TABLE OF THREE-QUASIPARTICLE ROTATIONAL BANDS IN DEFORMED NUCLEI, 153≤ A ≤187

SUKHJEET SINGH, SHAM SUNDER MALIK,

Department of Physics, Guru Nanak Dev University, Amritsar - 143005, India

ASHOK KUMAR JAIN

Department of Physics, Indian Institute of Technology, Roorkee - 247667, India

and

BALRAJ SINGH

Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

The experimentally observed level structures based on three-quasiparticle (3qp) states are classified according to their intrinsic structures, and other properties deduced from measurements such as B(M1)/B(E2) ratios, $|g_{K}-g_{R}|$ values, lifetimes, etc. The present table lists data for a total of 168 such structures which have been extracted from the literature for 55 nuclides in the mass region A=153-187 (Z=63-78, N=88-112), with majority of these bands in the A=180 region; 28 bands in seven Re isotopes alone. Nuclear models used for the interpretation of 3qp structures, generalization of the Gallagher-Moszkowski (G-M) rules to 3qp states, and high-spin features such as t-bands, high-K isomers, signature splitting, signature inversion, alignment, etc. are discussed briefly. The literature cutoff date for extraction of data for known 3qp structures is July 15, 2005.

PACS: 27.70.+q, 21.10.Tg, 23.20.Gq, 23.20.Lv

1. Introduction

In odd-A nuclei, the states of next higher seniority following the one-quasiparticle excitations are the three-quasiparticle (3qp) states. At excitation energy ≥ 1 MeV, which is approximately the energy gap 2 Δ in the rare-earth region, a proton or a neutron pair can break up and form a 3qp state in an odd-A nucleus. Two kinds of 3qp states are possible: those having all the three particles of the same kind (*nnn* and *ppp*) and others having a combination of two kinds of particles (*npp* and *nnp*). In a deformed nucleus, coupling of three-quasiparticles in Nilsson states having K values, say, K₁, K₂ and K₃ leads to a quadruplet with resultant K= $|K_1 \pm K_2 \pm K_3|$. These four intrinsic states split up due to residual interaction among the three nucleons; the residual n-p interaction plays a major role in this splitting [1, 2].

Jain et al. [3] had compiled for the first time the experimental data on 3qp states; data existed for only 20 nuclides and 48 3qp bands at that time. Out of these 48 bands, there are 6 bands that have either been assigned structures different from 3qp or do not possess adequate experimental evidence to qualify as 3qp bands; these are excluded from the present compilation. In addition one band with a tentative 3qp assignment has now been confirmed, and 5 bands have been assigned revised 3qp configurations on the basis of alignments, g_K factors, etc.

The population of 3qp and multi-quasiparticle (MQP) structures is generally weak and these could only be investigated in detail only in recent years by large gamma detector arrays and improved gamma-ray analysis techniques. In the present table, we list energy levels, spins and parities, lifetimes, and other observed or deduced characteristics for all experimentally known 3qp structures in the deformed region, covering a total of 55 nuclides. We have included only those bands which start out as 3qp bands at the bandhead, leaving out those bands which start out as single-particle bands and develop into 3qp bands after band crossing / backbending. However, the complete band, i.e. including the top portion where it may have undergone band crossings/ backbending or band termination, is listed once it starts out as a 3qp band. The cutoff date for collection of data from the original publications is July 15, 2005.

All the nuclei compiled in this table are shown in figure 1. Each nucleus is assigned a box that exhibits the total number of observed 3qp bands, minimum excitation energy, minimum and maximum spins assigned in these bands, the corresponding parities, and the number of bands which exhibit signature splitting and signature inversion. The largest concentration of 3qp bands is found in the A=180 mass region, where seven Re isotopes, six Lu isotopes, six Ta isotopes and eight Hf isotopes,

exhibit 28, 27, 25, and 22 bands, respectively. It should be noted that a critical review and evaluation of the experimental data is not the aim of this paper and most of the information has been gleaned from the reference(s) cited for each band. We have, however, included in the table, as much as possible, deduced B(M1)/B(E2) ratios, $|g_{K}-g_{R}|$ values in cases where such values were not given in the original papers but could be deduced from available experimental data in the publications.

2. Salient features of 3qp Bands

- 1. The bandheads generally lie at high excitation energies (≥ 1 MeV).
- 2. For $\Delta I=1$ bands, crossover E2 transitions are seen in many cases. The resulting B(M1)/B(E2) ratios and the $|g_{K}-g_{R}|$ values lie in the range of 0.01 13.8 (μ_{N}/eb)² and 0.01-0.76, respectively. Only in one case (a level in band #5 of ¹⁸³W), B(M1)/B(E2) ratio is 36.4 (μ_{N}/eb)².
- 3. These bands carry dynamical moment of inertia $\mathfrak{T}^{(2)}$, close to that for the other normal deformed bands.
- 4. Signature splitting is observed in many cases while signature inversion is seen in only some of the 3qp bands.
- 5. Some of these bands display the phenomena of bandcrossing. Few of them also display a backbending feature.

3. Generalization of Gallagher-Moszkowski (GM) rules, Tilted- Rotation, and High-K Isomers

3.1 Generalization of GM rules:

On the basis of a semi-empirical model for the calculation of energies of 3qp states, Jain and Jain [1] proposed two strong rules for (*nnp*) or (*ppn*) configurations. According to these rules, the highest-lying member of a given quadruplet always has a spin combination in which spins of like particles are parallel while those of unlike particles are antiparallel, and states having all three spins in the same direction cannot lie lowest in energy. For (*nnn*) or (*ppp*) configurations, however, the state having all three spins in the same direction will be the highest in energy. These rules were further strengthened by Jain et al. [2,4] who generalized the model as well as these rules for MQP states. The strong rule for MQP states becomes: the highest energy state in a multiplet always has an intrinsic-spin combination in which the intrinsic spins of like particles are parallel and that of unlike particles are antiparallel. In addition, a weak rule was also proposed as: the lowest energy state has the maximum

number of antiparallel couplings of the like-particle intrinsic spins. These rules represent a generalization of the GM rules for 2qp states to the MQP states. As an example, we cite the $9/2[514]_{\pi} \otimes 7/2[514]_{\nu} \otimes 9/2[624]_{\nu}$ configuration of ¹⁷⁷Lu. Out of four bandheads corresponding to this configuration, the following three (bands 3, 5 and 6 of ¹⁷⁷Lu in the table) are experimentally confirmed:

Κ	Е	Spin Combinations (pnn)
$11/2^{+}$	1230.4	$\uparrow \uparrow \uparrow$
$25/2^{+}$	1325	$\uparrow \downarrow \uparrow$
$7/2^{+}$	1336.5	$\uparrow \downarrow \downarrow$

The 7/2⁺ state with spin combinations $\uparrow \downarrow \downarrow$ is the highest in energy, which is in accordance with the generalized GM rules.

3.2 Tilted Rotational Band (t-band) Phenomenon:

In rapidly rotating nuclei, various angular momentum coupling schemes are generated due to the competition between inertial forces and forces generated by deformed field [5]. As the rotational frequency increases, the quasiparticles in the presence of pairing may undergo a change from the deformed aligned coupling scheme to the Fermi aligned coupling, and finally to the rotation aligned coupling scheme. Details of this change in the coupling scheme depend on the position of the Fermi energy and the quasiparticle angular momentum [6]. Thus, a combination of different coupling schemes is expected at high spins of the MQP bands. It has been shown that [7] the combination and changes in quasiparticle coupling schemes can be successfully described by means of cranking around an axis which is tilted with respect to the principal axes of the deformed field. This type of rotation is called Tilted-Axis Cranking (TAC) and a band built on this rotation is referred to as the Tilted rotational band (t-band). We have seven t-bands in this compilation: band 5 in ¹⁶³Er, band 4 in ¹⁷⁹W, bands 3 and 5 in ¹⁸¹Re, bands 3 and 8 in ¹⁸³Re, and band 2 in ¹⁸¹Os. The involvement of t-bands in the explanation of anomalous (weakly hindered) K-isomer decays in ¹⁷⁹W has been discussed by Walker et al. [8]. A pair of neutrons having high-K, $i_{13/2}$ configuration play an important role in the t-bands. The observation of t-bands in ¹⁸¹Re [9], together with their qualitative description by the TAC model, suggest a more widespread influence of t-bands, which provide a mechanism for the introduction of large-amplitude high-K components in the yrast bands of A~180 region.

3.3 High-K States and Isomers:

One member of the 3qp quadruplet will have $K=K_1 + K_2 + K_3$, which is often quite large. This leads to a K-forbiddenness in the gamma transitions and gives rise to high K-isomers which are found to be concentrated in the A \approx 180 mass region and their detailed understanding presents new challenges [10]. A plot of LogT_{1/2} vs. N and Z for known 3qp isomers is shown in figure 2. All except two lie in the range Z=71 to 77 and N=99 to 112. The two exceptions, not shown in figure 2, are isomers in ¹⁵³Eu and ¹⁶³Er with half-lives of 475 ns and \leq 75 ns, respectively. The bandhead K value for these isomers lies in the range \approx 19/2 to 29/2. The occurrence of these isomers can be reasonably explained on the basis of the deformed shell model as several high- Ω orbitals lie near the Fermi energy in this mass region. Of particular relevance are the $h_{11/2}$ and $g_{7/2}$ proton and the $h_{9/2}$ and $i_{13/2}$ neutron orbitals.

4. Theoretical Approaches for Identification of 3qp Structures

4.1 Residual Interaction and Splitting of 3qp States:

We notice from our compilation that experimental observation of a complete quadruplet of 3qp states is yet to be confirmed in any of the nuclides listed. The problem of calculating the relative energies of the states resulting from the coupling of the angular momenta of the three valence particles was first considered by Jain and Jain [1], and this model was generalized to the MQP states by Jain et al. [11]. Assuming a rotor plus 3qp model, the excitation energy of a 3qp configuration can be written as [11]

$$E(I) = E_p + E_{rot} + E_{pair} + E_{res}$$
(1)

where E_p is the contribution for particle energies, E_{rot} is the contribution for rotational energies, E_{pair} is the pairing energy, and E_{res} is the energy of residual interaction between pairs of neutrons and protons. For 3qp bands,

$$E_{p} = \sum_{i=1}^{3} E^{(i)}{}_{qp}, \qquad (2)$$

$$E_{\rm rot} = (\eta^2 / 2 \Im_{\rm 3qp}) (I (I+1) - K^2) , \qquad (3)$$

and

$$E_{pair} = 2\Delta. \tag{4}$$

The pairing gap can be taken from the mass data or, can be calculated by using a prescription such as the BCS model. The effective moment of inertia for a 3qp state can be expressed as:

$$\mathfrak{I}_{3qp} = \sum_{i=1}^{3} \mathfrak{I}_{qp} - 2 \,\mathfrak{I}_{e-e} \,, \tag{5}$$

where \mathfrak{T}_{e-e} is the moment of inertia for the even-even core. In an empirical approach, the effective residual interaction, E_{res} , in a 3qp configuration can be taken as a sum of the interactions between three possible 2qp combinations and is given by

$$E_{\text{res}} = \sum_{i < j} [E_{ij}^{(GM)} (1/2 - \delta_{\Sigma_{ij,0}}) - \delta_{K_{ij,0}} E_{ij}^{(N)} \Pi_{ij}], \quad (6)$$

where $E_{ij}^{(GM)}$ is the GM splitting energy between the triplet and the singlet states of a 2qp combination, Σ_{ij0} is the intrinsic spin projection on the symmetry axis, $E_{ij}^{(N)}$ is the odd-even (Newby) shift [12] and Π_{ij} is the parity. This simple empirical formulation has been able to correctly reproduce the ordering and the splitting of the known 3qp states for a given 3qp quadruplet. A generalization of this model to the MQP states has been widely successful in explaining and predicting the MQP states [2, 4, 11]. As an example, we cite the results of a calculation due to Kiran Jain et al. [11], where 3qp and 5qp states in ¹⁷⁹W have been calculated and compared successfully with the available data. This model incorporates the residual interaction contribution from the empirical data (GM splitting and Newby shift) and the pairing interaction by using the Lipkin-Nogami approach. In situations, where empirical data on GM splittings and Newby shifts are not available, one may use the results from the residual interaction calculations based on parameters derived from fits to the GM splittings and Newby shifts [13].

4.2 Potential-Energy Surface (PES) and Cranked Shell Model (CSM) Calculations:

In another approach to understand the excitation energies and the shapes of MQP configurations, the potential-energy surface calculations have also been used [14]. For example, Purry et al. [15] apply this method to ¹⁸³Re where occupied orbitals are fixed for each quasiparticle configuration and the shape is varied to minimize the excitation energy. These calculations ignore the residual nucleon-nucleon interactions.

Many authors have used the Cranked Shell Model (CSM) calculations [16,17] to make specific single-particle configuration assignments. The CSM calculates the quasiparticle energies e' in the rotating frame providing Routhians as a function of the rotational frequency $\eta\omega$. The alignment *i* can be calculated from $i = -\frac{de}{d\omega}$. These calculations also ignore the residual nucleon-nucleon interactions. The experimental values of the Routhians and alignments (see sec. 5.2) are also extracted from the data and compared with the theoretical results. As examples, we cite the works of Gale et al. [18] for ¹⁵⁷Er and Vlastou et al. [19] for ¹⁵⁵Dy.

5. Experimental Inputs to the Quasiparticle Configuration Assignments

5.1 B (M1)/B (E2) ratios and $|g_K-g_R|$ values:

Several papers, for example Walker et al [20], discuss the most commonly used methodology for the assignment of the spin, parity, and the configuration of each band. If the Coriolis perturbations are not large, it is reasonable to assume that the quantum number K of a band is equal to the spin of the bandhead. If high-j orbitals are involved in the configuration, this assumption is only approximately valid. Most of the papers proceed to extract the intrinsic gyromagnetic factor g_K , and the B(M1)/B(E2) ratio by using the experimental information on the gamma ray energies, intensities and the E2/M1 multipole mixing ratios. Other inputs are the rotational g-factor g_R , and the intrinsic quadrupole moment Q_0 .

In view of their importance, we have compiled and/or, deduced in this table, the B(M1)/B(E2) ratios and $|g_{K}-g_{R}|$ values. The B(M1)/B(E2) ratios have been listed for a total of 81 bands; values for 52 bands have been taken from the published works, and for 29 bands, these have been deduced in the present work from available experimental information in the original papers, Evaluated Nuclear Structure Data File (ENSDF) or Experimental Unevaluated Nuclear Data List (XUNDL). Similarly, the $|g_{K}-g_{R}|$ values are listed for a total of 73 bands, out of which values for 19 bands have been deduced in the present work from the available experimental information.

In the strong coupling limit, and assuming pure-K, the general expressions for deducing the B(M1)/B(E2) and the $|g_K-g_R|$ values are [21]:

$$\lambda = \frac{I_{\gamma}(I \to I - 2)}{I_{\gamma}(I \to I - 1)} \tag{7}$$

$$\frac{\delta^2}{1+\delta^2} = \frac{2K^2(2I-1)}{(I+1)(I+K-1)(I-K-1)} \frac{E_{\gamma}^5(I\to I-1)}{E_{\gamma}^5(I\to I-2)}\lambda$$
(8)

$$\frac{(g_K - g_R)}{Q_0} = 0.93 \frac{E_{\gamma}(I \to I - 1)}{\delta \sqrt{I^2 - 1}}$$
(9)

$$\frac{B(M1:I \to I-1)}{B(E2:I \to I-2)} = 0.697 \frac{E_{\gamma}^{5}(I \to I-2)}{E_{\gamma}^{3}(I \to I-1)} \frac{1}{\lambda(1+\delta^{2})}$$
(10)

where λ is the branching ratio, I_{γ} is the γ -ray transition intensity, δ is the E2/M1 mixing ratio, E_{γ} is the γ -ray energy in MeV, g_R is the rotational g-factor, Q_0 is the intrinsic quadrupole moment in units of *eb*. Only the angular distribution/correlation measurements can give directly the magnitude and the sign of δ , while the magnitude of δ can also be obtained from conversion electron data. However, since the angular anisotropy data generally have large uncertainties, and the conversion electron measurements are rare, most experimentalists extract the magnitude of δ by using the expression (8) above. Once δ is known, it can be used to extract $|g_K - g_R|$, provided Q_0 is known. In the absence of adequate information, some commonly used practices to determine g_R and Q_0 are:

(i) one can obtain g_R by using the measured magnetic moment (μ) of the ground state band (gsb) in the pure-K formula,

$$\mu = g_R I + (g_K - g_R) \frac{K^2}{I+1}$$
(11)

where $|g_K - g_R|$ is inserted from the expression (9) [21,22,23]. Similarly the value of Q_0 measured for the gsb can be used in eq. (9) for the determination of $|g_K - g_R|$ [e.g. see ref. 23]. Some authors have also used an estimate of Q_0 from the neighboring nuclei [22].

- (ii) one can assume the values of g_R and Q_0 , which are consistent with the systematics of in a region under study [20, 24].
- (iii) one can obtain g_R by using the relation [25],

$$g_R = \frac{Z\mathfrak{I}_p}{N\mathfrak{I}_n + Z\mathfrak{I}_p} \tag{12}$$

where \mathfrak{I}_p and \mathfrak{I}_n are proton and neutron moments of inertia. \mathfrak{I}_p and \mathfrak{I}_n can be calculated from the pairing parameters $\Delta_{p,n}$ by using the Migdal prescription [26].

The measured g_K value (given by eq. 9) may not always match with the calculated g_K value [20, 27] due to: Coriolis mixing between MQP rotational bands having high-j configurations [27], mixing between MQP rotational bands having different intrinsic configurations, changes in g_R due to reduction of pairing and changes in deformation, which leads to changes in Q_0 .

5.2 Aligned Angular Momentum:

The aligned angular momentum or, simply the alignment often assists in making the configuration assignment, particularly when the alignment is large suggesting that the high-j orbitals

are involved. The alignment is usually extracted by using the plots of $I_x(\omega)$ and $I_{ref}(\omega)$ vs. the rotational frequency ω , and calculating the difference,

$$i(\omega) = I_x(\omega) - I_{ref}(\omega)$$
(13)

where $I_x(\omega) = \sqrt{I(I+1) - K^2}$ is the component of the total angular momentum *I* of the band on the rotation axis, and $I_{ref}(\omega)$ corresponds to a reference band (usually that of the even-even core nucleus) having zero alignment. To first order, the total alignment for a 3qp band should be the sum of the constituent one quasiparticle components. However, this additivity may fail due to blocking of pairing correlations as shown by Dracoulis et al. [28].

6. Signature splitting and Signature Inversion

Odd-even staggering in the rotational bands of odd-A [3], and odd-odd nuclei [13] is a commonly observed phenomenon and is linked to the signature quantum number. The Coriolis term in the Hamiltonian splits a given $\Delta I=1$ cascade into two $\Delta I=2$ bands, which are distinguished from each other by the signature quantum number α or r. When $\alpha = +1/2$, I=1/2, 5/2, 9/2... and when $\alpha = -1/2$, I=3/2, 7/2, 11/2... etc. The favored signature (or, the one lying lower in energy) is usually given by:

$$\alpha_{\rm f} = 1/2 \ (-1)^{(j-1/2)}. \tag{14}$$

for rotational bands in odd-A nuclei. This rule is useful to predict the phase of oscillations, and can be easily extended to the 2qp bands in odd-odd/even-even nuclei, where the favored signature is given by:

$$\alpha_{\rm f} = 1/2 \ (-1)^{(j_1 - 1/2)} + 1/2 \ (-1)^{(j_2 - 1/2)} \tag{15}$$

A similar empirical rule, which is an extension of the rule for 2qp bands [13, 29], can be devised to check the favored signature in high-K 3qp bands of odd-A nuclei. In such cases of 3qp bands, the favored spin is given by,

$$I_{f} = (j_{1} + j_{2} + j_{3}) \mod 2$$
(16)

and the favored signature is given by,

$$\alpha_{\rm f} = 1/2 \ (-1)^{(j_1 - 1/2)} + 1/2 \ (-1)^{(j_2 - 1/2)} + 1/2 \ (-1)^{(j_3 - 1/2)} \ (17)$$

where j_1 , j_2 , and j_3 are the angular momentum quantum numbers for the three particles. It may be remarked that j is generally not a good quantum number in deformed nuclei. However, most of these 3qp structures involve more than one, or, sometimes all three orbitals, which have high-j value. Such orbitals usually remain pure, and the corresponding j can be used in the expression given above. However, these rules are useful to predict only the phase of oscillations. Besides the signature splitting, many bands also display a phenomenon called the signature inversion. In this phenomenon, the levels of the favored signature lie lower in energy at lower spins but the levels of the other signature lie lower in energy beyond a certain angular momentum. This phenomenon has also been shown to be primarily due to higher order Coriolis effects in the case of 2qp bands in odd-odd nuclei [30]. However, no such quantitative calculations are reported for 3qp bands.

In the present compilation, we notice that there are 48 bands, which exhibit a signature splitting, and sometimes signature inversion also. In figure 3, we plot $\Delta E_{\gamma}(I) = E_{\gamma}(I+2 \rightarrow I+1) - E_{\gamma}(I+1 \rightarrow I)$ vs. I for six of the 48 cases; signature splitting and signature inversion is evident from these plots. It is not possible to draw any conclusion for those cases where only 3 or 4 transitions are known; these are not included in the 48 cases. Rule given by eq. (17) has been found to work in all the cases, and is helpful in testing the favored signature.

7. Conclusions

In this table, we present the experimental data extracted from the literature for those structures, which have been interpreted to have intrinsic 3qp character. Data are compiled for a total of 168 such bands in 55 nuclei in the region $153 \le A \le 187$. The level and transition energies, spins, parities, configuration assignments, lifetimes and other relevant parameters of 3qp bands are listed in the main Table. A good understanding of these bands and that of high-spin features such as t-band, high-K isomers, signature splitting, signature inversion, backbending, etc. can be obtained by using the various theoretical and semi-empirical approaches and generalization of the GM rules as briefly discussed in this work. However, a detailed understanding of the 3qp states and the rotational bands based on them in terms of the Coriolis effects and the residual interactions is yet to be achieved. Observation of predicted low-K members of a 3qp quadruplet, and hence confirmed identification of a complete 3qp quadruplet remains a challenge to the experimentalists.

Acknowledgements

We thank Prof. P.M. Walker for going through the manuscript, useful discussions and suggestions. Financial support from the Department of Science and Technology (DST, Govt. of India), the Department of Atomic Energy (DAE, Govt. of India), the International Atomic Energy Agency (IAEA, Vienna), the Natural Sciences and Engineering Research Council (NSERC, Canada), and the Office of Science, DOE of the United States is gratefully acknowledged.

