associated

users’ (callers’ and callees’) in order to provide the most accurate prediction of the future

caller and callee for the user. In this way, the mobile phone becomes more personalized and

sensitive to the user’s context and needs.

7.2. Call Prediction

Predicting incoming calls can be very useful for planning and scheduling (e.g., it can be

used to avoid unwanted calls and schedule time for wanted calls). People normally check

weather forecast before leaving homes and watch for signs of approaching storms to prepare

and schedule their days accordingly. Knowing what is coming next gives us supplemental

time to think, prepare, and optimize our solutions. I believe that incoming call prediction
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can be useful for daily planning and it may become an important element as an initiative

decision support for our daily life scheduling.

Quite often in our daily lives, we find ourselves in a situation where we wish to know

who will be calling in the next hour so we could schedule (plan) things out accordingly. In

many occasions, we know for certain that we will not be available to accept any incoming

calls over the next hour (e.g., having a flight, attending a class, having a meeting) thus we

wish to know who will be calling during the next hour so we could perhaps make a call to

the persons to inform of our next-hour schedule as we do not wish to miss any important

future calls, which could be too important calls to miss.

Likewise, predicting outgoing calls can be useful for many applications such as enhancing

mobile phone’s usability by providing a list of the most likely contacts/numbers to be dialed

when user wants to make a call. Such that it reduces the searching time as well as enable

better life synchronization for the user.

Our call predictor makes use of the user’s call history e.g., call identifications, time of

calls, day of calls, frequency of calls, and last received/made numbers, to build a probabilistic

model of calling behavior. The calling behavior model is then used to generate a list of

numbers/contacts that are the most likely to be the callers for the next hour (as an incoming

call predictor) or a list of numbers/contacts to be dialed (as an outgoing call predictor).

The list can be presented to the user in a number of different ways for different purposes.

I envisage the predictor as a “Call Predicted List (CPL),” i.e., a list that anticipates the

most likely callers/callees and gives these numbers/contacts higher precedence on the list.

Figure 7.1 shows an example of the envisaged CPL where the most likely callers/callees are

listed higher on the list.

7.3. Call Prediction Framework

When that cell phone rings, how often do we make a guess on who the caller might be?

More often than not, but if we do make a guess, we are usually right. We often base this

estimation on the caller’s call history as well as our call history with the caller.
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Figure 7.1. CPL user interface.

Each caller exhibits a unique calling pattern which can be observed through history of

“time of the calls” i.e., we normally expect a call from someone who has a history of making

several calls during a particular time period of the day. For example, your spouse likes

to call you while you are driving to work in the morning therefore when your phone rings

while you are on the way to work you are likely to guess that it is a phone call from your

spouse. The pattern can also be observed from “day of the calls,” for example, your friend,

John, has made several calls to you on every Tuesday because it is his day off, therefore

when your phone rings on Tuesday, the first person that comes to mind is John. Likewise,

the person who has made the most “number of calls” to you (regardless of time and day)

among other callers is also the person whom you most anticipate the calls from. Receiving

a call is also influenced by the “reciprocity” or call interaction between the user and the
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caller. For example, you may anticipate a phone call from a specific person based on your

last phone conversation with the person (e.g., “call me when you get home” or “call me

same time tomorrow” or “I’m busy right now, call me back in an hour”). This reciprocity

may sequentially lead to a later call received from the person caused by your initiative. For

example, you decide to make a call to an old friend to whom you have not called for a long

time, and later you start to receive calls from this old friend. Another example, you make a

call to your mother to get some advice during the night (assume that normally you do not

make or receive calls from her during this time), and then you receive calls from your mother

later on during that night. These are the examples that actually happen in our everyday

lives as a phone user. Understanding the actual human behavior towards phone usage gives

the CPL an intelligence to assist its user effectively and in the same time makes the smart

phone smarter.

7.3.1. Datasets

Predicting future calls is a challenging task. It requires a design of model that should

incorporate mechanism for capturing and learning the caller/callee’s calling patterns. Calling

patterns can be extracted from the call logs, which can be obtained from a variety of sources.

For example, they may be collected by a network or service operator for billing purposes or

they may be captured directly on device such as a mobile phone or on a software application

such as a VoIP softphone. In my current implementation, I use two sets of real-life call logs

of 30 combined users with nearly 3,000 callers/calees and over 46,000 call activities. my first

dataset consists of three-month call logs of 20 individual mobile phone users, which were

collected at University of North Texas (UNT), Denton, during summer of 2006. These 20

individuals were faculty, staff, and students. These call logs were collected as part of the

Nuisance Project, where Kolan et al. (105) studied the nuisance level associated with each

phone call. The details of the data collecting process are given in (106). my second dataset

consists of three-month call logs of ten mobile phone users, which were collected during

summer of 2008 at UNT. These ten subjects were also faculty, staff, and students.
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As part of the data collecting process (for both datasets), each user downloaded three

months of detail telephone call records from his/her online accounts on the mobile phone

service provider’s website. Each call record in the dataset had 5-tuple information as follows

where an example call record is shown in Fig. 7.2.

• Date: date of the call

• Start time: start time of the call

• Type: type of the call i.e., “Incoming” or “Outgoing”

• Call ID: caller/callee identification

• Talk Time: duration of the call (in minutes)

Date Start time Type Call ID Talk time

3/11/2007 2:28PM Outgoing 123-4567890 2

3/11/2007 5:31PM Incoming 888-8888888 11

3/11/2007 8:12PM Incoming 999-9999999 6

. . . . . . . . . . . . . . .

Figure 7.2. An example of a call record. Note that Call ID’s have been

modified for privacy reason.

7.3.2. System Overview

The call record shown in Fig. 2 is subject to pre-processing to extract features or infor-

mation about “time of the calls” (day and hour), “total call count,” and “reciprocity”. The

pre-processed call records are eventually fed into the classifier to be ingested. Classifier then

outputs a list of phone numbers ordered by the likelihood of the number being the next-hour

caller (as an incoming call predictor) or the dialing number (as an outgoing call predictor).

The basic system overview is shown in Fig. 7.3.

7.3.3. Inference Engine

With the same framework, the CPL can function as an incoming call predictor and an

outgoing call predictor with just a simple modification in the direction of the calls (i.e.,
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Figure 7.3. Basic system overview.

incoming and outgoing) in the analysis. Therefore, let us consider the CPL first as an

incoming call predictor.

Our inference engine is driven by a Bayesian classifier, which has two modes of operation;

training and predicting. During the training, classifier ingests the pre-processed call logs and

constructs four hash tables that primarily contain call counts of the corresponding features.

The first table maps each unique telephone number (or caller identifier) to a count of calls

received for each day of the week as shown in Fig. 7.4.

Caller ID Day of week

1 2 3 4 5 6 7

123-4567890 5 23 6 2 11 0 1

888-8888888 6 0 0 1 0 33 4

999-9999999 0 0 11 8 21 7 8

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.4. An example of a hash table for day of the week.
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The second table maps each unique telephone number (or caller identifier) to a count of

calls received for each hour of the week as shown in Fig. 7.5.

Caller ID Hour of day

0 1 2 . . . 21 22 23

123-4567890 0 0 0 . . . 9 3 1

888-8888888 2 0 0 . . . 15 8 2

999-9999999 0 0 0 . . . 27 9 0

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.5. An example of a hash table for hour of the day.

The third table maps each unique telephone number (or caller identifier) to the total

number of calls received as shown in Fig. 7.6.

Caller ID Call count

123-4567890 118

888-8888888 121

999-9999999 157

. . . . . .

Figure 7.6. An example of a hash table for cumulative frequency of calls.

Quantify the “reciprocity” is not quite trivial. Having no knowledge about the context

of the previous phone calls of the user, it is difficult to identify which outgoing calls would

influence the future incoming calls. Nevertheless, the recent received calls can be linked to

the user’s calling behavior. These recent received calls are typically stored in the “last dialed

calls” list (normally a list of last 20 outgoing calls) where the lower order corresponds to more

recent dialed number (e.g., “1” is the most recent dialed number, “20” is the least recent

dialed number). Thus the same number/contact can occupy in more than one position on

the list. Clearly the numbers/contacts on the list are pushed down one position when a new

call is received. Based on the position on this list and its corresponding number of times that
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actual incoming caller was listed on that position, the likelihood of receiving a call can be

estimated. For example, suppose currently statistic (hash table) shows that position “3” of

the list has the most counts, it implies that the number/contact that is on position “3” of the

current “last dialed calls” list has the highest likelihood of being the next caller. Therefore,

the fourth hash table maps each position on the “last dialed calls” list to the count of the

calls received as shown in Fig. 7.7.

Once the input call records have been ingested and the hash tables generated, the classifier

is considered trained. With the classifier trained on a set of representative call records, it is

then ready to be used in predicting mode. The classifier is given a target day of week, hour

of day, total call count, and current last-20-dialed-calls list, and uses the calling behavior

model to estimate the likelihood of the user receiving each of the telephone numbers (or

caller identifiers) seen in the training data. Clearly, the classifier can only make predictions

for numbers that it has already seen.

Position on Number of times when a call

last-20- is received and its caller is

dialed-calls listed on corresponding

position on last-20-dialed-

calls list

1 69

2 45

3 71

. . . . . .

. . . . . .

19 3

20 8

Figure 7.7. An example of a hash table for caller’s position on the last-20-

dialed-calls list.
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A likelihood metric then is calculated for each number seen by the classifier and the

numbers are then sorted in descending order of likelihood of being received. If the caller’s

behavior has a high degree of predictability (i.e., they tend to make calls consistently to user

at this certain time of the day, or in this particular day of the week, or after some number

of calls from the user), then it is expected that the number is likely to be listed towards the

top of the list. If there is a tie i.e., several numbers end up with the same value of likelihood,

then the classifier list them in the alphanumerical order.

Our inference engine is based on the Näıve Bayesian Classifier, which is a simple prob-

abilistic classifier based on Bayes’ theorem with independence assumptions. In my case, I

want to compute the likelihood of each number (Tn) being received given that the day of

the week (Dx), hour of the day (Hy), the current last-20-dialed-calls list (Lz), and total call

count (Fn). Bayes rule (92) of conditional probability is given by Eq. 60.

(60) P (A|B) =
P (B|A)P (A)

P (B)
,

where P (A|B) is the posterior probability, which is the probability of the state of nature

being A given that feature value B has been measured. The likelihood of A with respect

to B is P (B|A), which indicates that other things being equal, the category A for which

P (A|B) is large is more “likely” to be the true category. P (A) is called prior probability.

The evidence factor, P(B), can be viewed as a scale factor to guarantee that the posterior

probabilities sum to one.

I use this rule to obtain the probability of a number being received given a specific hour

of the day, day of the week, current last-20-dialed-calls list, and total call count, as given by

Eq. 61.

(61) P (Tn|Dx, Hy, Lz, Fn) =
P (Dx|Tn)P (Hy|Tn)P (Lz |Tn)P (Fn|Tn)P (Tn)

P (Dx, Hy, Lz, Fn)
,

With the Näıve Bayesian classifier, a well known issue occurs when a particular attribute

value doesn’t occur in conjunction with every class value in the training data. In my case,
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the attributes are Dx, Hy, and Lz. The class values are the incoming telephone numbers

(callers). The computed probability of a number being received at a particular time will be

zero if the training data has no instance of that number being received during either the

specified hour or the specified day.

A solution to this problem is to start all the call counts in the Hash tables for day-of-week

and hour-of-day at one instead of zero and defining some normalizing factors in the resulting

computations. This is not an issue for the Fn since there must be at least one call count for

any seen incoming call. For Lz, this is sort of an issue since only those numbers/contacts

that are on the current last-20-dialed-calls list are considered. A solution for this case is

to assign the lowest call count of the position on the last-20-dialed-calls list (hash table) to

those phone numbers that are not on the current last-20-dialed-calls list. Therefore, those

numbers that are not on the current last-20-dialed-calls list will have the same probability

of being received as the lowest probability of the number on the current list being received.

There is also a possibility of one telephone number occupies more than one position on the

current last-20-dialed-calls list. In this situation, the highest call count among all positions

occupied by that telephone number is assigned to it.

Adopting this approach, I compute the likelihood of the caller Tn being received, given

Dx, Hy, Lz, and Fn, by Eq. 62.

(62) L(Tn|Dx, Hy, Lz, Fn) =

(

C(TnDx) + 1

C(Tn) + 7

)

·
(

C(TnHy) + 1

C(Tn) + 24

)

·
(

C(TnLz)

C(L)

)

·
(

C(TnFn)

C(Tn)

)

,

where C(TnDx) is the call count from the caller Tn on day Dx (x = 1, 2, 3, . . . , 7), C(TnHy)

is the call count from the caller Tn during hour Hy (y = 0, 1, 2, . . . , 23), C(TnLz) is the

call count from the caller Tn when Tn’s position on the current last-20-dialed-calls list is Lz

(z = 1, 2, 3, . . . , 20), C(TnFn) is the total call count from caller Tn (n = 1, 2, 3, . . . , N , where

N is the total number of callers that have made at least one call to the user), C(L) is the

total call count of all position on the list (sum of the second column of hash table in Fig.

7.7), and C(Tn) is the total call count from caller Tn over the entire training data.
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7.4. Performance Analysis

In this section, the CPL is evaluated with the actual call logs of 30 mobile phone users

as described in Section 3. The first two months (approximately 60 days) of call logs are

used to train the CPL and the rest of the call logs are assumed to be the future observed

call activities to test the performance of the CPL by observing for each call received what

position that actual caller has in the predicted list. If the CPL performed perfectly, one

clearly would expect the actual caller to be at the top of the predicted list. Generally, such

performance is not achievable, but one might expect that the actual caller would tend to

appear earlier rather than later in the list.

7.4.1. Improvement over Conventional Last-Received-Calls List

The overall performance of the CPL based on these 30 mobile phone users is shown in

Fig. 8 where the its accuracy is measured by the average percentage of the actual callers

listed within the predicted list as the length of the list varies from 1 to 20. One may be

curious to find out that if the conventional last-20-received-calls list, which already exists

in today’s mobile phone, is used as a call predicted list. How well can it perform? Will

it performs better than my CPL? The comparison is illustrated in Fig. 7.8 where it can be

seen clearly that my CPL outperforms the last-20-received-calls list (if used as predictor) with

nearly 30% better accuracy.

7.4.2. Impact of Caller Population

The CPL would always predict the caller correctly, if there was only one caller. In general,

the population of the callers increases e.g., meeting new friends, signing up with a new group,

being on telemarketers’ list, etc. This increasing number of caller population may affect the

accuracy of the CPL i.e., it becomes harder to guess the correct number from a larger callers

pool.

To illustrate the impact of the increase of the caller population on the CPL, I randomly

select one user in my datasets as an example shown in Fig. 7.9 where the vertical axis

represents the accuracy of the CPL, and horizontal axis represents the cumulative caller
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Figure 7.8. Overall performance of the CPL comparing to the conventional

Lat-20-Received-Calls list.

population that continues to increase from 41 callers to 70 callers. It shows that the accuracy

decreases dramatically as the caller population becomes larger for different length of the list

(L = 1, 5, 10, 15, 20). The accuracy drops with relatively higher rate for the shorter length

of the list as one may expect.
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Figure 7.9. A demonstration of the impact of the increasing cumulative

caller population on the accuracy of the CPL.
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7.4.3. Impact of New Callers

In the meanwhile, the new callers or the first-time callers (whose call received for the

first time) also have a negative impact on the performance of the CPL. This may be a bigger

issue for those users who are more social and those who are unfortunately on numerous

telemarketers’ lists. This is a voice spam problem, which is expected to increase severely,

especially in the VoIP networks where the cost of communication is extremely low with the

absurdly large IPv6 address (can supports 2128 addresses). To demonstrate the impact of

the new callers, I examine the accuracy of the CPL without considering the new callers

i.e., if the caller is the first-time caller then it is not taken into account for the accuracy

computation. After the first call however the caller will be recognized and taken into account

for accuracy computation as normal. It can be seen from Fig. 7.10 that the accuracy of the

CPL is indeed improved about 10% as the new callers are not considered.
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Figure 7.10. Overall performance of the CPL with and without considering

the new callers.

If I modify my definition or criterion for the new callers by redefining the new caller to be

the caller who has called C times in the past, then I observe that as variable C increases the

accuracy of CPL also increases accordingly (shown in Fig. 7.11). This unsurprising result
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implies that the CPL can predict more accurately for the callers whose behaviors have been

learned for a longer period of time.
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Figure 7.11. The impact of the new callers to the accuracy as the criterion

of new caller (C) varies from 0 to 25.

7.4.4. Impact of Mobile Social Closeness

I can further extend the concept of the new callers to infer the “social closeness”. The

number of incoming calls alone can only be used to quantify the social closeness to some

extent. In social science, the social closeness of people has been discussed and found that

it can be based on the amount of time and the intensity (frequency) of communication

(103)(104). Granovetter (103) suggests that the time spent in a relationship and the intensity

along with the intimacy and reciprocal services form a set of indicators for social tie. Marsden

and Cambell (104) evaluate the indicators and predicators of strength (tie) described by

Granovetter (103) and conclude that “social closeness” or “intensity” provides the best

indicator of strength or tie.

In mobile social network, the amount of time and the intensity of communication can be

measured by the call duration (talk time) and the call frequency (number of phone calls).

In our daily life, we communicate with people in the mobile network at different instances.

These people constitute our mobile social network. Based on amount of time and intensity
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of communication with these people, our mobile social network can be divided into three

broad groups:

Group 1: Socially Closest Members – These are the people with whom we maintain the

highest socially connectivity. Most of the calls we receive, come from individuals within this

category. We receive more calls from them and we tend to talk with them for longer periods.

Typically, the face-to-face social tie of these people is family member, friend, and colleagues.

Group 2: Socially Near Members – People in this group are not as highly connected as

family members and friends, but when we connect to them, we talk to them for considerably

longer periods. Mostly, we observe intermittent frequency of calls from these people. These

people are typically neighbors and distant relatives.

Group 3: Socially Distant Members – These individuals have less connection with our

social life. These people call us with less frequency. We acknowledge them rarely. Among

these would be, for example, a newsletter group or a private organization with whom we have

previously subscribed. This group also includes individuals who have no previous interaction

or communication with us. We have the least tolerance for calls from them e.g., strangers,

telemarketers, fund raisers.

I quantitatively define the social closeness between user i and user j from the user i’s

perception (S(i, j)) by Eq. 63.

(63) S(i, j) =
√

(1 − F (i, j))2 + (1 − T (i, j))2,

where F (i, j) is the normalized call frequency (normalized to the maximum call frequency

among all users with whom user i communicate) between user i and user j, which is given by

Eq. 64, and T (i, j) is the normalized call duration or talk time (normalized to the maximum

talk time among all users with whom user i communicate) between user i and user j, which

is given by Eq. 65.

(64) F (i, j) =
f(i, j)

max
k∈Ui

{f(i, k)} ,
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(65) T (i, j) =
t(i, j)

max
k∈Ui

{t(i, k)} ,

where f(i, j) is the total number of calls or call frequency between user i and user j, t(i, j)

is the total call duration or talk time between user i and user j, and Ui = {1, 2, ..., N} is the

set of all users associated with user i (i.e., all users who have made/received calls to/from

user i with total of N users).

Therefore, S(i, j) has values in the range [0,
√

2], which indicates the mobile social close-

ness between user i and user j from user i’s perspective where 0 implies the closest and
√

2

implies the farthest relation. Based on this quantity, I can categorize all users associated

with user i into three social groups using a simple grouping algorithm as follows.

Let R denote the Euclidean distance from coordinate (µF , µT ) to (1,1) where µF and µT

are the means of F (i, j) and T (i, j), respectively and j ∈ Ui. If S(i, j) ≤ R/2, then user j

belongs to Group 1, if R ≥ S(i, j) > R/2, then user j belongs to Group 2, and if S(i, j) > R,

then user j belongs to Group 3.

To validate the accuracy of my social closeness/grouping computation, I use the second

set of my data described in Sect. 7.3.1. During my second dataset collecting process, I

interviewed the subjects about the social closeness for all of his/her associated users by

having the subjects identified for each associated user (caller/callee ID) the perceived social

group. Each participant received $20 as compensation. As the result, my second dataset

includes additional information of social group corresponding to each associated user.

