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CHAPTER 1

INTRODUCTION

1.1. Homeomorphic Measures

Two measures µ and ν defined on the family of Borel subsets of a topological space

X are said to be homeomorphic or topologically equivalent provided there exists a homeo-

morphism h of X onto X such that µ is the image measure of ν under h: µ = νh−1. This

means µ(E) = ν(h−1(E)) for each Borel subset E of X.

1.1.1. Testing Subsection

One may be interested in the structure of these equivalence classes of measures or in

a particular equivalence class. For example, a probability measure µ on [0, 1] is topologically

equivalent to Lebesgue measure if and only if µ gives every point measure 0 and every non-

empty open set positive measure. (The distribution function of µ is a homeomorphism on

[0, 1] witnessing this equivalence.) This is a special case of a result of Oxtoby and Ulam [5],

who characterized those probability measures µ on finite dimensional cubes [0, 1]n which are

homeomorphic to Lebesgue measure. For this to be so, µ must give points measure 0, non-

empty open sets positive measure, and the boundary of the cube measure 0. Later Oxtoby

and Prasad [4] extended this result to the Hilbert cube. These results have been extended

and applied to various manifolds. The book of Alpern and Prasad [1] is an excellent source

for these developments. Oxtoby [3] also characterized those probability measures on the

space of irrational numbers in [0, 1] which are homeomorphic to Lebesgue measure as those

which give points measure zero and open sets positive measure.

It turns out that the Cantor space is more rigid than the above spaces for measure

homeomorphisms – it is not true that two probability measures on C = {0, 1}N which give

points measure 0 and non-empty open sets positive measure are homeomorphic. Since C has

countably many clopen sets, the set of values taken on clopen sets by such a measure will

be a countable dense subset of [0, 1]. I will refer to this set as the clopen values set of such

a measure. Even two well behaved measures on C will typically have different clopen values
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sets, and so cannot be homeomorphic. A first conjecture at getting around this may be to

ask whether any two measures on C with the same clopen values sets are homeomorphic.

This turns out to fail, and it appears unlikely that adding additional conditions will provide a

satisfactory theorem, as in some sense there are just too many measures possible. I therefore

restrict attention to a particular class of measures which arise frequently.

1.2. Bernoulli Trial Measure

Regard C = {0, 1}N as the set of all infinite words on the alphabet {0, 1}, and for

e = e1e2 . . . en a finite word, let [e] denote the set of all infinite words beginning with e. Such

sets are called cylinder sets. Notice that they form a basis for C. Define the length of such

a set to be the length of the word e.

If 0 ≤ r ≤ 1, let µr denote Bernoulli trial measure with probability r of success,

sometimes called coin tossing measure. To be specific, µr is the unique measure for which

the sets {π−1n (1)}n≥1 are independent, and each has measure r. Note that if e is a word of

length n having i occurrences of the letter 1, then µr([e]) = ri(1− r)n−i.

When the measures µr and µs are homeomorphic, write r ∼top s. In 1979, Oxtoby

began to publish papers investigating this equivalence relation on [0, 1]. In this paper we

give a complete characterization of when two such measures are homeomorphic, answering

Oxtoby’s question.

In Chapter 2 I define terminology, review some previous results, and prove a few

preliminary lemmas, finally stating the main result, that four statements are equivalent.

Chapters 3 through 5 prove this result, each addressing one of the three non-trivial implica-

tions. Chapter 6 provides some examples and additional results, and raises some questions

for further research.
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CHAPTER 2

THE FAMILY H

2.1. Definition of H and the Uniformly Expanding Property

In this section we define the family H and we establish basic dynamical properties of

a map fa ∈ H. Then we we prove the important Lemma 2.1.

2.1.1. Definition of H

We define the family H as a family of maps in the Speiser class of transcendental

entire functions of finite singular type.

Let a = (a0, a1, · · · , an) ∈ Cn+1 be a vector such that a0 6= 0, an 6= 0,

Pa(z) = anz
n + · · ·+ a1z + a0 ∈ C[z]

and

ga(z) =
Pa(z)

zk

where k is a positive integer strictly less than n = deg(Pa) ≥ 2. Define

fa(z) = ga ◦ exp(z) = anenz+an−1e(n−1)z+···+a1ez+a0
ezk

=
∑n

j=0 aje
(j−k)z

Observe that maps of this form do not have any finite asymptotic values. This is the reason

why we restricted ourselves to integers k satisfying condition 0 < k < n. As it was mentioned

in Chapter 1, the most well known examples of this type of maps are maps from the cosine

family.