References

- 1. K. Jain and A.K. Jain, Phys. Rev. C 45, 3013 (1992).
- 2. K. Jain, P.M. Walker and N. Rowley, Phys. Lett. B 322, 27 (1994).
- 3. A.K. Jain, R.K. Sheline, P.C. Sood and K. Jain, Rev. Mod. Phys. 62, 393 1990).
- K. Jain, O. Burglin, G.D. Dracoulis, B. Fabricius, N. Rowley and P.M. Walker, Nucl. Phys. A 591, 61 (1995).
- 5. A. Bohr and B.R. Mottelson, Nuclear Structure Vol. 2, (Benjamin, New York), 1975.
- 6. S. Frauendorf, Phys. Scripta 24, 349 (1981).
- 7. S. Frauendorf, Nucl. Phys. A 557, 259c (1993).
- P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibedi and A.E. Stuchbery, Phys. Rev. Lett. 67, 433 (1991).
- C.J. Pearson, P.M. Walker, C.S. Purry, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.G. Kondev, T. Shizuma, R.A. Bark, G. Sletten and S. Frauendorf, Phys. Rev. Lett. 79, 605 (1997) 605.
- 10. P. M. Walker and G.D. Dracoulis, Hyperfine Interactions 135, 83 (2001).
- K. Jain, P.M. Walker and P. Van Isacker, in: Proc. Eighth Int. Symposium of Capture Gamma-Ray Spectroscopy and Related Topics (Fribourg, 1993), Ed. J. Kern, (World Scientific, Singapore) 1994, page 281.
- 12. N.D. Newby Jr., Phys. Rev. 125, 2063 (1962).
- A. K. Jain, R.K. Sheline, D.M. Headly, P.C. Sood, D.G. Burke, I. Hrivnacova, J. Kvasil, D. Nosek and R.W. Hoff, Rev. Mod. Phys. 70, 843 (1998).
- 14. F.R. Xu, P.M. Walker, J.A. Sheikh and R. Wyss, Phys. Lett. B 435, 257 (1998).
- C.S. Purry, P.M. Walker, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.G. Kondev, C.J. Pearson, J.A. Sheikh and F.R. Xu., Nucl. Phys. A 672, 54 (2000).
- 16. R. Bengtsson and S. Frauendorf, Nucl. Phys. A 314, 27 (1979).
- 17. R. Bengtsson, S. Frauendorf and F.R. May, At. Nucl. Data Tables 35, 15 (1986).
- S.J. Gale, J. Simpson, M.A. Riley, J.F. Sharpey-Schafer, E.S. Paul, M.A. Bentley, A.M. Bruce, R.Chapman, R.M. Clark, S. Clarke, J. Copnell, D.M. Cullen, P. Fallon, A. Fitzpatrick, P.D. Forsyth, S.J. Freeman, P.M. Jones, M. J. Joyce, F. Liden, J.C. Lisle, A.O. Macchiavelli, A.G. Smith, J. F. Smith, J. Sweeney, D.M. Thompson, S. Warburton, J. N. Wilson and I. Ragnarsson, J. Phys.(London) G 21, 193 (1995).

- R.Vlastou, C.T. Papadopoulos, M. Serris, C.A. Kalfas, N. Fotiades, S. Harissopulos, S. Kossionides, J. F. Sharpey-Schafer, E.S. Paul, P.D. Forsyth, P.J. Nolan, N.D. Ward, M.A. Riley, J. Simpson, J.C. Lisle, P.M. Walker, M. Guttormsen and J. Rekstad, Nucl. Phys. A580, 133 (1994).
- P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibedi and A.E. Stuchbery, Nucl. Phys. A 568, 397 (1994).
- F.G. Kondev, G.D. Dracoulis, A.P Byrne, M. Dasgupta, T. Kibedi and G.J. Lane, Nucl. Phys. A 601, 195 (1996).
- M. Dasgupta, G.D. Dracoulis, P.M. Walker, A.P Byrne, T. Kibedi, F.G. Kondev, G.J. Lane and P.H. Regan, Phys. Rev. C 61, 044321 (2000).
- 23. F.G. Kondev, G.D. Dracoulis, A.P Byrne, T. Kibedi and S. Bayer, Nucl. Phys. A 617, 91 (1997).
- T. Shizuma, G. Sletten, R.A. Bark, I.G. Bearden, S. Leoni, M. Mattiuzzi, S. Mitarai, S.W. Odegard,
 S. Skoda, K. Strahle, J. Wrzesinski, and Y.R. Shimizu, Nucl. Phys. A 626, 760 (1997).
- 25. C.S. Purry, P.M. Walker, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.G. Kondev, C.J. Pearson, J.A. Sheikh, and F.R. Xu, Nucl. Phys. A 672, 54 (2000).
- 26. A.B. Migdal, Nucl. Phys. 13, 655 (1959).
- 27. R.A. Bark, G.B. Hagemann, B. Herskind, H.J. Jensen, W. Korten, J. Wrzesinski, H. Carlsson, M. Bergstrom, A. Brockstedt, A. Nordlund, H. Ryde, P. Bosetti, S. Leoni, F. Ingebretsen, and P.O. Tjom, Nucl. Phys. A 591, 265 (1995).
- 28. G.D. Dracoulis, F.G. Kondev, and P.M. Walker, Phys. Lett. B 419, 7 (1998).
- 29. Amita, Ph.D. Thesis, Indian Institute of Technology, Roorkee (Unpublished), 2001.
- 30. A. Goel and A.K. Jain, Nucl. Phys. A 620, 265 (1997).

FIGURE CAPTIONS

Figure 1: Chart of Z vs. N for the 3qp states included in this compilation. See the key (inset) for nomenclature of entries in each box.

Figure 2: A plot of the N-Z plane around the A \approx 180 mass region illustrating the occurrence of the 3qp isomers. The longest half-life is for ¹⁷⁷ Lu, with T_{1/2}=160.4 d. The only examples not shown are ¹⁵³Eu and ¹⁶³Er with T_{1/2}=475 ns and \leq 75 ns, respectively, which lie far from the A=180 mass region.

Figure 3: Plots of $\Delta E_{\gamma}(I) = E_{\gamma}(I+2 \rightarrow I+1) - E_{\gamma}(I+1 \rightarrow I)$ (MeV) vs. I for six of the 48 cases, which exhibit signature splitting and sometimes signature inversion, e.g. ¹⁵⁵Dy, ¹⁵⁷Ho, and ¹⁶³Er, exhibit signature inversion.

N→	8	8	8	89	!	90	ļ	91	9	2	ļ	93	9	94	l	95	9	6	97	
₆₃ Eu					1 19/2-	1.8 29/2-														
₆₄ Gd			1 21/2 ⁻	1.5 (45/2 ⁻)																
₆₅ Tb	2 23/2 ⁽⁺⁾ SS(1)	2.6 (51/2 ⁺)			1 27/2 ⁽⁺⁾	2.7 (79/2 ⁺)														
₆₆ Ду	-	-	25/2 ⁻ SS(1)	93/2 ⁻ SI(1)																
₆₇ п0			1	2.0	$\frac{23/2^{+}}{SS(1)}$	73/2 ⁺ SI(1)											(17/2 ⁺)	(37/2 ⁺)		
₆₈ Er			(23/2 ⁻) SS(1)	(53/2 ⁻) SI(1)	2	23	21/2 ⁻ SS(1)	(87/2-)							3/2 ⁺ SS(3)	75/2 ⁺ SI(1)	1	15		
69 I III	27/2 ⁺ SS(2)	73/2 ⁻ SI(2)	1	2.4			1	2.3							9	1.2	17/2 ⁻ SS(2)	(53/2 ⁻) SI(1)		
70 I D	2	2.3														. /	2	1.6	SS(1)	
Vh									25(2)	51(2)			55(1)		4 5/2 ⁺	1.7 (69/2 ⁺)			1 (3 (37/2 ⁻) (63	3.8) 5/2 ⁻)
₇₁ Lu	$1 \\ 25/2^+ \\ SS(1)$	2.4 45/2 ⁺							2 21/2 ⁺ SS(2)	2.4 69/2 ⁺ SI(2)			$1 27/2^+ SS(1)$	2.5 85/2 ⁺						
72 Hf											23/2-	67/2							$(15/2^+)$ (53) SS(1) SI	$\frac{3}{2}$
74W							23/2 ⁻ SS(1)	(59/2 ⁻) SI(1)			23/2 ⁻ SS(1)	(61/2 ⁻) SI(1)							2	17
₇₅ Re							1	1.9			1	1.8	(15/2) SS(1)	(39/2)						
76 U S													1	1.3	ŠS(1)	SI(1)				
Og							$\frac{1}{(21/2^{-})}$	1.7 (27/2 ⁻)							1 (25/2 ⁻)	2.3 (53/2 ⁻)				
77 Ir													2 (23/2 ⁻)	(37/2-)						
			T		Т		1		1		T		-				T		r	

No. of bands	E _{min} (MeV)
I ^π (min.)	$I^{\pi}(\max.)$
SS=Signature Splitting	SI=Signature Inversion

$N \rightarrow$	102	103	104	105	106	107	108	109	110	112
₇₀ Yb				$\begin{array}{ccc} 4 & 1.5 \\ 1/2^+ & 3/2^+ \end{array}$						
₇₁ Lu			$\begin{array}{ccc} 4 & 1.4 \\ (9/2^{+}) & 19/2^{+} \end{array}$		$\begin{array}{cccc} 15 & 1.0 \\ 7/2^+ & 37/2^- \end{array}$					
72 Hf		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{ccc} 3 & 1.3 \\ 19/2^{-} & 39/2^{+} \end{array}$	-	$\begin{array}{ccc} 6 & 1.1 \\ (17/2^{+}) & (37/2^{-}) \end{array}$)	$\begin{array}{ccc} 3 & 1.0 \\ (17/2^{+}) & (25/2^{-}) \end{array}$		
73Ta	$\begin{array}{ccc} 4 & 1.6 \\ 17/2^+ & (47/2) \\ SS(1) \\ \end{array}$	-	9 1.3 3/2 ⁻ (47/2 ⁺) SS(1)		4 1.3 21/2 ⁻ (41/2 ⁻) SS(1)		4 1.4 15/2 ⁻ 29/2 ⁻			1 1.3 21/2 ⁻
$_{74}W$		$\begin{array}{ccc} 2 & 1.6 \\ 19/2^+ & 37/2^+ \\ SS(1) & \end{array}$		$\begin{array}{ccc} 6 & 0.7 \\ (3/2)^+ & (53/2^-) \\ SS(1) & SI(1) \end{array}$)			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
75 Re	5 1.4 15/2 ⁺ (49/2 ⁺) SS(2))	$ \begin{array}{c} 5 & 1.3 \\ 15/2^{-} & (31/2^{+}) \\ SS(1) \\ \end{array} $		5 1.7 17/2 ⁺ 55/2 ⁻ SS(4)		$\begin{array}{c} 9 & 1.6 \\ (11/2^+) & 49/2^+ \\ SS(1) \end{array}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
76 O S				$ \begin{array}{ccc} 3 & 1.7 \\ 21/2^+ & 71/2^- \\ SS(2) \end{array} $	-	2 1.6 15/2 ⁻ (51/2 ⁻) SS(1) SI(1)		$ \begin{array}{ccc} 2 & 1.6 \\ 19/2^+ & (55/2^-) \\ SS(2) \end{array} $		
₇₇ Ir			$\begin{array}{ccc} 6 & 1.8 \\ 19/2^+ & (53/2^+) \\ SS(2) \\ \end{array}$							
₇₈ Pt						1 3.1 (33/2 ⁻) (47/2 ⁻) SS(1)				

Figure 1

Figure 2

Figure 3

POLICIES

Level Energies:	The listed level energies are taken from the first reference given for a						
	band. In some cases, the energy values are extracted from the ENSDF $\!/$						
	XUNDL database with the citation of the original source reference alone.						
	The two signature partners of a band are listed as one composite band.						
References:	The references are listed in a chronological order in terms of the						
	key numbers as assigned in the Nuclear Science References (NSR)						
	database at the Brookhaven National Laboratory, U.S.A						
Configuration	The Configurations given in the Table are those which are considered by the						
assignments:	original authors as the favored or the most probable.						

Explanation of Table

TABLE: Three-quasiparticle Rotational Bands

$^{A}_{Z}X_{N}$:	Denotes the specific nuclide with
	X Chemical symbol
	A Mass number
	Z Atomic number
	N Neutron number
	A single blank row marks the end of entries for each band. The number in the first
	column denotes band number.
E _{level} :	Level energy in units of keV. The energy in parentheses denotes a tentative level.
	Labels X and Y indicate that the excitation energy is unknown due to lack of
	knowledge about linking transitions to the lower levels. The level energies are
	extracted from the original references or taken from the ENSDF or the XUNDL
	database, where it is not given in the original reference(s).
I^{π} :	Denotes the level spin for each band member. π denotes the parity (+,
	or $-$). I ^{π} in parentheses denotes tentative spin and/or parity assignment.
$E_{\gamma}(M1)$:	γ -transition energy in units of keV for M1 (I \rightarrow I -1) transition.
	The energy in parentheses denotes a tentative transition.
$E_{\gamma}(E2)$:	γ -transition energy in units of keV for E2 (I \rightarrow I –2) transition.
	The energy in parentheses denotes a tentative transition.
ENSDF:	Evaluated Nuclear Structure Data File database at www.nndc.bnl.gov
XUNDL:	Experimental Unevaluated Nuclear Data List database at www.nndc.bnl.gov
Exp. :	denotes Experimental
gsb :	denotes the ground state band
B(M1)/B(E2)	: The ratio of reduced transition probabilities in units of $(\mu_N/eb)^2$ given with the
	uncertainties in the last digits in parentheses. In cases, where only the plots of
	these values are given in the original papers, the numerical values have been read
	from these plots and suitably rounded. When neither numerical values nor plots
	are available, these ratios have been deduced in the present work by using the
	Kotational Model formulae, the experimental gamma-ray energies, and intensities. The E^2/M^1 mixing ratio obtained from the Datational Model formula is used in
	these calculations
	The values of $\left \alpha \alpha \right $ are given with the uncertainties in the last digits in
gk-gr	$ g_{K}-g_{R} $ are given with the uncertainties in the last digits in parentheses. In cases, where only the plots of these values are given in the original
	papers the numerical values have been read from these plots and suitably rounded
	When neither numerical values nor plots are available these ratios have been
	deduced in the present work by using the Rotational Model formula Intrinsic
	and a subscription of a structure of the structure of th
	ratio obtained from the Rotational Model formula are used in these calculations.
References:	The references follow key numbers as assigned in the Nuclear Science References
	(NSR) database at the Brookhaven National Laboratory, USA. The data for a band

have been taken from the first reference cited in boldface. Information taken from other references is given under the column "Configuration and Comments".

- Configuration The quasiparticle configuration for a band is listed. π stands for protons and v stands and Comments: for neutrons. Nilsson quantum numbers are used to label the orbitals. It is customary in the literature to use labels such as A, B, C, etc. for quasineutrons and A_p, B_p, C_p, etc. for quasiprotons to denote the high-j orbitals. However, different authors use quite different notations. Explicit Nilsson configurations are, therefore, given in the table along with the notations used by the authors of the original papers.
- Backbending: In a rotational band, the transition energies increase with increase in spins reflecting the I(I+1) behavior, but in some cases e.g. ¹⁸¹Ir, band 5, the moment of inertia increases drastically after the spin (33/2⁻). This phenomenon is known as backbending and is usually attributed to the crossing of two rotational bands due to the alignment of a pair of either kind of quasiparticles.
- Signature Split: For rotational bands with $\Delta I= 1$ between successive members, the members belong to different signatures. When odd-even staggering in energy occurs in a band, the term "signature split" is used. Signature splitting arises basically due to Coriolis coupling.
- Signature Whenever an expected favored signature becomes unfavored at higher spins i.e. a
- Inversion signature branch, which is expected to be lower in energy, becomes higher in energy; the term signature inversion is used.

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B(M1)/B(E2)	Reference	Configuration and Comments
	keV		keV	keV		$(\mu_N/eb)^2$		
1	1771.6	19/2-					2000SM09	1. π: 5/2[413]
	1971.5	21/2	200.1					v: 3/2[651]⊗11/2[505]
	2182.7	23/2-	211.2	411.3	0.383(49)			or π : 5/2[413]
	2402.0	25/2-	219.3	430.5	0.396(91)			v: 3/2[402]⊗11/2[505]
	2627.2	$27/2^{-1}$	225.2	444.5	0.330(89)			or a mixture of both.
	2859.2	29/2-	232.0	457.6				 Nuclear Reaction: ¹⁵⁰Nd(⁷Li, 4n)¹⁵³Eu E=35 MeV. Half-life of bandhead is 475(10) ns. Negative sign of average value of (g_K-g_R)/Q₀ with g_R =0.40(4) gives g_K = 0.02(5). Assumed Q₀ = 6.6(5) eb. The g_K-g_R values read from plot.

 $^{153}_{64}Gd_{89}$

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	ĸev		keV	keV	$(\mu_N/eb)^2$		
1	1520.3	21/2-				2002BR52	1. For $\alpha = \pm 1/2$ signature:
	1902.9	25/2-		382.7			$v: 3/2[521](\alpha = +1/2)$
	2361.5	29/2-		458.5			$\otimes 3/2[651](\alpha = +1/2)$
	2884.4	33/2-		523.2			$\otimes 3/2[651](\alpha = -1/2)$
	3471.2	$(37/2^{-})$		586.3			2. Nuclear Reaction:
	4124.2	(41/2)		653			124 Sn(36 S, α 3n) 153 Gd
	4841.2	$(45/2^{-})$		717			E=165 MeV.
							 Mixing of lowest lying spin members with octupole vibrat- ional band is suggested.

 $^{153}_{65} Tb_{88}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	2611.8	$27/2^{+}$				1998HA37	1. Competing configurations are:
	2952.3	$31/2^{+}$		340.5			$A_p \otimes AF$ or $B_p \otimes AE$
	3472.4	$35/2^+$		520.1			$A_p = 7/2[523](\alpha = -1/2)$
	4111.1	$39/2^{+}$		638.7			$B_p = 7/2[523](\alpha = +1/2)$
	4837.4	$(43/2^{+})$		726.3			$A=3/2[651](\alpha=+1/2)$
	5633.4	$(47/2^{+})$		796.0			$F=3/2[521](\alpha=-1/2)$
	(6486.4)	$(51/2^+)$		(853)			$E=3/2[521](\alpha=+1/2)$
							2. Nuclear Reaction: ¹³⁹ La (¹⁸ O, 4n) ¹⁵³ Tb E=100 MeV.

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
2	2613.9	$23/2^{(+)}$				1998HA37	1. Competing configurations are:
	2706.5	$25/2^{(+)}$					For $\alpha = +1/2$ signature:
	2829.9	$27/2^{(+)}$	124	216.0	0.050(5)		$A_p \otimes AX$ or $B_p \otimes AY$
	2990.8	$29/2^{(+)}$	161	284.3	0.040(4)		For $\alpha = -1/2$ signature:
	3186.1	$31/2^{(+)}$	196	356.2	0.070(7)		$A_p \otimes AY$ or $B_p \otimes AX$
	3414.5	$33/2^{(+)}$	228	423.7	0.110(11)		$A_p = 7/2[523](\alpha = -1/2)$
	3672.2	$35/2^{(+)}$	258	486.1	0.10(1)		$B_p = 7/2[523](\alpha = +1/2)$
	3958.2	$37/2^{(+)}$		543.7			$A=3/2[651](\alpha=+1/2)$
	4268.4	39/2(+)		596.2			$X=11/2[505](\alpha=+1/2)$
	4601.9	$41/2^{(+)}$		643.7			$Y=11/2[505](\alpha = -1/2)$
	4956.1	$43/2^{(+)}$		687.7			2. Small signature splitting.
	5330.9	$(45/2^+)$		729			3. The $B(M1)/B(E2)$ values
	(5722.1)	(47/2 ⁺)		(766)			read from plot assuming 10% error.