After comparing my calculation against the user feedback, I am able identify social groups

correctly with the overall accuracy rate of 93.8%. The detailed result is shown in Table

7.1, which presents number of correct classification (Hit), number of incorrect classification

(Miss), and the accuracy rate (Hit/(Hit + Miss)) for each user. Based on the follow-up

interviews with these ten subjects, most of “Miss” are caused by confusion between the

face-to-face social closeness and mobile social closeness. For example, one of the subjects

indentifies his roommate as a group 1 member since the subject sees and talks with his

roommate on daily basis, the subject however does not make/receive many phone calls
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to/from him. As the result, his roommate is classified to group 2 based on my calculation

(Eq. 63) but identified as group 1 member by the subject. To avoid biased feedbacks from

the subjects, I did not provide any information about my social closeness computation or

much more details about the three social groups than the description provided earlier in this

section. Nevertheless, I believe that I have a decent result in accuracy rate and, in addition,

I do not have any incorrect classification that misses more than one level of social group.

Table 7.1. The result of social group calculation of each user.

User Hit Miss Accuracy Rate (%)

1 60 5 92.31

2 57 6 90.48

3 48 5 90.57

4 141 13 91.56

5 127 8 94.07

6 188 11 94.47

7 88 3 96.70

8 80 6 93.02

9 62 1 98.41

10 87 4 95.60

Overall 938 62 93.80

Mean 93.80 6.20 93.72

Std. Dev. 44.82 3.61 2.64

To see the impact of the social closeness on the CPL, Fig. 7.12 shows the overall accuracy

rate versus the length of the CPL for different social ties; group 1, 2, and 3. The CPL

performs better in accuracy for the callers with closer social tie.
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Figure 7.12. The overall accuracy of the CPL as an incoming call predictor

for different lengths of the list as well as for different social groups.

7.4.5. Impact of Change of Life’s Schedule

Since call logs represent human behavior associated with trends and changes of behavior

over time, thus the accuracy of the CPL can also be impacted by the change of the caller’s

life schedule because it changes the calling pattern towards the user. For example, your

friend changes job from working Monday through Thursday from 8AM to 5PM to working

Friday through Sunday from 6PM to 3AM. This major change of your friend’s life schedule

may result in totally different calling pattern towards you, from receiving several calls at

night and on weekends to several calls during the day and on weekdays, for instance. The

change of calling pattern of several callers could degrade the performance of the CPL even

more.

7.4.6. How fast can CPL become reliable?

How fast can the CPL learn to become a reliable predictor for its user? This is an

important question to answer. In attempt to answer this question, I monitor the accuracy of

the CPL as the learning time or usage time (i.e., number of days since that user starts using

CPL) increases. I find that the accuracy normally starts with a low value, fluctuates, then

gradually increases, and eventually becomes more stable at some level. The answer to the
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question of when the CPL will become a reliable predictor or when the accuracy will become

stable, is not trivial. Of course, for CPL being reliable predictor does not necessarily mean

that it has perfect accuracy (100%) but rather it has a stable accuracy (i.e., small variation).

The accuracy level when it becomes stable as well as the time that takes for the accuracy

to become stable may depend on various factors such as number of incoming calls per day,

structure of caller’s calling pattern, and aforementioned factors that impact the accuracy

(i.e., increase of caller population, new callers, change of caller’s calling pattern).

Nonetheless, I demonstrate the relationship between the learning time and the accuracy

of CPL by plotting accuracy as learning time (number of days) increases for three different

sample users (randomly selected from my dataset) with different incoming call rates in Fig.

7.13, Fig. 7.14, and Fig. 7.15 where their number of incoming calls per day are 15.65, 5.61,

and 2.05 respectively for different length of the predicted list (L = 1, 5, 10, and 20).

As I previously speculated that one of many possible factors that may determine how

fast the accuracy to become stable was the rate of incoming calls or number of calls received

per day. Since other factors such as structure of caller’s calling pattern and change of caller’s

calling pattern are harder to identify and are difficult to quantify for comparison among users,

therefore I can restrict my attention to just incoming call rate and assume for a moment

that other factors are approximate the same for all users.

In fact, it is evident in Fig. 7.13, 7.14, and 7.15 that the accuracy of CPL becomes stable

faster for higher incoming call rate. It is reasonable because the more calling information

(higher incoming rate) that CPL learns, the quicker CPL recognizes caller’s calling pattern.

7.4.7. Unpredictability of Calls

The accuracy rate of the CPL can be impacted by many different factors as mentioned

previously. One of the factors that has a high impact on the accuracy of the CPL is the

“randomness” of the calling pattern of each caller.

Randomness or uncertainty associated with a random variable has been studied and

defined as the information entropy by Claude E. Shannon (159) as follows.
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Figure 7.13. The accuracy of CPL as learning time increases for sample user

who receives averagely 15.65 calls per day.

20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Learning Time

A
c
c
u
ra

c
y

 

 

L=1

L=5

L=10

L=15

L=20

Figure 7.14. The accuracy of CPL as learning time increases for sample user

who receives averagely 5.61 calls per day.

(66) E(X) = −
∑

i

p(xi) log2 p(xi),

where E(X) is an entropy of random variable X where xi ∈ X and p(xi) = Pr(X = xi).
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Figure 7.15. The accuracy of CPL as learning time increases for sample user

who receives averagely 2.05 calls per day. Note that accuracy curve for L = 15

is equal to L = 20.

By adopting this information entropy, I define the Unpredictability of Incoming calls (UI)

as the sum of the entropy of each caller such that UI increases with randomness of each

caller as well as the number of possible callers. The unpredictability of incoming calls for

the user k (UIk) is given by Eq. 67.

(67) UIk =

N
∑

k

(

−
24
∑

h

pk(h) log2 pk(h)

)

,

where N is the total number of callers and

(68) pk(h) =
C(TkHh)

∑24
h=1 C(TkHh)

.

I compute the UIk for each user in my dataset (k = 1, 2, 3, . . . , 30). Fig. 7.16 shows that

the accuracy rate of the CPL at L = 5 decreases unsurprisingly with the unpredictability.

7.4.8. CPL as an Outgoing Call Predictor

With the same framework, the CPL can function as an outgoing call predictor. I find

that the analyses that have been done so far for the incoming call predictor is also valid
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Figure 7.16. The overall accuracy rate of CPL as an incoming call predictor

decreases with the unpredictability of incoming calling patterns.

for the outgoing call predictor. Figure 7.17 shows the overall accuracy rate of the CPL

as an outgoing call predictor with and without considering the “new callees”. About 10%

improvement in accuracy is also evident. Figure 7.18 shows the accuracy rate of CPL as

an outgoing call predictor for different social groups. A similar result to the incoming call

predicted list’s is also obtained here where the CPL predicts much more accurately for the

callees who are within a closer social tie. Figure 7.19 shows the accuracy of CPL as an

outgoing call predictor decreases with the unpredictability of the user’s outgoing calling

pattern. As expected, the accuracy rate decreases with the unpredictability of the outgoing

calling pattern.

7.5. Applications of CPL

To demonstrate the usefulness of CPL besides its own features, I describe here two

applications of CPL including Call Firewall and Call Reminder.

7.5.1. Call Firewall

By adopting the concept of firewall–the wall that keeps destructive forces away from our

computer systems, Call Firewall basically monitors and handles incoming calls by keeping
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Figure 7.17. Overall performance of the CPL as an outgoing call predictor

with and without considering the new callees.
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Figure 7.18. The overall accuracy of the CPL as an outgoing call predictor

for different lengths of the list as well as for different social groups.

unsolicited and unwanted calls away while allowing desired calls to pass through. The

problem of unwanted telemarketing calls or spam calls is expected to be a serious problem

especially in VoIP networks due to its much lower communication cost than the circuit-

switched telephone network system (it also becomes an attractive target for spammers). In
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Figure 7.19. The overall accuracy rate of CPL as an outgoing call predictor

decreases with the unpredictability of outgoing calling patterns.

fact, SPIT (Spam over Internet Telephony) is roughly three orders of magnitude cheaper

to generate than traditional circuit-based telemarketing calls (160). Unlike e-mail spam,

call spam is a real-time problem, which requires a real-time defense mechanism. The real

challenge is thus to block the spam call before the phone rings. Not only these spam calls

create nuisance for the user, Kolan et al. (105) showed that each incoming phone call created

different level of nuisance depending on the user’s presence (mood or state of mind) based on

situational, spatial, and temporal contexts. Therefore, to address this problem of unwanted

calls, the system for detecting voice spam and estimating spamminess level (known as VoIP

Spam Detector or VSD) described by Kolan and Dantu (135) and Dantu and Kolan (136) and

the nuisance computation model (known as Nuisance Detector or ND) proposed by Kolan

et al. (105) can be integrated with the call prediction model proposed in this article (CPL)

to proactively handle incoming calls before the phone rings. VSD, as described in (135) and

(136), is a multi-stage adaptive spam filer based on presence (location, mood, time), trust,

and reputation to spam in voice calls. It uses a close-loop feedback control between different

stages to detect a spam call. As described in (105), ND is a model for computing nuisance
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level of incoming calls based on the social closeness and other behavioral patterns such as

periodicity of the caller and reciprocity.

As shown in Fig. 7.20, CPL generates a periodic 24-hour call prediction to be fed into

VSD to learn behavior of callers (among which are spammers) and analyze the trustworthi-

ness (VSD indicates the untrusted calls to be “dropped”) and ND computes nuisance level

associated with each predicted call (ND determines each call to be either sent directly to

“voicemail” or “ringer” to ring the phone), then a set of firewall rules is generated e.g., IF

John calls between 10am-11am, THEN forward it to voicemail, IF Pizza House calls between

4pm-5pm, THEN drop the call. The firewall rules are updated periodically (can be as often

as every hour – depending on the user). The user can also provide feedbacks about the actual

nuisance level or reporting spam calls in order to improve the performance of the firewall.

Figure 7.20. System overview of Call Firewall constructed with CPL, VSD,

and ND for proactively handling the incoming calls.

To show the performance of the Call Firewall, an experiment is conducted with nine-

month call logs of 30 users randomly selected from MIT dataset (81) using the latest 60 days

for testing while keeping the rest of the data for training. Table 7.2 shows the false negative

rate, true negative rate, and true positive rate of all 30 users. False negative rate measures

the percentage of the incoming calls that pass through the Call Firewall but should have been
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blocked. I assume that all “Missed Call” in my dataset mean that the user does not want to

take the call and hence it should be blocked by the Call Firewall. Despite many other reasons

for the missed calls such as being away from the phone, not hearing the ringer, and forgetting

to switch the phone back to ringer from silent mode, I carry out the experiment with this

assumption. True negative rate is a percentage of correctly blocked calls by Call Firewall

i.e., (number of blocked calls)/(number of predicted calls to be blocked). True positive rate

is a percentage of calls that are correctly let through by Call Firewall i.e., (number of pass-

through calls)/(number of predicted calls to be allowed to pass through firewall). Based on

this experiment, the Call Firewall performs with the average false negative rate of 10.3981%,

true negative rate of 75.6991%, and true positive rate of 83.0321%.

7.5.2. Call Reminder

One of the common problems of everyday life is forgetting to make a phone call that

could either be an event-based call such as birthday call, meeting planning call, etc. or a

nonevent-based call such as calling parents on weekends, calling girlfriend/boyfriend during

a lunch break, etc. Therefore, besides the Intelligent Address Book – an automatic function

that computes the probability of outgoing calls based on the recent calling behavior and

generates a list of potential callees to help avoid searching for a number to call through a

typical lengthy address/contact book, I present here a Call Reminder that makes use of CPL

as an outgoing call predictor by integrating it with ND and Event Calendar to generate a

“reminder” for the user to place a call to a particular person based on the user’s past history,

nuisance level, and events.

As shown in Fig. 7.21, CPL periodically makes outgoing call prediction (e.g., hourly),

which will be mapped onto the nuisance level computed by ND. The result is then evaluated

by the decision maker to generate the call reminder e.g., high probability and low nuisance

level would imply prompting a call reminder. The event calendar (a function that normally

comes with today’s mobile phone) is used to provide details about the call reminder e.g.,

birthday call, meeting plan, project discussion, etc. The user would be prompted with a

reminding message such as “Would like to call John about the ABC conference?”, “Would like

114



Table 7.2. The experimental result of the performance of the Call Firewall.

Phone user False negative (%) True negative (%) True positive (%)

1 7.9167 60.5657 81.1345

2 13.6364 70.6599 78.7067

3 20.1220 68.9306 85.9894

4 18.5185 73.4268 84.3915

5 2.8571 71.2957 73.0827

6 6.7805 90.5238 89.2000

7 30.6250 70.9195 68.8482

8 29.0909 73.9037 74.4131

9 5.1049 62.6718 80.4147

10 17.0000 61.2121 74.1722

11 0 85.5233 83.5608

12 26.4151 75.4762 86.7951

13 0 95.4762 100

14 3.3333 74.9153 85.2941

15 3.6364 69.6364 74.5827

16 2.5641 70.0632 81.7840

17 6.6667 61.3043 70.0880

18 30.1887 79.5116 77.1222

19 21.5686 79.4787 80.9110

20 4.5455 68.6689 90.8333

21 0 77.4271 84.6699

22 2.1739 69.8182 82.2090

23 12.1951 75.6426 78.1295

24 0 93.5915 94.1000

25 7.1429 86.4356 92.8571

26 0 71.7921 94.5113

27 8.4337 86.1017 86.8067

28 18.3019 76.2393 82.7376

29 11.9048 88.4960 85.3029

30 1.2195 81.2656 88.0456

115



to call Alice about the birthday?”, “Would you like to call Mom regarding about dinner?”.

The user records new events into the event calendar for future reminders. Feedback sensor

forwards the actual outgoing calls to CPL to be analyzed for prediction as well as provides

the user’s feedback to BD to calibrate nuisance computation.

Figure 7.21. System overview of Call Reminder constructed with CPL, ND,

and Event Calendar for reminding the user to place a call.

To see the performance of the Call Reminder, I conduct an experiment with call logs of

30 users from MIT dataset where the latest 60 days are testing period while the rest of the

data are used for initial training. Since there is no event calendar information in my dataset,

the performance is based solely on CPL and ND. The goal is to measure the percentage

of the calls made because of the prompted reminders generated by the Call Reminder. my

assumption here is that each outgoing call needs to be reminded. Clearly, it is not completely

realistic. Nonetheless, to get the first glance at how Call Reminder would perform in real

life, I conduct the experiment on this assumption. Therefore, with my dataset, I verify

for each outgoing call if it would be reminded by the Call Reminder. Table V shows the

result of the true positive rate, which is computed as ratio of the number of actual outgoing

calls made that are among the five numbers/contacts reminded by the Call Reminder to

the total number of outgoing calls. Based on this experiment, the Call Reminder performs

with the average true positive rate of 69.2654%. Note that I believe that the performance

can be improved relatively with an event calendar. Moreover, in more realistic setup, only
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some outgoing calls should be reminded. To see the real performance of the proposed Call

Reminder, one would be interested in finding out if the user does make an outgoing call

when a call reminder is generated. This among others will be in my future study.

7.6. Related Work

There have been some works on predictive modeling for telephone call demands. In (161),

the authors apply the queuing theory to characterize queuing primitives such as the arrival

time process, the service-time distribution, and the distribution of customer impatience. In

(162), the author develops two variations of Poisson process models for describing count data

of call center arrivals which utilized the proposed mixed models technique. There is also a

work describing a predictive model for the emergency 9-1-1 call volumes in (163), where the

authors used a multiple linear regression model technique to construct the multi-dimensional

linear predictor based on the call history. The work that is fairly close to my work is (164)

where the authors develop a system for predicting a future communication activity based on

the past communication event information. The system analyzes the past communication

event information (including phone calls and emails) to determine whether a correlation

existed in the past communication and predicted the future communication event based on

the current communication event and the correlation. The correlation is computed based on

the pattern of incoming and outgoing calls e.g., if a call received from “person A” resulted

in a later origination of a call to “person B,” the correlation value between the “person A”

and the “person B” is increased proportionately and the correlation values corresponding

to other persons not dialed is decreased accordingly. The work that is closest to my work

is (143) where the authors proposed a Call Predictor (CP), which computes receiving call

probability and makes the next-24-hour incoming call prediction based on caller’s behavior

and reciprocity. The caller’s behavior is measured by the caller’s call arrival time and inter-

arrival time. The reciprocity is measured by the number of outgoing calls per incoming call

and the pattern of inter-arrival/departure time. The CP only makes prediction for a pre-

specified caller of when the caller will be calling in the next 24-hour time frame. In contrast,

my CPL predicts the next-hour callers by generating a list of the potential callers. With
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Table 7.3. The experimental result of the performance of the Call Reminder.

Phone user True positive (%)

1 70.5202

2 86.1386

3 100

4 49.6000

5 54.0230

6 54.7445

7 76.3247

8 98.7775

9 62.3919

10 70.7127

11 51.0397

12 72.1470

13 85.4530

14 61.5542

15 56.8110

16 65.8784

17 53.0387

18 92.0854

19 72.9358

20 100

21 90.9091

22 52.0833

23 47.9433

24 55.9934

25 53.7975

26 66.5761

27 73.8872

28 80.5000

29 52.5180

30 69.5767
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CPL, user needs not to request prediction for each caller but with one request (i.e., press

“predict” button), a list of potential callers will be generated. The main contrast between

the CP and CPL is that CP predicts “when” the caller will make a call to the user but CPL

predicts “who” will be the caller/callee.

7.7. Conclusion

With the advancement of technologies embedded in today’s mobile phones, people be-

gin to engage the mobile phones more and more into many parts of their lives. Today’s

technology suggests that the mobile phone will eventually become a personal assistant that

intelligently provides useful information to help its user making good decisions or even make

decisions based on the user’s context with the goal of to enhance quality of life. As a step

towards this direction, I present here a model for predicting future callers and callees en-

visaged as a Call Predicted List (CPL). CPL makes use of the user’s call history to build

a probabilistic model of calling behavior based on the calling patterns and reciprocity. As

an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be

the callers within the next hour. As an outgoing call predictor, CPL is generated as a list of

numbers/contacts that are the most likely to be dialed when the user attempts to make an

outgoing call (by flipping open or unlocking the phone). This helps save time from having

to search through a lengthy phone book. The CPL has been evaluated with the real-life call

logs from 30 mobile users and it shows a promising result in accuracy.

In this study, I have learned that the phone calls that seem random and unpredictable,

it actually can be predicted accurately to some extent. I have also learned that there are

however numerous factors that can impact the accuracy of the predictor such as the increase

number of callers/callees, the new callers/callees, the mobile social closeness, the change of

life schedule, the activeness of callers/callees, and the randomness of the calling pattern.

I am also aware of some limitations of this study such as the size of my datasets and

the length of the call logs. I find it very difficult to collect these call logs from the subjects

due to the privacy issues and the amount of time taken by each interview (about the social

closeness) during my second dataset collection. Each interview lasted about one hour, which
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included downloading call logs from the phone service website and collecting feedback about

the social closeness. There were only three months of call logs available for downloading from

the service provider web page thus I am limited to three months of data for my analysis.

As my future direction, I will continue to investigate other parameters to improve my

model as well as continue to collect more data for my future studies.
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CHAPTER 8

CONTEXT-AWARE ALERT MODE FOR A MOBILE PHONE

8.1. Introduction

Having a handheld device recognized its user’s context fits to the scope of context aware-

ness, which is one of the hottest current research areas. Context awareness aims to enhance

our quality of life with intelligent computing devices sensing and reacting to the environment

and presence of users. Existing handhled devices such as mobile phones and personal digital

assistants (PDA’s) have already taken steps towards this computing paradigm.

With the embedded sensors in today’s mobile phones such as accelerometer, GPS, and

audio sensor, the user’s context can be sensed and estimated to some extent using machine

learning techniques. In this chapter, I design and evaluate a context-aware mobile computing

model, known as ContextAlert, that intelligently configures the mobile phone alert mode

according to user’s situational context. For example, the phone can be automatically set

to vibrate mode while the user is in a meeting, automatically configured to handsfree mode

while the user is driving, etc.

