TRECVID-2011 Semantic Indexing task: Overview

Georges Quénot

Laboratoire d'Informatique de Grenoble

George Awad
 NIST

also with Franck Thollard, Bahjat Safadi (LIG) and Stéphane Ayache (LIF)
and support from the Quaero Programme

Outline

- Task summary
- Evaluation details
- Inferred average precision
- Participants
\square Evaluation results
- Pool analysis
- Results per category
- Results per concept
- Significance tests per category
\square Global Observations
- Issues

Semantic Indexing task (1)

\square Goal: Automatic assignment of semantic tags to video segments (shots)
\square Secondary goals:

- Encourage generic (scalable) methods for detector development.
- Semantic annotation is important for filtering, categorization, browsing, searching, and browsing.
- Participants submitted two types of runs:
- Full run Includes results for 346 concepts, from which NIST evaluated 20.
- Lite run Includes results for 50 concepts, subset of the above 346.
- TRECVID 2011 SIN video data
- Test set (IACC.1.B): 200 hrs , with durations between 10 seconds and 3.5 minutes.
- Development set (IACC.1.A \& IACC.1.tv10.training): 200 hrs , with durations just longer than 3.5 minutes.
- Total shots: (Much more than in previous TRECVID years, no composite shots)
- Development: 146,788 + 119,685
- Test: 137,327
- Common annotation for 360 concepts coordinated by LIG/LIF/Quaero

Semantic Indexing task (2)

- Selection of the 346 target concepts
- Include all the TRECVID "high level features" from 2005 to 2010 to favor cross-collection experiments
- Plus a selection of LSCOM concepts so that:
- we end up with a number of generic-specific relations among them for promoting research on methods for indexing many concepts and using ontology relations between them
- we cover a number of potential subtasks, e.g. "persons" or "actions" (not really formalized)
- It is also expected that these concepts will be useful for the contentbased (known item) search task.
- Set of 116 relations provided:
- 559 "implies" relations, e.g. "Actor implies Person"
- 10 "excludes" relations, e.g. "Daytime_Outdoor excludes Nighttime"

Semantic Indexing task (3)

- NIST evaluated 20 concepts and Quaero evaluated 30 concepts
- Four training types were allowed
- A - used only IACC training data
- B - used only non-IACC training data
- C - used both IACC and non-IACC TRECVID (S\&V and/or Broadcast news) training data
- D - used both IACC and non-IACC non-TRECVID training data

Datasets comparison

$\left.$| | TV2007 | TV2008
 $=$
 TV2007
 +New | TV2009
 $=$ | TV2008
 +New | TV2010 |
| :---: | :---: | :---: | :---: | :---: | :---: | | TV2011 |
| :---: |
| $=$ |
| TV2010 |
| + New | \right\rvert\,

Number of runs for each training type

Only IACC data	62			
Only non-IACC data Both IACC and non-IACC TRECVID data		2		
Both IACC and non-IACC non-TRECVID data				
Only IACC data				
Only non-IACC data				
Both IACC and non-IACC				
TRECVID data				
Both IACC and non-IACC non-TRECVID data				
Total runs (102)	96 94%	2		

50 concepts evaluated

2 Adult	75 Male_Person	128 Walking_Running
5 Anchorperson	81 Mountain*	227 Door_Opening
10 Beach	83 News_Studio	241 Event
21 Car	84 Nighttime*	251 Female_Human_Face
26 Charts	86 Old_People*	261 Flags
27 Cheering*	88 Overlaid_Text	292 Head_And_Shoulder
38 Dancing*	89 People_Marching	332 Male_Human_Face
41 Demonstration_Or_Protest*	97 Reporters	354 News
44 Doorway*	100 Running*	392 Quadruped
49 Explosion_Fire*	101 Scene_Text	431 Skating
50 Face	105 Singing*	442 Speaking
51 Female_Person	107 Sitting_down*	443 Speaking_To_Camera
52 Female-Human-Face-Closeup*	108 Sky	454 Studio_With_Anchorperson
53 Flowers*	111 Sports	464 Table
59 Hand*	113 Streets	470 Text
67 Indoor	123 Two_People	478 Traffic
	127 Walking*	484 Urban_Scenes

-The 10 marked with "*" are a subset of those tested in 2010

Evaluation

- Each feature assumed to be binary: absent or present for each master reference shot
\square Task: Find shots that contain a certain feature, rank them according to confidence measure, submit the top 2000
\square NIST sampled ranked pools and judged top results from all submissions
- Evaluated performance effectiveness by calculating the inferred average precision of each feature result
\square Compared runs in terms of mean inferred average precision across the:
- 50 feature results for full runs
- 23 feature results for lite runs