 $^{155}_{65}Tb_{90}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	2745.2	$27/2^{(+)}$				1998HA54	1. For $\alpha = -1/2$ signature:
	3104.5	$31/2^{(+)}$		359.3			π : 7/2[523](α =-1/2)
	3571.7	$35/2^{(+)}$		467.2			v: $3/2[651](\alpha = +1/2)$
	4130.1	$(39/2^{+})$		558.4			$\otimes 3/2[521](\alpha = -1/2)$
	4762.1	$(43/2^{+})$		632.0			2. Nuclear Reaction:
	5453	$(47/2^{+})$		691			¹²⁴ Sn(³⁶ S, p4n) ¹⁵⁵ Tb
	6190	$(51/2^{+})$		737			E=165 MeV.
	6970	$(55/2^+)$		780			3. BC and B_pC_p band cross-
	7793	$(59/2^+)$		823			ings are suggested at $\eta\omega_c$
	8662	$(63/2^+)$		869			= 0.38(1) and $0.47(1)$ MeV
	9569	$(67/2^+)$		907			respectively.
	10503	$(71/2^{+})$		934			$B=3/2[651](\alpha=-1/2)$
	11481	$(75/2^{+})$		978			$C=1/2[660](\alpha = +1/2)$
	(12513)	$(79/2^{+})$		(1032)			$B_p = 7/2[523](\alpha = +1/2)$
							$C_p = 5/2[532](\alpha = -1/2)$

155	Б
155	$Dv_{}$
66	J 89

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2012.5	25/2-				1994VL02	1. For $\alpha = \pm 1/2$ signature:
	2475.8	29/2-		463.7			$v: 3/2[521](\alpha = +1/2)$
	2990.5	33/2-		514.6			$\otimes 1/2[660](\alpha = +1/2)$
	3304.5	35/2-					$\otimes 1/2[660](\alpha = -1/2)$
	3556.5	37/2-		566.1			For $\alpha = -1/2$ signature:
	3912.6	39/2-		607			$v: 3/2[521](\alpha = -1/2)$
	4180.4	41/2-		623.9			$\otimes 1/2[660](\alpha = +1/2)$
	4574.4	43/2-		661.8			$\otimes 1/2[660](\alpha = -1/2)$
	4866.0	45/2-		685.6			2. Nuclear reactions:
	5290.2	47/2-		715.8			(a) 124 Sn (36 S, 5n) 155 Dy
	5610.4	49/2		744.4			E=155 MeV.
	6062.3	51/2-		772.1			(b) 156 Gd (3 He, 4n) 155 Dy
	6405.4	53/2-		795.0			E=39 MeV.
	6892.6	55/2-		830.3			3. Shows band termination
	7241.6	57/2-		836.2			phenomenon.
	7778.4	59/2		885.8			4. Strong signature splitting
	8109.9	$61/2^{-1}$		868.3			with signature inversion at
	8696.8	63/2		918.4			at $I = /5/2$.
	9008.2	65/2		898.3			5. At higher frequencies $A_p B_p$
	9624.8	6//2		928			crossing is suggested.
	9965.5	69/2		957.3			$A_p = 1/2[523](\alpha = +1/2)$
	10520.0	71/2		896.2			$B_p = \frac{1}{2} [523](\alpha = -1/2)$
	109/3	13/2		1007			6. Comparison of level energies
	11451.0	15/2		930			with ENSDF has been done.
	12401.0	70/2-		999.0			
	12401.0	19/2 01/2		(930)			
	123/20	01/2 83/2-		$(0.12 \ 0)$			
	14042	85/2		1057			
	14042	87/2		(1125)			
	15161	89/2-		1119			
	15637	$91/2^{-1}$		(1168)			
	16347	93/2-		(1186)			
	10517) <u>) , </u>		(1100)			

$^{157}_{67}Ho_{90}$

E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1 2270.3	$23/2^{+}$					1992RA17	1. For $\alpha = +1/2$ signature:
2369.5	$25/2^{+}$	99.3					$A_n \otimes AX$
2513.5	$27/2^{+}$	144.0	243.2	0.04(1)	0.45(4)		For $\alpha = -1/2$ signature:
2692.8	$29/2^{+}$	179.3	323.3	0.02(1)	0.223(19)		A _p ⊗AY
2903.5	$31/2^{+}$	210.7	390.0	0.02(1)	0.194(15)		$A_{p}^{r} = 7/2[523](\alpha = -1/2)$
3142.5	$33/2^{+}$	239.0	449.7	0.04(1)	0.129(14)		$A=3/2[651](\alpha=+1/2)$
3406.9	$35/2^{+}$	264.5	503.4	0.05(3)	0.096(16)		$X=11/2[505](\alpha=+1/2)$
3695.1	$37/2^{+}$	288.1	552.6	0.06(6)	0.063(13)		$Y=11/2[505](\alpha = -1/2)$
4003.7	$39/2^{+}$	(308.7)	596.8	0.04(4)	0.11(3)		2. Nuclear Reaction:
4330.7	$41/2^{+}$	(327.0)	635.6	0.03(3)	0.12(3)		¹²⁴ Sn (³⁷ Cl, 4n) ¹⁵⁷ Ho
4673.7	$43/2^{+}$	(343.0)	670.0	0.04(4)	0.10(3)		E=155 MeV and
5031.9	$45/2^{+}$		701.2				E=165 MeV.
5399.3	47/2+		725.6				3. Band 1 and band 2 cross
5777.0	49/2+		745.1				each other at least 3 times.
6163.1	51/2		763.8				4. BC crossing at $\eta\omega_c=0.37$
6557.3	53/2		780.3				MeV is suggested.
6961.0	55/2		798.0				$B=3/2[651](\alpha = -1/2)$
7377.7	57/2		820.4				$C=1/2[660](\alpha = +1/2)$
7808.3	59/2		847.3				5. The $ g_K - g_R $ values deduced
8252.5	$61/2^{+}$		874.8				in the present work.
8/13.6	(63/2)		905.3				6. Assumed $Q_0 = 5.5$ eb.
9192.5	$(67/2^+)$		940.0				
10203 4	(07/2) $(60/2^{+})$		9/4.0				
(10734.9)	$(09/2^{+})$		(1046.6)				
11280.6	$(73/2^+)$		1077 2				
11200.0	(13/2)		1077.2				
2 2367.6	$25/2^{+}$					1992RA17	1. For $\alpha = +1/2$ signature:
2554.8	$27/2^{+}$	187.2					A _p ⊗AE
2721.0	$29/2^{+}$	166.2	353.4	0.12(1)	1.51(22)		For $\alpha = -1/2$ signature:
2928.0	$31/2^{+}$	207.0	373.2	0.10(1)	0.67(4)		$B_p \otimes AE$ or $A_p \otimes AF$
3164.2	$33/2^{+}$	236.3	443.3	0.10(1)	0.52(4)		$A_p = 7/2[523](\alpha = -1/2)$
3408.4	$35/2^+$	244.1	480.4	0.13(1)	0.63(5)		$B_p = 7/2[523](\alpha = +1/2)$
3710.8	$37/2^+$	302.4	546.5	0.13(1)	0.59(5)		$A=3/2[651](\alpha=+1/2)$
3994.5	$39/2^{+}$	283.8	586.2	0.17(1)	0.68(6)		$E=3/2[521](\alpha=+1/2)$
4340.2	$41/2^{+}$	345.6	629.4	0.18(2)	0.78(12)		$F=3/2[521](\alpha=-1/2)$
4684.2	$43/2^{+}$	344.0	689.7	0.17(1)	0.65(10)		2. Strong signature splitting
5029.4	45/2+	345.3	689.3	0.08(10)	0.25(25)		with signature inversion
5418.3	$47/2^{+}$	388.9	734.1	0.13(1)	0.42(8)		inversion at $I = 43/2^+$.
5763.9	49/2+	345.6	734.4	0.27(3)	1.1(3)		3. Band 2 and band 1 cross
6176.6	51/2+	412.8	758.3	0.22(1)	0.78(10)		each other at least 3 times.
6530.5	53/2	353.9	766.6	0.22(1)	0.72(11)		4. BC crossing at $\eta\omega_c=0.37$
6970.8	55/2 57/2	440.4	794.2	0.24(2)	0.86(15)		MeV is suggested.
7336.2	57/2	365.3	805.7	0.23(1)	0.72(11)		$B=3/2[651](\alpha = -1/2)$
/810.6	59/2 ⁺		839.8				$C=1/2[660](\alpha = +1/2)$
8193.6	$\frac{61}{2}$		857.5				5. Assumed $Q_0 = 5.5$ eb.
8/08.2	03/2 65/2 ⁺		897.6 015.5				b. The $ g_K - g_R $ values deduced
9108.0	$(67/2^+)$		915.5				in the present work.
90/U./ 10078 0	(0/2)		902.3				
100/0.0	$(71/2^+)$		10126				
11088 3	$73/2^+$		1002.0				
11000.5	1512		1007.5				

163 67	Ho ₉₆
07	70

1 1504.9 $(17/2^+)$ $2004H019$ $1. \pi: 7/2[523]$ 1627.1 $(19/2^+)$ 122.2 $v: 5/2[642] \otimes 5/2[523]$ 1767.1 $(21/2^+)$ 140.0 $2.$ Nuclear Reaction: 1924.0 $(23/2^+)$ 156.9 296.8 $1^{60}Gd(^{11}B, \alpha 4n)^{163}Ho$ 2097.9 $(25/2^+)$ 173.9 331.2 $E= 61MeV.$ 2288.4 $(27/2^+)$ 190.5 364.3 $E= 61MeV.$ 2495.0 $(29/2^+)$ 206.6 397.1 2717.4 $(31/2^+)$ 222.4 429.4 2955.2 $(33/2^+)$ 237.8 459.8 459.8 459.8		E _{level} keV	I^{π}	$E_{\gamma}(M1)$	E _γ (E2) keV	B(M1)/B(E2)	Reference	Configuration and Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	keV 1504.9 1627.1 1767.1 1924.0 2097.9 2288.4 2495.0 2717.4 2955.2 3208.2 3474.2	$(17/2^+) (19/2^+) (21/2^+) (23/2^+) (25/2^+) (25/2^+) (27/2^+) (29/2^+) (31/2^+) (33/2^+) (35/2^+) (35/2^+) (37/2^+) (37/2^+)$	keV 122.2 140.0 156.9 173.9 190.5 206.6 222.4 237.8 253.0 (266.0)	keV 296.8 331.2 364.3 397.1 429.4 459.8 491.2 (519)	(µ _N /eb) ²	2004HO19	 π: 7/2[523] v: 5/2[642]⊗5/2[523] Nuclear Reaction: ¹⁶⁰Gd (¹¹B, α4n)¹⁶³Ho E= 61MeV.

 $^{157}_{68} Er_{89}$

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	кеч		keV	keV	(µ _N /eb)²		
1	2395.7+X	$(23/2^{-})$				1995GA13	1. For $\alpha = \pm 1/2$ signature:
	2500.5+X	$(25/2^{-})$	104.8				π : 7/2[523](α = -1/2)
	2649.4+X	$(27/2^{-})$	148.9	254.1			$\otimes 7/2[404](\alpha = +1/2)$
	2842.3+X	$(29/2^{-})$	192.9	342.2	3.8(6)		v: $3/2[651](\alpha = +1/2)$
	3067.7+X	$(31/2^{-})$	225.4	418.3			For $\alpha = -1/2$ signature:
	3328.9+X	$(33/2^{-})$	261.2	486.7	4.9(6)		$\pi: 7/2[523](\alpha = -1/2)$
	3614.2+X	$(35/2^{-})$	285.3	544.9	3.7(4)		$\otimes 7/2[404](\alpha = -1/2)$
	3922.1+X	$(37/2^{-})$	307.9	593.2	3.5(4)		v: $3/2[651](\alpha = +1/2)$
	4254.1+X	$(39/2^{-})$	332.0	639.9	3.6(5)		2. Nuclear Reaction:
	4602.0+X	(41/2)	347.9	679.9	2.9(6)		114 Cd (48 Ca, 5n) 157 Er
	4972.2+X	$(43/2^{-})$	370.4	717.8	3.1(6)		E=210 MeV.
	5350.6+X	(45/2)	378.1	748.6	3.5(6)		3. Signature splitting with
	5752.5+X	$(47/2^{-})$	401.9	780.9	2.5(5)		signature inversion at $I=37/2^{-1}$.
	6158.4+X	(49/2)	405.9	807.8			4. BC crossing at $\eta \omega_c = 0.4$ MeV is
	6581.8+X	$(51/2^{-})$	423.2	829.0			expected.
	7006.5+X	(53/2-)		848.0			$B=3/2[651](\alpha = -1/2)$ C=1/2[660](\alpha = +1/2)
							5. All level energies are relative to
							the $13/2^+$ state at 0+X, where
							X≥180 keV.

 $^{159}_{68} Er_{91}$

	E _{level} keV	Ι ^π	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(u_N/eb)^2}$	Reference	Configuration and Comments
1	2293	21/2-				1998SI03	1. For $\alpha = +1/2$ signature:
	2394	$23/2^{-1}$					π : 7/2[523](α = -1/2)
	2523	25/2-	131				$\otimes 7/2[404](\alpha = +1/2)$
	2689	$27/2^{-1}$	163	294			v: $3/2[651](\alpha = +1/2)$
	2883	29/2-	194	359			For $\alpha = -1/2$ signature:
	3106	31/2	223	417			$\pi \cdot 7/2[523](\alpha = -1/2)$
	3356	33/2-	250	473	2.03(8)		$\otimes 7/2[404](\alpha = -1/2)$
	3629	35/2-	274	523	2.00(0) 2.10(1)		$v: 3/2[651](\alpha = +1/2)$
	3923	37/2-	294	567	1.80(8)		2 Nuclear Reaction:
	4236	39/2-	313	607	1.45		116 Cd (48 Ca 5n) 159 Er
	4564	$41/2^{-1}$	328	641	1.30(1)		E=215 MeV
	4906	$43/2^{-1}$	342	669	1.40		3 BC band crossing at $n\omega_{c}$
	5256	45/2	351	692			=0.33 MeV is suggested.
	5615	$47/2^{-1}$	359	710			$B=3/2[651]((\alpha = -1/2))$
	5980	49/2	364	723	1.37(1)		$C=1/2[660]((\alpha = +1/2))$
	6350	$51/2^{-1}$	371	735	1.0 / (1)		4 Level energies are adoped
	6729	53/2	379	749	1.48(1)		from ENSDF.
	7117	55/2-	388	767	1.60(15)		5. Strong signature splitting
	7519	57/2-	402	790	1.35(10)		at higher spins.
	7934	59/2 ⁻	415	816			6. The $B(M1)/B(E2)$ values
	8365	61/2-	432	846	1.32(10)		read from plot.
	8812	63/2-	447	878	1.30(15)		
	9276	$(65/2^{-})$	464	911			
	9757	$(67/2^{-})$	481	945	1.21(20)		
	10255	(69/2)	499	979	1.10(18)		
	10768	$(71/2^{-})$	513	1012			
	11300	$(73/2^{-})$	532	1044			
	11843	$(75/2^{-})$	543	1074			
	12411	(77/2)	568	1112			
	12969	(79/2)	558	1126			
	13553	(81/2)		1142			
	14134	(83/2)		1165			
	14747	(85/2)		1194			
	15342	(87/2)		1209			

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1	1214.6	$17/2^{+}$				1997HA23	1. Tentative configuration is:
	1352.8	19/2+					For $\alpha = +1/2$ signature:
	1529.8	21/2		315.2			v: $5/2[642](\alpha = +1/2)$
	1717.2	23/2+		364.5			$\otimes 5/2[523](\alpha = +1/2)$
	1932.0	25/2		402.2			$\otimes 3/2[521](\alpha = -1/2)$
	2167.6	27/2+		450.5			For $\alpha = -1/2$ signature:
	2415.6	29/2		483.6			v: $5/2[642](\alpha = +1/2)$
	2698.7	$31/2^+$		531.1			$\otimes 5/2[523](\alpha = +1/2)$
	2967.4	$33/2^+$		551.8			$\otimes 3/2[521](\alpha = +1/2)$
	3299.2	35/2+		600.5			2. Nuclear Reaction:
	3530.5	37/2		563.1			130 Nd (18 O, 5n) 103 Er
	3952.1	39/2 ⁺		652.9			E=8/MeV.
	4149.9	41/2 $42/2^+$		619.4			3. BC band crossing is
	4045.5	45/2 45/2 ⁺		675.1			Is suggested. D = 5/2[(42](m = -1/2)]
	4823.0	43/2 47/2 ⁺		720.2			$B=5/2[642](\alpha = -1/2)$
	5552 1	4 //2 40/2 ⁺		729.2			$C=3/2[651](\alpha = +1/2)$
	61467	49/2 51/2 ⁺		726.1			4. Strong signature spitting.
	6336.4	$53/2^+$		783.3			
	6977.8	$55/2^+$		831.1			
	7175.7	$57/2^+$		839.3			
	8067.4	$61/2^{+}$		891.6			
	9001.9	$65/2^+$		934.2			
2	1538.8	3/2+				1982VY07	 Tentative configuration is: π : 7/2[523]⊗1/2[411] v: 5/2[523] Decay study. Level energy is adopted from ENSDF.
3	1607.4	$21/2^+$				1997HA23	For $\alpha = +1/2$ signature:
	2044.2	25/2		436.7			v: $5/2[642](\alpha = +1/2)$
	2540.9	29/2		496.8			$\otimes 5/2[523](\alpha = -1/2)$
	30/4.1	$\frac{33}{2}^{+}$		533.1			$\otimes 3/2[521](\alpha = +1/2)$
	2000.0 1226.2	$\frac{57}{2}$		655.6			
	5017.3	$\frac{41}{2}$		681.1			
	5738.2	$49/2^+$		721.0			
	6521.0	$53/2^+$		782.8			
	7349.0	$57/2^{+}$		828.0			
	8196.1	$61/2^{+}$		847.1			
	9106.3	$65/2^+$		910.1			
	10076.6	$69/2^{+}$		970.3			

 $^{163}_{68} Er_{95}$

	E _{level} keV	I^{π}	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
4	1801.6	3/2+					1982VY07	 Tentative configuration is: π : 7/2[523]⊗1/2[411] v: 5/2[523] Decay study. Level energy is adopted from ENSDF.
5	1845.6 1962.0 2104.7 2271.5 2461.4 2673.1 2905.8 3158.1 3429.1 3718.3 4024.1 4346.9 4684.0 5038.3 5404.0 5784.0 6174.6 6573.1 6989.1 7414.0 7832.4 8306.8 8698.3 9608.3 10570.3	19/2 ⁻ 21/2 ⁻ 23/2 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 45/2 ⁻ 47/2 ⁻ 49/2 ⁻ 51/2 ⁻ 55/2 ⁻ 57/2 ⁻ 59/2 ⁻ 61/2 ⁻ 63/2 ⁻ 67/2 ⁻ 71/2 ⁻	116.4 142.7 166.7 190.0 211.8 232.7 252.3 271.0 289.1 305.7 322.8 337.1 354.2 365.4 380.1 390.3 398.4 415.9	259.1 309.9 356.7 401.7 444.1 485.1 523.2 560.3 595.1 628.9 659.7 691.4 720.2 745.7 770.8 789.0 814.6 840.9 843.3 892.8 865.9 910.0 962.0	$\begin{array}{c} 0.42(7)\\ 0.40(9)\\ 0.37(5)\\ 0.38(7)\\ 0.41(6)\\ 0.42(6)\\ 0.35(9)\\ 0.36(5)\\ 0.50(14) \end{array}$	$\begin{array}{c} 2.74(87)\\ 2.04(36)\\ 1.59(22)\\ 1.53(31)\\ 1.62(18)\\ 1.62(36)\\ 1.08(45)\\ 1.05(13)\\ 2.00(72) \end{array}$	1997HA23 1994BR09	1. For $\alpha = -1/2$ signature: π : 7/2[523]($\alpha = +1/2$) \otimes 7/2[404]($\alpha = +1/2$) v: 5/2[642]($\alpha = +1/2$) For $\alpha = +1/2$ signature: π : 7/2[523]($\alpha = -1/2$) \otimes 7/2[404]($\alpha = +1/2$) v: 5/2[642]($\alpha = +1/2$) 2. It is explained as a Tilted rotational band with $\varepsilon_2=0.252$, $\varepsilon_4 = -0.004$. 3. Half-life of band head is \leq 75 ns. 4. BC band crossing is suggested. $B=5/2[642](\alpha = -1/2)$ $C=3/2[651](\alpha = +1/2)$ 5. The B(M1)/B(E2) values read from plot shown in 1994BR09. 6. Assumed $Q_0 = 7$ eb. 7. The $ g_K-g_R $ values deduced in the present work.
6	1982.9 2144.8 2332.2 2542.6 2773.2 3022.6 3289.2 3571.2 3867.6 4176.4 4496.5 4821.9 5183.3 5537.6 5906.0 6288.2 6682.8 7090.8 7518.4 7955.0	$\begin{array}{c} 19/2^+\\ 21/2^+\\ 23/2^+\\ 25/2^+\\ 27/2^+\\ 31/2^+\\ 33/2^+\\ 35/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ 43/2^+\\ 45/2^+\\ 45/2^+\\ 47/2^+\\ 49/2^+\\ 51/2^+\\ 53/2^+\\ 55/2^+\\ 57/2^+\\ 57/2^+\\ \end{array}$	162.0 187.5 210.3 230.5 249.4 266.5 281.9 296.3 308.8 319.7 325.5 361.0 354.2 368.4 382.4 394.5	349.0 398.0 441.2 480.1 516.1 548.6 578.6 605.1 629.1 645.4 686.9 716.9 722.8 750.4 776.9 802.6 835.6 864.2	0.19(2) 0.20(5) 0.21(4) 0.29(7) 0.26(6) 0.24(6) 0.34(7)	1.58(58) 1.09(42) 0.81(31) 1.22(51) 0.85(36) 0.67(31) 1.21(58)	1997HA23 1994BR09	1. For $\alpha = -1/2$ signature: v: 11/2[505]($\alpha = +1/2$) $\otimes 5/2[642](\alpha = +1/2)$ $\otimes 3/2[521](\alpha = +1/2)$ For $\alpha = +1/2$ signature: v: 11/2[505]($\alpha = -1/2$) $\otimes 5/2[642](\alpha = +1/2)$ $\otimes 3/2[521](\alpha = +1/2)$ 2. The B(M1)/B(E2) values read from plot shown in 1994BR09. 3. Assumed Q ₀ = 7 eb. 4. The $ g_{K}-g_{R} $ values deduced in the present work.