Several previous works have been done in context awareness such as service discov-

ery, online/mobile social modeling for providing better services, activity recognition, per-

sonal/object positioning, and person identification. My work is closely related to activity

recognition for which previous works have used either a single or multiple sensors attached

to different parts of user’s body.

We distinguish this work from other previous works by the following contributions:

(1) I use multiple sensors embeded in the mobile phone, which is more realistic for

detecting the user’s context than having various sensors attached to different parts

of user’s body.
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(2) I propose a model that uses sensed contextual information to provide a service that

better synchronizes the user’s daily life with a context-aware alert mode control.

With this service, the user can avoid the problems such as forgetting to switch to

vibrate mode while in a meeting or a movie theater, and taking the risk of picking

up a phone call while driving.

(3) As adaptivity is essential for context-aware computing, within my model I propose

a learning mechanism that maintains a constant adaptivity rate for new learning

while keeping the catastrophic forgetting problem minimal.

The rest of the chapter is organized as follows: Section 8.2 briefly reviews the literatures

in context awareness that is related to my work. Section 8.3 presents the system overview

of ContextAlert. Section sec:framework describes my proposed framework for ContextAlert.

My approach in designing ContextAlert is evaluated with several experiments and the results

are shown in Section 8.5. I point out some limitations of my work in Section 8.6. Section

8.7 concludes this chapter with a summary and an outlook on future work.

8.2. Related Work

Context-aware computing research is scoped by ubiquitous computing, a term that was

coined by Mark Weiser (1; 165). It has also been referred to as pervasive computing and

ambient intelligence, which is a computing paradigm that makes multiple computing devices

available throughout the physical environment and effectively invisible to the user. Several

researchers have attempted to define “context” (48; 49; 50; 51; 52) since Schilit et al. (166;

167) first introduced it in 1994. Han et al. (55) divided context into physical, internal, and

social context.

Several works in physical context have focused on service discovery in ubiquitous comput-

ing environments based on the user’s context e.g., (168; 169; 170; 171; 172; 173; 174; 175).

Meanwhile, research in the social context area has been reported in both online and mobile

social networks by modeling social dynamics and using social context information to provide

better service for users e.g., (176; 177; 178; 179; 180; 81; 181; 182). My work is in the

122



area of internal context, which was defined as an abstract thing inside people such as feeling,

thought, task, action, interest, and so on (55). Recent works include context extraction (e.g.,

(183; 184; 185; 186)), activity recognition (e.g., (187; 188; 189)), personal/object positioning

(e.g., (190; 191)), and person identification (e.g., (192; 193; 194)).

Laerhoven and Cakmakci (195) proposed a context-awareness system that learned the

user’s activities from 2-axis accelerometers, passive infrared sensors, carbon monoxide sensor,

microphones, pressure sensors, temperature sensors, touch sensors, and light sensors using

Kohonen self-organizing maps and Markov models.

Lester et al. (196) presented a method using accelerometers to determine if two devices

were carried by the same person based on a coherence function (a frequency-domain linear

correlation).

Lukowicz et al. (197) presented a technique to automatically track the progress of main-

tenance or assembly tasks using body-worn 3-axis accelerometers, microphones, and comput-

ers based on frequency-matching sound classification technique that combined the intensity

analysis of signals from microphones at different parts of body and correlation analysis of

surrounding sounds and user activity.

Bao and Intille (187) developed a system to detect activities such as walking, sitting,

standing, running, and so on using body-worn 2-axis accelerometers based on mean energy,

frequency-domain entropy, and correlation and decision tree classifiers.

Krause et al. (72) presented a multi-sensor wearable system that learned context-aware

personal preferences by identifying individual user states and observing how the user inter-

acted with the system in these states. This work was based on the previous model proposed

by Siewiorek et al. (183). Sensor data were preprocessed using different methods such as

fast Fourier transform (FFT) and principal component analysis (PCA), and then clustered

using Kohonen self-organizing maps (198) and Markov models.

Jin et al. (199) proposed a context awareness system that distinguished user motion

states and recognized emergency situations using a 2-axis accelerometer, heat flux sensor,
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galvanic skin response sensor, skin temperature sensor, and near-body ambient temperature

sensor based on a fuzzy inference model.

These recent works in internal context area adopt the wearable computer approach,

which requires several sensors to be attached to specific parts of the user’s body to sense

the most accurate context data. These approaches are thus not realistic. Nevertheless, the

preprocessing techniques, machine learning approaches, and probabilistic models used in

these works are useful.

There are some recent studies reported in recognizing activities using an accelerometer

attached to the mobile device. Iso and Yamazaki (200) proposed a gait analyzer based on a

3-axis accelerometer mounted on a mobile phone using a wavelet packet decomposition for

preprocessing data and a self-organizing map with Bayesian theory for classification. Yi et

al. (201) conducted a study to determine what contextual information could be obtained

from a 3-axis accelerometer attached to a personal digital assistant (PDA) by having subjects

performed some activities while carrying PDAs.

8.3. Context-Aware Alert Mode Control

The user’s context is very complex to be comprehended entirely from sensor data. I

nevertheless believe that it can be estimated and interpreted to some extent. With the

embedded sensors in the mobile phones such as the accelerometer, GPS, and audio sensor,

the user’s movement, mobility, and ambient noise level can be sensed respectively.

We propose here a Context-Aware Alert Mode Control (ContextAlert) that configures

the call alert to the most suitable mode corresponding to user’s context. With today’s mobile

phones, the user has three call alert options: ringer, vibrate, and handsfree. These options

are suitable for different situations. Handsfree mode (bluetooth headset) is most suitable

when the user is driving a vehicle. In fact, many states in the U.S. have prohibited drivers

from talking on mobile phones while driving (202). Vibrate mode is most suitable when the

user is in a meeting, theater, library, etc. Ringer is used mostly in general and it is preferred

in situations in which the user can be interrupted by a ringer such as while shopping, having

lunch, or walking in a park.
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Our notion of context is therefore defined as a user’s physical situation, which is a cluster

of feature attributes obtained from the sensor data at an interval of time. Accordingly, the

user’s context can be divided into three states:

(1) Uninterruptible by Ringer (UR): In this state, user does not want to be interrupted

by a ringer. Normally, this situation occurs while user is in a considerably quiet

place with low movement and mobility e.g., in a meeting, in a theater, at a library,

etc.

(2) Interruptible by Ringer – Vehicular Mode (IR-V): The user can be interrupted by a

ringer in this state but is unable to use hands to operate the phone. This is usually

a driving situation, in which the environmental noise level is typically higher than

in the UR state. The movement is normally low but the mobility is clearly high.

(3) Interruptible by Ringer – Non-vehicular Mode (IR-N): This state corresponds to

situations in which user is interruptible by a ringer and not driving a vehicle. Situ-

ations include shopping in a mall, walking with friends in a hall way, having lunch,

and jogging in a park. These situations are typically at high ambient noise level,

high movement, and low mobility.

With these user context states, ContextAlert sets the alert option to the most suitable

mode according to Definition 8.1, learns the user’s preference from the feedback, and adjusts

the inference engine accordingly (shown in Fig. 8.1).

Definition 8.1. If the user’s context is UR, then the most suitable alert option is vibrate

mode. If the user’s context is IR-V, then the most suitable alert option is handsfree mode.

If the user’s context is IR-N, then the most suitable alert option is ringer mode.

8.4. Framework

This section describes the ContextAlert framework, which includes my approach in de-

signing the models and details on sensor data acquisition, data preprocessing, the context

classifier, the inference engine, and the adaptive learning mechanism.
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Figure 8.1. System overview of ContextAlert.

8.4.1. A Three-Step Approach

There are three steps in my design. The first step is “training,” which is an offline super-

vised learning process to construct an initial context map by classifying the labeled training

samples into three different context states (UR, IR-V, and IR-N). In this step, sensor data

are preprocessed to obtain useful features (details are described in Section 8.4.3), then fed

into classifier to generate an initial context map using PCA (details are described in Sec-

tion 8.4.4). The second step is “inferring,” which is an online unsupervised learning process

to analyze input sensor data and infer the user’s context state based on k-nearest neighbor

algorithm (k-NN) and finite state machine model (details are described in Section 8.4.5).

The third step is “user preference learning,” which is an online supervised learning process

to learn the user’s preferences based on the feedback (details are described in Section 8.4.6).

This three-step approach is illustrated in Fig. 8.2. On top of the three-step approach,

a learning algorithm is applied for the system to remain adaptive for new learning while

the Catastrophic forgetting problem is maintained at a minimum (details are described in

Section 8.4.7).
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Figure 8.2. Our three-step approach constructs an initial context map using

supervised learning in the training step, then uses the initial map to estimate

user’s context in the inferring step, and learns user’s preference from the feed-

back.

8.4.2. Data Acquisition

In this work, the data were collected using the embedded sensors of the G1 phones (203)

with Google Android 1.1 operating system, 32 bit Qualcomm MSM7201A (528 MHz CPU

clock), 256 MiB ROM, and 192 MiB RAM. These sensors included a 3-axis accelerometer, a

GPS navigation system with Qualcomm MSM7201A gpsOne using NIMEA 0183 protocol,

and an audio sensor with 16 bit nominal quantization and a sampling frequency of 44,100

Hz.
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To acquire data from these sensors, I created an application for G1 phone using Android

1.1 SDK (204). The phone was carried inside the front pants pocket while the data were

collected.

8.4.3. Preprocessing Methods

Preprocessing is needed to extract useful features from the raw sensor data. To estimate

the user’s movement, I compute the magnitude of the force vector by combining the mea-

surements from all three axes using Eq. 69 to derive a net acceleration (a) independent of

orientation. Note that if there is no movement, the magnitude is approximately at 1G due

to the Earth’s gravity (9.8 m/s2).

(69) a =
√

c2
x + c2

y + c2
z,

where cx, cy, and cz are measurements from x, y, and z axis of accelerometer, respectively.

Figure 8.3 shows the net acceleration’s magnitude of a subject walking, standing, running,

and sitting. The subject carried the phone in his pant pocket for this experiment and all

other experiments in this chapter.

For estimating the user’s mobility, I use GPS data to compute the traveling speed by

calculating a distance (minimum distance or length of a displacement) between user’s current

position and the previous one based on the latitude and longitude information. Then the

user’s traveling speed can be obtained simply by dividing the distance by a time difference

between two positions as given by Eq. 70.

(70) s =

√

(φ1 − φ2)2 + (λ1 − λ2)2 × 111

4T
,

where φi and λi denote a latitude and a longitude value at location i, respectively. The

constant 111 is the approximated converting ratio of distance from one geographic degree to

kilometer unit. Time difference between two locations is represented by 4T in hour units.
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Figure 8.3. An example of magnitude of the force vector by combining the

measurements from all three axes from accelerometer. Data show the subject

walking to a mail room, checking his mail box, walking/running/walking back

to an office, and sitting down on a chair.
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Figure 8.4. An example of traveling speed based on GPS information. Data

show the subject walking towards a car, driving, then walking away from the

car as he reaches the destination.

An example of the traveling speed based on GPS data is illustrated in Fig. 8.4 as a

subject walking to a car, driving to the destination, then walking away the car as he arrives.

For the audio sensor data, I sample the audio signal at 8 kHz and extract the running

average envelope, which gives us a smoother signal (less noise) than its original signal and
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Figure 8.5. An example of running average envelope while a subject is walk-

ing to a car, driving with music on, and walking away from the car after

parking.

peak envelope as my interest in the loudness of the ambient noise (amplitude of the audio

signal). I compute the running average envelope (e) with window size of 50 using Eq. 71.

(71)

e(n) =
1

w
{g(n−w)+g(n−w+1)+...+g(n−1)+g(n)+g(n+1)+...+g(n+w−1)+g(n+w)},

where g(n) is the amplitude of audio signal with n = {1, 2, 3, ...} and w is the size of window.

Figure 8.5 shows an example of the running average envelope while a subject is walking

to a car, listening to music while driving, and walking away from the car after parking.

8.4.4. Context Classifier

The context classifier is used in the offline training process (step 1) to take preprocessed

data and project them onto feature space creating an initial “context map” with M trained

data arrays.

With my preprocessed data, the (labeled) input data array of the classifier (x) at any

interval of time T can be expressed as follows.
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(72) xm =











V ar(Am)

E(Sm)

E(Em)











,

where Am = {am(1), am(2), ..., am(na)}, Sm = {sm(1), sm(2), ..., sm(ns)}, Em = {em(1), em(2),

..., em(ne)}, and na, ns, ne are the total numbers of data points within T of Am, Sm,

and Em, respectively. I take the variance (V ar(·)) of Am and expected values (E(·)) of

Sm and Em. Hence the training data matrix for constructing the initial context map is

Xtrained = {x1, x2, ..., xM}.

To project my training data onto a context map, I apply PCA (205). I transform my

three-dimensional input data to two-dimensional feature space by retaining two principal

components that have the maximum variation in the original data array, namely the first

and second principal components i.e.,

(73) Y = W ′
CX,

where Y is the data on a transformed space (or context map in my case), X is the data

matrix, and WC is the first C singular vectors (C = 2 in my case) where W = [w1 w2 ... wp]

(p is the original data’s dimensionality, e.g., p = 3 in my case), the order of w is according

to the variance or eigen value i.e., var(w′
iX) = λi and λ1 ≥ λ2 ≥ · · · ≥ λp, and ′ denotes

transpose.

8.4.5. Context Inference Engine

The context inference engine is in the online inferring process (step 2), which takes a new

(unlabeled) preprocessed data array along with the trained data arrays, projects them onto

context space, and makes an initial classification for the new data based on k-NN algorithm

(206) using the Euclidean distance. The initial classification is then fed into a transition

supervision process based on a finite state machine model to make the final inference.
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Figure 8.6. User preference learning process flow.

Thereby, the input data matrix for the PCA is X = {Xtrained, xnew} such that the new

and trained data are transformed by the same function. With the new coordinates, the

new data is then classified to the most likely context state (Z), which is the most common

class amongst the k nearest neighbors in the context space, where Z ∈{UR, IR-V, UR-

N}. The initial classified context state then undergoes the supervision process to supervise

the transitions from one context state to another. This supervision process uses a finite

state machine architecture where each state represents the user’s context and transitions are

represented by edges between states.

8.4.6. User Preference Learning

This is a process of learning the user’s personal preference. It is inevitable that the initial

context map does not fit perfectly to the user’s preference. This process is therefore essential

to personalizing ContextAlert. The process can be as simple as the flow diagram shown in

Fig. 8.6. Once the user makes a change to the alert mode, the user will be prompted to

have ContextAlert learn his/her setting. If the answer is “Yes,” then the context map is

adjusted accordingly. However, if the answer is “No,” then no learning is needed and hence

the context map is not modified.

8.4.7. Adaptive Learning

With the proposed model, ContextAlert would start out highly adaptive with a high

learning rate, would gradually become fixed as number of learned data increases. After this
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stage, it would be hardly capable of learning any more, which would create a problem as

the system needs to remain adaptive. Overwriting previously learned data with the new

learning can improve the adaptivity of the system. However, the tradeoff is known in the

field of machine learning as the Stability-Pasticity Dilemma or Catastrophic Forgetting(207),

which refers to the problem of designing a learning system to remain plastic or adaptive and

preserve its previously learned knowledge while continuing to learn new things, which can

also mean preventing the new learning from washing away the memories of prior learning.

To address this challenge in designing a context awareness system, I propose a learn-

ing mechanism that remains adaptive while keeping Catastrophic Forgetting minimal. The

adaptivity (Λ) can be defined simply as a learning rate for new data as

(74) Λ =
Amount of New Learning Data

Amount of Learned Data
.

In my case, the amount of new learning data is one and the amount of learned data is

M/3 for each context state. Thus the learning rate decreases exponentially with M . To stay

adaptive, M must be fixed and hence removing previously learned data is an option. In this

approach, I cannot avoid the Catastrophic Forgetting problem. Nevertheless, I can minimize

it.

Forgetting is a loss of memories, which can be quantified as a difference between the set

of prior memories before and after a new learning. Let ξ(b) and ξ(a) denote the set of prior

memories in three-dimensional space before and after a new learning, respectively.

Definition 8.2. If x
(b)
k is the kth memory point before a new learning in three-dimensional

space (d1, d2, d3) and x
(a)
k is the kth memory point after a new learning, then the difference

between the x
(b)
k and x

(a)
k (γk) can be computed using Euclidean distance as

(75) γk =

√

(x
(b)
k (d1) − x

(a)
k (d1))2 + (x

(b)
k (d2) − x

(a)
k (d2))2 + (x

(b)
k (d3) − x

(a)
k (p3))2

If x
(a)
k does not exist (or has been removed), then γk = ∞ (complete loss of memory).
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Figure 8.7. An example of graphical representation of the merging process

for adaptive learning.

Definition 8.3. If ξ(b) = {x(b)
1 , x

(b)
2 , ..., x

(b)
M } and ξ(a) = {x(a)

1 , x
(a)
2 , ..., x

(a)
M }, then the total

loss of memories (Γ) is the sum of γk for k = 1, 2, ..., M , i.e.,

(76) Γ =
M
∑

k=1

γk.

To minimize the loss of memory from a new learning, I merge two nearest memory points

to one memory point located at the mid point between the two. If x
(a)
m is the merging of x

(b)
i

and x
(b)
j , then the total loss of memory is

Γ =

√

(x
(b)
i (d1) − x

(a)
m (d1))2 + (x

(b)
i (d2) − x

(a)
m (d2))2 + (x

(b)
i (d3) − x

(a)
m (d3))2

+

√

(x
(b)
j (d1) − x

(a)
m (d1))2 + (x

(b)
j (d2) − x

(a)
m (d2))2 + (x

(b)
j (d3) − x

(a)
m (d3))2

= 2

√

(x
(b)
i (d1) − x

(a)
m (d1))2 + (x

(b)
i (d2) − x

(a)
m (d2))2 + (x

(b)
i (d3) − x

(a)
m (d3))2,(77)

and the merged memory point is occupied at (
x
(b)
i (d1))+x

(b)
j (d1)

2
,

x
(b)
i (d2))+x

(b)
j (d2)

2
,

x
(b)
i (d3))+x

(b)
j (d3)

2
).

As an example, a graphical representation of the merging process is illustrated in Fig. 8.7.

To summarize my design, a detailed algorithm of the ContextAlert is given in Algorithm

8.1.
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ALGORITHM 8.1. Context-Aware Alert Mode

Input: Context map’s data matrix (Xtrained) and input data array (xnew)

Output: Context-aware alert mode and a new context map’s data matrix (Xnew trained)

1. Project X = {Xtrained,xnew} onto the context space using PCA i.e., Y = W ′
CX;

2. Classify ynew (transformed xnew) to the context Z ∈{UR,IR-V,IR-N} using k-NN;

3. Set the alert mode according to Definition 8.1;

4. IF There is an overwrite setting by the user

5. Prompt the user to have the system learned the setting;

6. IF Answer is ’Yes’

7. Reclassify ynew according to the new setting;

8. ELSE

9. Do nothing;

10. END IF

11. END IF

12. Xnew trained = Merging of two nearest memory points of xnew’s class and the rest of

Xtrained;

13. Return the context-aware alert mode;

14. Return Xnew trained;

8.5. Experimental Results

In this section, I describe my datasets (Section 8.5.1) as well as conduct four experimental

studies to evaluate my approach. In Section 8.5.2, I show the impact of learning by comparing

the performance of a model that uses only a fixed initial context map (no learning from new

data) to a model that starts off with the same initial context map but its context map grows

as it learns new data. In Section 8.5.3, I once again point out that the growth of the context

map with new learnings lowers the adaptivity rate and causes “the curse of dimensionality”.

I thus compare the performance of a model with growing context map with my proposed

merging-based context map model. In Section 8.5.4, I show the impact of the proposed
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supervision process that can improve the performance of the model. In Section 8.5.5, I show

the impact of applying PCA to my model by comparing the performance of my model with

and without using PCA.

8.5.1. Datasets

For training, I collected data from three different subjects. Each subject performed ten

different activities shown in Table 8.1. Each activity was performed continuously for ten

minutes by each subject. With a time interval (T ) of five seconds (buffer time), I had 120

labeled data arrays. With ten different activities and 120 data arrays per subject, I thereby

had 360 labeled data arrays available for constructing the initial context map.