We denote by Crit(fa) the set {z : f ′a(z) = 0}. Observe that

f ′a(z) =
n∑
j=0

aj(j − k)e(j−k)z

and that g′a(z) = 0 if and only if zP ′a(z)− kPa(z) = 0, which is equivalent to

n∑
j=0

aj(j − k)zj = 0.
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Therefore, there exist n non-zero complex numbers (counting multiplicities) s1, s2, · · · , sn

such that z ∈ Crit(fa) if and only if ez = sk for some k = 1, 2, · · · , n i.e.

{zk = log sk + 2πim : m ∈ Z, k = 1, · · · , n}

is the set of critical points and observe that the set of critical values of a map fa is finite.

Denote by H the family of functions

H =

{
fa(z) =

Pa(e
z)

ekz
: degPa > k > 0 and δa > 0

}
,

where by Pfa we denote the post-critical set of fa i.e. the set

Pfa =
⋃
n≥0

fna (Crit(fa))

and

δa =
1

2
min

{
1

2
, dist(Jfa ,Pfa)

}
,

where

dist(Jfa ,Pfa) = inf{|z1 − z2| : z1 ∈ Jfa , z2 ∈ Pfa}

is the Euclidean distance between the Julia set of fa, Jfa , and the post-critical set of fa, Pfa .

The reason we define δa in such a way will be more visible later on, starting with

Chapter 3, and is due to the application (we shall need) of the Koebe Distortion Theorem

since one can observe that, for every y ∈ Jfa and for every n ≥ 1, there exists a unique

holomorphic inverse branch

(fna )−1y : B(fna (y), 2δa)→ C

such that (fna )−1y ◦ (fna )(y) = y.

Then there exists a numerical constant K such that, for z1, z2 ∈ Jfa with |z1−z2| < δa

and for y ∈ f−na (z1),

(1)
1

K
≤
|((fna )−1y )′(z1)|
|((fna )−1y )′(z2)|

≤ K.

Observe that Crit(fa) ⊂ Ffa , where Ffa is the Fatou set of fa. Consequently, maps in the

familyH do not have neither parabolic domains nor Herman rings nor Siegel disks. Moreover,

as was written in Chapter 1 they do not have neither wandering nor Baker domains. Also for
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every point z in the Fatou set there exists (super)attracting cycle such that the trajectory

of z converges to this cycle.

2.1.2. The Cylinder and the Definition of JrFa

Since the map fa ∈ H is periodic with period 2πi, we consider it on the quotient

space P = C/∼ (the cylinder) where

z1 ∼ z2 iff z1 − z2 = 2kπi for some k ∈ Z.

If π : C → P is the natural projection, then, since the map π ◦ fa : C → P is constant on

equivalence classes of relation ∼, it induces a holomorphic map

Fa : P → P.

The cylinder P is endowed with Euclidean metric which will be denoted in what follows by

the same symbol |w − z| for all z, w ∈ P. The Julia set of Fa is defined to be

JFa = π(Jfa)

and observe that

Fa(JFa) = JFa = F−1a (JFa).

We shall study the set Jrfa consisting of those points of Jfa that do not escape to

infinity under positive iterates of fa. In other words, if

I∞(fa) = {z ∈ C : lim
n→∞

fna (z) =∞},

then

Jrfa = Jfa\I∞(fa)

and, if

I∞(Fa) = {z ∈ P : lim
n→∞

F n(z) =∞},

then

JrFa
= JFa\I∞(Fa).
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In what follows we fix a ∈ Cn+1 and we denote for simplicity fa ∈ H by f . The

following Lemma reveals some background information for a better understanding of the

dynamical behavior of maps in our family H. This lemma will be used several times and it

will be a key technical ingredient for many proofs.

Observe first that, if we consider a = (a0, · · · , an) ∈ Cn+1, since

(2) fa(z) =
n∑
j=0

aje
(j−k)z

we have

(3) f ′a(z) =
n∑
j=0

aj(j − k)e(j−k)z.

Lemma 2.1. Let fa be a function of form (2). Then there exist M1,M2,M3 > 0 such that,

for every z with |Re z| ≥M3, the following inequalities hold.

(1) M1e
q|Re z| ≤ |fa(z)| ≤M2e

q|Re z|

(2) M1e
q|Re z| ≤ |f ′a(z)| ≤M2e

q|Re z|

(3) M1

M2
|f ′a(z)| ≤ |fa(z)| ≤ M2

M1
|f ′a(z)|

where q =

 k if Re z < 0

n− k if Re z > 0.