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (u _N /eb) ²	Reference	Configuration and Comments
7	2120.5	$19/2^{+}$				(PIN, CC)	1997HA23	1 For $\alpha = -1/2$ signature:
	2314.2	$21/2^{+}$	193.7					π : 7/2[523](α = +1/2)
	2524.2	$23/2^{+}$	210.3	403.4	0.28(20)	2.10(55)		$\otimes 7/2[404](\alpha = +1/2)$
	2749.0	$25/2^{+}$	225.4	434.5	0.29(9)	1.75(33)		v: $5/2[523](\alpha = +1/2)$
	2987.3	$27/2^{+}$	238.3	463.0	0.32(2)	1.50(44)		For $\alpha = +1/2$ signature:
	3236.6	$29/2^{+}$	249.4	487.7	0.38(3)	1.80(33)		$\pi: 7/2[523](\alpha = -1/2)$
	3495.0	$31/2^{+}$	258.4	507.3	0.35(1)	1.30(11)		$\otimes 7/2[404](\alpha = +1/2)$
	3758.8	$33/2^{+}$	263.7	522.3	0.40(1)	1.30(24)		v: $5/2[523](\alpha = +1/2)$
	4025.3	$35/2^+$	266.3	530.4	0.31(1)	1.60(13)		2. Signature splitting after the
	4293.0	$37/2^{+}$	267.7	534.1	0.32(1)	3.62		band crossing.
	4564.8	$39/2^{+}$	271.7	539.5	0.52(3)	3.30(16)		3. AB band crossing is suggested
	4851.0	$41/2^{+}$	286.1	558.3	0.42(2)	3.63(66)		$A=5/2[642](\alpha=+1/2)$
	5124.4	$43/2^{+}$	273.4	559.7	0.69(2)			$B=5/2[642](\alpha=-1/2)$
	5428.1	$45/2^{+}$	303.7	577.2	0.76(4)			4. The $B(M1)/B(E2)$ values read
	5745.3	47/2+	317.1	621.0	0.49(1)	2.40(11)		from plot.
	6077.2	$49/2^{+}$	331.9	649.4	0.59(2)	2.70(13)		5. Assumed $Q_0 = 7$ eb.
	6426.9	51/2	349.5	681.8	0.58(2)	2.80(33)		6. The $ g_{K}-g_{R} $ values deduced
	6792.3	53/2	365.4	715.1	0.50(2)	2.37(13)		in the present work.
	7173.7	55/2	381.4	746.9	0.60(2)	2.50(16)		
	/5/4.1	$5 1/2^{+}$	400.0	/81.9	0.3/(1)	1.80(16)		
	7988.4 8420.1	59/2 61/2 ⁺	414.1	815.0 846.6	0.81(4) 0.83(4)	2.40(52)		
	8866.7	$\frac{01/2}{63/2^+}$	431.0	878.6	0.83(4)	2 00(38)		
	9330.3	$65/2^+$	440.0	910.2	0.55(2)	2.00(38)		
	9806 3	$\frac{67}{2^+}$		939 7				
	10300.0	$69/2^+$		969.6				
	10808.5	$71/2^+$		1002.2				
	11325.0	$73/2^{+}$		1025.1				
	11869.8	75/2+		1061.3				
8	2418.0	27/2-					1997HA23	1. Tentative configuration is:
	2890.5	31/2-		472.5				v: $5/2[523](\alpha = +1/2)$
	3434.7	35/2-		544.1				$\otimes 5/2[642](\alpha = +1/2)$
	4037.0	39/2-		602.3				$\otimes 3/2[651](\alpha = +1/2)$
	4686.4	43/2		649.4				
	5387.5	47/2		701.1				
	6145.0	51/2		/5/.5				
	0930.0 7722.0	33/2 50/2-		791.0 707.0				
	8551 9	59/2 63/2-		171.9 817 0				
	0331.0 0440 7	67/2		01/.9 888 0				
	10380.2	71/2		939 5				
	11377 7	75/2		997 5				
	11011.1	1012		JJ1.J				

163	E
68	L_{95}

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
9	2630.2	$(29/2^{+})$				1997HA23	1. Tentative configuration is:
	2912.7	$(31/2^{+})$					For $\alpha = +1/2$ signature:
	3214.9	$(33/2^{+})$		585.1			BEG/BFH
	3469.6	$(35/2^+)$		556.9			For $\alpha = -1/2$ signature:
	3809.9	$(37/2^+)$		595.2			BEH/BFG
	4067.8	$(39/2^{+})$		598.2			$B=5/2[642](\alpha=-1/2)$
	4438.8	$(41/2^{+})$		629.0			$E=5/2[523](\alpha=+1/2)$
	4700.3	$(43/2^{+})$		632.5			$G=3/2[521](\alpha=+1/2)$
	5089.0	$(45/2^+)$		650.4			$F=5/2[523](\alpha = -1/2)$
	5407.5	$(47/2^+)$		707.2			$H=3/2[521](\alpha=-1/2)$
	5802.6	$(49/2^{+})$		713.7			2. BC band crossing is suggested.
	6189.1	$(51/2^+)$		781.6			$B=5/2[642](\alpha=-1/2)$
	6562.3	$(53/2^+)$		759.7			$C=3/2[651](\alpha=+1/2)$
	7020.9	$(55/2^+)$		831.8			3. Signature splitting with
	7322.9	$(57/2^+)$		760.5			signature inversion at $I=53/2^+$.
	8127.9	$(61/2^+)$		805.0			4. The cross band transitions
	8986.9	$(65/2^+)$		858.8			too weak to determine
	9909.5	$(69/2^+)$		922.4			DCO ratios, so uncertainty of
	10909.1	$(73/2^{+})$		999.6			1 or 2 units in spin values of
							$\alpha = +1/2$ signature is suggested.

 $^{157}_{69}Tm_{88}$

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV		$(\mu_N/eb)^2$		
1	2338.6+X	$27/2^{+}$					1995RI01	1. For $\alpha = -1/2$ signature:
	2814.3+X	$31/2^+$		475.5				π : 7/2[523](α =+1/2)
	3210.0+X	$33/2^{+}$	395.9					v: $3/2[651](\alpha = +1/2)$
	3382.9+X	$35/2^+$	172.8	568.6	0.09(2)	0.95(8)		$\otimes 3/2[521](\alpha = +1/2)$
	3788.4+X	$37/2^{+}$	405.1	578.5	0.10(2)			For $\alpha = +1/2$ signature:
	4025.3+X	$39/2^{+}$	236.8	642.5	0.10(1)	1.10(15)		$\pi: 7/2[523](\alpha = -1/2)$
	4426.6+X	$41/2^{+}$	400.9	638.3	0.16(1)	0.87(17)		v: $3/2[651](\alpha = +1/2)$
	4728.3+X	$43/2^{+}$	301.3	703.3				$\otimes 3/2[521](\alpha = +1/2)$
	5120.6+X	$45/2^{+}$	392.0	695.0				2. Nuclear Reaction:
	5564.1+X	$47/2^{+}$	443.0	836.0	0.08(3)	0.76(8)		110 Pd (51 V, 4n) 157 Tm
	5953.4+X	49/2+	389.0	832.8	0.21(6)	1.69(17)		E=220 MeV.
	6414.8+X	$51/2^+$	461.3	850.8	0.14(3)	1.00(12)		3. Strong signature splitting
	6808.6+X	53/2	393.8	855.1	0.0440	0.01(10)		with signature inversion
	7184.3+X	55/2	375.7	769.5	0.36(10)	0.91(12)		at $1=47/2^{\circ}$.
	7601.3+X	57/2	417.1	793.2				4. All level energies are relative to energy of the $h_{11/2} = 11/2^{-1}$
								level at $0+X$; X is unknown.
								5. The B(M1)/B(E2) values read from plot.
								6. Assumed $Q_0 = 4.2$ eb.
								7. The $ g_{K}-g_{R} $ values deduced in the present work.

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
2	3141.6+X	31/2-					1995RI01	1. For $\alpha = +1/2$ signature:
	3297.4+X	33/2-	155.3					π : 7/2[523] (α = +1/2)
	3638.8+X	35/2-	341.0	496.9	0.04(3)	2.30(12)		v: $3/2[651] (\alpha = +1/2)$
	3877.9+X	37/2-	239.1	580.6	0.08(1)	2.05(17)		$\otimes 3/2[651] (\alpha = -1/2)$
	4232.9+X	39/2-	354.9	594.2	0.08(1)	1.81(34)		For $\alpha = -1/2$ signature:
	4508.7+X	41/2-	275.9	630.7	0.08(1)	1.23(8)		π : 7/2[523] (α = -1/2)
	4876.7+X	43/2-	368.0	643.5	0.09(2)	1.77(25)		v: $3/2[651] (\alpha = +1/2)$
	5168.2+X	45/2-	291.2	659.4	0.10(1)	1.38(30)		$\otimes 3/2[651] (\alpha = -1/2)$
	5534.6+X	47/2-	366.5	657.9	0.15(1)	2.51(43)		2. Strong signature splitting with
	5976.1+X	49/2-	440.9	808.0	0.11(2)	1.51(43)		signature inversion at I=47/2
	6321.4+X	51/2-	345.2	786.9				3. All level energies are relative
	6749.7+X	53/2-	428.3	773.7	0.11(1)	1.17(19)		to energy of the $h_{11/2}$, $11/2^{-1}$
	7136.0+X	55/2-	386.3	814.6	0.18(3)	2.43(38)		level at 0+X; X is unknown.
	7486.5+X	57/2-	350.4	736.8	0.21(2)	3.38(47)		4. The $B(M1)/B(E2)$ values read
	8272.7+X	$61/2^{-1}$		786.2				from plot.
	9352.4+X	65/2-		1079.6				5. Assumed $Q_0 = 4.2$ eb.
	9906.6+X	69/2-		554.1				6. The $ g_{K}-g_{R} $ values deduced
	10638.8+X	73/2-		732.2				in the present work.

 $^{165}_{69}Tm_{96}$

	keV			-γ()	I BK-BR I	D(WII)/D(E2)	Kelelence	Comiguration and Comments
			keV	keV		$(\mu_N/eb)^2$		
1	1633.3	17/2-					2001JE09	1. π: 7/2[404]
	1753.5	19/2-	120.3					v: 5/2[642]⊗5/2[523]
	1899.0	21/2-	145.5	265.8	0.13(2)	0.61(13)		2. Nuclear Reactions:
	2067.4	23/2-	168.4	314.0	0.16(2)	0.48(10)		(a) 150 Nd (19 F, 4n) 165 Tm
	2256.8	25/2-	189.3	357.8	0.13(1)	0.29(5)		E=85 MeV
	2465.5	27/2-	208.6	398.0	0.13(2)	0.23(5)		(b) 154 Sm (15 N, 4n) 165 Tm
	2692.1	29/2-	226.5	435.3	0.14(2)	0.23(5)		E=70 MeV.
	2934.3	31/2-	242.1	468.8	0.17(3)	0.28(9)		3. Signature splitting with
	3193.0	33/2-	258.7	500.9	0.12(2)	0.17(5)		signature inversion at $I=35/2^{-1}$.
	3464.9	35/2-	271.8	530.6	0.19(3)	0.28(9)		4. Assumed $Q_0 = 7.2$ eb.
	3748.7	37/2-	283.4	556.0	0.09(4)	0.11(5)		5. The $ g_{K}-g_{R} $ values deduced
	4045.9	39/2-		580.9				in the present work.
	4352.7	41/2-		604.1				
	4673.3	43/2-		627.5				
	5003.1	45/2-		650.3				
	5347.0	47/2-		673.7				
:	5701.0	49/2-		697.9				
(6	6071.6)	$(51/2^{-})$		724.6				
(6	6452.3)	$(53/2^{-})$		751.3				

$^{165}_{69}Tm_{96}$

·	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(11x/eb)^2}$	Reference	Configuration and Comments
2	1740.8 1857.1 1989.3 2138.5 2304.7 2488.3 2689.3 2907.3 3142.2 3393.0 3658.9 3940.3 4233.9 4543.8 4861.6 5202.9 5525.3 (5890.7) (6244.8)	$\begin{array}{c} 17/2^+\\ 19/2^+\\ 21/2^+\\ 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ 33/2^+\\ 35/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ 43/2^+\\ 43/2^+\\ 45/2^+\\ 47/2^+\\ 49/2^+\\ (51/2^+)\\ (53/2^+)\end{array}$	116.3 132.2 149.0 166.0 183.5 200.9 217.9 234.7 250.6 265.7 281.2 293.4	248.4 281.5 315.5 349.8 384.7 419.1 453.0 485.8 516.8 547.4 575.2 603.3 627.7 659.1 663.7 687.8 719.6	$\begin{array}{c} 0.23(6) \\ 0.32(3) \\ 0.28(2) \\ 0.29(1) \\ 0.30(1) \\ 0.31(2) \\ 0.31(2) \\ 0.31(2) \\ 0.30(2) \\ 0.31(2) \end{array}$	$\begin{array}{c} 1.44(73) \\ 1.46(30) \\ 0.87(11) \\ 0.80(10) \\ 0.68(8) \\ 0.69(8) \\ 0.70(9) \\ 0.57(7) \\ 0.63(8) \\ 0.58(9) \\ 0.59(9) \end{array}$	2001JE09	 π: 7/2[523] v: 5/2[642]⊗5/2[523] Strong signature splitting at higher spins. Assumed Q₀ = 7.2 eb. The g_K-g_R values deduced in the present work.
¹⁶⁵ ₇₀ J	⁷ b ₉₅							
	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ ke	(E2) V	B(M1)/B(E2) $(u_N/eb)^2$	Reference	Configuration and Comments
1	1734.1	5/2+					1982RA19	 1. π : 7/2[523]⊗7/2[404] v: 5/2[523] 2. Decay study. 3. Level energy is adopted from ENSDF.
2	1978.9 2448.2 2954.1 3520.2 4155.5 4861.2 5634.4 6473.1 7377.1 8343.7 9368.1	27/2 ⁻ 31/2 ⁻ 35/2 ⁻ 39/2 ⁻ 43/2 ⁻ 47/2 ⁻ 51/2 ⁻ 55/2 ⁻ 59/2 ⁻ 63/2 ⁻ 67/2 ⁻		469 500 560 633 700 777 833 904 966 102	9.3 5.9 5.1 5.3 5.7 3.2 8.7 4.0 5.6 24.4		1987BE07	1. For $\alpha = -1/2$ signature: v: $3/2[521](\alpha = -1/2)$ $\otimes 3/2[651](\alpha = +1/2)$ $\otimes 3/2[651](\alpha = -1/2)$ 2. Nuclear Reaction: ¹³⁰ Te (⁴⁰ Ar, 5n) ¹⁶⁵ Yb E=180 MeV.
3	2125.9	(5/2) ⁺					1982RA19	 π : 7/2[523]⊗7/2[404] v: 5/2[523] Decay study. Level energy is adopted from ENSDF.
4	3325 3858 4435.3 5170.2 5985.3 6880.6 7845.2 8865.6 9923.7	$(37/2^+)$ $(41/2^+)$ $45/2^+$ $49/2^+$ $53/2^+$ $57/2^+$ $61/2^+$ $65/2^+$ $(69/2^+)$		(53 57' 734 81: 89: 964 102 103	7 4.9 5.1 5.3 4.6 20.4 58.1		1987BE07	1. For $\alpha = +1/2$ signature: v: $3/2[651](\alpha = +1/2)$ $\otimes 3/2[651](\alpha = -1/2)$ $\otimes 1/2[660](\alpha = +1/2)$

	$^{167}_{70} Yb_{97}$						
	E _{level} keV	I^{π}	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)}{(\mu_N/eb)^2}$ (E2)	Reference	Configuration and Comments
1	(3815.4) 4116.6 4434.5 4764.3 5106.2 5454.0 5812.7 6178.7 6552.9 6936.2 7335.1 7744.0 (8173.9) (8605.0)	$\begin{array}{c} (37/2^{\circ}) \\ (39/2^{\circ}) \\ (41/2^{\circ}) \\ (43/2^{\circ}) \\ (45/2^{\circ}) \\ (45/2^{\circ}) \\ (47/2^{\circ}) \\ (51/2^{\circ}) \\ (55/2^{\circ}) \\ (55/2^{\circ}) \\ (57/2^{\circ}) \\ (57/2^{\circ}) \\ (59/2^{\circ}) \\ (61/2^{\circ}) \\ (63/2^{\circ}) \end{array}$	(301.6) 317.6 330.0 341.7 347.6 358.7 366.0 374.0 383.5	(618.6) (648.3) 671.3 690.3 706.8 724.0 741.0 757.0 782.2 807.8 (838.7) (861.0)		1996SM05	 Configuration not known. Most likely a 3 quasineutron configuration. Nuclear Reaction: ¹²⁴Sn (⁴⁸Ca, 5n)¹⁶⁷Yb E=210 MeV. Signature splitting more pronounced at higher spins. Level energies are adopted from ENSDF.

$^{175}_{70} Yb_{105}$

	E _{level} keV	I^{π}	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration andComments
1	1497.3	3/2+				1969FU03	 Tentatively assigned as a 3qp band: π: 1/2[411]⊗9/2[514] v: 7/2[514] Decay study. Half-life of bandhead is < 0.1 ns. Level energy is adopted from ENSDF.
2	1793.4	3/2+				1969FU03	 Tentatively assigned as a 3qp band: π: 1/2[411]⊗7/2[523] v: 5/2[523] Level energy is adopted from
							ENSDF.
3	1891.8	1/2+				1969FU03	 Tentatively assigned as a 3qp band: π: 1/2[411]⊗9/2[514] ν: 7/2[514]
							2. Level energy is adopted from ENSDF.
4	2114.1	1/2+				1969FU03	 Tentatively assigned as a 3qp band: π: 1/2[411]⊗7/2[523] v: 5/2[523] Level energy is adopted from ENSDF.

	г	-77				P 6	a
	E _{level}	I"	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2357.3+X	$25/2^{+}$				1995MA46	1. π : 7/2[523](α = -1/2)
	2669.1+X	$27/2^+$	311.8				v: $3/2[651](\alpha = +1/2)$
	2801.1+X	$29/2^{+}$	132.0				$\otimes 3/2[521](\alpha = -1/2)$
	3153.5+X	$31/2^{+}$	352.4	484.4			2. Nuclear Reaction:
	3358.7+X	$33/2^{+}$	205.2	557.6			144 Sm (19 F,4n) 159 Lu
	3749.5+X	$35/2^+$	390.8	596.0			E=105 MeV.
	4002.3+X	$37/2^+$	252.8	643.6			3. Strong signature splitting.
	4379.0+X	$39/2^{+}$	376.7				4. Level energies are adopted from
	4680.3+X	$41/2^{+}$	301.3	678.0			ENSDF.
	5498.2+X	45/2+		817.9			5. All level energy are relative to the 11/2 ⁻ state at 0+X; X≤200 keV.

 $^{163}_{71}Lu_{92}$

E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
keV		keV	keV	$(\mu_N/eb)^2$		
1. 2410.8	$21/2^{+}$				2004JE03	1. Competing configurations are:
2437.0	$23/2^{+}$					(a) π: 7/2[404], v: AB
2540.8	$25/2^+$	103.8	130.0			(b) π: 5/2[402], ν: AB
2681.0	$27/2^{+}$	140.3	244.0	0.42(10)		(c) π : 1/2[411], v: AB
2861.2	$29/2^{+}$	180.2	320.4	0.75(18)		Configuration (a) is suggested as most
3078.3	$31/2^{+}$	217.2	397.3	0.52(7)		favorable for lower part of the band.
3323.9	$33/2^{+}$	245.5	462.7	1.04(44)		$A=5/2[642](\alpha=+1/2)$
3572.0	$35/2^+$	248.2	493.7	0.34(9)		$B=5/2[642](\alpha=-1/2)$
3892.5	$37/2^{+}$	320.4	568.6	5.5(22)		2. Nuclear Reaction:
4150.7	$39/2^{+}$	258.2	578.7			¹³⁹ La (²⁹ Si,5n) ¹⁶³ Lu
4529.3	$41/2^{+}$	378.8	636.8			E=157 MeV.
4817.2	$43/2^{+}$	287.7	666.5			3. Signature splitting more
5243.1	$45/2^{+}$		713.8			pronounced at higher spins.
5559.4	$47/2^{+}$		742.2			4. Signature Inversion at $I = 55/2^+$.
6005.8	49/2 ⁺	446.6	762.7			5. Proposed configuration for top
6355.8	$51/2^{+}$	349.7	796.4			part of band is :
6718.8	$53/2^{+}$	363.3	713.0			π: 9/2[514] , v: AEBC
7133.1	$55/2^{+}$	414.0	777.3			$A=5/2[642](\alpha=+1/2)$
7506.7	$57/2^{+}$	373.9	787.9			$B=5/2[642](\alpha=-1/2)$
7955.8	$59/2^{+}$	448.8	822.7			$C=3/2[651] (\alpha = +1/2)$
8386.9	$61/2^{+}$		880.2			$E=5/2[523] (\alpha = +1/2)$
8855.7	$63/2^{+}$		899.9			6. Level energies are deduced using
9330.7	$65/2^+$		943.8			given $E_{\gamma}(E2)$ energies.
9816.2	$67/2^{+}$		960.5			7. The $B(M1)/B(E2)$ values deduced in
10333.6	$69/2^{+}$		1002.9			the present work by taking intensities
						from XUNDL and assuming 0.1 keV
						error in gamma-ray energies.

163	τ
71	Lu_{92}

	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
2	4309.4 4579.1 4831.4 5116.4 5419.8 5757.1 6108.5 6502.6 6907.7	37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 45/2 ⁻ 45/2 ⁻ 45/2 ⁻ 45/2 ⁻ 51/2 ⁻ 53/2 ⁻	269.7 252.2 285.1 303.3 337.4 351.2 394.5 404.7	522.0 537.3 588.4 640.7 688.7 745.7 799.2	0.55(38) 0.80(37) 0.82(36) 0.72(31) 0.81(35) 0.97(38)	2004JE03	 π: 9/2[514], v: AB A=5/2[642](α=+1/2) B=5/2[642](α=-1/2) Signature splitting with signature inversion at the top of the band. Level energies are deduced using given E_γ(E2) energies. The B (M1)/B (E2) values deduced in
	7351.1 7814.2 8291.1 8790.8 9284.5 9805.8 10875.8	55/2 ⁻ 57/2 ⁻ 59/2 ⁻ 61/2 ⁻ 63/2 ⁻ 65/2 ⁻ 69/2 ⁻	443.8 462.7 477.3 499.1	848.5 906.5 940.0 976.4 993.4 1015.0 1071.0			the present work by taking intensities from XUNDL and assuming 0.1 keV error in gamma-ray energies.