Table 8.1. A list of the ten different activities and their corresponding con-

text states. Four participating subjects performed ten minutes of each activity

from which the training data arrays were obtained.

Context State Activity

UR Attending a meeting

Attending a class

Watching movie at a theater

Reading books in a library

Working in an office

IR-N Walking

Jogging or Running

Eating at a restaurant

Shopping at a supermarket

IR-V Driving a car

For testing, I collected data from a different group of participating subjects. There

were four subjects in this testing group. Each subject performed five different sequences of

activities, which are listed on Table 8.2. Each sequence was about one hour. These sequences
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consisted of all ten activities listed on Table 8.1, 31,690 seconds (6,338 data arrays) of UR,

21,430 seconds (4,286 data arrays) of IR-N, 18,940 seconds (3,788 data arrays) of IR-V, and

total of 14,412 testing data arrays.

The subjects were asked to keep detailed time logs of activities performed, which were

then used to do hand-labeling of the testing data.

Table 8.2. A list of five different sequences of activities with the correspond-

ing context state and approximate duration. Each sequence was about one

hour. Testing data arrays were obtained from having each of four subjects

performed these sequences.

Sequence Sequence of activities with the corresponding context state

Number and approximate duration

1 Jogging (IR-N, 3 min.) ⇒ Walking (IR-N, 2 min.) ⇒ Library (UR, 25 min.)

⇒ Walking (IR-N, 5 min.) ⇒ Driving (IR-V, 25 min.)

2 Walking (IR-N, 5 min.) ⇒ Driving (IR-V, 30 min.) ⇒ Walking (IR-N, 10 min.)

⇒ Theater (UR, 15 min.)

3 Walking (IR-N, 5 min.) ⇒ Library (UR, 25 min.) ⇒ Walking (IR-N, 10 min.)

⇒ Restaurant (IR-N, 20 min.)

4 Meeting (UR, 25 min.) ⇒ Walking (IR-N, 3 min.) ⇒ Running (IR-N, 2 min.)

⇒ Class (UR, 30 min.)

5 Working (UR, 10 min.) ⇒ Walking (IR-N, 5 min.) ⇒ Driving (IR-V, 25 min.)

⇒ Walking (IR-N, 5 min.) ⇒ Shopping (IR-N, 15 min.)

8.5.2. Impact of Learning

Ideally, I would like to have a model with one fixed context map that works perfectly for

any user but this is not realistic. Therefore, in this section, I attempt to show that such a

model performs well to some extent. However, I can improve its performance by learning

from the user.
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This experiment and others were set up as follows. The initial context map was con-

structed using 100 data arrays from each of the three context states by randomly selecting

training data arrays obtained from the subjects in the training group. The model was tested

with the data obtained from the five sequences of activities by four subjects described in

Section 8.5.1. The testing was done in the order of the sequence, i.e. testing with sequence

1, then sequence 2 then sequence 3, then sequence 3, and so on.

Table 8.3 shows the overall performance from four testing subjects in terms of accuracy

rates per sequence (Acc./Seq.) as well as per context (Acc./Cont.) of a fixed initial context

map model (FCM), which uses only the initial context map without learning from the user.

The result per subject is shown in the Appendix.

Table 8.3. Performance of FCM in terms of hits and misses for each context

state and each testing sequence of activities. The accuracy rate per context

state (Acc./Cont.) is shown in the bottom of the table while the accuracy rate

per sequence (Acc./Seq.) is shown in the last column.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 1138 0 316 50 1012 108 2466 158 93.98

2 750 0 638 76 1356 108 2744 184 93.72

3 1252 0 564 1112 0 0 1816 1112 62.02

4 2686 0 208 84 0 0 2894 84 97.18

5 512 0 594 644 18 1186 1124 1830 38.05

Total 6338 0 2320 1966 2386 1402 11044 3368 76.63

Acc./Cont. (%) 100.00 54.13 62.99 76.63

Without learning, the FCM shows 76.63% overall accuracy. With the same initial context

map, Table 8.4 shows that I can achieve a much higher accuracy rate of 90.55% with a

growing-with-learning context map model (GCM) that keeps all new learning data arrays as

it is being tested. Hence the context map grows with learning (the amount of testing data).

138



I assume here that the user corrects all misclassified data arrays (Step 3 of the three-step

approach) so that the GCM does not mislearn the data.

Table 8.4. Performance of GCM in terms of hits and misses for each context

state and each testing sequence of activities. The accuracy rate per context

state (Acc./Cont.) is shown in the bottom of the table while the accuracy rate

per sequence (Acc./Seq.) is shown in the last column.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 1136 2 360 6 1078 42 2574 50 98.09

2 750 0 708 6 1464 0 2922 6 99.80

3 1246 6 1024 652 0 0 2270 658 77.53

4 2628 58 272 20 0 0 2900 78 97.38

5 500 12 1002 236 882 322 2384 570 80.70

Total 6260 78 3366 920 3424 364 13050 1362 90.55

Acc./Cont. (%) 98.77 78.53 90.39 90.55

8.5.3. Adaptivity and The Curse of Dimensionality

A much higher accuracy rate of the GCM comes at a price. As the context map grows

with learnings, its adaptivity decreases exponentially (according to Eq. 74). This also

increases the computational cost as the cost of k-NN rises with the number of learned data,

which is a problem known as “the curse of dimensionality”.

The adaptivity of GCM can be computed using Eq. 74 as the average over three context

data arrays as Λ = 1
3
( 1

6,338
+ 1

4,286
+ 1

3,788
) = 0.000218. With my proposed merging-based

context map model (MCM), which merges the two nearest learned data arrays after each

new learning in the context map, Table 8.5 shows that I can achieve a competitive accuracy

rate compared with the GCM at 89.34% (about one percent lower). However, the important

improvement of the MCM over the GCM is a much higher adaptivity rate of Λ = 1
100

= 0.01.
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As the MCM prevents the adaptivity from decreasing while minimizing the loss of prior

learning, the accuracy stays reasonably high with the context map that remains adaptive.

Table 8.5. Performance of MCM in terms of hits and misses for each context

state and each testing sequence of activities. The accuracy rate per context

state (Acc./Cont.) is shown in the bottom of the table while the accuracy rate

per sequence (Acc./Seq.) is shown in the last column.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 1128 10 362 4 1082 38 2572 52 98.02

2 750 0 706 8 1464 0 2920 8 99.73

3 1246 6 958 718 0 0 2204 724 75.27

4 2646 40 266 26 0 0 2912 66 97.78

5 506 6 788 450 974 230 2268 686 76.78

Total 6276 62 3080 1206 3520 268 12876 1536 89.34

Acc./Cont. (%) 99.02 71.86 92.93 89.34

8.5.4. Impact of Supervision Process

With the supervision process, the context state transition is properly guided e.g., if the

user is currently driving (IR-V), in the next five sections he/she will either be driving (IR-

V) or walking away from the car (IR-N); he/she cannot be in a meeting or class. Adding

the supervision process can help improve the accuracy of the model. In fact, experimental

results in Table 8.6 show that the accuracy rate of the MCM with the supervision process

(MCM-S) is improved to 91.20%, which is higher than the MCM and GCM (with much

better adaptivity rate than the GCM).
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Table 8.6. Performance of MCM-S in terms of hits and misses for each con-

text state and each testing sequence of activities. The accuracy rate per con-

text state (Acc./Cont.) is shown at the bottom of the table while the accuracy

rate per sequence (Acc./Seq.) is shown in the last column.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 1128 10 362 4 1120 0 2610 14 99.47

2 750 0 706 8 1464 0 2920 8 99.73

3 1246 6 958 718 0 0 2204 724 75.27

4 2646 40 266 26 0 0 2912 66 97.78

5 506 6 788 450 1204 0 2498 456 84.56

Total 6276 62 3080 1206 3788 0 13144 1268 91.20

Acc./Cont. (%) 99.02 71.86 100.00 91.20

8.5.5. Impact of PCA

Typically, PCA is used to reduce the dimensionality of a dataset consisting of a large

number of interrelated variables. In my case, PCA is used not only to reduce the dimension-

ality of my data matrices but to also reduce the noise of from the embedded sensors (several

reports in PCA-based noise filtering e.g., (208), (209), and (210)). This noise reduction pro-

cess can help improve the performance the classifier and hence improve the accuracy of the

model. Without applying PCA, the accuracy of MCM-S is decreased to 85.64% as shown by

the experimental results in Table 8.7.

We have conducted several experimental studies to evaluate my approach in designing

a model for ContextAlert. To summarize the results, Table 8.8 shows the overall accuracy

of each model. I have shown that “learning” improves the accuracy of the model but de-

creases adaptivity, the “merging-based model” helps maintains adaptivity with a reasonable

accuracy rate, the “supervision process” is a key element that improves performance, and

“PCA” is used to reduce sensor noise that can degrade the performance of the model. From
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Table 8.7. Performance of MCM-S(no PCA) in terms of hits and misses for

each context state and each testing sequence of activities. The accuracy rate

per context state (Acc./Cont.) is shown at the bottom of the table while the

accuracy rate per sequence (Acc./Seq.) is shown in the last column.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 1138 0 290 76 1120 0 2548 76 97.10

2 750 0 580 134 1464 0 2794 134 95.42

3 1250 2 534 1142 0 0 1784 1144 60.93

4 2686 0 208 84 0 0 2894 84 97.18

5 512 0 606 632 1204 0 2322 632 78.61

Total 6336 2 2218 2068 3788 0 12342 2070 85.64

Acc./Cont. (%) 99.97 51.75 100.00 85.64

Table 8.8, my proposed model (MCM-S) has the highest performance in both accuracy rate

and adaptivity.

Note that the result per subject of each model is available in the Appendix.

Table 8.8. Overall performance comparison of different models in terms of

adaptivity and accuracy rate.

Model Average Adaptivity Accuracy Rate (%)

FCM 0.01 76.63

GCM 0.0000218 90.55

MCM 0.01 89.34

MCM-S 0.01 91.20

MCM-S(no PCA) 0.01 85.64

8.6. Limitations of the Study

We are aware of the following limitations of this study:
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(1) The evaluation of the user’s preference learning step (Step 3 of the three-step ap-

proach) cannot be done in this current study due to the capability of the current

model of the G1 phone.

(2) With a limited number of testing data, I can only demonstrate the impact of learning

and adaptivity to some extent. I are certain that a much longer period of testing

would yield much clearer results than the current study.

(3) Similarly, with a larger number of testing subjects, the performance of my model

would have been evaluated more accurately. In this study, I have learned that it is

very difficult to recruit subjects to perform sequences of experiments in extended

hours due to availability, willingness, and enthusiasm.

8.7. Conclusion

Forgetting to switch to vibrate mode while in a movie theater or a meeting, and taking

the risk of picking up a phone call while driving can be avoided if the phone is smart

enough to recognize its user’s situational context. As the first step towards that direction, I

propose a design for a context-aware mobile computing model known as ContextAlert that

can intelligently switches the alert mode according to the user’s context. I divide the user’s

context into three states: Uninterruptible by ringer (UR), Interuptible by ringer - vehicular

mode (IR-V), and Interuptible by ringer - none-vehicular mode (IR-N). The alert mode is

to be set to the recognized context state as vibrate, handsfree, and ringer mode for UR,

IR-V, and IR-N, respectively. I have proposed a three-step approach in design based on the

embedded sensor data from accelerometer, GPS antenna, and microphone of a G1 phone. I

have evaluated my model in several aspects using training and testing data collected from

participating subjects. Based on the experiments, the proposed model has shown a promising

result. Nevertheless, my work had some limitations, such as capability of the phone, amount

of testing data, and duration of testing. In my future work, I will continue to examine my

model to improve its performance as well as investigate other applications of the model.
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CHAPTER 9

ADEQUACY OF DATA FOR CHARACTERIZING CALLER BEHAVIOR

9.1. Introduction

Telecommunication device such as telephone has moved beyond being a mere technolog-

ical object and has become an integral part of many people’s social lives.

This has had profound implications on both how people as individuals perceive com-

munication as well as in the patterns of communication of humans as a society. Learning

human behavior has always been the subject of interest in scientific fields (e.g. (211), (212),

and (213)). There are also scientific reports in learning and characterizing user and network

behavior (e.g. (214), (215), and (86)).

In communication systems, a user can be a “caller” who initiates communication or a

“callee” who receives request for a communication from caller. As a callee in a phone network,

a user generally has received calls from several callers. I are interested in learning caller

behavior. A knowledge of caller behavior can lead to a predictive model which forecasts or

predicts the future behavior of the caller such as calling time and hence useful for scheduling

and planning (e.g., it can be used to avoid unwanted calls and schedule time for wanted

calls). It can also be useful for the Public Safety Answering Point (PSAP) for predicting

9-1-1 (emergency) calls. It can also be beneficial to voice spam detection and prevention, as

well as call centers for resource utilization.

Predictive models derived from communication logs have been studied extensively (e.g.

(216), (217), and (148)). Recently there has been growing interests in the field of mobile

social networks analysis to study human behavior by combing the computer technology and

social networks (e.g. (218), (86), (152), and (155)), but due to the unavailability of data,

there have been far fewer studies. The Reality Mining Project at Massachusetts Institute of
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Technology (80) has made publicly available large datasets which I use for my analysis in

this chapter.

Motivation

In (143), authors proposed a Call Predictor which made the next-24-hour incoming call

prediction based on caller behavior and reciprocity which were extracted from call history.

This raises a question of how much call history is actually needed. Does it mean the more

historical data, the better performance of the predictor? To answer this question, I find it

interesting to study caller behavior and the adequacy of caller’s past history.

Main Contribution

The main contribution of this chapter is to infer the adequacy of historical call data to

capture the behavior of the caller in order to construct a predictive model for future behavior

observation.

9.2. Real-Life Dataset and Analysis

In our daily life, we receive phone calls from family members, friends, colleagues, super-

visors, neighbors, and strangers. I believe that every caller exhibits a unique calling pattern

which characterizes the caller behavior.

To study the caller behavior, I use the real-life datasets of 94 individual call logs over

nine months of the mobile phone users which were collected at Massachusetts Institute of

Technology (MIT) by the Reality Mining Project (80). These 94 individuals are faculties,

staffs, and students. The datasets include people with different types of calling patterns and

call distributions.

Each call record in the datasets has the 5-tuple information which includes:

• Date (date of call)

• Start time (start time of call)

• Type (type of call i.e., “Incoming” or “Outgoing”)

• Call ID (caller/calee identifier)

• Talk time (duration of call).
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We use the call logs to derive the traffic profiles for each caller by inferring the Arrival

time (time of receiving call from the caller), Inter-arrival time (elapsed time between adjacent

incoming calls from the caller), and Talk time (duration of call from the caller).

9.2.1. Arrival Time

Based on my real-life datasets of 94 mobile phone users with more than 2,000 combined

callers, I can divide callers into two categories namely Single-peak callers and Multi-peak

callers based on their arrival time.

9.2.1.1. Single-peak Callers. The single-peak callers are callers who tend to make more

calls at around one particular time of the day and less and less number of calls as time of

the call deviates from that time (favorite time). Thus, I make a hypothesis that call arrival

time has a normal distribution N(µ, σ2) where µ is the mean and σ2 is the variance of call

arrival time which can be calculated by Eq. 78 and Eq. 79 respectively.

(78) µ =
1

N

N
∑

n=1

w(n),

(79) σ2 =
1

N

N
∑

n=1

(w(n) − µ)2 .

The arrival time is now treated as a random variable X that consists of number of small

random variables x(1), x(2), x(3), ..., x(N)} where N is the total number of calls and x(n) is

the nth call arrival time, is normal random variable which has probability density function

(pdf) given by Eq. 80.

(80) fx(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

Hence the probability of receiving a call from caller k at time x is given by Eq. 81, where

µk and σ2
k are the corresponding mean and variance of call arrival time of caller k.
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(81) Pr{Xk = x} =
1

√

2πσ2
k

e−(x−µk)2/2σ2
k ,

To check my hypothesis, I randomly select 100 callers from my dataset and perform the

chi-square goodness-of-fit test (or χ2-test) (146) (for testing the validity of the assumed

distribution for a random phenomenon). I find that 30 callers have normal distribution at

significant level α = 0.1. Therefore, these 30 callers are considered as single-peak callers

and the other 70 callers who do not pass the χ2-test then belong to another group of callers

which will be described in the next section.

As an example, in Fig. 9.1 the histogram of the call arrival time on time-of-the-day scales

of a single-peak caller and fitted normal distribution are illustrated where I shift my window

of observation to begin at 5AM and end at 4:59AM such that the entire calling pattern is

captured in the middle. In fact, I find that it is a proper window of observation for the

majority of the callers in my datasets.
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Figure 9.1. An example of single-peak caller whose call arrival time is fitted

with normal distribution.
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9.2.1.2. Multi-peak Callers. There is another group of callers whose calling behaviors

based on arrival time are more random in the sense that they tend to have more than one

favorite time of calling which result in more than one peak in their arrival time histograms.

The normal distribution is obviously not suitable for this type of callers. In fact, none

of the parametric probability models fit to their structures. Therefore, probability density

model must be determined from the data by using nonparametric density estimation. The

most popular method for density estimation is the kernel density estimation (also known as

the Parzen window estimator (94)) which is given by Eq. 82.

(82) p̂(x) =
1

Nh

N
∑

i=1

K

(

x − xi

h

)

.

K(u) is kernel function and h is the bandwidth or smoothing parameter. The most widely

used kernel is the Gaussian of zero mean and unit variance which is defined by Eq. 83.

(83) K(u) =
1√
2π

e−u2/2.

The choice of the bandwidth h is crucial. Several optimal bandwidth selection techniques

have been proposed ((157), (158)). In this chapter, I use AMISE optimal bandwidth selection

using the Sheather Jones Solve-the-equation plug-in method (96).

Likewise, the probability of receiving a call from caller k at time x can be computed

similarly to Eq. 81 but using probability density function defined in Eq. 82.

As an example, the observed frequency of calls over nine months on time-of-day scales

and fitted kernel density estimation are illustrated in Fig. 9.2.

9.2.2. Inter-arrival Time

Caller behavior can also be characterized by the inter-arrival time which is the time

interval between adjacent incoming calls as it is monitored from the callee’s point of view.

Based on my dataset, by observing histograms of the inter-arrival time of all callers I find

that they exhibit similar patterns in which the call frequency distribution is peaked at one
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Figure 9.2. An example of multi-peak caller whose call arrival time is fitted

with kernel density estimation.

particular point and exponentially decreases as inter-arrival time increases. Thus, I make

a hypothesis that caller’s inter-arrival time has an exponential distribution exp(γ) where

parameter γ is the rate at which calls are received. The parameter γ can be calculated by

Eq. 84 and E[Z] is the expected value of a random variable Z.

(84) γ =
1

E[Z]
,

where inter-arrival time is a random variable Z, which consists of small random variables

{z(1), z(2), z(3), ..., z(N)}, where N is the total number of calls and z(n) is the inter-arrival

time of the nth call, i.e. interval of time from (n − 1)th to nth call. The pdf is given by Eq.

85.

(85) fZ(z) = γe−γz,

Hence the probability of inter-arrival time from caller k is z time unit can be calculated by

Eq. 86 where γk is the corresponding parameter of inter-arrival time of caller k.
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(86) Pr{Zk = z} = γke
−γkz.

The chi-square goodness-of-fit test is also performed here to validate my hypothesis of as-

suming exponential distribution for caller’s inter-arrival time. The tests are done using a

significant level α = 0.1 at which all callers pass the test and therefore confirm my hypothesis.

As an example, the histogram of inter-arrival time over nine months and fitted exponential

distribution are illustrated in Fig. 9.3.
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Figure 9.3. An example of caller’s inter-arrival time is fitted with exponential distribution.

9.2.3. Talk Time

Talk time is the amount of time spent by the caller and callee during the call. From the

callee’s perspective, caller behavior can also be characterized by the talk time. Based on my

observation of the histograms of the talk time of each caller, talk time exhibits an exponential-

like pattern. Similar to the inter-arrival time pattern, the exponential distribution exp(λ) is

initially assumed for the talk time as my hypothesis where parameter λ can be calculated

by Eq. 87 and E[Y ] is the expected value of a random variable Y .
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(87) λ =
1

E[Y ]
.