Inferred average precision (infAP)

- Developed* by Emine Yilmaz and Javed A. Aslam at Northeastern University
\square Estimates average precision surprisingly well using a surprisingly small sample of judgments from the usual submission pools
\square This means that more features can be judged with same annotation effort
\square Experiments on previous TRECVID years feature submissions confirmed quality of the estimate in terms of actual scores and system ranking

[^0]
2011: mean extended Inferred average precision (xinfAP)

- 2 pools were created for each concept and sampled as:
- Top pool (ranks 1-100) sampled at 100%
- Bottom pool (ranks 101-2000) sampled at 8%

50 concepts
268156 total judgments
52522 total hits
6747 Hits at ranks (1-10)
28899 Hits at ranks (11-100)
16876 Hits at ranks (101-2000)

\square Judgment process: one assessor per concept, watched complete shot while listening to the audio.

- infAP was calculated using the judged and unjudged pool by sample_eval

2011 : 28/56 Finishers

2011 : 28/56 Finishers

		Task finishers	Participants
Participation and finishing declined! Why?	2011	28	56
	2010	39	69
	2009	42	70
	2008	43	64
2007	32	54	
2006	30	54	
2005	22	42	
2004	12	33	

Frequency of hits varies by feature

True shots contributed uniquely by team

Full runs

Team	No. of Shots	Team	No. of shots
Vid	1130	Mar	69
UEC	965	NHK	49
iup	822	dcu	49
vir	749	FTR	42
nii	429	Qua	9
CMU	385	FIU	2
ecl	214		
brn	185		
Pic	177		
IRI	154		
ITI	151		
Tok	140		
UvA	72		

Lite runs

Team	No. of Shots	Team	No. of shots
UEC	506	ITI	41
JRS	404	brn	41
Vid	337	FTR	30
iup	318	Tok	25
vir	257	UvA	19
BJT	245	UQM	16
MCP	149	Eur	11
nii	145	Mar	9
cs2	120	ECN	3
CMU	102	Qua	2
IRI	50		
thu	48		
Pic	45		

No. of unique shots found are MORE than what was found in TV2010 (more shots this year)

Category A results (Full runs)

Category B results (Full runs)

Category D results (Full runs)

Note: Category C has only 1 run (C_dcu.GlobalFeature) with score $=0.01$

Category A results (Lite runs)

Category B results (Lite runs)

Category D results (Lite runs)

Note: Category C has only 1 run (C_dcu.GlobalFeature) with score $=0.017$

Top 10 InfAP scores by feature (Full runs)

Top 10 InfAP scores for 23 common features (Lite AND Full runs)

Significant differences among top 10 A-category full runs (using randomization test, $\mathrm{p}<0.05$)

Significant differences among top 10 B-category full runs (using randomization test, $\mathrm{p}<0.05$)

Run name	(mean infAP)
B_dcu.LocalFeatureBoW_2	0.046
B_vireo.SF_web_image_4	0.019

> B_dcu.LocalFeatureBoW_2
> B_vireo.SF_web_image_4

Significant differences among top D-category full runs (using randomization test, $\mathrm{p}<0.05$)

Run name	(mean infAP)
D_TokyoTech_Canon_4	0.172
D_vireo.A-SVM_3	0.112
D_vireo.TradBoost_2	0.076

Significant differences among top 10 A-category lite runs (using randomization test, $\mathrm{p}<0.05$)

Run name	(mean infAP)		A_UvA.Leonardo_1			A_TokyoTech_Canon_1	
A_TokyoTech_Canon_1	0.149		>	A_UvA.Donatello_2		h_Ca	
A_TokyoTech_Canon_2	0.148			,	A_CMU4	>	A_CMU4
A_UvA.Leonardo_1	0.142				A Quaero1	>	A Quaero1
A_UvA.Raphael_3	0.141						
A_UvA.Donatello_2	0.140			>	A_Quaero2	>	A_Quaero2
A_TokyoTech_Canon_3	0.138			>	A_UvA.Michelangelo_4	>	A_UvA.Michelangelo_4
A_UvA.Michelangelo_4	0.121		>		v A.Raphael_3	A_Toky	ch_Canon_2
A_Quaero1	0.120			>	A_CMU4	> A	kyoTech_Canon_3
A_CMU4	0.120			>	A_Quaero1	>	A_CMU4
A_Quaero2	0.119			,	A_Quaero2	>	A_Quaero1
				>	A_UvA.Michelangelo_4	>	A_Quaero2
						>	A_UvA.Michelangelo_4

Significant differences among top B-category lite runs (using randomization test, $\mathrm{p}<0.05$)