Proof. Note that (iii) follows from (i) and (ii). The proof of (i) and (ii) follows from the

fact that

|fa(z)| = |an|e(n−k)Re z + o(e(n−k)Re z) as Re z →∞

|fa(z)| = |a0|e−kRe z + o(e−kRe z) as Re z → −∞

and from the observation that f ′a is a function of the same (algebraic) type as fa (see (3)). �

2.1.3. The Uniformly Expanding Property

In this section we shall prove, mainly, the very important result, Proposition 2.2,

using McMullen’s result from [2], that any map fa ∈ H is uniformly expanding on its Julia

set.
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Proposition 2.2. For every f ∈ H there exist c > 0 and γ > 1 such that

|(fn)′(z)| > cγn

for every z ∈ Jf .

Proof. By [2, Proposition 6.1], for all z ∈ Jf ,

(4) lim
n→∞

|(fn)′(z)| =∞.

Since f is periodic with period 2πi we consider

A = Jf ∩ {z : Im z ∈ [0, 2π]}

and we let Am denotes the open set

{z ∈ A : |(fm)′(z)| > 2}.

Then by (4) {Am}m≥1 is an open covering of A. Moreover, it follows from Lemma 2.1 that

there exists M such that, if |Re z| > M , then |f ′(z)| > 2. Therefore

{z ∈ A : |Re z| > M} ⊂ A1.

Since A ∩ {z : |Re z| ≤ M} is a compact subset of A, it follows that there exists k ≥ 1

such that the family {A1, A2, . . . , Ak} covers A. It implies that, for every z ∈ A, there exists

k(z) ≤ k for which |(fk(z))′(z)| > 2. Therefore, for every n > 0 and every z ∈ A we can split

the trajectory z, f(z), . . . , fn(z) into l ≤ bn
k
c+ 1 pieces of the form

zi, f(zi), . . . , f
k(zi)−1(zi)

for i = 1, . . . , l − 1, and, for i = l,

zl, f(zl), . . . f
j(zl) = fn(z),

where z1 = z, zi = fk(zi−1)(zi−1) and j is some integer smaller than k. Then

|(fn)′(z)| ≥ 2b
n
k
c∆k−1,
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where

∆ = inf
z∈Jf
|f ′(z)| 6= 0,

since Jf contains no critical points and because of Lemma 2.1 (ii). It follows that

|(fn)′(z)| ≥ 2
n
k
−1∆k−1 =

∆k−1

2
(2

1
k )n.

�

2.2. Bounded Orbits and Classical Conformal Repellers.

We fix again a ∈ Cn+1 and we denote fa by f , Fa by F and the Julia set of F by JF .

Our goal in this section is to prove Proposition 2.5. In order to prove this proposition we

apply the thermodynamic formalism for compact repellers.

Definition 2.3. Let f be a holomorphic function from an open subset V of C into C and

J a compact subset of V. The triplet (J, V, f) is a conformal repeller if

(1) there are C > 0 and α > 1 such that |(fn)′(z)| ≥ Cαn for every z ∈ J and n ≥ 1.

(2) f−1(V ) is relatively compact in V with

J =
⋂
n≥1

f−n(V ).

(3) for any open set U with U ∩ J not empty, there is n > 0 such that

J ⊂ fn(U ∩ J).

It is worth noting that there are no critical points of f in J.

2.2.1. Conformal Repellers

Let (J, V, g) be a (mixing) conformal expanding repeller( see for example [7] for more

properties). In the proof of Proposition 2.5, J = J1(M) is a compact subset of C, limit of

a finite conformal iterated function system, g = F , is a holomorphic function for which J

is invariant and for which there exist γ > 1 and c > 0 such that, for all n ∈ N and for all

z ∈ J , |(gn)′(z)| ≥ cγn. For t ∈ R we consider the topological pressure defined by

Pz(t) = lim
n→∞

1

n
logPz(n, t),
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where

Pz(n, t) =
∑

y∈g−n(z)

|(gn)′(y)|−t.

The function P (t) = Pz(t) as a function of t is independent of z, continuous, strictly

decreasing, limt→−∞ P (t) = +∞ and the following remarkable theorem holds.

Theorem 2.4 (Bowen’s Formula). Hausdorff dimension of J is the unique zero of P (t).

For more details and definitions concerning the thermodynamic formalism of con-

formal expanding repellers ( initiated by Bowen and Ruelle) we refer the reader to [7] or

[6].