Random variable Y represents the talk time that consists of small random variables {y(1), y(2), y(3), ..., y(N)

where N is the total number of calls and y(n) is the talk time of the nth call. The pdf is

given by Eq. 88.

(88) fY (y) = λe−γy .

Hence the probability of talk time with caller k is y time unit can be calculated by Eq. 89

where λk is the corresponding parameter of talk time of caller k.

(89) Pr{Yk = y} = λke
−λky.

Similar to my previous cases, the chi-square goodness-of-fit test is also performed using a

significant level α = 0.1 at which all trials pass the test and therefore confirm my observation

and hypothesis for talk time.

An example of a histogram of talk time over nine months of a sample caller who is

randomly selected from my datasets and fitted exponential distribution is illustrated in Fig.

9.4.

9.3. Adequacy of Historical Data

The caller behavior based on arrival time, inter-arrival time, and talk time have been

characterized in forms of probability models in the previous section. Generally, a proba-

bility model is used to predict or estimate the future observation which is conditioned by

a knowledge of the historical data. The question is how much historical data is adequate?

This section attempts to answer this question.

In my case, the historical data is a collection of call logs which is a time series (a collection

of observations made sequentially through time (219)). Unfortunately, the call logs are
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Figure 9.4. An example of caller’s talk time is fitted with exponential distribution.

not deterministic (or can be predicted exactly) but stochastic in that future is only partly

determined by past values, so that the exact predictions of future values are not quite possible

and hence have a probability distribution.

The previous section shows that a single-peak caller can be characterized by a normal

distribution model N(µ, σ2) which is characterized be the mean µ and variance σ2. In

attempt to find out how much historical data is actually needed or adequate, I monitor the

values of the mean and variance of arrival time for all single-peak callers as more historical

data (increased by day) are taken into computations. We observe the convergence of means

and variances. As an example, Fig. 9.5 shows the convergence of mean and variance of

arrival time of a single-peak caller as number of days towards the past increases.

It can be observed that the values of mean and variance converge to nearly constant

after taking approximately the last 30 days of historical data. This means that the mean

and variance of entire historical data are approximately the same as the mean and variance of

the last 30 days of data. Since a single-peak caller is characterized by a normal distribution

which depends on mean and variance, it implies that the last 30 days of data is adequate

to capture the behavior of the single-peak caller. It is evident in Fig. 9.6 that the pdf from

taking entire historical data and taking only last 30 days are similar.
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Figure 9.5. An example of observed convergence of mean and variance of

arrival time of a single-peak caller.
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Figure 9.6. A comparison of pdf from (a) taking entire historical data and

(b) taking only last 30 days of data.

The previous section also shows that the inter-arrival and talk time have exponential

distribution exp(m), which depends only on the mean m. Therefore I examine the values of
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mean of inter-arrival and talk time as more historical data increases for all callers. However,

I find that the convergence time is not observed.

A knowledge of mean and variance might not provide a pattern for a multi-peak caller

due to the characteristics of the nonparametric density estimation. However, I believe that it

captures physical behavior of a caller. In fact, the convergence of values of mean and variance

of call arrival time of multi-peak callers is also observed. Figure 9.7 shows an example of a

multi-peak caller whose mean and variance converge as the number of days towards the past

increases. It can also be observed that the convergence time is approximately 60 days for

this multi-peak caller.
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Figure 9.7. An example of observed convergence of mean and variance of

arrival time of a multi-peak caller.

Figure 9.8 shows the pdf from taking entire historical data and taking the last 60 days of

a multi-peak caller whose values of mean and variance are shown in Fig. 9.7. From Fig. 9.8,

it appears that both pdf are slightly different in shape even though the mean and variance

are nearly the same.
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Figure 9.8. A comparison of pdf from (a) taking entire historical data and

(b) taking only last 60 days of data.

We believe that the call logs represent human behavior associated with trends and changes

of behavior over time. Considering historical data within the convergence time may provide

us the recent trend of the data which can be more relevant to the future observation.

Our hypothesis is that the future behavior (pattern) of the caller based on call logs is

more relevant to the pattern derived from the recent data (trend) than the pattern derived

from the entire historical data (given that entire data are more than recent trend data). This

hypothesis will be validated by the experiment conducted in the next section.

The crucial issue here is that of the convergence time (recent trend period) therefore I

propose a simple technique for finding convergence time using a Trace Distance (tD).

Let us consider a sample of a converging signal shown in Fig. 9.9 where vertical axis

represents amplitude and horizontal axis represents reversed time (time that runs towards

the past) as similar to the plots shown Fig. 9.5 and 9.7.

A trace distance at time k(tDk) of signal s is a difference between the maximum amplitude

and minimum amplitude from time k to infinity (most right-hand side of time k based on

Fig. 9.9), which is given by Eq. 90.
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Figure 9.9. A converging signal which displays trace distances (tDa and tDb

at reversed time a and b for demonstrating convergence time computation.

(90) tDk = ||kmax| − |kmin||,

where kmax and kmin are defined by Eq. 91 and Eq. 92, respectively.

(91) kmax = max {s(k), s(k + 1), s(k + 2), ..., s(∞− 1), s(∞)} ,

(92) kmin = min{s(k), s(k + 1), s(k + 2), ..., s(∞− 1), s(∞)} .

Thus, the trace distances at time a and b shown in Fig. 9.9 can be computed as tDa =

||amax| − |amin|| and tDb = ||bmax| − |bmin||.

Therefore, the convergence time (CT ) of the signal s is defined as the time that the trace

distance (tD) reaches the predefined threshold (tDth) as the trace distance computation

starts from reversed time equals to zero to infinity which is given by Eq. 93.
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(93) CTs = {k|tDk = tDth, k ∈ {0, 1, 2, ...,∞}} .

For my case, the signal s can be a reversed time series of mean and variance and the variable

k represents the number of days towards the past.

An experiment is conducted to find convergence time of the callers in my datasets with

tDth set to 1. The convergence time is computed for each caller based on the arrival time. I

find an interesting result of a relationship between the caller’s convergence time and his/her

number of peaks. The result shows that as the number of peaks increases, the convergence

time becomes larger. Figure 9.10 shows a plot of the average convergence time versus the

number of peaks.
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Figure 9.10. A plot of the number of peaks versus the average convergence

time where the average convergence time becomes larger as the number of

peaks increases.

We find that the result is reasonable. People who have random behaviors tend to not

establish any behavioral pattern in a short period of time rather expand a recognizable

structure over longer period of observation time. For example, a caller who was initially

making lots of calls in the morning then started to make some calls in the evening and
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he/she eventually is making calls consistently in both morning and evening hours (two-peak

caller). It would take longer time to observe this caller’s calling behavior than another caller

who has been calling only during the morning hours (single-peak caller).

9.4. Validation

To prove my hypothesis in the previous section that the future behavior (pattern) of the

caller based on call logs is more relevant to the pattern derived from the recent data (trend)

than the pattern derived from the entire historical data, I conduct an experiment.

The experiment is conducted to present the comparison of the relevance or similarity

in caller behavior between the future observation and entire historical observation, and the

similarity in caller behavior between the future observation and recent trend observation

(convergence time).

To measure the similarity in calling behaviors, three measurements are chosen; Correla-

tion coefficient, Hellinger distance, and Relative entropy. In addition, performance compar-

ison of the Call Predictor (CP) proposed in (143) is also presented to observe the change in

performance as the convergence time is considered.

Correlation coefficient (146) is a number between -1 and 1 which measures the degree

to which two random variables are linearly related. A correlation coefficient of 1 implies

that there is perfect linear relationship between the two random variables. A correlation

coefficient of -1 implies that there is inversely proportional relationship between the two

random variables. A correlation coefficient of zero implies that there is no linear relationship

between the variables. In many applications, a correlation coefficient is used to measure

how well trends in the predicted values follow trends in past actual values or how well the

predicted values from a forecast model fit with the real-life data. A correlation coefficient

(r) can be computed by Eq. 94 where P and Q are random variables, which consist of small

random variables {p(1), p(2), p(3, ), ..., p(N)} and {q(1), q(2), q(3), ..., q(N)} respectively.

(94) r =

∑N
n=1

(

p(n) − P̄
) (

q(n)− Q̄
)

√

∑N
n==1

(

p(n) − P̄
)2 (

q(n) − Q̄
)2

.
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Hellinger distance ((220), (221)) has value between 0 and 1 which estimates the distance

between probability measures. Let P and Q be the two probability measures which are N -

tuple {p(1), p(2), p(3, ), ..., p(N)} and {q(1), q(2), q(3), ..., q(N)} respectively. P and Q satisfy

pn ≥ 0,
∑

n pn = 1, qn ≥ 0, and
∑

n qn = 1. Hellinger distance is 0 implies that P = Q.

Disjoint P and Q shows the maximum distance of 1. The Hellinger distance (d2
H(P, Q))

between P and Q is given by Eq. 95.

(95) d2
H(P, Q) =

1

2

N
∑

n=1

(

√

p(n) −
√

q(n)
)2

.

Relative entropy or Kullback Leibler distance (90) is a measure of the distance between

two probability distributions. The relative entropy is a measure of the difference between

assumed distribution Q and the true probability distribution P . Relative entropy is non-

negative and is zero if P = Q. The relative entropy of Q from P is defined by 96 where

{p(1), p(2), p(3, ), ..., p(N)} and {q(1), q(2), q(3), ..., q(N)}. Note that I use the convention

that 0 log(0/q) = 0 and p log(p/0) = 1. The relative entropy (D(P ||Q)) between P and Q

can be computed by Eq. 96.

(96) D(P ||Q) =
N
∑

n=1

p(n) log
p(n)

q(n)
.

In my case, P and Q are the N -tuple probability mass functions of the future observation

and testing period respectively where the testing period can be either within the convergence

time or entire historical data.

Phithakkitnukoon and Dantu (143) proposed a Call Predictor (CP) which computed re-

ceiving call probability and made the next-24-hour incoming call prediction based on caller’s

behavior and reciprocity. The caller’s behavior was measured by the caller’s call arrival time

and inter-arrival time. The reciprocity was measured by the number of outgoing calls per

incoming call and inter-arrival/departure time. The CP took into account the entire call

historical.
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In this experiment, I examine the performance of the CP with considering the convergence

time of the call history and compare to the performance of the CP without considering the

convergence time (or taking entire call history). The performance is measured in terms of

Error rate which is defined as a ratio of the number of fault predictions to the total number

of predictions made.

The experiment is conducted with 100 randomly selected callers including 30 single-peak

callers and 70 multi-peak callers from my datasets. The most recent seven days of call

logs are assumed to be future observation. The trace distance threshold tDth is set to 1 to

compute the convergence time (CT ). The CP repeatedly computes the CT for each of the

seven days prior to making call prediction.

Figure 9.11(a), 9.12(a), 9.13(a), and 9.14(a) show the comparisons of the computed corre-

lation coefficients, Hellinger distance, relative entropy, and error rate of the CP respectively

of all 100 callers between taking entire historical data (represented with an asterisk (*)) and

taking data within the convergence time (represented with a circle (o)) where the first 30

callers are single-peak callers and at rest are multi-peak callers (31-100).

Figure 9.11(b), 9.12(b), 9.13(b), and 9.14(b) show the changes in the values of correlation

coefficient, Hellinger distance, relative entropy, and error rate of the CP respectively as the

convergence time is considered.

It can be observed that the value of correlation coefficient increases as the convergence

time is considered for all 100 callers which tells us that the recent caller behavior or calling

pattern is more relevant (correlated) to the future calling pattern than the pattern observed

from entire call history.

The values of Hellinger distance, relative entropy, and error rate of the CP decrease as

the convergence time is considered, which also confirms that the recent calling pattern is

more relevant to the future pattern.

The experimental result is summarized in the Table 9.1 which lists the numerical average

values of the correlation coefficient, Hellinger distance, relative entropy, and error rate of the

CP when the entire data is considered, as well as when the data within the convergence time
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Figure 9.11. (a) Comparison of correlation coefficients and (b) its corre-

sponding change from taking entire historical data to taking data within con-

vergence time of each caller.
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Figure 9.12. (a) Comparison of Hellinger distances and (b) its corresponding

change from taking entire historical data to taking data within convergence

time of each caller.

is considered, and their average changes for categorized single-peak callers and multi-peak
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Figure 9.13. (a) Comparison of relative entropy and (b) its corresponding

change from taking entire historical data to taking data within convergence

time of each caller.
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Figure 9.14. (a) Comparison of error rate of the call predictor and (b) its

corresponding change from taking entire historical data to taking data within

convergence time of each caller.

callers. Since the single-peak callers have normal distribution, the change in the similarity

measures are relatively low compared to the multi-peak callers.
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These experimental results shows that the data within convergence time is adequate to

construct a predictive model and in fact it composes a recent pattern which is more similar

or relevant to the future pattern than considering pattern composed by the entire historical

data.

Table 9.1. The average of correlation coefficients (r), Hellinger distance (d2
H),

relative entropy (D), and error rate (Err) of taking entire historical data

comparing to taking only data within the convergence time and its average

change (increase(+) or decrease(-))

Callers Average Measures of Average Measures of Taking Average Change

Taking Entire Data Data within Convergence Time

r d2
H D Err(%) r d2

H D Err(%) r d2
H D Err(%)

(1-30)

Single- 0.1476 0.6573 6.9377 8.751 0.1837 0.63 6.547 7.9153 +0.0361 -0.0273 -0.3907 -0.8357

peak

(31-100)

Multi- 0.0007 0.6791 6.8423 12.3672 0.2043 0.5329 4.6256 10.0429 +0.2036 -0.1462 -2.2167 -2.3243

peak

9.5. Conclusion

In this chapter, I propose a technique to find the adequacy of historical call logs in order

to capture the caller behavior (pattern). Firstly, the statistical analysis of real-life datasets

to characterize caller behavior is carried out. I classify callers into two groups namely single-

hop callers and multi-hop callers based on the distribution of the arrival time of the calls. I

have verified the normal distribution for single-hop callers and estimated the distribution for

multi-hop callers using kernel density estimator. I have also verified exponential distribution

for inter-arrival time and talk time.

Since the caller behavior can be characterized by probability models which are used to

predict or estimate the future behavior conditioned by a knowledge of the historical data,

the question is how much historical data is adequate.

163



CHAPTER 10

A RECENT-PATTERN BIASED DIMENSION-REDUCTION FRAMEWORK FOR

TIME SERIES DATA

10.1. Introduction

Time series is a sequence of time-stamped data points, which account for a large pro-

portion of the data stored in today’s scientific and financial databases. Examples of a time

series include stock price, exchange rate, temperature, humidity, power consumption, and

event logs. Time series are typically large and of high dimensionality. To improve the

efficiency of computation and indexing, dimension-reduction techniques are needed for high-

dimensional data. Among the most widely used techniques are PCA (also known as SVD),

DFT, and DWT. Other recently proposed techniques are Landmarks (222), PAA (223),

APCS (224), PIP (225), Major minima and maxima (226), and Magnitude and shape ap-

proximation (227). These techniques were developed to reduce the dimensionality of the

time series by considering every part of a time series equally. In many applications such

as the stock market, however, recent data are much more interesting and significant than

old data, “recent-biased analysis” (the term originally coined by Zhao and Zhang (228))

thus emerges. The recently proposed techniques include Tilt time frame (229), Logarithmic

tilted-time window (230), Pyramidal time frame (231), SWAT (232), Equi-segmented scheme

(228), and Vari-segmented scheme (228).

Generally, a time series reflects the behavior of the data points (monitored event), which

tends to repeat periodically and creates a pattern that alters over time due to countless

factors. Hence the data that contains the recent pattern are more significant than just recent

data and even more significant than older data. This change of behavioral pattern provides

the key to my proposed framework in dimension reduction. Since the pattern changes over

time, the most recent pattern is more significant than older ones. In this chapter, I introduce
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a new recent-pattern biased dimension-reduction framework that gives more significance to

the recent-pattern data (not just recent data) by keeping it with finer resolution, while older

data is kept at coarser resolution. With my framework, the traditional dimension-reduction

techniques such as SVD, DFT, DWT, Landmarks, PAA, APCS, PIP, Major minima and

maxima, and Magnitude and shape approximation can be used. As many applications (233)

(234) (235) (236) generate data streams (e.g., IP traffic streams, click streams, financial

transactions, text streams at application level, sensor streams), I also show that it is simple

to handle a dynamic data stream with my framework.

Idistinguish this work from other previously proposed recent-biased dimension-reduction

techniques by the following contributions:

(1) I develope a new framework for dimension reduction by keeping more detail on data

that contains the most recent pattern and less detail on older data.

(2) Within this framework, I also propose Hellinger distance-based algorithms for recent

periodicity detection and recent-pattern interval detection.

10.2. Background and Related Work

This section reviews traditional dimension reduction methods and briefly describes re-

lated work in the recent-biased dimension reduction.

10.2.1. Dimension Reduction

With advances in data collection and storage capabilities, the amount of the data that

needs to be processed is increasing rapidly. To improve the efficiency of computation and in-

dexing when dealing with high-dimensional time series or large datasets, dimension reduction

is needed. The classical methods include PCA, DFT, and DWT:

PCA (Principal Component Analysis) (237) is a popular linear dimension-reduction tech-

nique that minimizes the mean square error of approximating the data. It is also known as

the singular value decomposition (SVD), the Karhunen-Loeve transform, the Hotelling trans-

form, and the empirical orthogonal function (EOF) method. PCA is an eigenvector-based
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multivariate analysis that seeks to reduce dimension of the data by transforming the original

data to a few orthogonal linear combinations (the PCs) with the largest variance.

DFT (Discrete Fourier Transform) has been used for the dimensionality reduction (238)

(239) (240) (241) by transforming the original time series (of length N) without changing in-

formation content to the frequency domain representation and retaining a few low-frequency

coefficients (p, where p < N) to reconstruct the series. Fast Fourier transform (FFT) is a

popular algorithm to compute DFT with time complexity of O(N log N).

DWT (Discrete Wavelet Transform) is similar to DFT except that it transforms the time

series into time/frequency domain and its basis function is not a sinusoid but generated by

the mother wavelet. Haar wavelet (242) is one of the most widely used class of wavelets with

time complexity of O(N).

Other proposed techniques include Landmarks, PAA, APCS, PIP, Major minima and

maxima, and Magnitude and shape approximation:

Landmark model has been proposed by Perng et al. (222) to reduce dimensionality of

time series. The idea is to reduce the time series to the points (time, events) of greatest

importance, namely ”landmarks”. The n-th order landmark of a curve is defined for the

point whose n-th order derivative is zero. Hence local maxima and minima are first-order

landmarks, and inflection points are second-order landmarks. Compared with DFT and

DWT, landmark model retains all peaks and bottoms that normally filtered out by both

DFT and DWT.

Keogh et al. (223) have proposed PAA (Piecewise Aggregate Approximation) as a

dimension-reduction technique that reduces the time series to the mean values of the seg-

mented equi-length sections. PAA has an advantage over DWT as it is independent of the

length of the time series (DWT is only defined for sequences whose length is an integral

power of two).

The concept of PAA has later been modified to improve the quality of approximation by

Chakrabarti et al. (224) who propose APCS (Adaptive Piecewise Constant Approximation)
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that allows segments to have arbitrary lengths. Hence two numbers are recorded for each

segment; mean value and length.

PIP (Perpetually Important Points) has been introduced by Fu et al. (225) to reduce

dimensionality of the time series by replacing the time series with PIPs, which are defined

as highly fluctuated points.

Fink et al. (226) have proposed a technique for fast compression and indexing of time

series by keeping major minima and maxima and discarding other data points. The indexing

is based on the notion of major inclines.

Ogras and Ferhatosmanoglu (227) have introduced a dimension-reduction technique that

partitions the high dimensional vector space into orthogonal subspaces by taking into account

both magnitude and shape information of the original vectors.