Run name	(mean infAP $)$	$>$	B_dcu.LocalFeatureBoW_2
B_dcu.LocalFeatureBoW_2	0.039		$>$
B_vireo.SF_web_image_4			
B_vireo.SF_web_image_4	0.017		

Significant differences among top D-category lite runs (using randomization test, p < 0.05)

Run name	(mean infAP)	$>$	D_TokyoTech_Canon_4	
D_vireo.TradBoost_2	0.054		$>$	D_vireo.A-SVM_3
D_vireo.A-SVM_3	0.082			$>$
D_vireo.TradBoost_2				

Observations

- Site experiments include:
- focus on robustness, merging many different representations
- use of spatial pyramids
- improved bag of word approaches
- improved kernel methods
- sophisticated fusion strategies
- combination of low and intermediare/gigh features
- efficiency improvements (e.g. GPU implementations)
- analysis of more than one keyframe per shot
- audio analysis
- using temporal context information
- not so much use of motion information, metadata or ASR
- use of external (ImageNet 1000-concept) data
- Still not many experiments using external training data (main focus on category A)
- No improvement using external training data

Presentations to follow

ㅁ 2:40-3:00, Tokyo Institute of Technology, Canon Corporation
\square 3:00-3:20, PicSOM - Aalto University
3:20-3:40, CMU-Informedia - Carnegie Mellon University

- 3:40-4:00, Break in the NIST West Square Cafeteria
\square
4:00-4:20, Quaero - Quaero Consortium
4:20-4:40, Discussion

Less participation - poll results - this year

\square Has the task become too big considering video data?

- No (3).
- Close to the limit.
- Yes.
$\square \quad$ Has the task become too big considering the number of concepts?
- No (3).
- Yes (2), we did not participate for this reason; at least the full task
\square Did the task not brought enough novelty compared to previous years?
- Yes, this is a concern, the task lacks excitement.
- Not so much.
- We found it sufficiently interesting to participate
- Yes. A challenging topic for this year's task was the increasing of the number of concepts.
- Any other reason or issue with the task?
- US Aladdin program / MED task competition?
- Only 50 (of 346) concepts are evaluated in the testing phase. We would like to know how the Mean InfAP will change if the number of testing concepts is increased (lite versus full results already show some consistency)

Poll results - next year

- Should we continue to increase the number of concepts for the full task?
- Why increase? What is the underlying scientific question?
- Possibly but slowly.
- Slightly or keep the current size.
- Yes, but the selected concepts should not be dropped out like this year. It's okay to keep the number of concepts.
- No.
- Should we keep, reduce or increase the number of concepts for the light task?
- Noopinion.
- Reduce the number. It is important to be able to annotate the data with ground truth. This is not possible if there are too many concepts.
- Preferably less.
$\square \quad$ Keep the current size (3).
\square Should we continue increasing the diversity of target concepts or not?
- Again, what is the scientific rationale?
- Maybe anothertask.
- Yes, definitely.
- Yes. How about increasing concepts of human emotion?
- Yes.

Poll results - next year

\square Any other suggestion for introducing novelty in this task?

- Perhaps collecting training data in an automatic fashion, rather than using the collaborative annotations.
- Increase the diversity of video sources, in terms of countries and languages.
- Increase the diversity of evaluation measures, not confine to MAP.
- How about having multiple levels of appearance for positive samples?
- Consider an online variant.
- Additional comments
- Too much time was spent on extracting features but more effort should be on developing new frameworks and learning methods.
- Provide more auxiliary information, such as speech recognition results, or others.
- The data size might be too big and it seems that computation power and storage play a key role to get promising results.
- Improve the quality of the videos.
- Low number of positive samples is a problem.
- Provide clearer specification on all concepts.
- Some concepts have very few positive instances.
- Suggest change data type every year.
- Many thanks for the feedback!

SIN 2012

- A maximum number of participants is good but not the goal; we want people to be happy with the proposed task.
- What is the scientific rationale for many and diverse concepts?
- Potential applications require a large number of concepts and very diverse ones.
- Scalability at the computing power level is not the only issue.
- Relations between concepts (both explicit and implicit) may have a key role to play; this can be exploited and evaluated only at a sufficient scale.
- Another possible novelty:
- Multiple levels of relevance for positive samples or ranking of positive samples
- Same or similar task; same type of data; similar volume of data.
- Comparable or slightly reduced number of concepts.
- Better definition of concepts, better annotation.
- Encourage and provide infrastructure for sharing contributed elements: low-level features, detection scores, ...

[^0]: * J.A. Aslam, V. Pavlu and E. Yilmaz, Statistical Method for System Evaluation Using Incomplete Judgments Proceedings of the 29th ACM SIGIR Conference, Seattle, 2006.