In order to prove Proposition 2.5, i.e. to show that HD(J) > 1, we use Bowen’s

formula and we observe that, from the definition of Pz(n, t), it is enough to find a constant

C > 1 such that, for all z ∈ J ,

(5) Pz(1, 1) ≥ C.

Proposition 2.5. Let f ∈ H. Then the Hausdorff dimension of the set of points in Julia

set of f having bounded orbit is strictly greater than 1.

Proof. Let N be a large number, H = {z ∈ C : Re z > N}. Observe that there exists U

such that U ⊂ {z : s− π < Im z < s + π} for some s ∈ (−π, π], Re U > 0, f |U is univalent

and f(U) = H. Note that, since N is large, by Lemma 2.1 there exists γN > 1 such that, if

Re z ≥ N , then

(6) |F ′(z)| = |f ′(z)| > γN .

For every M > N define

P (M) = {z ∈ U : N ≤ Re z ≤M}.

Then, for j ∈ Z, let Lj : H → U be defined by the formula

Lj(z) = (f |U)−1(z + 2πij),
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and let

(7) Qj(M) = Lj(P (M)).

The set P(M) and the family of functions

{Lj}j∈KM

with

KM = {j ∈ Z : Qj(M) ⊂ IntP (M)},

define a finite conformal iterated function system . By J1(M) we denote its limit set. The

set J1(M) is forward F−invariant. From (6) and from the fact that the Julia set is the

closure of the set of repelling periodic points it follows that

(8) J1(M) ⊂ JF .

Next we need a condition for j which guarantees thatQj(M) ⊂ IntP (M) (equivalently

j ∈ KM) for all M large enough. Observe that

(9) KM ⊂ KM+1

for all M large enough. To prove (9), let j ∈ KM and let z ∈ Qj(M +1)\Qj(M). Note that,

if we assume that M > M2e
(n−k)(N+1), then we can be sure that Re z > N + 1 (n and k are

defined in section 2.1.1). Therefore, to get (9), it is enough to prove that Re z < M + 1.

Since

F (Qj(M + 1) \Qj(M)) = P (M + 1) \ P (M),

it follows from Lemma 2.1 that |F ′(z)| ≥ M1

M2
|f(z)| ≥M and, then,

Qj(M + 1) \Qj(M) ⊂ B
(
z,
M22π

M1M

)
⊂ B(z, 1).

But we know, that, for y ∈ Qj(M), Re y ≤M . This proves (9).

The next step is to prove that there exists j0 ∈ N such that, for all M ∈ N large

enough,

(10) j0, j0 + 1, . . . , ebM/2c ∈ KM .
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Note that we can find j0 such that, for every j ≥ j0, Re Qj(M) > N . By Lemma 2.1 it is

enough to take

j0 =

⌈
M2e

(n−k)N + 2π

π

⌉
.

So, to prove (10) it remains to show that j < ebM/2c implies

Re Qj(M) ≤M.

Striving for a contradiction, suppose that j < ebM/2c and there exists z ∈ Qj(M) such that

Re z > M . Then by Lemma 2.1 we have

(11) |f(z)| > M1e
(n−k)M .

Since z ∈ Qj(M), f(z) ∈ P (M) + 2πij. Then the square of the distance from zero to the

upper-right corner of P (M) + 2πij is greater than |f(z)|2, i.e.

M2 + (s+ π + 2πj)2 > |f(z)|2.

By (11) and the assumption j < ebM/2c, it follows that

(M1e
(n−k)M)2 < M2 + (s+ π + 2π)2eM .

Hence we have the required contradiction since for large M the inequality is false.

Finally observe that by Lemma 2.1, for j ∈ KM and z ∈ Qj(M), the following is true

|F ′(Lj(z + 2jπi))| ≤ M2

M1

|f(Lj(z + 2πij))| ≤ M2

M1

(2jπ + 2π +M).

Then

Pz(1, 1) =
∑

y∈F−1(z)∩J1(M)

1
|F ′(y)| =

∑
j∈KM

|L′j(z + 2jπi)| ≥
ebM/2c∑
j=j0

1
M2
M1

(2jπ+2π+M)
.

Since, if M is large enough, the right side of this inequality can be as large as we want, and

the proposition are proved. �
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APPENDIX A

TESTING 1 2 3

A.1. Section

Here is a sample section in an appendix . . .

A.1.1. Proof of Lemma 2

Here is a sample subsection in an appendix . . .
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