10.2.2. Recent-biased Dimension Reduction

Besides the global dimension reduction, in many applications such as stock prices, recent

data are much more interesting and significant than old data. Thus, the dimension-reduction

techniques that emphasize more on the recent data by keeping recent data with fine reso-

lution and old data with coarse resolution have been proposed such as Tilt time frame,

Logarithmic tilted-time window, Pyramidal time frame, SWAT, Equi-segmented scheme,

and Vari-segmented scheme:

Tilt time frame has been introduced by Chen et al. (229) to minimize the amount of data

to be kept in the memory or stored on the disks. In the tilt time frame, time is registered

at different levels of granularity. The most recent time is registered at the finest granularity,

while the more distant time is registered at coarser granularity. The level of coarseness

depends on the application requirements.

Similar to the tilt time frame concept but with more space-efficient, Giannella et al. have

proposed the logarithmic tilted-time window model (230) that partitions the time series into

growing tilted-time window frames at an exponential rate of two e.g., 2, 4, 8, 16, and so

forth.
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The concept of the pyramidal time frame has been introduced by Aggarwal et al. in

(231). With this technique, data are stored at different levels of granularity depending upon

the recency, which follows a pyramidal pattern.

SWAT (Stream Summarization using Wavelet-based Approximation Tree) (232) has been

proposed by Bulut and Singh to process queries over data streams that are biased towards

the more recent values. SWAT is a Haar wavelet-based scheme that keeps only a single

coefficient at each level.

Zhao and Zhang have proposed the equi-segmented scheme and the vari-segmented

scheme in (228). The idea of the equi-segmented scheme is to divide the time series into

equi-length segments and apply a dimension reduction technique to each segment, and keep

more coefficients for recent data while fewer coefficients are kept for old data. Number of

coefficients to be kept for each segment is set to bN/2ic where N is the length of the time

series and segment gets older with the increase of i. For the vari-segmented scheme, the time

series is divided into variable length segments with larger segments for older data and smaller

segments for more recent data (the length of segment i is set to 2i). The same number of

coefficients are then kept for all segments after applying a dimension reduction technique to

each segment.

10.3. Recent-Pattern Biased Dimension-Reduction Framework

Time series data analysis comprises methods that attempt either to understand the con-

text of the data points or to make forecasts based on observations (data points). In many

applications, recent data receive more attention than old ones. Generally, a time series re-

flects the behavior of the data points (monitored event), which tends to repeat periodically

and creates a pattern that alters over time due to countless factors. Hence the data that

contains recent pattern are more significant than just recent data and even more significant

than older data. Typically, future behavior is more relevant to the recent behavior than older

ones. My main goal in this work is to reduce dimensionality of a time series with the basic

idea of keeping data that contains recent pattern with high precision and older data with

low precision. Since the change in behavior over time creates changes in the pattern and
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the periodicity rate, I thus need to detect the most recent periodicity rate, which will lead

to identifying the most recent pattern. Hence a dimension reduction technique can then be

applied. This section presents my novel framework for dimension reduction for time series

data, which includes new algorithms for recent periodicity detection, recent-pattern interval

detection, and dimension reduction.

10.3.1. Recent Periodicity Detection

Unlike other periodicity detection techniques ((243), (244), (245), (246), (247), and (248))

that attempt to detect the global periodicity rates, my focus here is to find the “most recent”

periodicity rate of time series data. Let X denote a time series with N time-stamped data

points, and xi be the value of the data at time-stamp i. The time series X can be represented

as X = x0, x1, x2, ..., xN, where x0 is the value of the most recent data point and xN is the

value of the oldest data point. Let Φ(k) denote the recent-pattern periodicity likelihood

(given by Eq. 97) that measures the likelihood of selected recent time segment (k) being the

recent period of the time series, given that the time series X can be sliced into equal-length

segments Xk
0 , Xk

1 , Xk
2 , ..., Xk

bN/kc−1, each of length k, where Xk
i = xik, xik+1, xik+2, ..., xik+k−1.

(97) Φ(k) =

∑bN/kc−1
i=1 (1 − d2

H(X̂k
0 , X̂k

i ))

bN/kc − 1
,

where d2
H(A, B) is Hellinger distance (249), which is widely used for estimating a distance

(difference) between two probability measures (e.g., probability density functions (pdf), prob-

ability mass functions (pmf)). Hellinger distance between two probability measures A and B

can be computed by Eq. 98. A and B are M-tuple {a1, a2, a3, ..., aM} and {b1, b2, b3, ..., bM}

respectively, and satisfy am ≥ 0,
∑

m am = 1, bm ≥ 0, and
∑

m bm = 1. Hellinger distance of

0 implies that A = B whereas disjoint A and B yields the maximum distance of 1.

(98) d2
H(A, B) =

1

2

M
∑

m=1

(
√

am −
√

bm)2.

In my case, X̂k
0 and X̂k

i are Xk
0 and Xk

i after normalization, respectively, such that they

satisfy the above conditions. Thus, Φ(k) has the values in the range [0, 1] as 0 and 1 imply

the lowest and the highest recent-pattern periodicity likelihood, respectively.
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Definition 10.1. If a time series X of length N can be sliced into equal-length segments

Xp
0 , Xp

1 , Xp
2 , ..., Xp

bN/pc−1, each of length p, where Xp
i = xip, xip+1, xip+2, ..., xip+p−1, and p =

arg max Φ(k)
k

, then p is said to be the recent periodicity rate of X.

The basic idea of this algorithm is to find the time segment (k) that has the maximum

Φ(k), where k = 2, 3, ..., bN/2c. If there is a tie, smaller k is chosen to favor shorter period-

icity rates, which are more accurate than longer ones since they are more informative (245).

The detailed algorithm is given in Fig. 10.1. Note that Φ(1) = 1 since d2
H(X̂1

0 , X̂1
i ) = 0,

hence k begins at 2.

p = PERIODICITY(X)

Input: Time series (X) of length N

Output: Recent periodicity rate (p)

1. FOR k = 2 to bN/2c

2. Compute Φ(k);

3. END FOR

4. p = k that maximizes Φ(k);

5. IF |k|> 1

6. p = min(k);

7. END IF

8. Return p as the recent periodicity rate;

Figure 10.1. Algorithm for the recent periodicity detection.

10.3.2. Recent-Pattern Interval Detection

After obtaining the recent periodicity rate p, my next step towards dimension reduction

for a time series X is to detect the time interval that contains the most recent pattern. This

interval is a multiple of p. I base my detection on the shape of the pattern and the amplitude

of the pattern.

For the detection based on the shape of the pattern, I construct three Hellinger distance-

based matrices to measure the differences within the time series as follows:
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• Di
1 = [d1(1), d1(2), ..., d1(i)] is the matrix whose elements are Hellinger distances

between the pattern derived from the Xp
0 to Xp

j−1 (X̄p
0→j−1), which can be simply

computed as a mean time series over time segments 0 to j − 1 given by Eq. 100,

and the pattern captured within the time segment j (Xp
j ) as follows:

(99) d1(j) = d2
H( ˆ̄Xp

0→j−1, X̂
p
j ),

where

(100) X̄p
0→j−1 =

1

j

j−1
∑

n=0

xnp,
1

j

j−1
∑

n=0

xnp+1, ...,
1

j

j−1
∑

n=0

xnp+p−1.

Again, the hat on top of the variable indicates the normalized version of the variable.

• Di
2 = [d2(1), d2(2), ..., d2(i)] is the matrix whose elements are Hellinger distance

between the most recent pattern captured in the first time segment (Xp
0 ) and the

pattern occupied within the time segment j (Xp
j ) as follows:

(101) d2(j) = d2
H(X̂p

0 , X̂p
j ).

• Di
3 = [d3(1), d3(2), ..., d3(i)] is the matrix whose elements are Hellinger distance

between the adjacent time segments as follows:

(102) d3(j) = d2
H(X̂p

j−1, X̂
p
j ).

These three matrices provide the information on how much the behavior of the time

series changes across all time segments. The matrix Di
1 collects the degree of difference

that Xp
j introduces to the recent segment(s) of the time series up to j = i, where j =

1, 2, 3, ..., bN/pc − 1. The matrix Di
2 records the amount of difference that the pattern

occupied in the time segmentXp
j makes to the most recent pattern captured in the first time

segmentXp
0 up to j = i. The matrix Di

3 keeps track of the differences between the patterns

captured in the adjacent time segmentsXp
j−1 and Xp

j up to j = i.

To identify the recent-pattern interval based on the shape of the pattern, the basic idea

here is to detect the first change of the pattern that occurs in the time series as I search

across all the time segments Xp
j in an increasing order of j starting from j = 1 to bN/pc−1.
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Several changes might have been detected as I search through entire time series, however

my focus is to detect the most recent pattern. Therefore, if the first change is detected, the

search is over. The change of pattern can be observed from the significant changes of these

three matrices. The significant change is defined as follows.

Definition 10.2. If µDi
k

and σDi
k

is the mean and the standard deviation of Di
k and µDi

k
+

2σDi
k
≤ dk(i + 1), then Xp

i+1 is said to make the significant change based on its shape.

y = SIG CHANGE(Di
k,dk(i + 1))

Input: Distance matrix (Di
k) and the corresponding distance elementdk(i + 1).

Output: Binary output (y) of 1 implies that there is a significant change made by

Xp
i+1 and 0 implies otherwise.

1. IF µDi
k

+ 2σDi
k
≤ dk(i + 1)

2. y = 1;

3. ELSE

4. y = 0;

5. END IF

Figure 10.2. Algorithm for detecting the significant change.

With the detected significant changes in these distance matrices, the recent-pattern in-

terval based on the shape of the pattern can be defined as follows. The detailed algorithm

is given in Fig. 10.3.

Definition 10.3. If Xp
i+1 introduces a significant change to at least two out of three matrices

(Di
1,D

i
2, and Di

3), then the recent-pattern interval based on the shape (rshape) is said to be

ip time units.

For this shape-based recent-pattern interval detection, the Hellinger distances are com-

puted by taking the normalized version of the patterns in the time segments. Since normaliza-

tion rescales the amplitude of the patterns, the patterns with similar shapes but significantly

different amplitudes will not be detected (see an example illustrated in Fig. 10.4).
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rshape = SHAPE RPI(D
bN/pc−1
1 ,D

bN/pc−1
2 ,D

bN/pc−1
3 )

Input: Three distance matrices (D
bN/pc−1
1 ,D

bN/pc−1
2 , D

bN/pc−1
3 ).

Output: Shape-based recent-pattern interval (rshape).

1. Initialize rshape to N

2. FOR i = 2 to bN/pc − 1

3. IF SIG CHANGE(Di
1,d1(i+1)) + SIG CHANGE(Di

2,d2(i+1))

+ SIG CHANGE(Di
3,d3(i+1)) ≥ 2

4. rshape = ip;

5. EXIT FOR LOOP

6. END IF

7. END FOR

8. Return rshape as the recent-pattern interval based on the shape;

Figure 10.3. Algorithm for detecting the recent-pattern interval based on

the shape of the pattern.

To handle this shortcoming, I propose an algorithm to detect the recent-pattern interval

based on the amplitude of the pattern. The basic idea is to detect the significant change in

the amplitude across all time segments. To achieve this goal, let Ai = [a(1), a(2), ..., a(i)]

denote a matrix whose elements are mean amplitudes of the patterns of each time segment

up to time segment i, which can be easily computed by Eq. 103.

(103) a(k) =
1

p

p−1
∑

n=0

x(k−1)p+n.

Similar to the previous case of distance matrices, the significant change in this amplitude

matrix can be defined as follows.

Definition 10.4. If µAi and σAi is the mean and the standard deviation of Ai and µAi +

2σAi ≤ a(i + 1), then Xp
i+1 is said to make the significant change based on its amplitude.
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Figure 10.4. An example of misdetection for the recent-pattern interval

based on the shape of the pattern. SHAPE RPI(algorithm given in Fig. 10.3)

would detect the change of the pattern at the 5th time segment (Xp
5 ) whereas

the actual significant change takes place at the 3rd time segment (Xp
3 ).

Likewise, with the detected significant change in the amplitude matrix, the recent-pattern

interval based on the amplitude of the pattern can be defined as follows. The detailed

algorithm is given in Fig. 10.5.

Definition 10.5. If Xp
i+1 makes a significant change in the matrix (Ai), then the recent-

pattern interval based on the amplitude (ramp) is said to be ip time units.

Finally, the recent-pattern interval can be detected by considering both shape and am-

plitude of the pattern. Based on the above algorithms for detecting the interval of the most

recent pattern based on the shape and the amplitude of the pattern, the final recent-pattern

interval can be defined as follows.

Definition 10.6. If rshape is the recent-pattern interval based on the shape of the pat-

tern and ramp is the recent-pattern interval based on the amplitude of the pattern, then

the final recent-pattern interval(R) is the lowest value among rshape and ramp − i.e., R =

min(rshape, ramp).
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ramp = AMP RPI(AbN/pc−1)

Input: The amplitude matrix (AbN/pc−1).

Output: Amplitude-based recent-pattern interval (ramp).

1. Initialize ramp to N

2. FOR i = 2 to bN/pc − 1

3. IF SIG CHANGE(Ai,a(i + 1)) = 1

4. ramp = ip;

5. EXIT FOR LOOP

6. END IF

7. END FOR

8. Return ramp as the recent-pattern interval based on the amplitude;

Figure 10.5. Algorithm for detecting the recent-pattern interval based on

the amplitude of the pattern.

10.3.3. Dimension Reduction

Our main goal in this work is to reduce dimensionality of a time series. The basic idea

is to keep more details for recent-pattern data, while older data kept at coarser level.

Based on the above idea, I propose a dimension-reduction scheme for time series data

that applies a dimension reduction technique to each time segment and then keeps more

coefficients for data that carries recent-behavior pattern and fewer coefficients for older data.

Let Ci represent the number of coefficients retained for the time segment Xp
i . Since my

goal is to keep more coefficients for the recent-pattern data and fewer coefficients for older

data, a sigmoid function (given by Eq. 104) is generated and centered at R time units (where

the change of behavior takes place).

(104) f(t) =
1

1 + α−t/p
.

The decay factor (α) is automatically tuned to change adaptively with the recent-pattern

interval (R) by being set to α = p/R, such that a slower decay rate is applied to a longer R

and vice versa. The number of coefficients for each time segment can be computed as the
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area under the sigmoid function over each time segment (given by Eq. 105), so the value of

Ci is within the range [1, p].

(105) Ci =

⌈

∫

Xp
i

f(t)dt

⌉

.

Ci decreases according to the area under the sigmoid function across each time segment

as i increases, hence C0 ≥ C1 ≥ C2 ≥ ... ≥ CbN/pc−1.

Several dimension reduction techniques can be used in my framework. Among the most

widely popular techniques are DFT and DWT. For DFT, I keep the first Ci coefficients that

capture the low-frequency part of the time series for each time segment (some other tech-

niques for selecting DFT coefficients such as selecting the largest Ci coefficients to preserve

the energy (250) or selecting the first largest Ci coefficients (251) can also be applied here).

For DWT, the number of coefficients can be computed by Eq. 105 and rounded to the closest

integer v, where v =
⌈

p
2j

⌉

and j = {0, 1, 2, ..., log2 p}, i.e., v ∈ {p, p
2
, p

22 ,
p
23 , ..., 1}. A larger v

is chosen if there is a tie.

With this scheme, a time series data can be reduced by keeping the more important

portion of data (recent-pattern data) with high precision and the less important data (old

data) with low precision. As future behavior is generally more relevant to the recent behavior

than old ones, maintaining the old data at low detail levels might as well reduces the noise

of the data, which would benefit predictive modeling. This scheme is shown in Fig. 10.6,

and the detailed algorithm is given in Fig. 10.7.

Note that if no significant change of pattern is found in the time series, my proposed

framework will work similarly to equi-segmented scheme as my R is initially set to N (by

default, see Fig. 10.3, Fig. 10.5 and Definition 10.6). Hence the entire series is treated as a

recent-pattern data, i.e., more coefficients are kept for recent data and fewer for older data

according to (the left-hand side from the center of) the sigmoid function with decay factor

α = p/R.

It is simple to handle dynamic data streams with my framework. When new data arrive,

they are kept in a new segment X l
new until there are p new data points, i.e., l = p. If
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Figure 10.6. Recent-pattern biased dimension-reduction scheme for time se-

ries data. A time series is partitioned into equal-length segments of length

p (recent periodicity rate) and more coefficients are taken for recent-pattern

data and fewer coefficients are taken for older data based on the decay rate

of a sigmoid function (f(t)). For this example, recent-pattern interval (R) is

assumed to be (i + 1)p.

R = sp, then only the first s + 1 segments (Xp
new, X̃p

0 , X̃p
1 , ..., X̃p

s−1) need to be processed

while other segments remain unchanged. Note that X̃p
i denotes a reconstructed segment i.

The new reconstructed segment X̃p
new will then become a new X̃p

0 , and other segments’ order

are incremented by one (e.g., X̃p
0 becomes X̃p

1 ). If the original time series has N data points,

then the new reconstructed time series is of length N + p. An example is given in Fig. 10.8.

10.4. Performance Analysis

This section contains the experimental results to show the accuracy and effectiveness of

my proposed algorithms. In my experiments, I exploit synthetic data as well as real data.

The synthetic data are used to inspect the accuracy of the proposed algorithms for de-

tecting the recent periodicity rate and the recent-pattern interval. This experiment aims to

estimate the ability of proposed algorithms in detecting p and R that are artificially embed-

ded into the synthetic data at different levels of noise in the data (measured in terms of SNR

(signal-to-noise ratio) in dB). For a synthetic time series with known p and R, my algorithms

compute estimated periodicity rate (p̃) and recent-pattern interval (R̃) and compare with

177



Z = DIMENSION REDUCTION(X)

Input: A time series (X) of length N .

Output: A reduced time series (Z).

1. p = PERIODICITY(X);

2. Partition X into equal-length segments, each of length p;

3. Compute matrices D
bN/pc−1
1 , D

bN/pc−1
2 , D

bN/pc−1
3 , and AbN/pc−1;

4. rshape = SHAPE RPI(D
bN/pc−1
1 ,D

bN/pc−1
2 ,D

bN/pc−1
3 );

5. ramp = AMP RPI(AbN/pc−1);

6. R = min(rshape, ramp);

7. Place a sigmoid function f(t) at R;

8. FOR each segment i

9. Coefs = apply dimension-reduction technique for segment i;

10. Compute Ci;

11. zi = first Ci Coefs;

12. END FOR

13. Z = {z0, z1, z2, ..., zbN/pc−1}; /* Series of selected coefficients */

14. Return Z as the reduced time series;

Figure 10.7. Algorithm for detecting the recent-pattern interval based on

the amplitude of the pattern.

the actual p and R to see if the estimated values are matched to the actual values. I generate

100 different synthetic time series with different values of p and R. The error rate is then

computed for each SNR level (0dB to 100dB) as the number of incorrect estimates (Miss)

per total number of testing data, i.e. Miss/100. The results of this experiment are shown in

Fig. 10.9. The error rate decreases with increasing SNR as expected. My recent periodicity

detection algorithm performs with no error above 61dB while my recent-pattern interval de-

tection algorithm performs perfectly above 64dB. Therefore, based on this experiment, my

proposed algorithms are effective at SNR level above 64dB.
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Figure 10.8. An example of processing a dynamic data stream. (1) Original

data has 7p data points. (2) Suppose that R = 3p. (3) New data points are

kept in a new segment X l
new until l = p, then the first R + p data points are

processed with other data points unchanged. (4) The reconstructed time series

of length 8p. (5) The new reconstructed segment X̃p
new becomes a new X̃p

0 ,

and other segments’ order are incremented by one.

I implement my algorithms on three real time series data. The first data contains the

number of phone calls (both made and received) on time-of-the-day scales on a monthly

basis over a period of six months (January 7th, 2008 to July 6th, 2008) of a mobile phone

user (106). The second data contains a series of monthly water usage (ml/day) in London,

Ontario, Canada from 1966 to 1988 (252). The third data contains Quarterly S&P 500 index

values taken from 1900-1996 (253). Figure 10.10 shows a time series of a mobile phone usage

with computed p = 24 and R = 3p = 72 based on my algorithms. Likewise, Fig. 10.11 shows

a time series of a monthly water usage with computed p = 12 and R = 2p = 24. Similarly,

Fig. 10.12 depicts a time series of quarterly S&P 500 index values during 1900-1996 with

computed p = 14 and R = 3p = 42. Based on a visual inspection, one can clearly identify

that the recent periodicity rates are 24, 12, and 14; and recent-pattern intervals are 3p, 2p,
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Figure 10.9. Experimental result of the error rate at different SNR levels of

100 synthetic time series (with known p and R).

and 3p for Fig. 10.10, Fig. 10.11, and Fig. 10.12, respectively, which shows the effectiveness

of my algorithms.