 $^{165}_{71}Lu_{94}$

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2544.7+X	$27/2^+$				2004SC14	1. π: 9/2[514], v: AE
	2764.9+X	$29/2^{+}$	220.2				$A=5/2[642](\alpha=+1/2)$
	2968.1+X	$31/2^{+}$	203.1	423.4			$E=5/2[523](\alpha=+1/2)$
	3200.6+X	$33/2^{+}$	244.1	435.7			2. Nuclear Reaction:
	3436.3+X	$35/2^+$	235.6	468.2			139 La (30 Si,4n) 165 Lu
	3704.9+X	$37/2^{+}$	268.6				E=152 MeV.
	3980.9+X	39/2+	275.2	544.6	0.14(2)		BC crossings suggested
	4269.7+X	$41/2^{+}$	288.8	564.8	12.1(37)		at higher spins.
	4579.4+X	$43/2^{+}$	309.1	598.5	0.61(5)		$B=5/2[642](\alpha=-1/2)$
	4888.2+X	$45/2^{+}$	309.4	618.5	1.61(4)		$C=3/2[651](\alpha=+1/2)$
	5220.8+X	$47/2^{+}$	331.9	641.4	1.22(2)		Signature splitting more
	5539.3+X	$49/2^{+}$	318.6	651.1	1.62(3)		pronounced at higher spins.
	5900.0+X	$51/2^{+}$	360.1	679.2	1.69(18)		5. The $B(M1)/B(E2)$ values deduced
	6236.0+X	$53/2^{+}$	336.0	696.7	2.20(5)		in the present work by taking
	6632.9+X	$55/2^{+}$	395.8	732.9	1.26(4)		intensities from ENSDF and
	6997.4+X	$57/2^+$	365.9	761.4	1.09(26)		assuming 0.1 keV error in gamma-
	7439.8+X	$59/2^{+}$	442.0	806.9	0.42(3)		ray energies.
	7836.9+X	$61/2^+$	398.6	839.5	2.64(13)		6. Level energies are deduced
	8331.5+X	$63/2^{+}$	493.2	891.7	0.79(11)		using given $E_{\gamma}(E2)$ energies; value of
	8754.1+X	$65/2^+$		917.2			X is expected to be about 24 keV, as
	9309.4+X	$67/2^+$		977.9			quoted in ENSDF from systematics.
	9742.0+X	69/2		987.9			
	10367.8+X	$71/2^+$		1058.4			
	10793.2+X	$73/2^+$		1051.2			
	11497.5+X	$75/2^+$		1129.7			
	11898.6+X	77/2		1105.4			
	12679.5+X	79/2*		1182.0			
	13040.8+X	81/2		1142.2			
	14199.3+X	85/2		1158.5			

171	T
71	Lu_{100}

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	$\begin{array}{c} 1240.9\\ 1381.7\\ 1541.9\\ 1721.1\\ 1919.0\\ 2135.4\\ 2369.7\\ 2621.9\\ 2891.1\\ 3177.1\\ 3479.0\\ 3796.4\\ 4128.1\\ 4478.4\\ 4836.0\\ 5213.9\\ 5990.7 \end{array}$	15/2 ⁻ 17/2 ⁻ 19/2 ⁻ 21/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ (31/2 ⁻) 33/2 ⁻ (35/2 ⁻) 37/2 ⁻ (39/2 ⁻) (41/2 ⁻) (43/2 ⁻) (45/2 ⁻) (49/2 ⁻)	140.8 160.3 179.4 197.7 216.1 234.0 251.7	301.0 339.4 377.1 414.3 450.7 486.5 521.4 555.2 587.9 619.4 649.0 682.0 707.9 735.5 776.8	0.08(1) 0.09(1) 0.07(1) 0.09(1) 0.12(1) 0.13(1)	0.11(25) 0.08(1) 0.04(1) 0.05(1) 0.09(1) 0.08(1)	1998BB02	1. π : 7/2[404] v: 7/2[633] \otimes 1/2[521] 2. Nuclear Reaction: ¹⁶⁰ Gd (¹⁹ F, α 4n) ¹⁷¹ Lu E=103,105 MeV. 3. Signature splitting becomes strong at higher spins. 4. The B(M1)/B(E2) and $ g_{K}-g_{R} $ values read from plots. 5. Assumed Q ₀ = 7.3 eb and $g_{R} = 0.35$.
2	$\begin{array}{c} 1269.3\\ 1352.7\\ 1454.4\\ 1576.3\\ 1717.8\\ 1874.7\\ 2043.6\\ 2247.2\\ 2447.7\\ 2695.2\\ 2925.4\\ 3218.3\\ 3475.7\\ 3813.6\\ 4098.3\\ 4477.8\\ 4792.1\\ 5206.9\\ 5556.3\\ 5996.5\\ 6389.3\\ 6844.3\\ 7290.3\\ 7748.7\\ 8255.2\\ \end{array}$	$\begin{array}{c} 13/2^+ \\ 15/2^+ \\ 17/2^+ \\ 19/2^+ \\ 21/2^+ \\ 23/2^+ \\ 25/2^+ \\ 27/2^+ \\ 29/2^+ \\ 31/2^+ \\ 33/2^+ \\ 35/2^+ \\ 37/2^+ \\ 39/2^+ \\ 41/2^+ \\ (43/2^+) \\ (45/2^+) \\ (45/2^+) \\ (47/2^+) \\ (49/2^+) \\ (51/2^+) \\ (53/2^+) \\ (55/2^+) \\ (57/2^+) \\ (59/2^+) \\ (59/2^+) \\ (61/2^+) \end{array}$	84.7 101.5 121.9 141.7 156.9 169.0 203.5 200.4 247.4 230.1 292.3 257.5	185.1 223.7 263.1 298.4 325.8 372.5 404.1 448.0 477.7 523.1 550.4 595.3 622.5 664.2 693.9 729.2 764.1 789.6 833.0 847.8 901.1 904.4 964.9	$\begin{array}{c} 0.32(13)\\ 0.33(4)\\ 0.33(3)\\ 0.25(1)\\ 0.31(1)\\ 0.27(1)\\ 0.29(1)\\ 0.33(1)\\ 0.26(1)\\ 0.27(1)\\ 0.28(1) \end{array}$	$\begin{array}{c} 0.35(25) \\ 0.28(6) \\ 0.18(3) \\ 0.1(1) \\ 0.24(1) \\ 0.11(1) \\ 0.11(1) \\ 0.18(1) \\ 0.13(1) \\ 0.13(1) \end{array}$	1998BB02	 π: 1/2[541] v: 7/2[633]⊗1/2[521] Mixing with 7/2[404]_π band at I=27/2⁺. Strong signature splitting. Bandhead is uncertain. The B(M1)/B(E2) and g_K-g_R values read from plots. Assumed Q₀ = 7.3 eb and g_R = 0.35.
171	T 11							
-----	------------							
71	Lu_{100}							

	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	$B (M1)/B (E2) (\mu_N/eb)^2$	Reference	Configuration and Comments
3	1843.9	21/2				1998BB02	1. π: 1/2[541]⊗1/2[411]
	2047.2	23/2-					⊗7/2[404]
	2268.4	25/2-		424.7			2. B(M1)/B(E2) ratio ~ 0.001
	2509.1	27/2-		462.0			$(\mu_{\rm N}/{\rm eb})^2$.
	2766.7	(29/2)		498.3			
	3041.9	(31/2)		532.7			
	3328.1	(33/2-)		561.5			
	3620.0	(35/2)		578.1			
	3913.3	(37/2)		585.2			
	4216.7	(39/2)		596.7			
4	2624.5	27/2 ⁽⁺⁾				1998BB02	1. π: 1/2[541]
	3096.8	$(31/2^+)$		472.4			v: 7/2[633]⊗1/2[521]
	3640.8	$(35/2^+)$		544.0			
	4255.7	(39/2+)		614.9			

 $^{175}_{71}Lu_{104}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1391	19/2+				1998WH02 2004GA04	1. π : 7/2[404] v: 7/2[514] \otimes 5/2[512] 2. Nuclear Reaction: ¹⁷⁵ Lu(²³⁸ U, ²³⁸ U') ¹⁷⁵ Lu E = 1600 MeV. 3. Half-life of bandhead is 984(33) µs.
2	1511 1644 1799	(9/2 ⁺) (11/2 ⁺) (13/2 ⁺)				1971MI01	 Tentative configuration is: π: 7/2[404] ν: 7/2[514]⊗5/2[512] Nuclear Reaction: ¹⁷⁶Lu(d,t)¹⁷⁵Lu E= 12 MeV.
3	1590 1785	(13/2 ⁺) (15/2 ⁺)				1971MI01	 Tentative configuration is: π: 7/2[404] ν: 7/2[514]⊗1/2[521]
4	1732	(15/2 ⁺)				1971MI01	 Tentative configuration is: π: 7/2[404] ν: 7/2[514]⊗1/2[521]

 $^{177}_{71}Lu_{106}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration andComments
1	970 1243 1537 1851 2185 2539 2912 3304	23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻	272.8 293.5 314.1 334.4 353.8 372.8 392.2	566.4 607.8 648.3 688.4 726.8 764.6	0.090(10) 0.119(12) 0.111(8) 0.099(13) 0.119(25) 0.055(35)		2004DR06	 π: 7/2[404] v: 7/2[514]⊗9/2[624] Nuclear Reaction: ¹³⁶Xe beam at 816 MeV on natural Lu target and enriched ¹⁷⁶Lu and ¹⁷⁶Yb targets. Half-life of bandhead is 160.44 d. Assumed Q₀ = 7.32 eb.
2	1049.5 1187.9 1348.5	(9/2 ⁻) (11/2 ⁻) (13/2 ⁻)					1995SH18	 Tentative configuration is: π: 7/2[404] ν: 7/2[514]⊗9/2[624] Nuclear Reaction: ¹⁷⁶Lu(n,γ)¹⁷⁷Lu E= Thermal
3	1230.4 1388.0 1566.2	11/2 ⁺ 13/2 ⁺ 15/2 ⁺					1971MA45 1979BE54	 π: 9/2[514] v: 7/2[514]⊗9/2[624] Nuclear Reaction: ¹⁷⁶Lu(n,γ)¹⁷⁷Lu E= Thermal. Half-life of bandhead is 60(15) ps.
4.	1241.5	(7/2*)					1971MA45 1979BE54	 Tentative configuration is: π: 9/2[514] ν: 7/2[514]⊗9/2[624] Nuclear Reaction: ¹⁷⁶Lu(n,γ)¹⁷⁷Lu E= Thermal. Half-life of bandhead is 20 ps. Level energy is adopted from ENSDF.
5	1325 1606 1907 2229	25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺	281.3 301.4 321.4	582.9 623.1	0.200(14) 0.208(17)		2004DR06	 π: 9/2[514] v: 7/2[514]⊗9/2[624] Half-life of bandhead is 62.4(35) ns. Assumed Q₀ = 7.32 eb . Nuclear Reaction: ¹³⁶Xe beam at 816 MeV on natural Lu target and enriched ¹⁷⁶Lu and ¹⁷⁶Yb targets.
6	1336.5 1443.3 1574.5	7/2 ⁺ 9/2 ⁺ 11/2 ⁺					1971MA45	1. π : 9/2[514] v: 7/2[514] \otimes 9/2[624] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E= Thermal.

 $^{177}_{71}Lu_{106}$

	E _{level} keV	I^{π}	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$B (M1)/B (E2) (\mu_N/eb)^2$	Reference	Configuration and Comments
7	1356.5 1545.2 1749.0	15/2 ⁺ 17/2 ⁺ 19/2 ⁺	(205.8)				1975GE11 1996PE05	1. π : 7/2[404] v: 7/2[514] \otimes 1/2[510] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E= Thermal. 3. Half-life of bandhead is 11.1(1) ns. 4. In 1996PE05, E=1545.5 level has been assigned 7/2[404] $_{\pi} \otimes$ 9/2[514] $_{\pi} \otimes$ 1/2[541] $_{\pi}$ configuration with half-life 0.8(+2-1) ns.
8	1437.9 1670.9 1925.3 2200.1	(17/2 ⁻) (19/2 ⁻) (21/2 ⁻) (23/2 ⁻)	233.4 254.0 274.0	487.0 530.0			2002DRZZ	 Competing configurations are: (a) π: 9/2[514] v: 7/2[514]⊗1/2[510] (b) π: 7/2[404] v: 9/2[624]⊗1/2[510] Nuclear Reaction: ¹⁷⁶Yb(⁷Li,α2n)¹⁷⁷Lu E=37 MeV. Level energies are adopted from ENSDF. Half-life of bandhead is < 13 ns.
9	1453.9 1607.5 1786.3	13/2 ⁺ 15/2 ⁺ 17/2 ⁺	(178.9)				1975GE11	1. π : 7/2[404] v: 7/2[514] \otimes 1/2[521] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E= Thermal
10	1502.6 1677.9 1880.1	13/2 ⁺ 15/2 ⁺ 17/2 ⁺	(175.3) (202.2)				1975GE11 1996PE05	 π: 7/2[404] v: 7/2[514]⊗1/2[510] Nuclear Reaction: ¹⁷⁶Lu(n,γ)¹⁷⁷Lu E= Thermal. Half-life of bandhead is < 0.2 ns.
11	1617.0 1750.7 1906.5 2084.4	9/2 ⁺ 11/2 ⁺ 13/2 ⁺ 15/2 ⁺	133.8 155.9 177.7	289.6 333.1			1971MA45	1. Tentative configuration is: π : 1/2[411] v: 7/2[514] \otimes 1/2[510] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E = Thermal.
12	1632.8 1812.4	(15/2 ⁺) (17/2 ⁺)					1975GE11	 Tentative configuration is: π: 7/2[404] v: 7/2[514]⊗1/2[521] Nuclear Reaction: ¹⁷⁶Lu(n,γ)¹⁷⁷Lu E= Thermal. Level energies are adopted from ENSDF.

	E _{level} keV	I^{π}	$E_{\gamma}(M1)$ keV	E _γ (E2) KeV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
13	1717.5 1827.7 1960.6 2116.6	7/2 ⁺ 9/2 ⁺ 11/2 ⁺ 13/2 ⁺	109.8 132.8 155.9	242.74		1971MA45	1. Tentative configuration is: π : 1/2[411] v: 7/2[514] \otimes 1/2[510] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E = Thermal.
14	1728.6 1924.9 2154.5	13/2 ⁺ 15/2 ⁺ 17/2 ⁺	196.4 229.6	426.1		1971MA45	1. Tentative configuration is: π : 5/2[402] v: 7/2[514] \otimes 1/2[510] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E = Thermal.
15	1882.0 2054.0 2247.5	11/2 ⁺ 13/2 ⁺ 15/2 ⁺	171.2 194.6			1971MA45	1. Tentative configuration is: π : 5/2[402] v: 7/2[514] \otimes 1/2[510] 2. Nuclear Reaction: ¹⁷⁶ Lu(n, γ) ¹⁷⁷ Lu E = Thermal.

 $^{165}_{72}Hf_{93}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$B (M1)/B (E2) (\mu_N/eb)^2$	Reference	Configuration and Comments
1	1732.0	23/2-				1993NE01	1. v: 3/2[651]⊗3/2[651]
	2066.6	27/2-		334.6			⊗3/2[521]
	2470.8	31/2		404.2			2. Nuclear reaction:
	2959.5	35/2-		488.7			130 Te (40 Ca, 5n) 165 Hf
	3559.0	39/2-		599.9			E=195 MeV.
	4275.6	43/2-		716.6			3. CD crossing at $\eta \omega_c = 0.434$ MeV
	5086.2	47/2-		810.6			suggested.
	5929.6	51/2		843.4			$C=1/2[660](\alpha=+1/2)$
	6779.2	55/2-		849.6			$D=1/2[660](\alpha=-1/2)$
	7666.4	59/2-		887.2			4. Level energies are adopted from
	8603.2	63/2-		936.8			XUNDL.
	9584.1	67/2-		980.9			

160 0	
Hf	
72 11 97	1

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1734.0	$(15/2^+)$ $(17/2^+)$	122.0				2001SC49	1. Tentative configuration is:
	2012 5	(17/2) $(10/2^{+})$	132.9	278 5	0.08(2)			$\pi.3/2[402] \otimes 1/2[411]$
	2012.3	(19/2) $(21/2^{+})$	178.8	324.4	0.00(2)	1 27(18)		2 Nuclear reaction:
	2384.0	(21/2) $(23/2^+)$	192 7	371.5	0.36(5)	1.27(10)		96 Zr (76 Ge 3n) 169 Hf
	2597.4	$(25/2^+)$	213.5	406.2	0.50(5) 0.62(8)	1 50(20)		E=310 MeV
	2840.3	$(27/2^+)$	242.8	456.3	0.45(2)	3.50(49)		3 BC crossing at $n\omega = 0.315$ MeV
	3107.0	$(29/2^+)$	266.7	509.5	0.51(5)	1.82(27)		is suggested.
	3395 3	$(31/2^+)$	288.3	555.1	0.56(8)	2.00(27)		$B=5/2[642](\alpha=-1/2)$
	3699.8	$(33/2^+)$	304.5	592.8	0.55(6)	2.00(27)		$C=3/2[651](\alpha = +1/2)$
	4020.0	$(35/2^+)$	320.2	624.6	0.63(9)			4. Level energies are adoped from
	4350.1	$(37/2^+)$	330.2	650.3	0.64(8)			XUNDL .
	4685.0	$(39/2^+)$	334.9	665.1	0.53(13)			5. The $B(M1)/B(E2)$ values read
	5027.0	$(41/2^+)$	342.0	676.9	0.75(18)			from plot.
	5370.9	$(43/2^+)$	343.9	685.9	0.72(19)			6. Assumed $Q_0 = 6$ eb.
	6097.5	(47/2 ⁺)		726.6				7. The $ g_{K}-g_{R} $ values deduced in the present work assuming 0.1 keV error in gamma-ray
								energies.
2	1952.9	(21/2)					2001SC49	1. π: 9/2[514]⊗1/2[411]
	2140.8	$(23/2^{-})$	187.9		0.14(1)			v: 5/2[642]
	2357.4	$(25/2^{-})$	216.6	404.5	0.14(1)	1 00 (00)		2. Half-life of bandhead is ~ 10 ps.
	2597.4	$(2^{7}/2^{2})$	240.0	456.6	0.16(1)	1.80(23)		3. Undergoes BC crossing.
	2856.9	(29/2)	259.5	499.5	0.41(1)	1.33(16)		$B=5/2[642](\alpha = -1/2)$
	3134.1	(31/2)	277.2	536.7	0.31(3)	5.20(72)		$C=3/2[651](\alpha=\pm1/2)$
	3424.9	(33/2)	290.8	504.5	0.42(6)	2.30(30) 2.50(46)		4. Small signature splitting with signature inversion at at $I = 47/2^{-1}$
	3/28.0	(35/2)	303.7	594.5 616.2	0.30(0)	3.39(40)		signature inversion at at $1=4/2$.
	4041.2	(37/2)	312.0	622.2	0.40(4) 0.39(5)			S. Level energies are adopted from
	4500.8	(39/2) (41/2)	319.0	646.6	0.39(3)			6 The $B(M1)/B(F2)$ values read
	5020.7	(41/2) (43/2)	327.0	659.9	0.41(0) 0.42(5)			from plot
	5361.4	$(45/2^{-})$	340.7	673.6	0.42(10)			7. Assumed $\Omega_0 = 6$ eb.
	5711.4	$(47/2^{-})$	350.0	690.7	0.47(8)			8 The $ g_{\nu}-g_{p} $ values deduced in
	6077.2	$(49/2^{-})$	365.8	715.8	0.43(11)			the present work assuming 0 1
	6455.1	$(51/2^{-})$	377.9	743.7	0.53(14)			keV error in gamma-ray
	6854.0	$(53/2^{-})$	398.9	776.8	0.45(14)			energies.

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B(M1)/B(E2)	Reference	Configuration and Comments
	kev		keV	keV		$(\mu_N/eb)^2$		
1	1645.3	$19/2^{+}$					1997CU01	1. π: 7/2[404]⊗5/2[402]
	1794.2	$21/2^{+}$	149.4					v: 7/2[633]
	1977.4	$23/2^{+}$	183					2. Nuclear reactions:
	2189.3	$25/2^{+}$	212					(a) 128 Te (48 Ca,5n) 171 Hf
	2426.1	$27/2^+$	236.9	448.5	0.383(21)	1.97(12)		E=200 MeV.
	2685.6	$29/2^{+}$	259.4	496.4	0.412(28)	2.04(12)		(b) 160 Gd $({}^{18}$ O,7n) 171 Hf
	2966.5	$31/2^+$	280.8	540.6	0.398(21)	1.65(9)		E=106 MeV.
	3266.3	$33/2^+$	299.9	580.6	0.398(21)	2.08(12)		3. Small signature splitting with
	3584.5	$35/2^+$	318.5	617.9	0.426(21)	1.62(10)		signature inversion at $I=37/2^+$.
	3920.4	$37/2^+$	336	654				4. Half-life of bandhead is 6.2(14) ns.
	4262.5	$39/2^{+}$	342	678				5. Exp. $g_{K} = 0.65(5)$ for $g_{R} = 0.25(5)$.
	4615.5	$41/2^{+}$	353	695				6. Level energies are adopted from
	4965.5	$43/2^{+}$	350	703				ENSDF.
								7. Assumed $Q_0 = 7.1$ eb
								8. The $ \mathbf{g}_{\mathrm{K}} - \mathbf{g}_{\mathrm{R}} $ values read from plot.
								9. The B (M1)/B (E2) values are deduced
								in the present work assuming 0.1
								keV error in gamma ray energies.
2	1984.8	23/2-					1997CU01	1. π: 7/2[404]⊗9/2[514]
	2161.2	25/2-	177					v: 7/2[633]
	2371.5	27/2-	211	388				2. Half-life of bandhead is18(2) ns.
	2610.8	29/2-	239.4	449.4	0.440(57)	6.3(15)		3. Exp. $g_{\rm K} = 0.72(5)$ for $g_{\rm R} = 0.25(5)$.
	2876.2	$31/2^{-1}$	265.6	504.6	0.433(36)	2.37(36)		4. Level energies are adoped from
	3165.4	33/2-	289.3	554.3	0.447(36)	3.86(58)		ENSDF.
	3476.2	35/2-	311	601				5. Assumed $Q_0 = 7.1$ eb
	3807.0	37/2-	331.0	641.4	0.561(64)	4.82(99)		6. The $ g_K - g_R $ values read from plot.
	4156.3	39/2-	349.2	680.6	0.533(64)	3.85(84)		7. The B (M1)/B (E2) values are deduced
	4521.8	41/2-	366.4	715.3	0.57(13)	4.4(19)		in the present work assuming 0.1
	4901.8	43/2-	381	744				keV error in gamma-ray energies.
	5292.2	45/2-	390	771				- · · -
	5692.0	472-	400	790				

 $^{173}_{72}Hf_{101}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1077.4	$(13/2^{+})$				1991FA06	1. v: 1/2[521]⊗5/2[512] ⊗7/2[633]
	1207.6	$(15/2^{+})$	130.2				2. Nuclear reaction:
	1354.5	$(17/2^{+})$	146.8	(277)			¹⁶⁰ Gd (¹⁸ O, 5n) ¹⁷³ Hf
	(1521)	$(19/2^{+})$	(166)				E=88 MeV.

173 72	Hf_{101}

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$B (M1)/B (E2) (\mu_N/eb)^2$	Reference	Configuration and Comments
2	1699.7	$19/2^{+}$					1991FA06	1. π: 7/2[404]⊗5/2[402]
	1816.5	$21/2^{+}$	116.8					v: 7/2[633]
	2005.7	$23/2^{+}$	189.2	(306)	0.36(+3-5)			2. Half-life of bandhead is ≤ 4.9 ns.
	2222.3	$25/2^{+}$	216.6	405.8	0.43(+6-8)	3.9(13)		3. Exp $g_K = 0.59(3)$ for $g_R = 0.25$.
	2464.0	$27/2^{+}$	241.7	458.4	0.28(5)	1.10(36)		The values of g_K are lower limits since
	2728.4	$29/2^{+}$	264.4	506.1	0.32(+5-6)	1.27(30)		g_R values may be higher than 0.25.
	3014.1	$31/2^+$	285.7	550.3	0.24(+4-5)	0.59(12)		4. Pure K and $Q_0 = 7.1$ eb assumed.
	3318.9	$33/2^{+}$	304.8	590.7	0.33(+7-8)	1.08(46)		5. The $ \mathbf{g}_{\mathrm{K}} - \mathbf{g}_{\mathrm{R}} $ values read from plot.
	3642.0	$35/2^+$	323.1	628.1	0.37(+5-6)	1.28(66)		6.The B (M1)/B (E2) values are deduced
	3981.4	$37/2^+$	339.6	662.5	0.40(+10-15)	1.34(72)		in the present work assuming 0.1 keV
	4341.5	$39/2^{+}$	360.0	699.5		5.1(30)		error in gamma-ray energies.
	4715	41/2+		(734)				
3	1981.3	23/2-					1991FA06	1. π: 7/2[404]⊗9/2[514]
	2144.6	25/2-	163.3					v: 7/2[633]
	2353.7	27/2	209.1	372.0	0.34(+4-6)	6.3(26)		2. Half-life of bandhead is 19.5(6) ns.
	2595.7	29/2-	242.0	450.8	0.35(+2-3)	3.73(93)		3. Exp. $g_{\rm K} = 0.62(2)$ for $g_{\rm R} = 0.25$.
	2864.9	31/2-	269.2	511.3	0.40(2)	3.59(91)		4. Pure K and $Q_0 = 7.1$ eb assumed.
	3158.7	33/2-	293.8	563.3	0.41(+3-4)	3.2(10)		5. The $ g_K-g_R $ values read from plot.
	3474.2	35/2-	315.5	609.3	0.33(3)	2.21(81)		6.The B (M1)/B (E2) values are deduced
	3810.5	37/2-	336.3	651.8	0.45(+6-7)	2.7(10)		in the present work assuming 0.1 keV
	4165.5	39/2-	355.0	(691.3)	0.36(+6-8)	2.0(11)		error in gamma-ray energies.