24 48 72 96 120 144
0

5

10

15

20

25

30

35

Figure 10.10. A monthly mobile phone usage over six months (January 7th,

2008 to July 6th, 2008) with detected p = 24 and R = 3p = 72.

I implement my recent-pattern biased dimension-reduction algorithm on these three real

time series data. Due to the space limitation, the experimental results are only illustrated

with DFT and DWT as the dimension-reduction techniques. As the results, the 144-point

mobile phone data has been reduced to 75 data points using DFT, which is 48% reduction,
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Figure 10.11. A monthly water usage during 1966-1988 with detected p = 12

and R = 2p = 24.

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280 294 308 322 336 350 364 378388
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 10.12. Quarterly S&P 500 index values taken from 1900-1996 with

detected p = 14 and R = 3p = 42.

and reduced to 70 points using Haar DWT, which is 51% reduction. For the water usage data,

since it has a relatively short recent-pattern interval compared to the length of its entire series

thus I am able to reduce much more data. In fact, there are 276 data points of water usage

data before the dimension reduction and only 46 data points are retained afterward by using

DFT and 52 data points kept using DWT, which is 83% and 81% reduction, respectively.

Likewise, for the S&P 500 data, I am able reduce 83% of data by keeping 66 DFT coefficients

and 81% by keeping 72 DWT coefficients from the original data of length 378.
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The reconstructed time series using DFT and DWT for mobile phone data, water usage

data, and S&P 500 data are shown in Fig. 10.13(a) and (b), Fig. 10.14(a) and (b), and Fig.

10.15(a) and (b), respectively.
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Figure 10.13. (a) The reconstructed time series of the mobile phone data of

75 selected DFT coefficients from the original data of 144 data points, which

is 48% reduction. (b) The reconstructed time series of the mobile phone data

with 51% reduction by keeping 70 DWT coefficients from the original data of

144 data points.

To compare the performance of my proposed framework with other recent-biased dimension-

reduction techniques, a criterion is designed to measure the effectiveness of the algorithm

after dimension reduction as following.
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Figure 10.14. (a) The reconstructed time series of the water usage data of

46 selected DFT coefficients from the original data of 276 data points, which

is 83% reduction. (b) The reconstructed time series of the water usage data

with 81% reduction by keeping 52 DWT coefficients from the original data of

276 data points.

Definition 10.7. If X and X̃ are the original and reconstructed time series, respectively,

then the “recent-pattern biased error rate” is defined as

(106) ErrRPB(X, X̃) = B · d2
H(X̂, ˆ̃X) =

1

2

bN/pc−1
∑

i=0

b(i)

(

√

x̂i −
√

ˆ̃xi

)2

,

where B is a recent-pattern biased vector (which is a sigmoid function in my case).
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Figure 10.15. (a) The reconstructed time series of the S&P 500 data of 66

selected DFT coefficients from the original data of 378 data points, which is

83% reduction. (b) The reconstructed time series of the S&P 500 data with

81% reduction by keeping 72 DWT coefficients from the original data of 378

data points.

Definition 10.8. If X and X̃ are the original and reconstructed time series, respectively

and ErrRPB(X, X̃) is the recent-pattern biased error rate, then the Reduction-to-Error Ratio

(RER) is defined as

(107) RER =
Percentage Reduction

ErrRPB(X, X̃)
.
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I compare the performance of my recent-pattern biased dimension-reduction algorithm

(RP-DFT/DWT) to equi-DFT/DWT, vari-DFT/DWT (with k = 8 (228)), and SWAT as I

apply these algorithms on the mobile phone, water usage, and S&P 500 data.

Table 10.1 shows the values of percentage reduction, recent-pattern biased error rate,

and RER for each algorithm based on DFT. It shows that SWAT has the highest reduction

rates as well as the highest error rates in all three data. For the mobile phone data, the

values of the percentage reduction are the same for my RP-DFT and equi-DFT because R

is exactly a half of the time series hence the sigmoid function is placed at the half point of

the time series (N/2) that makes it similar to equi-DFT (in which the number of coefficients

is exponentially decreased). The error rate of my RP-DFT is however better than equi-DFT

by keeping more coefficients particularly for the “recent-pattern data” and fewer for older

data instead of keeping more coefficients for just recent data and fewer for older data. As

a result, RP-DFT performs with the best RER among others. For the water usage data,

even though RP-DFT has a higher error rate than equi-DFT, R is a relatively short portion

with respect to the entire series thus RP-DFT is able to achieve much higher reduction rate,

which results in a better RER and the best among others. For S&P 500 data, my RP-DFT

is able to reduce more data than equi-DFT and vari-DFT with the lowest error rate, hence

it has the highest RER.

Table 10.1. Performance comparison of my proposed RP-DFT and other

well-known techniques (equi-DFT, vari-DFT, and SWAT) based on Percentage

Reduction, Recent-pattern biased error rate (ErrRBP ), and RER from the

real data.

Data Percentage Reduction ErrRBP RER

RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT

Mobile phone 0.479 0.479 0.750 0.972 0.0175 0.0301 0.0427 0.192 27.458 15.915 17.573 5.078

Water usage 0.837 0.479 0.739 0.986 0.00712 0.00605 0.0168 0.0641 117.550 79.201 43.996 15.375

S&P 500 0.829 0.479 0.742 0.989 0.00735 0.00739 0.00895 0.0811 112.891 64.875 82.899 12.210

Likewise, Table 10.2 shows the values of percentage reduction, recent-pattern biased error

rate, and RER for each algorithm based on DWT. Similar to the results of the DFT-based
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algorithms, my proposed RP-DWT performs with the best RER among other algorithms

in all three data. One may notice that the values of the percentage reduction are different

from DFT-based algorithms. This is due to the rounding process of Ci to the closest integer

v (described in Section 3.3).

Table 10.2. Performance comparison of my proposed RP-DWT and other

well-known techniques (equi-DWT, vari-DWT, and SWAT) based on Percent-

age Reduction, Recent-pattern biased error rate (ErrRBP ), and RER from the

real data.

Data Percentage Reduction ErrRBP RER

RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT

Mobile phone 0.514 0.500 0.750 0.972 0.0167 0.0283 0.0401 0.192 30.794 17.683 18.689 5.078

Water usage 0.812 0.493 0.739 0.986 0.00650 0.00561 0.0159 0.0650 124.852 87.854 46.565 15.152

S&P 500 0.810 0.495 0.742 0.989 0.00728 0.00711 0.00856 0.0811 111.182 69.561 87.783 12.211

Furthermore, I perform additional experiments on 30 more real time series , which repre-

sent data in finance, health, chemistry, hydrology, industry, labour market, macro-economic,

and physics. These data are publicly available at the “Time Series Data Library(254),”

which has been created by professor Rob J. Hyndman from Monash University. My RP-

DFT/DWT also show better performance than other techniques for all 30 time series data

(the results are shown in the Appendix).

In addition to the results of the performance comparison on the real data, I generate 100

synthetic data with different values of p and R to further evaluate my algorithm compared to

the others. After applying each algorithm to these 100 different synthetic time series, Table

10.3 and Table 10.4 show the average values of percentage reduction, recent-pattern biased

error rate, and RER for each algorithm based on DFT and DWT, respectively. These tables

show that my proposed algorithm (both DFT-based and DWT-based) yields better RER

than others.
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Table 10.3. Performance comparison of my proposed RP-DFT and other

well-known techniques (equi-DFT, vari-DFT, and SWAT) based on the average

Percentage Reduction, Recent-pattern biased error rate (ErrRBP ), and RER

from 100 synthetic data.

Algorithm Percentage Reduction ErrRBP RER

RP-DFT 0.758 0.0209 36.268

equi-DFT 0.481 0.0192 25.052

vari-DFT 0.748 0.0385 19.429

SWAT 0.975 0.109 8.945

Table 10.4. Performance comparison of my proposed RP-DWT and other

well-known techniques (equi-DWT, vari-DWT, and SWAT) based on the av-

erage Percentage Reduction, Recent-pattern biased error rate (ErrRBP ), and

RER from 100 synthetic data.

Algorithm Percentage Reduction ErrRBP RER

RP-DWT 0.745 0.0192 38.802

equi-DWT 0.488 0.0190 25.682

vari-DWT 0.748 0.0341 21.935

SWAT 0.975 0.108 9.028

10.5. Conclusion

Dimensionality reduction is an essential process of many high-dimensional data analysis.

In this chapter, I present a new recent-pattern biased dimension-reduction framework for

time series data. With my framework, more details are kept for recent-pattern data, while

older data are kept at coarser level. Unlike other recently proposed dimension reduction

techniques for recent-biased time series analysis, my framework emphasizes on keeping the

data that carries the most recent pattern, which is the most important data portion in

the time series with a high resolution while retaining older data with a lower resolution. I
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show that several dimension-reduction techniques such DFT and DWT can be used with

my framework. Moreover, I also show that it is simple and efficient to handle dynamic

data streams with my framework. My experiments on synthetic data as well as real data

demonstrate that my proposed framework is very efficient and it outperforms other well-

known recent-biased dimension reduction techniques. As my future directions, I will continue

to examine various aspects of my framework to improve its performance.

188



CHAPTER 11

CONCLUSION

Context awareness is the idea of computing devices sense and respond to the user’s

context. There have been numerous attempts to formally define “context” (48; 49; 50; 51;

52; 53; 54; 55). According to the latest definition given by Han et al. (55), context can be

divided into social context, internal context, and physical context. As an increasing number

of people rely more on mobile phones, mobile phones have become more personalized. This

personalization turns the mobile phone into a sensor that can essentially monitor a user’s

behavior. Currently, the mobile phone is lacking the ability to mine these monitored behavior

then sense and react intelligently to the context. The ultimate goal is to build intelligence into

the mobile phone to enhance quality of life. In this dissertation, I thus focus on developing

models for inferring social and internal context based on mobile phone records.

This dissertation presents a combination of empirical work, measurements, experiments,

explanatory modeling, analysis of mathematical models, design of algorithms, data mining

techniques, survey study, and designs of frameworks. The research focus of this dissertation

is to analyze and infer social and internal context of mobile phone users. This disserta-

tion contributes to three research areas including social context-aware computing, internal

context-aware computing, and data mining. In social context-aware computing, I analyze

calling patterns and develop a framework for inferring social context. In internal context-

aware computing, I present new mobile phone applications and develop a model for inferring

intentional and situational context. In data mining, I develop frameworks for computing and

detecting recent behavior/pattern of data.
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11.1. Summary of Contributions

I summarize the contributions of this dissertation by grouping them by the area of con-

tribution with references to the chapters and research questions/answers as shown in Table

11.1. The dissertation includes to the following steps:

(1) I start with analyzing mobile social data as a whole, which then leads to a analysis

of the individual users by inferring social context and revealing the significant role

of social context in communication patterns.

(2) I then zoom in to individual internal context and its applications for the mobile

phone users.

(3) Inferring social and internal context of human users introduces a challenging research

problem in human behavioral data mining. I thus take an initial step to address the

problem and propose the solutions.

Table 11.1. Structure of the dissertation with references to the chapters and

research questions

Areas Chapters Research Questions Answers

Social context-aware computing 2, 3 Q1 A1

4, 5 Q2 A2

Internal context-aware computing 6, 7 Q3 A3

8 Q4 A4

Human behavioral data mining 9, 10 Q5 A5

11.1.1. Research Questions

Q1. What information can be extracted from a given set of call logs? Can any relation-

ships be drawn? What is the usefulness of these information and relationships?

Q2. Can social context be accurately inferred from a given user’s call logs? How does

social context impact calling behavior? What is the usefulness of the inferred social

context?
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Q3. Can a mobile phone infer the user’s context such as intention? What can the inferred

context be used to benefit the user?

Q4. Can a mobile phone infer the user’s context such as situation? What can the inferred

context be used to benefit the user?

Q5. Human behavior data mining is an integral part of context-aware computing. Con-

text is determined by the current state of mind (internal), relationship (social), and

surroundings (physical). Thus the current state of context is important and can be

derived from the recent behavior and pattern. Can the recent behavior be detected?

What can the detected recent behavior be used for?

11.1.2. Answers to Research Questions

A1. For a given set of call logs, I am able to capture calling behavior on various features.

These features are used in randomness analysis and classification. Based on ran-

domness analysis, I find that (i) the randomness associated with the user’s location

is highly correlated with calling time and vice versa, and (ii) the randomness in

inter-connected time is highly correlated with the time spent talking on each phone

call. Based on classification analysis, I find that the call logs can be used to accu-

rately classify face-to-face social networks. The findings extend my understanding

of the mobile phone user’s calling behavior pattern and are useful for mobile phone

service computing (e.g., providing the right service for the right user) and business

marketing (e.g., targeting the right market segment).

A2. For a given user’s call logs, the social context (social closeness and social tie) can be

accurately inferred based on the amount of time and intensity of communication.

Furthermore, social group sizes and their successive ratio can be identified. I find

that social context play a significant role in calling behavior. My studies show that

(i) the closer the social tie, the higher the similarity, (ii) a closer tie implies higher

reciprocity, and (iii) the inter-contact time increases as social closeness becomes dis-

tant. The inferred social context can be beneficial to mobile phone service provider,
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privacy settings, anomaly detection, phone call filtering, epidemiology (mobile virus

outbreaks), and business marketing.

A3. The user’s context such as intention of making a phone call to a particular person can

be inferred by making use of the call history. Probability of making such as phone

call be estimated using machine learning techniques. With the same algorithm,

probability of receiving a phone call from a particular person can also be estimated.

This intentional context can be used to provide three useful applications for the

user. First, a list of the most likely contacts/numbers to be dialed can be generated

when the user wants to make a call (by flipping open or unlocking the phone).

This helps reduce the searching time. Second, a list of numbers/contacts that are

most likely to be the callers within the next hour can be generated for the user.

This is useful in situations that the user is certain about his/her unavailability for

accepting any incoming calls over the next hour (e.g., having a flight, attending a

class, having a meeting) thus it is important to know who will be calling during the

next hour so the user could perhaps make a call to the persons to inform of his/her

next-hour schedule as some calls could be too important to miss. Third, a next-day

incoming-call forecast that estimates the arrival time of incoming calls. This can be

used to assist daily scheduling (helps avoid unwanted calls and schedule a time for

wanted calls).

A4. The user’s situational context can be inferred using embedded sensors such as ac-

celerometer, GPS antenna, and microphone. The situational context can be classi-

fied into different states such as Uninterruptible by Ringer state (e.g., in a meeting,

in a movie theater, etc.), Interruptible by Ringer - Vehicular state (i.e., driving a

vehicle), and Interruptible by Ringer - Non Vehicular state (i.e., walking, jogging,

shopping, etc.). The inferred context state can be used to control the alert mode

(vibrate, handsfree, ringer) by automatically setting alert mode according to the

user’s context state. With this functionality, forgetting to switch to vibrate mode
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while in a movie theater or a meeting, and taking the risk of picking up a phone

call while driving can be avoided.

A5. Recent behavior can be detected where the behavior can be treated as a density

function or a time series. When treated as a density function, Gaussian distribution

is assumed such that the behavior is characterized by mean and variance. The

convergence of mean and variance in reverse time determines the recent behavior.

On the other hand, when treated as a time series, the recent behavior is characterized

by amplitude and shape. The recent behavior is determined by the significant change

in the underlying features. The detected recent behavior is very useful for context-

aware computing, predictive modeling, and data reduction.

11.2. Vision of Future Studies

The emergence of the mobile social networking applications suggests that the mobile

device user population is on the rise. People are expected to engage with their mobile devices

longer and more often. This opens up a unique opportunity for computer scientists to not

only study but also design and create computing systems that comprehend individual’s as

well as network’s behavior and context. As systems like Facebook, MySpace, hi5, Twitter,

and Google are expanding to mobile networks, a new social networking paradigm is created.

This unique network inherit some aspects of face-to-face and mobile social networks as well

as introduces new characteristics. My future research direction is to harness mobile online

social networks to understand, predict, and ultimately, enhance mobile social systems.
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APPENDIX A

SURVEY OF MOBILE PHONE USAGE AND SOCIAL CLOSENESS
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The following is the survey that we have used for our analysis of mobile social groups and

its validation in section 4.2.2:

- - - - - Survey begins here - - - - -

Behavior Analysis of Mobile Phone Users

This project is aimed to provide a better understanding of behavior, pattern, and social

structure of mobile phone users, as well as facilitate research and development of mobile

social applications as we take an early evolutionary steps toward a new era of mobile and

pervasive computing, which is aimed to enhance quality of life with more sensitive and

responsive mobile devices.

Survey Process:

The survey process is carried in two simple steps. First, you will download the call record

details (records having details of each call you have dialed or received) from your service

provider’s website. The required information for the survey from the downloaded call records

are explained in the Data Collection process. You are requested to bring the downloaded

information (soft copy) to a 15 minute session. Then, you will review how to identify

mobile social closeness for your associated callers/callees in the Mobile Social Closeness

Identification process and provide your social closeness for each associated call ID in the

Feedback process.

1. Data Collection: You are requested to download the call detail records from your

cellular service providers for the last 3 months (longer period preferred). You would be

able to download these call records in an Excel sheet format (we can help you if have any

problem in this regard). Next, you need to merge the call records of all those months into a

single excel file (again we can help you if required). The call information for our survey is

described in the following table. When necessary, you may have to remove some unnecessary

data (fields) in the excel sheet.
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Date Start Time Type Anonymous Call ID Talk-time

1/5/2008 2:20 PM Incoming C1 2

1/6/2008 3:15 PM Outgoing C2 28

... ... ... ... ...

(1) Date: Date when the call has taken place. This should be in the format MM/DD/YYYY.

(2) Start Time: Start time of the call. This should be in the format HH:MM AM/PM.

(3) Type: The call type i.e., whether the call is an “Incoming” or an “Outgoing” call.

Some service providers record this field as “Incoming” for an incoming call and the

destination location for an outgoing call.

(4) Anonymous Call ID: You can choose an anonymous Call ID to each of the caller/callee.

If you are unable to do that, we can run your data through our system and generate

a set of anonymous ID’s to each caller/callee.

(5) Talk time: The amount of time spent during the call.

2. Mobile Social Closeness Identification: You are requested to attend a 15 minute

session for the data analysis. You are requested to identify the Social Closeness for each Call

ID as following:

Enter “1” if Call ID indicates the person who is a Socially Closest Member :

These are the people with whom you maintain the highest socially connectivity. Most of the

calls you receive, come from individuals within this category. You receive more calls from

them and you tend to talk with them for longer periods. Typically, the face-to-face social

tie of these people is family member, friend, and colleagues.

Enter “2” if Call ID indicates the person who is a Socially Near Member :

People in this group are not as highly connected as family members and friends, but when

you connect to them, you talk to them for considerably longer periods. Mostly, you observe
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intermittent frequency of calls from these people. These people are typically neighbors and

distant relatives.

Enter “3” if Call ID indicates the person who is a Socially Distant Member :

These individuals have less connection with your social life. These people call you with less

frequency. You acknowledge them rarely. Among these would be, for example, a newsletter

group or a private organization with whom you have previously subscribed. This group also

includes individuals who have no previous interaction or communication with you. You have

the least tolerance for calls from them e.g., strangers, telemarketers, fund raisers.

3. Feedback: Your call records will be processed using our system to extract all distinct

Call IDs, and then you will be asked to identify Social Closeness for each Call ID as shown

in an example below.

Anonymous Call ID Social Closeness

C1 1

C2 3

C3 2

C4 1

. .

. .

. .

- - - - - Survey ends here - - - - -
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APPENDIX B

EXPERIMENTAL RESULTS OF EACH SUBJECT FOR EACH MODEL DESCRIBED

IN CHAPTER 8
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This appendix includes the experimental results of each subject for each model described

in Chapter 8.

Table B.1. Performance of FCM for Subject 1 and 2.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 300 0 96 0 288 12 684 12 98.28

2 180 0 142 38 318 42 640 80 88.89

3 300 0 142 278 0 0 442 278 61.39

4 660 0 40 20 0 0 700 20 97.22

5 120 0 116 184 12 288 248 472 34.44

Total 1560 0 536 520 618 342 2714 862 75.89

Acc./Cont. 100.00 50.76 64.38 75.89

(a) Subject 1

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 270 0 70 26 182 78 522 104 83.39

2 220 0 172 8 338 14 730 22 97.07

3 300 0 138 292 0 0 438 292 60.00

4 666 0 46 24 0 0 712 24 96.74

5 132 0 142 180 4 304 278 484 36.48

Total 1588 0 568 530 524 396 2680 926 74.32

Acc./Cont. 100.00 51.73 56.96 74.32

(b) Subject 2
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Table B.2. Performance of FCM for Subject 3 and 4.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 290 0 76 20 272 18 638 38 94.38

2 170 0 160 14 334 26 664 40 94.32

3 300 0 150 296 0 0 450 296 60.32

4 674 0 68 22 0 0 742 22 97.12

5 126 0 78 214 2 286 206 500 29.18

Total 1560 0 532 566 608 330 2700 896 75.08

Acc./Cont. 100.00 48.45 64.82 75.08

(c) Subject 3

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 278 0 74 4 270 0 622 4 99.36

2 180 0 164 16 366 26 710 42 94.41

3 352 0 134 246 0 0 486 246 66.39

4 686 0 54 18 0 0 740 18 97.63

5 134 0 258 66 0 308 392 374 51.17

Total 1630 0 684 350 636 334 2950 684 81.18

Acc./Cont. 100.00 66.15 65.57 81.18

(d) Subject 4
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Table B.3. Performance of GCM for Subject 1 and 2.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 300 0 96 0 300 0 696 0 100.00

2 180 0 174 6 360 0 714 6 99.17

3 296 4 208 212 0 0 504 216 70.00

4 652 8 56 4 0 0 708 12 98.33

5 108 12 252 48 236 64 596 124 82.78

Total 1536 24 786 270 896 64 3218 358 89.99

Acc./Cont. 98.46 74.43 93.33 89.99

(a) Subject 1

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 268 2 92 4 218 42 578 48 92.33

2 220 0 180 0 352 0 752 0 100.00

3 300 0 184 246 0 0 484 246 66.30

4 642 24 64 6 0 0 706 30 95.92

5 132 0 282 40 226 82 640 122 83.99

Total 1562 26 802 296 796 124 3160 446 87.63

Acc./Cont. 98.36 73.04 86.52 87.63

(b) Subject 2
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Table B.4. Performance of GCM for Subject 3 and 4.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 290 0 94 2 290 0 674 2 99.70

2 170 0 174 0 360 0 704 0 100.00

3 300 0 332 114 0 0 632 114 84.72

4 656 18 90 0 0 0 746 18 97.64

5 126 0 170 122 214 74 510 196 72.24

Total 1542 18 860 238 864 74 3266 330 90.82

Acc./Cont. 98.85 78.32 92.11 90.82

(c) Subject 3

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 278 0 78 0 270 0 626 0 100.00

2 180 0 180 0 392 0 752 0 100.00

3 350 2 300 80 0 0 650 82 88.80

4 678 8 62 10 0 0 740 18 97.63

5 134 0 298 26 206 102 638 128 83.29

Total 1620 10 918 116 868 102 3406 228 93.73

Acc./Cont. 99.39 88.78 89.48 93.73

(d) Subject 4
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Table B.5. Performance of MCM for Subject 1 and 2.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 298 2 96 0 300 0 694 2 99.71

2 180 0 174 6 360 0 714 6 99.17

3 296 4 188 232 0 0 484 236 67.22

4 656 4 54 6 0 0 710 10 98.61

5 114 6 162 138 246 54 522 198 72.50

Total 1544 16 674 382 906 54 3124 452 87.36

Acc./Cont. 98.97 63.83 94.38 87.36

(a) Subject 1

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 266 4 94 2 222 38 582 44 92.97

2 220 0 178 2 352 0 750 2 99.73

3 300 0 166 264 0 0 466 264 63.84

4 652 14 70 0 0 0 722 14 98.10

5 132 0 216 106 258 50 606 156 79.53

Total 1570 18 724 374 832 88 3126 480 86.69

Acc./Cont. 98.87 65.94 90.43 86.69

(b) Subject 2
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Table B.6. Performance of MCM for Subject 3 and 4.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 288 2 94 2 290 0 672 4 99.41

2 170 0 174 0 360 0 704 0 100.00

3 298 2 314 132 0 0 612 134 82.04

4 658 16 80 10 0 0 738 26 96.60

5 126 0 116 176 230 58 472 234 66.86

Total 1540 20 778 320 880 58 3198 398 88.93

Acc./Cont. 98.72 70.86 93.82 88.93

(c) Subject 3

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 276 2 78 0 270 0 624 2 99.68

2 180 0 180 0 392 0 752 0 100.00

3 352 0 290 90 0 0 642 90 87.70

4 680 6 62 10 0 0 742 16 97.89

5 134 0 294 30 240 68 668 98 87.21

Total 1622 8 904 130 902 68 3428 206 94.33

Acc./Cont. 99.51 87.43 92.99 94.33

(d) Subject 4
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Table B.7. Performance of MCM-S for Subject 1 and 2.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 298 2 96 0 300 0 694 2 99.71

2 180 0 174 6 360 0 714 6 99.17

3 296 4 188 232 0 0 484 236 67.22

4 656 4 54 6 0 0 710 10 98.61

5 114 6 162 138 300 0 576 144 80.00

Total 1544 16 674 382 960 0 3178 398 88.87

Acc./Cont. 98.97 63.83 100.00 88.87

(a) Subject 1

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 266 4 94 2 260 0 620 6 99.04

2 220 0 178 2 352 0 750 2 99.73

3 300 0 166 264 0 0 466 264 63.84

4 652 14 70 0 0 0 722 14 98.10

5 132 0 216 106 308 0 656 106 86.09

Total 1570 18 724 374 920 0 3214 392 89.13

Acc./Cont. 98.87 65.94 100.00 89.13

(b) Subject 2
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Table B.8. Performance of MCM-S for Subject 3 and 4.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 288 2 94 2 290 0 672 4 99.41

2 170 0 174 0 360 0 704 0 100.00

3 298 2 314 132 0 0 612 134 82.04

4 658 16 80 10 0 0 738 26 96.60

5 126 0 116 176 288 0 530 176 75.07

Total 1540 20 778 320 938 0 3256 340 90.55

Acc./Cont. 98.72 70.86 100.00 90.55

(c) Subject 3

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 276 2 78 0 270 0 624 2 99.68

2 180 0 180 0 392 0 752 0 100.00

3 352 0 290 90 0 0 642 90 87.70

4 680 6 62 10 0 0 742 16 97.89

5 134 0 294 30 308 0 736 30 96.08

Total 1622 8 904 130 970 0 3496 138 96.20

Acc./Cont. 99.51 87.43 100.00 96.20

(d) Subject 4
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Table B.9. Performance of MCM-S(noPCA) for Subject 1 and 2.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 300 0 86 10 300 0 686 10 98.56

2 180 0 140 40 360 0 680 40 94.44

3 298 2 138 282 0 0 436 284 60.56

4 660 0 42 18 0 0 702 18 97.50

5 120 0 120 180 300 0 540 180 75.00

Total 1558 2 526 530 960 0 3044 532 85.12

Acc./Cont. 99.87 49.81 100.00 85.12

(a) Subject 1

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 270 0 62 34 260 0 592 34 94.57

2 220 0 160 20 352 0 732 20 97.34

3 300 0 136 294 0 0 436 294 59.73

4 666 0 46 24 0 0 712 24 96.74

5 132 0 154 168 308 0 594 168 77.95

Total 1588 0 558 540 920 0 3066 540 85.02

Acc./Cont. 100.00 50.82 100.00 85.02

(b) Subject 2
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Table B.10. Performance of MCM-S(noPCA) for Subject 3 and 4.

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 290 0 74 22 290 0 654 22 96.75

2 170 0 134 40 360 0 664 40 94.32

3 300 0 138 308 0 0 438 308 58.71

4 674 0 68 22 0 0 742 22 97.12

5 126 0 96 196 288 0 510 196 72.24

Total 1560 0 510 588 938 0 3008 588 83.65

Acc./Cont. 100.00 46.45 100.00 83.65

(c) Subject 3

Sequence UR IR-N IR-V Overall Acc./Seq.

Number Hit Miss Hit Miss Hit Miss Hit Miss (%)

1 278 0 68 10 270 0 616 10 98.40

2 180 0 146 34 392 0 718 34 95.48

3 352 0 122 258 0 0 474 258 64.75

4 686 0 52 20 0 0 738 20 97.36

5 134 0 236 88 308 0 678 88 88.51

Total 1630 0 624 410 970 0 3224 410 88.72

Acc./Cont. 100.00 60.35 100.00 88.72

(d) Subject 4
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APPENDIX C

ADDITIONAL RESULTS FOR PERFORMANCE COMPARISON OF THE PROPOSED

METHOD (RP-DFT/DWT) WITH EQUI-DFT/DWT, VARI-DFT/DWT, AND SWAT
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The following are the additional results for performance comparison of our proposed

method (RP-DFT/DWT) with equi-DFT/DWT, vari-DFT/DWT, and SWAT; using 30 dif-

ferent real time series, which represent data in finance, health, chemistry, hydrology, industry,

labour market, macro-economic, and physics. These time series data were taken from the

“Time Series Data Library(254),”. Tables C.1 and C.2 show the results based on DFT and

DWT, respectively where Table C.3 gives brief description of these data. Our proposed

framework shows better performance than other techniques for all 30 time series data.
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Table C.1. Performance comparison based on DFT, from additional 30 real data.

Data Percentage Reduction ErrRBP RER

RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT

1 0.471 0.494 0.738 0.963 0.0163 0.0306 0.0376 0.1696 28.974 16.156 19.644 5.676

2 0.331 0.493 0.744 0.949 0.0053 0.0133 0.0158 0.1408 62.464 37.043 47.194 6.738

3 0.345 0.479 0.714 0.952 0.0122 0.0470 0.1055 0.1968 28.201 10.203 6.768 4.838

4 0.316 0.485 0.749 0.984 0.0104 0.0272 0.0549 0.2320 30.446 17.814 13.640 4.242

5 0.818 0.481 0.740 0.989 0.0140 0.0108 0.0142 0.0207 58.611 44.555 52.130 47.714

6 0.235 0.485 0.749 0.984 0.0075 0.0464 0.0492 0.2334 31.375 10.454 15.231 4.217

7 0.951 0.479 0.749 0.999 0.0177 0.0168 0.0176 0.0214 53.822 28.600 42.583 46.767

8 0.904 0.479 0.749 0.999 0.0059 0.0057 0.0064 0.0099 153.961 84.512 117.506 101.118

9 0.315 0.482 0.745 0.975 0.0154 0.0268 0.0504 0.2010 20.485 18.019 14.800 4.848

10 0.622 0.493 0.730 0.946 0.0074 0.0070 0.0098 0.0156 84.252 70.943 74.488 60.764

11 0.478 0.482 0.736 0.980 0.0020 0.0028 0.0062 0.0206 235.127 172.483 118.015 47.460

12 0.381 0.484 0.735 0.982 0.0267 0.0570 0.0713 0.1784 14.253 8.481 10.304 5.506

13 0.377 0.483 0.742 0.987 0.0073 0.0131 0.0219 0.1298 51.375 36.699 33.859 7.602

14 0.350 0.479 0.720 0.960 0.0120 0.0447 0.0943 0.1598 29.046 10.714 7.632 6.009

15 0.378 0.482 0.736 0.980 0.0163 0.0279 0.0424 0.2064 23.148 17.248 17.372 4.746

16 0.410 0.479 0.747 0.993 0.0115 0.0303 0.0600 0.3440 35.586 15.835 12.443 2.888

17 0.417 0.479 0.750 0.958 0.0093 0.0151 0.0275 0.2178 44.835 31.777 27.246 4.399

18 0.496 0.479 0.750 0.992 0.0011 0.0011 0.0021 0.0043 466.390 437.727 355.765 233.486

19 0.681 0.490 0.745 0.957 0.0075 0.0069 0.0103 0.0279 90.373 70.876 72.485 34.337

20 0.357 0.479 0.743 0.986 0.0052 0.0073 0.0177 0.2222 68.927 65.709 42.051 4.441

21 0.739 0.479 0.745 0.979 0.0021 0.0020 0.0025 0.0382 358.734 240.248 300.908 25.631

22 0.828 0.479 0.745 0.990 0.0037 0.0030 0.0036 0.1191 223.294 157.506 209.507 8.314

23 0.330 0.485 0.730 0.978 0.0018 0.0043 0.0055 0.1873 187.689 113.363 133.004 5.220

24 0.323 0.487 0.735 0.981 0.0022 0.0041 0.0058 0.2034 147.656 119.216 126.773 4.824

25 0.301 0.485 0.730 0.978 0.0021 0.0032 0.0063 0.2184 142.674 152.220 116.428 4.475

26 0.397 0.479 0.750 0.972 0.0026 0.0142 0.0237 0.2111 151.063 33.807 31.685 4.606

27 0.323 0.491 0.748 0.969 0.0072 0.0141 0.0259 0.2149 44.891 34.872 28.884 4.508

28 0.332 0.479 0.747 0.993 0.0226 0.1095 0.1136 0.2594 14.646 4.378 6.574 3.830

29 0.909 0.480 0.749 0.999 0.0128 0.0107 0.0123 0.0165 71.207 45.014 60.800 60.476

30 0.350 0.479 0.743 0.986 0.0033 0.0050 0.0077 0.0791 104.790 95.906 95.947 12.463
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Table C.2. Performance comparison based on DWT, from additional 30 real data.

Data Percentage Reduction ErrRBP RER

RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT

1 0.434 0.505 0.738 0.963 0.0186 0.0256 0.0295 0.1710 23.283 19.752 24.986 5.629

2 0.303 0.500 0.744 0.949 0.0042 0.0116 0.0166 0.1428 72.848 43.193 44.743 6.644

3 0.298 0.476 0.714 0.952 0.0118 0.0438 0.1295 0.1813 25.161 10.866 5.515 5.254

4 0.308 0.502 0.749 0.984 0.0133 0.0279 0.0477 0.2320 23.062 17.995 15.686 4.242

5 0.832 0.501 0.740 0.989 0.0138 0.0106 0.0139 0.0213 60.150 47.412 53.225 46.422

6 0.296 0.502 0.749 0.984 0.0075 0.0463 0.0495 0.2370 39.486 10.850 15.145 4.153

7 0.953 0.500 0.749 0.999 0.0157 0.0154 0.0160 0.0194 60.789 32.369 46.875 51.600

8 0.902 0.500 0.749 0.999 0.0059 0.0052 0.0054 0.0099 152.863 95.681 138.949 101.118

9 0.446 0.497 0.745 0.975 0.0152 0.0235 0.0462 0.2113 29.358 21.147 16.116 4.612

10 0.622 0.500 0.730 0.946 0.0078 0.0074 0.0096 0.0156 79.501 67.430 75.748 60.764

11 0.439 0.492 0.736 0.980 0.0020 0.0028 0.0080 0.0206 215.898 176.285 92.084 47.460

12 0.403 0.504 0.735 0.982 0.0286 0.0562 0.0665 0.1784 14.083 8.975 11.052 5.506

13 0.426 0.497 0.742 0.987 0.0083 0.0114 0.0263 0.1298 51.036 43.611 28.187 7.602

14 0.380 0.480 0.720 0.960 0.0118 0.0507 0.0811 0.1598 32.077 9.468 8.879 6.009

15 0.439 0.492 0.736 0.980 0.0163 0.0218 0.0360 0.2064 26.883 22.594 20.449 4.746

16 0.380 0.498 0.747 0.993 0.0112 0.0303 0.0615 0.3440 33.952 16.448 12.144 2.888

17 0.438 0.500 0.750 0.958 0.0102 0.0165 0.0320 0.2178 42.852 30.365 23.415 4.399

18 0.496 0.500 0.750 0.992 0.0011 0.0012 0.0021 0.0043 444.962 420.208 357.143 232.963

19 0.670 0.500 0.745 0.957 0.0062 0.0065 0.0096 0.0245 108.643 76.868 77.568 39.113

20 0.369 0.497 0.743 0.986 0.0052 0.0080 0.0184 0.2342 71.344 62.277 40.454 4.212

21 0.734 0.495 0.745 0.979 0.0025 0.0019 0.0026 0.0382 295.906 256.706 281.440 25.631

22 0.821 0.498 0.745 0.990 0.0032 0.0027 0.0030 0.1090 258.705 182.266 248.850 9.082

23 0.292 0.506 0.730 0.978 0.0017 0.0042 0.0055 0.1873 167.909 120.118 132.497 5.220

24 0.265 0.507 0.735 0.981 0.0016 0.0043 0.0066 0.2034 168.254 118.823 111.972 4.824

25 0.369 0.506 0.730 0.978 0.0024 0.0035 0.0061 0.2184 155.310 145.351 119.010 4.475

26 0.450 0.500 0.750 0.972 0.0103 0.0132 0.0217 0.2111 43.689 37.774 34.549 4.606

27 0.307 0.504 0.748 0.969 0.0072 0.0150 0.0307 0.2101 42.722 33.653 24.339 4.611

28 0.277 0.498 0.747 0.993 0.0201 0.1042 0.1155 0.2594 13.793 4.782 6.464 3.830

29 0.909 0.501 0.749 0.999 0.0104 0.0126 0.0143 0.0173 87.039 39.605 52.464 57.865

30 0.433 0.496 0.743 0.986 0.0028 0.0048 0.0077 0.0817 154.643 103.812 95.947 12.071
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Table C.3. Data description.

Data Brief Description(254)

1 I.C.I. Closing prices 25 Aug ’72-19 Jan ’73 (Financial Times).

2 Dow Jones utility index Aug 28-Dec 18 ’72 (Wall Street Journal).

3 Monthly returns for AT&T, Jan 1961 through Dec. 1967.

4 Monthly interest rates Government Bond Yield 2-year securities, Reserve Bank of Australia.

5 IBM common stock closing prices: daily, 17th May 1961 to 2nd November 1962.

6 IBM common stock closing prices: daily, 29th June 1959 to 30th June 1960.

7 Daily closing price of IBM stock, Jan. 1st 1980 - Oct. 8th 1992.

8 Daily S & P 500 index of stocks, Jan. 1st 1980 - Oct. 8th 1992.

9 Monthly closings of the Dow-Jones industrial index, Aug. 1968 - Aug. 1981.

10 Annual yield of grain on Broadbalk field at Rothamsted 1852-1925.

11 Chemical concentration readings.

12 Chemical process temperature readings.

13 Chemical process viscosity readings.

14 Chemical process: viscocity data.

15 Chemical process concentration readings.

16 SacClearwater river at Kamiah, Idaho. 1911 – 1965.

17 Mean monthly flow, tree river, 1969 – 1976.

18 Monthly temperature, coppermine, 1933 – 1976.

19 Monthly demand repair parts large/heavy equip. Iowa 1972 – 1979.

20 Carbon dioxide output from gas furnace: percent of output gas. Sampling interval 9 seconds.

21 Motor vehiclesengines and parts/CPI, Canada, 1976-1991.

22 Monthly U.S. female (20 years and over) unemployment figures (10**3) 1948-1981.

23 Wisconsin employment time series, food and kindred products, Jan. 1961 - OCt. 1975.

24 Civilian labour force in Australia each month: thousands of persons. Feb 1978 - Aug 1995.

25 Wisconsin employment time series, fabricated metals, Jan. 1961 - OCt. 1975.

26 Quarterly gross fixed capital expenditure - public, Australia: millions of dollars, 1989/90 prices.

Sep 1959 - Jun 1995.

27 Quarterly gross fixed capital expenditure - private equipment, Australia: millions of dollars,

1984/85 prices. Sep 1959 - Mar 1991.

28 Daily brightness of a variable star on 600 successive midnights.

29 Monthly means of daily relative sunspot numbers, Jan 1749 - Mar 1977.

30 Annual sunspot numbers 1700-1979.
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