 $^{175}_{72}Hf_{103}$

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV		$(\mu_N/eb)^2$		
1	1433.3	$19/2^{+}$					1980DR06	1. π:7/2[404]⊗5/2[402]
	1545.3	$21/2^{+}$	112.0					v: 7/2[633]
	1735.2	$23/2^{+}$	189.9	302.2	0.295(+34-10)			2. Nuclear reaction:
	1953.8	$25/2^+$	218.6	408.6	0.317(+7-6)			170 Er (9 Be, 4n) 175 Hf
	2195.3	$27/2^{+}$	241.7	460.0	0.383(+12-8)			E=44 MeV.
	2458.5	$29/2^{+}$	263.2	504.6	0.278(+11-9)			3. Half –life of bandhead is
	2741.6	$31/2^{+}$	283.3	546.1				1.10(8) μs.
	3044.2	$33/2^{+}$	302.2	585.9				4. Pure K and $Q_0 = 7.1$ eb assumed.
2	1766.5 1904.6 2114.3 2360.2 2634.4 2933.0 3254.0 3594.0 3952.0	23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻	138.1 209.7 246.0 274.2 298.6 321 340 358	347.9 455.6 520.1 572.8 620 661 698	0.40(1) 0.48(1) 0.44(1) 0.44(1)	9.23(85) 7.64(43) 4.66(20) 3.86(14)	1995GJ01 1980DR06 2004SC41	 π: 7/2[404]⊗9/2[514] v: 7/2[633] Half-life of bandhead is 1.16(11) ns. Pure K and Q₀ =7 eb assumed. Exp. g_K = 0.67(-11) for g_R = 0.28(5). The B (M1)/B (E2) and g_K-g_R values are deduced in the present work.

 $^{177}_{72}Hf_{105}$

	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)}{B(E2)}$ $(\mu_{N}/eb)^{2}$	Reference	Configuration and Comments
1	1315.0 1593.0	23/2 ⁺ 25/2 ⁺	277.3				1998MU14	1. π:7/2[404]⊗9/2[514] v: 7/2[514]
	1888.0 2199.5 2525.9 2865.9 3217.9 3579.6	$27/2^{+} 29/2^{+} 31/2^{+} 33/2^{+} 35/2^{+} 37/2^{+} $	295.1 311.5 326.5 340.1 351.9 361.7	572.3 606.3 637.8 666.2 691.8 713.6	0.45(40) 0.39(22) 0.46(28) 0.51(38) 0.62(57) 0.69(+86-103)	$12.1(16) \\ 4.87(41) \\ 5.07(44) \\ 5.19(55) \\ 6.66(90) \\ 7.5(15)$		 Nuclear reaction: ¹⁷⁶Yb (⁹Be, α4n)¹⁷⁷Hf E=70 MeV. Half-life of bandhead is 1.09(5) s. Exp. g_K = 0.68(4) or 0.75(4)
	3949.0	39/2+	369.4	(730.7)	0.62(+93-113)	5.6(14)		for $g_R = 0.3$ or $g_R = 0.23(2)$, respectively. 5. Assumed $Q_0 = 7.2(1)$ eb.
2	1343.0 1582.5 1846.1 2124.3 2416.8 2724.8 3047.8	19/2 ⁻ 21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻	240.6 263.0 278.2 292.6 308.1 323.2	503.4 541.0 570.5 600.5 630.5	0.51(+9-14) 0.419(39) 0.352(36) 0.345(36) 0.427(+60-70)	8.4(40) 3.24(61) 1.71(35) 1.37(25) 1.85(57)	1998MU14	 π: 7/2[404]⊗5/2[402] v: 7/2[514] Half-life of bandhead is 55.9(12) μs. Exp. g_K = 0.64(5) or 0.71(5) for g_R =0.3 or g_R =0.23(2), respectively. Assumed Q₀ =7.2(1) eb.
3	1713.3 1968.3 2249.6 2555.1 2882.4 3229.2 3593.6	25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻	254.8 281.4 305.4 327.3 346.9 364.6	536.3 586.7 632.6 674.2 711.2	0.34(21) 0.30(17) 0.26)17) 0.25(22) 0.30(40)	8.79(77) 3.73(30) 1.99(19) 1.59(20) 1.90(37)	1998MU14	 π: 7/2[404]⊗9/2[514] v: 9/2[624] Half-life of bandhead is < 1ns. Exp. g_K = 0.52(4) or 0.71(5) for g_R =0.3 or g_R =0.23(2), respectively. Assumed Q₀ =7.2(1) eb.

 $^{179}_{72}Hf_{107}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1106.0 1393.0 1702.0 2033.9 2386.6 2760.0 (3151)	25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ (37/2 ⁻)	287.0 309.6 331.3 352.8 373.5 (392)	597.0 640.4 683.9 725.8 (765)	0.10(12) 0.46(10) 0.24(5) 0.44(27)	0.69(22) 8.7(38) 1.78(66) 4.9(55)	2000MU06	1. π :7/2[404] \otimes 9/2[514] v: 9/2[624] 2. Nuclear reaction: ¹⁷⁶ Yb (⁹ Be, α 2n)Hf ¹⁷⁷ E=38, 45 and 55 MeV. 3. Half-life of bandhead is 25.0(3) d. 4. Exp. g _K = 0.60 (7) for g _R =0.34(5) 5. The B (M1)/B (E2) values are deduced in the present work using gamma-ray energies, intensities and their errors from XUNDL.

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
2	2 1310.5 1521.3 1754.3 2008.4 2282.3	17/2 ⁺ 19/2 ⁺ 21/2 ⁺ 23/2 ⁺ 25/2 ⁺	210.9 232.9 254.3 273.9	443.2 486.4	0.40(11) 0.29(7)	4.0(20) 1.24(53)	2000MU06	 v: 1/2[510]⊗9/2[624] ⊗7/2[514] Half-life of bandhead is 3(1) ns. Exp. g_K = 0.48(4) for g_R =0.3. The B (M1)/B (E2) values are deduced in the present work using gamma-ray energies, intensities and their errors from XUNDL.
3	1405.0 1713.4 2044.7 2397.2 2770.4 (3162)	23/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ (33/2 ⁺)	308.6 331.2 352.5 373.2 (392)	(639.4) 683.5 725.5 (765)			2000MU06	 π:7/2[404]⊗9/2[514] v: 7/2[514] Half-life of bandhead is 4(1) ns. Exp. g_K = 0.86(20) for g_R = 0.34(5).
4	1404.8+X 1679.8+X 1974.7+X 2287.9+X	(21/2 ⁺) (23/2 ⁺) (25/2 ⁺) (27/2 ⁺)	275.0 294.9 313.2	569.6 607.5	0.28(7) 0.22(6)	3.5(15) 1.29(52)	2000MU06	 π:7/2[404]⊗5/2[402] v: 9/2[624] Half-life of bandhead is 14(2) ns. Exp. g_K = 0.54(5) for g_R =0.34(5). The B (M1)/B (E2) values are deduced in the present work using gamma-ray energies, intensities and their errors from XUNDL. Value of X is expected as small.
5	1688+X 1972+X (2258+X)	(19/2 ⁻) (21/2 ⁻) (23/2 ⁻)	268 (287)	(556)			2000MU06	 1. π:7/2[404]⊗5/2[402] v: 7/2[514] 2. Value of X is expected as small.
6	1827+X	(21/2+)					2000MU06	1. π:7/2[404]⊗5/2[402] v: 5/2[512]

 $^{181}_{72}Hf_{109}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1040.5 1239.7	(17/2 ⁺) (19/2 ⁺)	199.3			2001SH36	 π:7/2[404]⊗9/2[514] v: 1/2[510] Half-life of bandhead is ~100 μs. Nuclear Reaction: ¹⁸⁰Hf(²³⁸U,²³⁷U)¹⁸¹Hf E=1585 MeV. Level energies are adopted from XUNDL.
2	1381.9	(19/2 ⁺)				2001SH36	 π:9/2[514]⊗7/2[404] v: 3/2[512] Level energy is adopted from XUNDL.

 $^{181}_{72}Hf_{109}$

	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
3	1738.9	(25/2 ⁻)				2001SH36	 1. π:9/2[514]⊗7/2[404] v: 9/2[624] 2. Half-life of bandhead is 1.5(5) ms. 3. Level energy is adopted from XUNDL.

 $^{173}_{73}Ta_{100}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(u_N/eb)^2}$	Reference	Configuration and Comments
1	1479.7	17/2-					1995CA27	1. Competing configurations are:
	1633.3	19/2-	153.4					(a) π : 5/2[402]
	1805.6	21/2-	172.4	326.0	0.08(1)	0.34(4)		v: 5/2[512]⊗7/2[633]
	1997.0	23/2-	191.3	363.6	0.04(1)	0.12(1)		(b) π: 7/2[404]
	2205.7	25/2-	208.2	400.3	0.12(1)	0.20(3)		v: 7/2[633]⊗1/2[521]
	2432.6	27/2-	226.3	435.8	0.02(2)	0.07(2)		The observed lowest state with
	2675.4	29/2-	243.7	469.7	0.08(2)	0.06(2)		spin $17/2^{-}$ favors configuration (a).
	2934.8	31/2	260.1	502.1		0.08(3)		2. Nuclear reaction:
	3208.3	33/2-	273.3	532.9		0.02(4)		160 Gd (19 F, 6n) 173 Ta
	3496.5	35/2-		561.7				E=103-105 MeV.
	3797.8	37/2-	301.2	589.5	0.10(6)	0.12(6)		3. Strong signature splitting at
	4113.2	(39/2)		616.7				high spins.
	4436.9	(41/2)		639.1				4. The B(M1)/B(E2) and $ g_K-g_R $
	4783.3	$(43/2^{-})$		670.1				values read from plots.
	5085.7	(45/2)		648.9				5. Assumed $Q_0 = 7.0$ eb.
	5477.0	(47/2-)		693.8				
	5792.5	(49/2)		706.8				
	6207.0	(51/2)		(730)				
2	1635.9	$(19/2^+)$					1995CA27	1. π: 1/2[541]
	1774.0	$(21/2^{+})$	138.7					v: 1/2[521]⊗7/2[633]
	1926.7	$(23/2^{+})$	152.7	290.1	0.50(2)	0.20(2)		2. Strong signature splitting with
	2085.1	$25/2^+$						signature inversion at $I=57/2^+$.
	2295.5	$27/2^+$	210.4	368.4				3. The B(M1)/B(E2) and $ g_{K}-g_{R} $
	2479.0	$29/2^{+}$	183.2	394.1	0.66(2)	0.37(3)		values read from plots.
	2743.4	$31/2^+$	264.6	447.6	0.58(1)	0.28(2)		4. Assumed $Q_0 = 7.0$ eb.
	2957.2	$33/2^{+}$	213.5	478.3	0.60(1)	0.31(2)		
	3266.6	$35/2^+$	309.2	523.4	0.62(2)	0.33(3)		
	3510.6	$37/2^+$	244.0	553.3	0.49(6)	0.15(4)		
	3862.5	39/2+		595.9				
	4137.0	41/2+		626.4				
	4524.5	$(43/2^{+})$		662.0				
	4834.0	(45/2')		697.0				
	5247.1	(47/2')		722.7				
	5596.5	(49/2))		762.5				
	6026.3	(51/2')		779.1				
	6432.2	$(53/2^{+})$		835.7				
	6845.1	(55/2')		818.8				
	/308.2	$(5^{-}/2^{+})$		876.0				
	/693.1	(59/21)		848.0				

 $^{173}_{73}Ta_{100}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) $(\mu_N/eb)^2$	Reference	Configuration and Comments
3	1713.6+X	(21/2 ⁻)					1977AN04	1. π : 9/2[514] v: 7/2[514] \otimes 5/2[512] 2. Nuclear reactions: (a) ¹⁶⁵ Ho (¹² C, 4n γ) ¹⁷³ Ta E=60-70 MeV. (b) ¹⁷⁵ Lu (α , 6n γ) ¹⁷³ Ta E=73 MeV. 3. Level energy is adopted form ENSDF. It is considered as tentative since not reported by 1995CA27; X=1.4 keV. 4. Half-life of level is ~100 ns.

 $^{175}_{73}Ta_{102}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) $(\mu_N/eb)^2$	Reference	Configuration and Comments
1	1551.7 1650.5 1793.2 1968.7 2172.8 2402.2 2655.8 2930.9 3224.6	$17/2^{+}$ $19/2^{+}$ $21/2^{+}$ $23/2^{+}$ $25/2^{+}$ $27/2^{+}$ $29/2^{+}$ $31/2^{+}$ $33/2^{+}$	98.8 142.7 175.5 204.1 229.4 253.6 275.1 293.7	318.6 379.8 433.7 482.9 528.2 569.1	0.32(6) 0.34(7) 0.44(+6-7) 0.37(+6-7) 0.43(+8-10) 0.49(16)	1.19(48) 1.02(42) 1.42(42) 0.92(32) 1.12(47) 1.34(86)	1996KO17	1. Competing configurations are: (a) π : 9/2[514] v: 7/2[633] \otimes 1/2[521] (b) π :7/2[404] \otimes 9/2[514] \otimes 1/2[541] 2.Half-life of bandhead is 5.5(8) ns 3. Exp. $g_{K} = 0.72(7)$ or 0.82(14) for two configurations with $g_{R}=0.34(3)$ or $g_{R}=0.44(10)$, respectively. 4. Pure K and $Q_{0} = 7.8$ eb assumed. 5. Nuclear Reaction: 170 Er (10 B, 5n) 175 Ta E= 64 MeV.
2	1565.9 1877.1 2202.3 2536.8 2879.3 3231.2	21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ (31/2 ⁻)	311.2 325.2 334.5 342.5 (351.9)	635.9 659.5 677.2 (694.0)	0.74(+9-12) 0.66(+11-16) 0.62(+10-12)	19.9(58) 9.0(38) 5.9(21)	1996KO17	 π: 5/2[402]⊗7/2[404] ⊗9/2[514] Half-life of bandhead is 1950(150) ns. Exp g_K =1.02(15) for g_R =0.34(3) Pure K and Q₀ = 7.8 eb assumed.
3	$\begin{array}{c} 1729.3\\ 1895.0\\ 2086.0\\ 2298.4\\ 2530.7\\ 2782.0\\ 3051.5\\ 3338.1\\ 3640.2\\ 3956.5\\ 4282.0\\ 4619.4\\ 4966.0 \end{array}$	$\begin{array}{c} 21/2^+\\ 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ 33/2^+\\ 35/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ (43/2^+)\\ (45/2^+)\end{array}$	165.7 191.0 212.4 232.3 251.3 269.5 286.6 302.1 316.3 325.5 337.4 346.0	357.1 403.7 444.4 483.3 520.4 555.9 588.8 618.7 641.1 662.9 684.0	$\begin{array}{c} 0.23(3) \\ 0.20(3) \\ 0.21(+5-7) \\ 0.23(+5-6) \\ 0.23(+4-5) \\ 0.26(+6-8) \\ 0.27(8) \\ 0.27(+9-12) \end{array}$	$\begin{array}{c} 1.90(49)\\ 0.78(22)\\ 0.67(40)\\ 0.65(32)\\ 0.57(23)\\ 0.68(37)\\ 0.70(42)\\ 0.65(52)\end{array}$	1996KO17	 π: 9/2[514] v: 7/2[633]⊗5/2[512] Half-life of bandhead is 0.9(3) ns. Exp. g_K =0.56(6) for g_R =0.34(3). Signature splitting at higher spins. Pure K and Q₀ = 7.8 eb assumed.

 $^{175}_{73}Ta_{102}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
4	1941.0	(23/2)					1996KO17	1. Tentative configuration is:
	2317.3	(27/2)		376.0				$\pi: 1/2[411] \otimes v^2:i_{13/2}$
	2768.8	(31/2)		451.1				2. Level energies are adopted from
	3295.8	(35/2)		527.0				ENSDF
	3892.3	(39/2)		596.5				
	4559.3	(43/2)		667.0				
	5297.0	(47/2)		737.7				

 $^{177}_{73}Ta_{104}$

	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (µ _N /eb) ²	Reference	Configuration and Comments
1	1253.3	3/2-					1972AD12	 π: 9/2[514] v: 7/2[514]⊗1/2[521] Decay study. Level energy is adopted from ENSDF.
2	1355.0 1625.9 1920.2 2192.7 2471.0 2755.1 3046.5 3345.8 3653.7 3968.7	21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ (39/2 ⁻)	271.0 294.3 272.6 278.4 284.2 291.4 299.4 308.1 (315)	565 566.8 550.7 562.2 575.5 590.6 607.0 622.9	0.45(+10-16) 0.45(+6-7) 0.37(5) 0.26(5) 0.34(+6-7) 0.40(+6-7)	9(5) 4.8(14) 2.5(6) 1.0(4) 1.5(6) 1.8(6)	2000DA09	1. There are four competing configurations: a. π : 9/2[514] \otimes 7/2[404] \otimes 5/2[402] b. π :9/2[514] v: 7/2[514] \otimes 5/2[512] c. π : 7/2[404] v: 7/2[514] \otimes 7/2[633] d. π : 5/2[402] v: 7/2[514] \otimes 9/2[624] 2. Configuration (a) is for low spin values and others for higher spins. 3. Backbending at I=25/2 ⁻ . 4. Nuclear reaction: 1 ⁷⁰ Er (¹¹ B, 4n) ¹⁷⁷ Ta E= 55 MeV. 5. Half-life of bandhead is 5.96(21) µs. 6. Exp. g _K = 0.64(3) for g _R =0.29(3) 7. Pure K and Q ₀ = 7.27 eb assumed.
3	1475.9 1650.9	(17/2) (19/2)	175.0				2000DA09	 Tentative configuration is: π: 9/2[514] v: 1/2[521]⊗7/2[514] Half-life of bandhead is < 1.4 ns.
4	1512.5	(1/2 [*] ,3/2 [*])					1972AD12	 π: 9/2[514] v: 7/2[514]⊗1/2[521] Decay study. Level energy is adopted from ENSDF.

 $^{177}_{73}Ta_{104}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (1121/eb) ²	Reference	Configuration and Comments
5	1522.9 1605.4 1737.4 1904.6 2101.5 2324.2 2570.0 2839.9 3129.3 3438.1 3764.4	17/2 ⁺ 19/2 ⁺ 21/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 35/2 ⁺ 37/2 ⁺	82.5 131.9 167.1 196.9 222.7 245.8 269.9 289.4 308.8 326.3	299.3 364.3 419.5 468.5 515.7 559.7 598.2 634.7	$\begin{array}{c} 0.34(4) \\ 0.36(3) \\ 0.42(4) \\ 0.42(5) \\ 0.34(6) \\ 0.46(7) \end{array}$	1.6(4) 1.3(2) 1.5(3) 1.4(3) 0.8(3) 1.4(4)	2000DA09	1.Competing configurations are: (a) π : 9/2[514] \otimes 7/2[404] \otimes 1/2[541] (b) π : 9/2[514] v: 1/2[521] \otimes 7/2[633] Available experimental information and theoretical calculations favor configuration (a). 2. Half-life of bandhead is 5.5(14) ns. 3. Exp. g _K = 0.63(4) – 0.75(7) for g _R =0.29(3). 4. Small signature splitting. 5. Pure K and Q ₀ = 7.27 eb assumed.
6	1602.7 1766.1 1949.3 2154.1 2381.0 2628.5 2896.2 3181.0 3480.7 3779	19/2 ⁻ 21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ (37/2 ⁻)	163.4 183.1 204.7 226.9 (247.5)	346.6 388.0 431.7 474.4 515.2 552.5 584.5 (598)	0.02(+4) 0.10(4) 0.08(+4-3)	0.01(+10) 0.2(1) 0.09(7)	2000DA09	 Competing configurations are: (a) π: 7/2[404] v: 5/2[642]⊗7/2[514] (b) π: 5/2[402] v: 7/2[633]⊗7/2[514] Half-life of bandhead is < 1.4 ns. Exp. g_K = 0.38(4) for g_R =0.29(3). Pure K and Q₀ = 7.27 eb assumed.
7	1698.5 1834.6 2037.1 2271.2 2530.0 2810.3 3109.6 3426.1 3757.8 4103.2 4459.4 4825 5195	$\begin{array}{c} 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ 35/2^+\\ 35/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ 43/2^+\\ (45/2^+)\\ (47/2^+)\end{array}$	136.1 202.5 234.1 258.8 280.3 299.3 316.6 331.7	338.6 436.6 492.9 539.1 579.6 615.8 648.2 677.1 701.6 (722) (736)	$\begin{array}{c} 0.31(+5-6)\\ 0.33(+4-5)\\ 0.30(3)\\ 0.28(+4-5)\\ 0.26(3)\\ 0.33(+4-5)\end{array}$	5.3(19) 3.3(9) 2.0(4) 1.5(5) 1.1(3) 1.6(5)	2000DA09	 π: 9/2[514] v: 7/2[633]⊗7/2[514] Half-life of bandhead is <1.0 ns. Exp. g_K = 0.58(4) for g_R =0.29(3). Pure K and Q₀ = 7.27 eb assumed.
8	1874.9 2116.9 2380.7 2666.3 2971.5 3294.7 3633.5 3987.9 4352.8 4727.9	25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻	242.1 263.9 285.6 305.2 323.4	505.8 549.3 590.8 628.3 662.0 693.2 719.3 740.0	0.18(+5-6) 0.17(7) 0.17(6)	0.5(3) 0.5(4) 0.4(3)	2000DA09	 Competing configurations are: (a) π: 7/2[404] v: 7/2[633]⊗7/2[514] (b) π: 7/2[404] N: 7/2[514]⊗9/2[624] (c) π: 5/2[402] N: 7/2[514]⊗9/2[624] Available exp. information favor configuration (a) tentatively. Pure K and Q₀ = 7.27 eb assumed.
9	2098.2 2324.4 2570.0 2831.0	25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺	226.2 245.6 (261)	(472)	0.11(4)	0.5(3)	2000DA09	 π: 9/2[514] v: 7/2[514]⊗9/2[624] Half-life of bandhead is < 2.8 ns. Exp. g_K = 0.40(5) for g_R =0.29(3). Pure K and Q₀ = 7.27 eb assumed.

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1251.5 1541.4 1847.6 2161.6 2512.4 2861.7 3225.3	21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ (33/2 ⁻)	289.9 306.2 314.0 350.8 349.3 (363.6)	595.9 619.9 664.6 701.9 (714.0)	0.43(+6-8) 0.33(4) 0.39(+7-8)	8.0(26) 2.59(68) 2.8(11)	1997KO13	1. Mixing of following three configurations suggested: (a) π : 9/2[514] \otimes 5/2[402] \otimes 7/2[404] (b) π : 5/2[402] v: 7/2[514] \otimes 9/2[624] (c) π : 9/2[514] v: 5/2[512] \otimes 7/2[514] 2. Signature splitting with double back- bending at I= 25/2 ⁻ and I= 29/2 ⁻ . 3. Half-life of bandhead is 320(20) ns. 4. Exp. g _K = 0.66(2) for g _R =0.30. 5. Nuclear reaction: ¹⁷⁶ Yb (⁷ Li, 4n) ¹⁷⁹ Ta E= 30-60 MeV. 6. Pure K and Q ₀ = 7.22(9) eb assumed.
2	1317.8 1591.6 1885.3 2198.8 2531.3 2882.6 3252.1 3638.7 4042.4	25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 33/2 ⁺ 35/2 ⁺ 37/2 ⁺ 39/2 ⁺ (41/2 ⁺)	273.8 293.7 313.5 332.5 351.3 369.5 386.6 (403.7)	567.4 606.4 645.6 683.5 720.0 756.1 790.3	0.23(2) 0.22(4) 0.23(4)	3.82(81) 1.93(66) 1.57(49)	1997KO13	 π: 9/2[514] v: 7/2[514]⊗9/2[624] Half-life of bandhead is 11(2) ms. Exp. g_K = 0.53(5) for g_R =0.30. Pure K and Q₀ = 7.22(9) eb assumed.
3	1327.0 1601.3 1898.4 2217.9 2560.0 2920.5	23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ (33/2 ⁻)	274.3 297.1 319.5 342.1 360.5	571.5 616.8 661.2 (702.0)	0.07(+6-3) 0.10(3)	0.28(29) 0.34(17)	1997KO13 1982BA21	 π: 7/2[404] v: 7/2[514]⊗9/2[624] Half-life of bandhead is 1.6(4) μs. Exp. g_K = 0.39(11) for g_R =0.30. Pure K and Q₀ = 7.22(9) eb assumed.
4	1627.6 1832.3 2058.2 2304.3	(19/2 ⁺ ,21/2 ⁻) (21/2 ⁺ ,23/2 ⁻) (23/2 ⁺ ,25/2 ⁻) (25/2 ⁺ ,27/2 ⁻)	204.7 225.9 246.1	429.6 472.2	0.38(+8-14) 0.23(+6-7)	6.1(39) 1.32(75)	1997KO13	 There are two possible configurations: π: 9/2[514] v: 1/2[521]⊗9/2[624] π: 5/2[402] v: 9/2[624]⊗7/2[514] Half-life of bandhead is ≤ 1 ns. For g_R =0.30, exp g_K = 0.56(13) and 0.60(14) for K=21/2⁻ and 19/2⁺ respectively. Pure K and Q₀ = 7.22(9) eb assumed.

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configuration and Comments
	kev		keV	keV	$(\mu_N/eb)^2$		
1	1402.4	$15/2^{-1}$				1998SA60	1. π: 7/2[404]
	1583.0	17/2-	181				v: 1/2[510]⊗9/2[624]
	1786.8	19/2	204	384	2.8(11)		2. Nuclear reaction:
	2013.9	21/2-	227	431	0.58(14)		176 Yb (11 B, $\alpha 2n$) 179 Ta
	2261.8	23/2-	249	475	0.36(14)		E = 57, 52 MeV.
	2532.9	25/2-		519			3. The B(M1)/B(E2) values read from plot.
							4. Level energies are adopted from XUNDL.
2	1402 4+X	$(10/2^{+})$				10085160	$1 \pi \cdot 9/2[51/1]$
2	1402.4 + X 1615 4+X	(1)/2) $(21/2^{+})$	213			1))05A00	1. n. 9/2[514] $y: 1/2[510] \otimes 9/2[624]$
	1851 9+X	(21/2) $(23/2^{+})$	215	450	1 64(35)		2 Half-life of bandhead is
	2111 7+X	$(25/2^+)$	260	496	1.01(33) 1.14(14)		140(36) ns
	2392 3+X	$(27/2^+)$	281	540	0.71(14)		3 The $B(M1)/B(E2)$ values
	2572.5 · M	(2112)	201	510	0.71(11)		read from plot.
							4. Level energies are adopted from XUNDL.
3	1485	21/2-				1998WH02	1. π:9/2[514]⊗7/2[404] ⊗5/2[402]
							2 Nuclear reaction:
							181 Ta (238 U, 238 U') 181 Ta
							E=1600 MeV
							3. Half-life of bandhead is
							25(2) μs.
4	2230	29/2-				1998WH02	1. π: 9/2[514]
							v:11/2[615]⊗9/2[624]
							2. Half-life of band head is
							210(20) µs.

 $^{185}_{73}Ta_{112}$

E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$B (M1)/B (E2) (\mu_N/eb)^2$	Reference	Configuration and Comments
1 1258+X	21/2				1999WH03	 π: 5/2[402]⊗7/2[404] ⊗9/2[514] Nuclear reaction: ¹⁸⁶W(²³⁸U,X)¹⁸⁵Ta E=1600 MeV. Half-life of bandhead is > 1 ms. Value of X<100 keV.

165	W/
74	<i>vv</i> ₉₁

E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
keV		keV	keV	$(\mu_N/eb)^2$		
1 1948.9+X	23/2-				1992SI12	1. For $\alpha = +1/2$ signature:
2302.7+X	27/2-		353.8			v: $3/2[521](\alpha = +1/2)$
2511.2+X	$(29/2^{-})$					$\otimes 3/2[651](\alpha = +1/2)$
2602.3+X	31/2-		299.6			$\otimes 3/2[651](\alpha = -1/2)$
2860.3+X	(33/2)		349.1			For $\alpha = -1/2$ signature:
3057.3+X	35/2-		455.0			v: $3/2[521](\alpha = -1/2)$
3341.8+X	(37/2)		481.5			$\otimes 3/2[651](\alpha = +1/2)$
3633.6+X	39/2-		576.3			$\otimes 3/2[651](\alpha = -1/2)$
3924.5+X	(41/2)		582.7			2. Nuclear reaction:
4290.1+X	43/2-		656.5			106 Pd (63 Cu, p3n) 165 W
4601.3+X	(45/2)		676.8			E=285 MeV.
5003.7+X	47/2-		713.6			3. Signature splitting with
5342.4+X	(49/2)		741.1			Signature inversion at
5774.3+X	51/2-		770.6			$I=39/2^{-}$.
6136.5+X	(53/2)		794.1			4. Level energies are relative to
6598.4+X	(55/2-)		824.1			$13/2^+$ state at 0+X, where X is
(7470.4+X)	(59/2)		(872)			unknown.

 $^{167}_{74}W_{93}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1782.4+X	23/2-				1992TH06	1. For $\alpha = +1/2$ signature:
	2093.4+X	(25/2)					v: $3/2[521](\alpha = +1/2)$
	2104.5+X	27/2-		322.1			$\otimes 3/2[651](\alpha = +1/2)$
	2427.9+X	$(29/2^{-})$	323.4	334.5			$\otimes 3/2[651](\alpha = -1/2)$
	2479.0+X	31/2-		374.5			For $\alpha = -1/2$ signature:
	2821.6+X	$(33/2^{-})$	342.6	393.7			v: $3/2[521](\alpha = -1/2)$
	2937.0+X	35/2-		458.0			$\otimes 3/2[651](\alpha = +1/2)$
	3313.3+X	$(37/2^{-})$	376.3	491.7			$\otimes 3/2[651](\alpha = -1/2)$
	3509.4+X	39/2-		572.4			2. Nuclear reaction:
	3907.7+X	(41/2)		594.4			142 Nd (30 Si, 5n) 167 W
	4197.2+X	43/2-		687.8			E=165 MeV.
	4602.0+X	$(45/2^{-})$		694.3			3. Strong signature splitting with
	4984.3+X	47/2-		787.1			signature inversion at $I = 49/2^{-1}$.
	5385.2+X	(49/2)		783.2			4. Level energies are adopted
	5849+X	51/2		864.9			from ENSDF. Values are
	6241.8+X	(53/2)		856.6			relative to $5/2^{-1}$ state at 0+X,
	6765+X	(55/2-		915.4			where X is expected to be
	7153+X	(57/2)		911.3			small.
	8660+X	(59/2)		930.0			
	8108+X	(61/2)		955.2			

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (u _N /eb) ²	Reference	Configuration and Comments
1	1645.5 1789.9 1977.4 2194.9 2436.3 2697.8 2974.6 3270.7 3568.7 3889.2	19/2 ⁺ 21/2 ⁺ 23/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 35/2 ⁺ 37/2 ⁺	144.3 187.5 217.5 241.4 261.7 (276.0) 296.0	331.8 404.9 458.9 502.8 538.3 573.0 594.1 618.5	0.116(7) 0.109(7) 0.102(7) 0.136(7) 0.163(7) 0.150(14)	0.47(4) 0.25(2) 0.17(2) 0.25(2) 0.30(1) 0.22(2)	1997SH36	1. v: $5/2[512] \otimes 7/2[514]$ $\otimes 7/2[633]$ 2. Nuclear reaction: 164 Dy (18 O, 5n) 177 W E=83 MeV. 3. Mean exp. g _K = 0.18(2) for g _R =0.30(5). 4. Strong signature splitting at higher spins. 5. Level energies are adopted from ENSDF. 6. Assumed Q ₀ = 6.8 eb . 7. Half-life of band-head is \leq 1 ns. 8. The B (M1)/B (E2) values are deduced in the present work.
2	2148.8 2330.1 2557.9 2821.6 3109.6 3419.9 3745.1	21/2 ⁺ 23/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 33/2 ⁺	181.6 227.9 263.6 288.0 310.3 325.2	409.5 491.5 551.7 598.3 635.5	0.218(14) 0.558(27) 0.650(41)	9.0(52) 13.8(28) 14.6(88) 2.8(21) 5.2(42)	1997SH36	 Competing configurations are: (a) π: 9/2[514]⊗7/2[404] v: 5/2[512] (b) π: 9/2[514]⊗5/2[402] v: 7/2[514] Configuration (a) dominates at bandhead spin region and mixing of both at high spins suggested. Mean exp. g_K = 0.71(20) for g_R = 0.30(5). Level energies are adopted from ENSDF. Assumed Q₀ = 6.8 eb . The B (M1)/B (E2) values are deduced in the present work taking gamma ray energies, intensities and their error from ENSDF.

	$^{179}_{74}W_{10}$)5					
	E _{level} keV	Ι ^π	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	720.2 773.7 1680.3	$(3/2)^+$ $(5/2)^+$ $(7/2)^+$	53.5			1975ME20	 Tentative configuration is: π: 9/2[514]⊗5/2[402] v: 7/2[514] Decay study. Level energies are adopted from
2	1216.0	17/2+				1991WA26	ENSDF. 1. v: 7/2[514]⊗9/2[624]⊗1/2[521] 2. Nuclear reaction: ¹⁷⁰ Er (¹³ C, 4n) ¹⁷⁹ W E=67 MeV.

179	W/
74	<i>vv</i> ₁₀₅

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
3	1631.8 1873.2 2137.9 2424.3 2730.8 3054.9 3391.3 3746.4	21/2 ⁺ 23/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 33/2 ⁺ 35/2 ⁺	241.4 264.6 286.4 306.5 324.1 (336)	506.1 551.2 592.9 630.7 660.5 691.5	0.16(1) 0.19(1) 0.20(4) 0.19(4) 0.16(6)	$\begin{array}{c} 1.27(10) \\ 1.06(9) \\ 0.85(31) \\ 0.63(24) \\ 0.42(23) \end{array}$	1994WA05	1. Competing configurations are: (a) v: 9/2[624] \otimes 7/2[514] \otimes 5/2[512] (b) π : 7/2[404] \otimes 5/2[402] v: 9/2[624] Configuration (a) favored by g _K value but there may be mixing among these two configurations. 2. Nuclear reaction: ¹⁷⁰ Er (¹³ C, 4n) ¹⁷⁹ W E=67 MeV. 3. Half-life of bandhead is 390(30) ns. 4. Exp. g _K = 0.13(5) for g _R = 0.30(5). 5. Assumed Q ₀ = 6.5 eb . 6. The B (M1)/B (E2) and g _K -g _R values are deduced in the present work assuming 0.1 keV error in gamma ray energies.
4	1832.1 2037.7 2261.2 2504.4 2738.9 3031.6 3326.5 3637.5 3963.9 4304.7 4666.8 5036.4 5436.9 5833.3 6269 6708	23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 45/2 ⁻ 45/2 ⁻ 47/2 ⁻ 49/2 ⁻ (51/2 ⁻) (53/2 ⁻)	205.6 223.4 243.3 (234)	429.1 466.9 477.4 527.1 587.6 605.9 637.4 667.2 702.9 731.7 770.1 796.9 (832) (875)	0.06(1) 0.04(4)	0.22(5) 0.06(11)	1994WA05	 v: 9/2[624]⊗7/2[514]⊗7/2[633] Signature splitting with signature inversion at I=39/2⁻. Half-life of bandhead is <0.5 ns. Exp g_K = 0.24(5) for g_R =0.30(5). It is explained as a tilted rotational band. The B (M1)/B (E2) and g_K-g_R values are deduced in the present work assuming 0.1 keV error in gamma ray energies.
5	2011.9 2291.5 2586.1 2893.5 3210.3 3534.7	$(23/2)^+$ $(25/2)^+$ $(27/2)^+$ $(29/2)^+$ $(31/2)^+$ $(33/2)^+$	279.6 294.5 307.4 316.7 324.4	574.3 602.1 624.3 (641)	0.41(7) 0.37(6) 0.38(3)	11.7(41) 5.2(17) 3.98(57)	1994WA05	 π: 9/2[514]⊗7/2[404] v: 7/2[514] Half-life of bandhead is < 1.0 ns. Exp. g_K = 0.7(1) for g_R =0.30(5). Assumed Q₀ = 6.5 eb . The B (M1)/B (E2) and g_K-g_R values are deduced in the present work assuming 0.1 keV error in gamma ray energies.

$^{179}_{74}W_{105}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)}{(\mu_N/eb)^2}$ (E2)	Reference	Configuration and Comments
6	2088.4	(23/2)				1994WA05	1. Tentative configuration is:
	2299.6	(25/2)	211.2				$\pi: 9/2[514] \otimes 5/2[402]$
	2546.7	(27/2)	247.1				v: 9/2[624]
	2822.0	(29/2)	275.3	(523)			2. Half-life of bandhead is
	3121.0	(31/2)	299.0	(574)			< 0.5 ns.
	3439	(33/2)	318.0	(617)			3. Exp. $g_K < 0.08$ or > 0.52 for
	(3779)	(35/2)	(340)	(658)			$g_{\rm R} = 0.30(5).$

183	W/
74	<i>vv</i> ₁₀₉

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)}{(\mu_N/eb)^2}$ (E2)	Reference	Configuration and Comments
1	1745.7	19/2 ⁻	242.0				1999SA60	1. v: 9/2[624]⊗11/2[615]
	1988.9	21/2	243.0	507.2	0.24(1)	2 92(22)		$\otimes 1/2[510]$
	2232.4	25/2	203.3	546.5	0.34(1) 0.33(1)	2.00(12)		Admixture of $K = 19/2$ and $K = 21/2^{-}$ suggested
	2836.8	27/2-	301.6	584 3	0.35(1)	1.83(16)		2 Nuclear reaction:
	3155.9	29/2-	318.9	620.8	0.38(1)	1.62(8)		176 Yb (14 C, α 3n) 183 W E=68 MeV
								3. Half-life of bandhead is
								12.7(20) ns.
								4. The $B(M1)/B(E2)$ and
								$ g_{K}-g_{R} $ values read from plots.
								5. Assumed $Q_0 = 7.0$ eb.
2	1900.3	(19/2 ⁺)					1999SA60	1. v: 7/2[514]⊗11/2[615]
	2154.2	$(21/2^+)$	253.8					⊗1/2[510]
	2429.8	$(23/2^+)$	275.6					2. Half-life of bandhead is
	2723.4	$(25/2^{+})$	293.5	569.3		0.88(23)		< 3.0 ns.
								3. For $g_R = 0.25$, exp. g_K for $I = 25/2^+$ is 0.04(3).
3	2049.9	23/2-					1999SA60	1 v: 9/2[624]⊗11/2[615]
	2339.7	25/2-	289.7					⊗3/2[512]
	2648.5 2976.7	27/2 ⁻ 29/2 ⁻	308.8 328.1	598.9 637.7	0.24(1) 0.36(1)	3.87(29) 4.24(49)		2. Half-life of bandhead is < 1.5 ns.
								3. The B(M1)/B(E2) and $ \mathbf{g}_{\mathbf{r}}-\mathbf{g}_{\mathbf{p}} $ values read from
								plots.
								4. Assumed. $Q_0 = 7.0$ eb and $g_R = 0.25$.
4	2101.1	23/2(+)					1999SA60	1.Tentative configuration is:
								π: 5/2[402]⊗7/2[404] ν: 11/2[615]
5	2268.9	25/2(-)					1999SA60	1. π: 5/2[402]⊗9/2[514]
	2590.4	27/2 ⁽⁻⁾	321.5					v: 11/2[615]
	2931.7	29/2 ⁽⁻⁾	341.3	662.8		36.4(44)		2. Half-life of bandhead
	3291.6	31/2(-)	359.9					is < 3.0 ns.
								3. For $g_R = 0.25$, exp. g_K value at $I = 29/2^-$ is 0.95(4).

169	р
75	Re_{94}

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1.	1922.6	(23/2)				2004ZH05	1.Tentative configuration
	2078.2	(25/2)	155.6				assignment based on
	2274.0	(27/2)	195.8	351.3	2.05(40)		alignment is:
	2512.9	(29/2)	239.0	434.6	2.91(60)		π: 9/2[514]
	2786.4	(31/2)	273.5	512.3	3.44(70)		v: $3/2[651](\alpha = +1/2)$
	3081.4	(33/2)	295.0	568.6	4.34(85)		$\otimes 3/2[521](\alpha = +1/2)$
	3408.8	(35/2)	327.5	622.3			2. Nuclear Reaction:
	3723.1	(37/2)	314.3	641.8			144 Sm (28 Si, 1p2n γ) 169 Re
	4050.4	(39/2)	327.5	641.6			E=140, 145, 150 MeV.
	4337.4		287.0				3. Energy variation with spin is not smooth.
							 Signature splitting at higher spins.
							5. Level energies are adopted from XUNDL

 $^{175}_{75} \mathrm{Re}_{100}$

	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1793.9	(19/2)					1992KI06	1. Competing configurations are:
	1943.5	(21/2)	149.5					(a) $\pi: 9/2[514]$
	2120.5	(23/2)	177.0	326.9	0.27(6)	2.6(9)		v: 5/2[512]⊗7/2[633]
	2322.9	(25/2)	202.4	379.4	0.17(3)	0.54(19)		(b) π: 5/2[402]
	2549.2	(27/2)	226.2	428.8	0.13(3)	0.26(10)		v: 5/2[512]⊗7/2[633]
	2797.4	(29/2)	248.2	474.5	0.16(5)	0.31(17)		2. Half-life of bandhead is 28 ns.
	3066.2	(31/2)	268.7	516.9	0.23(3)	0.57(15)		3. Nuclear Reaction:
	3353.5	(33/2)	287.3	556.2	0.20(4)	0.39(17)		¹⁶¹ Dy (¹⁹ F, 5n) ¹⁷⁵ Re
	3658.2	(35/2)	304.7	592.0	0.28(5)	0.74(27)		E = 88-112 MeV.
	3978.3	(37/2)	320.2	624.8	0.39(11)	1.3(6)		4. Assumed $Q_0 = 7$ eb.
	4310.2	(39/2)	332.0	651.9	0.42(7)	1.4(5)		
	4672.2	(41/2)		693.9				

 $^{177}_{75} \mathrm{Re}_{102}$

	E _{level}	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B (M1)/B (E2)	Reference	Configuration and Comments
	KeV		keV	keV		$(\mu_N/eb)^2$		
1	1442.3+X	15/2+					1995BA67	1. Competing configurations are: (a) π : 9/2[514] \otimes 5/2[402] \otimes 1/2[541] (b) 9/2[514] $_{\pi}$ +3 ⁻ Octupole 2. Exp. $g_{K} \sim 0.8$ for $g_{R} = 0.35$. 3. Half-life of bandhead is ≤ 0.4 ns. 4. Nuclear Reactions: (a) ¹³⁰ Te (⁵¹ V, 4n) ¹⁷⁷ Re E=225 MeV. (b) ¹⁶³ Dy (¹⁹ F, 5n) ¹⁷⁷ Re E=105 MeV. 5. Level energy is relative to the energy of the 9/2 ⁻ , 9/2[514] level at 0+X, where X<40 keV.
2	1567.1+X 1676.1+X 1817.7+X 1988.6+X 2184.6+X 2406.1+X 2648.3+X 2913.4+X 3198.2+X	17/2 ⁺ 19/2 ⁺ 21/2 ⁺ 23/2 ⁺ 25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 33/2 ⁺	109.0 141.5 170.8 196.1 221.5 242.1 265.1 284.8	313.2 366.8 417.6 463.6 507.3 549.7	0.43(4) 0.47(6) 0.51(5) 0.4(4) 0.70(13)	2.17(47) 2.20(54) 2.30(51) 1.59(31) 3.7(14)	1995BA67	 Competing configurations are: (a) π: 9/2[514]⊗7/2[404]⊗ 1/2[541] (b) π: 9/2[514] v: 1/2[521]⊗7/2[633] Small signature splitting. Average exp. g_K = 0.8 for g_R = 0.35. Assumed Q₀ = 6.7 eb. The B (M1)/B (E2) and g_K-g_R values are deduced in the present work assuming 0.1 keV error in gamma ray energies. Level energies are relative to the energy of the 9/2⁻, 9/2[514] level at 0+X, where X<40 keV.
3	1586.8+X 1829.4+X 2074.5+X 2331.2+X 2603.7+X	(17/2 ⁻) (19/2 ⁻) (21/2 ⁻) (23/2 ⁻) (25/2 ⁻)	242.5 245.1 256.4 272.2	529.2			1995BA67	 π: 9/2[514] v: 1/2[521]⊗5/2[512] Exp. g_K = 0.87. Level energies are relative to the energy of the 9/2⁻, 9/2[514] level at 0+X, where X<40 keV.
4	1825.2+X 1975.9+X 2156.0+X 2367.1+X 2604.6+X 2865.0+X 3144.9+X 3439.9+X 3747.3+X 4066.6+X 4391.5+X 4736.6+X 5073.3+X	$\begin{array}{c} 21/2^+\\ 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ (35/2^+)\\ (37/2^+)\\ (37/2^+)\\ (41/2^+)\\ (43/2^+)\\ (45/2^+)\\ \end{array}$	150.7 180.2 211.3 237.7 260.2 279.8	391.0 448.4 498.0 540.4 574.9 602.8 626.7 644.3 670.0 681.8	0.18(1) 0.17(2) 0.12(1) 0.13(2)	1.07(17) 0.78(16) 0.29(5) 0.31(6)	1995BA67	1. π : 9/2[514] v: 5/2[512] \otimes 7/2[633] 2. Signature splitting at high spins. 3. Half-life of bandhead is \leq 0.5 ns. 4. Average exp. $g_K = 0.48$. 5. Assumed $Q_0 = 6.7$ eb. 6. The B (M1)/B (E2) and $ g_{K}-g_{R} $ values are deduced in the present work assuming 0.1 keV error in gamma ray energies. 7. Level energies are relative to the energy of the 9/2 ⁻ , 9/2[514] level at 0+X, where X<40 keV.

	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B(M1)/B(E2)	Reference	Configuration and Comments
	KC V		Kev	KEV		(μ_N/eb)		
5	1959.9+X	23/2					1995BA67	1. π: 9/2[514]
	2092.3+X	$25/2^{+}$	132.4					v: 7/2[514]⊗7/2[633]
	2273.7+X	$27/2^{+}$	181.3					2. Assumed $Q_0 = 6.7 \text{ eb}$.
	2489.7+X	$29/2^{+}$	216.1	397.1	0.44(4)	7.0(14)		3. The B (M1)/B (E2) and $ g_{K}-g_{R} $
	2734.0+X	$31/2^+$	244.4	460.3	0.34(1)	3.10(29)		values are deduced in the present
	3002.7+X	$33/2^{+}$	268.7	513.0	0.24(1)	1.20(9)		work assuming 0.1 keV error
	3291.8+X	$35/2^+$	289.0	557.8	0.26(1)	1.28(11)		in gamma ray energies.
	3599.4+X	$37/2^{+}$	307.6	596.8	0.27(1)	1.27(11)		4. Half-life of bandhead is ≤ 0.5 ns.
	3922.5+X	$39/2^{+}$	323.2	630.7	0.21(1)	0.72(9)		5. Average exp. $g_K = 0.59$.
	4258.9+X	$41/2^{+}$	336.6	659.3	0.25(1)	0.92(12)		6. Level energies are relative to the
	4607.3+X	$43/2^{+}$	348.2	684.6	0.18(2)	0.48(11)		energy of the $9/2^{-}$, $9/2[514]$ level
	4964.0+X	$45/2^{+}$	357.1	705.4	0.26(2)	0.91(18)		at 0+X, where X<40 keV.
	5332.5+X	$47/2^{+}$	368.9	724.6	0.35(4)	1.57(36)		
	5709.8+X	(49/2 ⁺)		745.7		~ /		

 $^{179}_{75} \mathrm{Re}_{104}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)}{B(E2)}$ $(\mu_{N}/eb)^{2}$	Reference	Configuration and Comments
1	1297.6 1544.1	15/2 ⁻ (17/2 ⁻)	246.1				2002TH12	 Tentative configuration is: π: 9/2[514] v: 7/2[514]⊗1/2[521] Level energies are adopted from XUNDL. Nuclear Reactions: (a) ¹⁶⁵Ho (¹⁸O, 4n)¹⁷⁹Re E=82 MeV (b) ¹⁷³Yb (¹¹B, 5n) ¹⁷⁹Re E=73 MeV.
2	1771.8	(19/2-)					2002TH12	 π: 5/2[402] v:7/2[514]⊗7/2[633] Level energy is adopted from XUNDL.
3	1771.8+X 1902.4+X 2097.1+X 2326.0+X 2581.1+X	$\begin{array}{c} (23/2^{+}) \\ (25/2^{+}) \\ (27/2^{+}) \\ (29/2^{+}) \\ (31/2^{+}) \end{array}$	130.2 194.7 228.9 255.1				2002TH12	 π: 9/2[514] v: 7/2[514]⊗7/2[633] Half-life of bandhead is 408(12) ns. Level energies are adopted from XUNDL; X≤140 keV.
4	1813.7 1988.3 2182.6 2396.5 2627.5 2876.9 3130.8	$(17/2^+) (19/2^+) (21/2^+) (23/2^+) (25/2^+) (27/2^+) (29/2^+) (29/2^+)$	174.5 194.3 214.0 231.0 249.5 254.1	368.9 408.1 444.8 480.6 503.0	0.177(3) 0.184(14) 0.23(5) 0.170(14)	$\begin{array}{c} 0.06(2) \\ 0.48(12) \\ 0.40(5) \\ 0.50(19) \\ 0.25(3) \end{array}$	2002TH12	 π: 5/2[402] v:7/2[514]⊗5/2[512] Small signature splitting. Level energies are adopted from XUNDL. Assumed Q₀ = 6.8 eb . The B (M1)/B (E2) values are deduced in the present work.

$$^{179}_{75} \mathrm{Re}_{104}$$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)}{B(E2)}$ $(\mu_N/eb)^2$	Reference	Configuration and Comments
5	1826.4	$(19/2^{+})$					2002TH12	1. π: 9/2[514]
	1978.0	$(21/2^{+})$	151.6					v:9/2[624]⊗1/2[521]
	2186.6	$(23/2^{+})$	208.6					2. Bandhead is isomeric but
	2416.4	$(25/2^{+})$	229.9					half-life is not known.
	2693.4	$(27/2^{+})$	277.0	506.9				3. Level energies are adopted
	3252.4	(31/2 ⁺)		559.0				from XUNDL.

 $^{181}_{75} \mathrm{Re}_{106}$

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV		$(\mu_N/eb)^2$		
1	1656.4	21/2-					2000PE18	1. π: 5/2[402]
	1883.3	23/2-	226.7		1.05(7)			v: 9/2[624]⊗7/2[514]
	2136.6	25/2-	253.3	479.9	0.16(7)	1.20(40)		2. Half-life of bandhead is
	2411.9	27/2-	275.4	528.6	0.21(7)	1.11(33)		250(10) ns.
	2713.0	29/2-	301.3	576.6	0.14(7)	0.37(14)		3. Exp. $g_K = 0.47(4)$ for $g_R = 0.3$.
	3031.2	31/2-	318.4	619.4	0.182(7)	0.52(16)		4. It crosses 9/2[514](gsb) at I=
	3371.1	33/2-	340.6	657.7	0.203(14)	0.56(17)		$23/2^{-}$ and at I = $35/2^{-}$.
	3711.2	35/2-	340.6	679.9	0.182(7)	0.43(13)		5. The I= $23/2^{-}$ band has a chance
								degeneracy with the $I=23/2^{-1}$
								level of $9/2[514]$ band.
								6. Signature splitting.
								7. Nuclear reaction:
								$F_{\rm r}$ T $F_{\rm r}$ $F_$
								E=7/MeV.
								8. Assumed $Q_0 = 7 \text{ eb}$.
								9. The $B(MT)/B(E2)$ values are
								deduced in the present work
								assuming 0.1 kev error in
								gamma ray energies.
2	16934	$17/2^{+}$					2000PE18	1 Tentative configuration is:
-	1809.0	$19/2^+$	115.6				20001 1210	π : 1/2[541]
	1007.0	1712	110.0					$v \cdot 9/2[624] \otimes 7/2[514]$

 $^{181}_{75} \mathrm{Re}_{106}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
3	1857.7 1986.8 2156.5 2354.3 2574.2 2815.5 3074.2 3348.0 3642.6 3963.0 4288.5 4653.9 5010.0 5421.6 5803.4 6256.1 6655.9	$\begin{array}{c} 21/2^+\\ 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ 35/2^+\\ 37/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ 43/2^+\\ 45/2^+\\ 47/2^+\\ 47/2^+\\ 49/2^+\\ 51/2^+\\ 53/2^+\\ \end{array}$	129.2 169.8 197.5 (220.3) (241.6) (258.9)	297.8 367.4 417.7 461.3 499.9 532.6 568.4 615.0 645.9 690.9 721.5 767.6 793.7 834.4 852.4	0.182(35) 0.042(70) 0.07(49) 0.21(35)	0.30(8) 0.29(8) 0.29(8) 0.30(12)	2000PE18 1997PE15	 π: 5/2[402] v: 9/2[624]⊗7/2[633] Exp. g_K =0.41(9) for g_R = 0.3. It is a tilted rotational band from TAC with : ε₂=0.225, ε₄ =0.046 Δp =0.87 MeV and Δn = 0.67 MeV. It cross 5/2[402] at I = 25/2⁺. Strong signature splitting at higher spins. The B(M1)/B(E2) values read from plot given in 1997PE15. Assumed Q₀ = 7 eb.
4	1881.0 2135.9 2412.9 2710.7 3028.1 3370.7 3724.3	25/2 ⁺ 27/2 ⁺ 29/2 ⁺ 31/2 ⁺ 33/2 ⁺ 35/2 ⁺ 37/2 ⁺	255.4 277.0 297.9 317.6 342.5 353.6	532.2 574.8 615.1 659.8 696.2	0.203(7) 0.175(7) 0.154(7) 0.224(7) 0.133(14)	2.96(89) 1.25(40) 0.73(24) 1.23(36) 0.36(13)	2000PE18	 π: 9/2[514] v: 9/2[624]⊗7/2[514] Exp. g_K =0.49(5) for g_R = 0.3. Half-life of bandhead is 12(2) μs. Strong signature splitting at higher spins. Assumed Q₀ = 7 eb. The B (M1)/B (E2) values are deduced in the present work assuming 0.1 keV error in gamma ray energies.
5	2225.1 2427.1 2632.9 2854.8 3093.2 3348.9 3623.8 3914.9 4228.9 4552.7 4910.2 5260.2 5667.1 6032.5 6458.1 6861.7	25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 43/2 ⁻ 45/2 ⁻ 47/2 ⁻ 49/2 ⁻ 51/2 ⁻ 53/2 ⁻ 55/2 ⁻	202.0 205.8 221.8 238.4 255.7 274.8 291.0 314.1 323.9 357.5 350.2 406 366	407.7 427.7 460.3 494.1 530.6 565.8 605.1 637.8 681.2 707.4 756.0 772.5 791 829.6	0.231(56) 0.266(28) 0.231(35) 0.217(35) 0.224(42) 0.287(42) 0.238(42) 0.252(42) 0.301(63)	4.5(18) 3.34(51) 1.82(51) 1.47(34) 1.43(43) 1.87(51) 1.34(34) 1.34(30) 1.71(55)	2000PE18 1997PE15	 π: 9/2[514] v: 9/2[624]⊗7/2[633] Exp. g_K =0.54(5) for g_R = 0.3. It cross 9/2[514] at I =27/2⁻. It is explained as a tilted rotational band from TAC calculations. Strong Signature splitting at higher spins. The B(M1)/B(E2) values read from a plot shown in 1997PE15. Assumed Q₀ = 7 eb.

40

 $^{183}_{75} \mathrm{Re}_{108}$

	E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (µ _N /eb) ²	Reference	Configuration and Comments
1	1628.3	15/2-					2000PU01	1. π: 5/2[402]
	1819.4	$17/2^{-1}$	191.1					v: 9/2[624]⊗1/2[510]
	2019.8	19/2-	200.4	391.5	0.324(78)	2.15(79)		2. Nuclear Reaction:
	2238.2	21/2-	218.4	418.8	0.298(65)	1.08(30)		176 Yb (11 B, 4n) 183 Re
	2476.4	23/2-	238.3	456.5	0.408(78)	1.50(38)		E= 49-61 MeV.
	2734.0	25/2-	257.6	495.8	0.408(97)	1.29(40)		3. Level energies are adopted
	3012.1	27/2-	277.9	536.3	0.47(10)	1.51(45)		from XUNDL.
								4. Assumed $Q_0 = 6.47$ eb.
								5. The B (M1)/B (E2) values are
								deduced in the present work.
2	1763.4	17/2-					2000PU01	1. π: 5/2[402]
	1936.6	19/2-	173.1					v: 9/2[624]⊗3/2[512]
	2137.8	21/2-	201.2	374.3	0.219(32)	1.41(21)		2. It crosses 9/2[514] in spin
	2365.1	23/2-	227.4	428.6	0.226(32)	0.86(13)		range I = $25/2^{-1}$ to I= $27/2^{-1}$.
	2616.4	25/2-	251.3	478.5	0.180(19)	0.41(5)		3. Level energies are adopted
	2888.7	27/2-	272.4	523.6	0.232(32)	0.59(10)		from XUNDL.
	3183.2	29/2-	294.6	566.7	0.206(39)	0.40(9)		4. Assumed $Q_0 = 6.45$ eb.
	3499.2	31/2-	316.1	610.5		0.06(7)		5. The $B(M1)/B(E2)$ values are
	3833.4	33/2-		650.2				deduced in the present work .
3	1906.7	25/2+					2000PU01	1. π: 5/2[402]
	2211.8	$27/2^{+}$	305.1				1998HA51	v: 9/2[624]⊗11/2[615]
	2537.9	$29/2^{+}$	326.1	631.1	< 0.019	0.12(8)		2. Half-life of bandhead is 1 ms.
	2883.8	$31/2^{+}$	345.9	672.0	< 0.045			3. It is explained as a tilted
	3247.7	$33/2^{+}$	364.0	710.0	< 0.051	0.0(4)		rotational band.
	3628.1	$35/2^+$	380.6	744.5	0.058(45)	0.12(4)		4. Level energies are adopted
	4022.3	$37/2^{+}$	394.4	774.6	0.064(45)	0.08(3)		from XUNDL.
	4428.5	$39/2^{+}$	406.0	800.4	0.077(45)	0.12(3)		5. The B(M1)/B(E2) values read
	4842.9	$41/2^{+}$	414.4	820.6	0.083(58)	0.12(3)		from plot shown in 1998HA51.
	5266.0	$43/2^{+}$	423.1	837.5	0.128(6)	0.21(3)		6. Assumed $Q_0 = 6.39$ eb.
	5691.1	$45/2^{+}$		848.2		0.47(4)		
	6131.0	$47/2^{+}$		865.0				
	6569.2	49/2+		878.1				
4	1927.5	15/2+					2000PU01	1. π: 5/2[402]⊗9/2[514] ⊗1/2[541]
								2. Level energy is adopted from XUNDL.

 $^{183}_{75} \mathrm{Re}_{108}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (u _N /eb) ²	Reference	Configuration and Comments
5	1937+X 2186.7+X 2464.4+X 2765.9+X 3086.6+X 3419.7+X 3756.2+X	(21/2) (23/2) (25/2) (27/2) (29/2) (31/2) (33/2)	249.7 277.7 301.6 320.7 333.4	527.4 579.1 622.2 653.7 669.6	0.07(2) 0.03(4) 0.08(1) 0.03(11)	0.15(5) 0.04(7) 0.15(6) 0.02(10)	2000PU01	 π: 5/2[402] v: 9/2[624]⊗7/2[503] Half-life of bandhead is 10(4) ns. Level energies are adopted from XUNDL; X<75 keV. Assumed Q₀ = 6.02 eb. The B (M1)/B (E2) and g_K-g_R values are deduced in the present work.
6	2030.0	(11/2 ⁺)					1983BR24	 Tentative configuration is: π: 9/2[514] v: 9/2[624]⊗7/2[514] 2. Decay study.
7	2036.9 2232.0 2454.7 2702.1 2971.8 3261.9 3571.0 3898.2 4238.8 4595.8 4966.1	$\begin{array}{c} (19/2^+) \\ (21/2^+) \\ (23/2^+) \\ (25/2^+) \\ (27/2^+) \\ (29/2^+) \\ (31/2^+) \\ (33/2^+) \\ (35/2^+) \\ (37/2^+) \\ (39/2^+) \end{array}$	195.1 222.5 247.4 269.7 290.1 309.3 327.1 340.7	417.9 470.3 517.0 560.0 599.0 636.3 667.8 697.6 727.3	0.281(45) 0.383(58) 0.320(38) 0.236(58) 0.358(38) 0.262(64) 0.198(89)	3.15(60) 3.43(67) 1.81(28) 0.83(24) 1.63(21) 0.80(23) 0.41(23)	2000PU01	 π: 9/2[514] v: 9/2[624]⊗1/2[510] Level energies are adopted from XUNDL. Assumed Q₀ = 6.39 eb. The B (M1)/B (E2) values are deduced in the present work.
8	2737.3 3048.1 3374.4 3712.6 4058.2 4401.1 4749.1 5075.8 5453.7 5769.2 6177.6	29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 45/2 ⁻ 47/2 ⁻ 49/2 ⁻	310.9 326.4 338.3 345.6 342.8 348.0 326.9 377.9 315.4 408.4	637.1 664.5 683.7 688.5 690.9 674.7 704.6 693.4 723.9	0.042(30) 0.066(30) 0.078(30) 0.127(60) 0.175(24) 0.103(66) 0.36(18)	$\begin{array}{c} 0.50(4) \\ 0.12(2) \\ 0.08(2) \\ 0.21(2) \\ 0.34(2) \\ 0.49(4) \\ 0.71(8) \\ 1.25(10) \end{array}$	2000PU01 1998HA51	 π: 9/2[514] v:9/2[624]⊗11/2[615] Half-life of bandhead is 6.0(5) ns. Strong Signature splitting at higher spins. Alignment and B (M1)/B (E2) plots suggest that, at low spin it is high-K band, at intermediate spin it is tilted band and at higher spins it is aligned band. Level energies are adopted from XUNDL. The B(M1)/B(E2) read from plot shown in 1998HA51. Assumed Q₀ = 6.03 eb.
9	3207.5 3589.2 3986.3	(31/2) (33/2) (35/2)	381.6 397.2	778.8			2000PU01	 π: 11/2[505] v: 9/2[624]⊗11/2[615] Level energies are adopted from XUNDL.

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	B (M1)/B (E2) ($\mu_N/eb)^2$	Reference	Configuration and Comments
1	1474.2	19/2				2003SH13	 π: 5/2[402] v:3/2[512]⊗11/2[615] Nuclear Reaction: ¹⁸⁷Re(⁸²Se,⁸²Se')¹⁸⁷Re E=500 MeV.
2	1681.6	(19/2 ⁺ , 21/2 ⁺)				2003SH13	 π: 9/2[514] v:1/2[510]⊗11/2[615] 2.Half-life of bandhead is 114(23) ns. K= 19/2⁺ is proposed as bandhead.

 $^{187}_{75} \mathrm{Re}_{112}$

¹⁶⁷₇₆Os₉₁

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV	$(\mu_N/eb)^2$		
1	1712.5	(21/2)				2001JO11	1. For $\alpha = +1/2$ signature:
	1894.4	$(23/2^{-})$					v: $3/2[521](\alpha = +1/2)$
	2192.3	(25/2)		479.8			$\otimes 3/2[651](\alpha = +1/2)$
	2382.0	(27/2-)		487.6			$\otimes 3/2[651](\alpha = -1/2)$
							For $\alpha = -1/2$ signature:
							v: $3/2[521](\alpha = -1/2)$
							$\otimes 3/2[651](\alpha = +1/2)$

1	1712.5	$(21/2^{-})$		2001JO11	1. For $\alpha = +1/2$ signature:
	1894.4	$(23/2^{-})$			v: $3/2[521](\alpha = +1/2)$
	2192.3	$(25/2^{-})$	479.8		$\otimes 3/2[651](\alpha = +1/2)$
	2382.0	$(27/2^{-})$	487.6		$\otimes 3/2[651](\alpha = -1/2)$
					For $\alpha = -1/2$ signature:
					v: $3/2[521](\alpha = -1/2)$
					$\otimes 3/2[651](\alpha = +1/2)$
					$\otimes 3/2[651](\alpha = -1/2)$
					2. Nuclear reaction:
					112 Sn (58 Ni, n2p) 167 Os
					E=266 MeV.
					3. Level energies are adopted
					from XUNDL.

 $^{171}_{76}Os_{95}$

	E _{level} keV	I^{π}	E _γ (M1) keV	$E_{\gamma}(E2)$ keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	2337.2 2413.6 2520.9 2676.0 2893.8 3115.3 3415.8 3725.9 4054.7	$\begin{array}{c} (25/2^{-}) \\ (27/2^{-}) \\ (29/2^{-}) \\ (31/2^{-}) \\ (33/2^{-}) \\ (35/2^{-}) \\ (37/2^{-}) \\ (39/2^{-}) \\ (41/2^{-}) \end{array}$	ĸċv	183.4 262.4 372.9 439.3 522.0 610.6 639.0	(μ _N /eb)	1999BA13	1. For $\alpha = +1/2$ signature: v: $3/2[521](\alpha = +1/2)$ $\otimes 3/2[651](\alpha = +1/2)$ $\otimes 3/2[651](\alpha = -1/2)$ For $\alpha = -1/2$ signature: v: $3/2[521](\alpha = -1/2)$ $\otimes 3/2[651](\alpha = +1/2)$ $\otimes 3/2[651](\alpha = -1/2)$ 2. Nuclear reaction:
	4459.1 4766.7 5219.1 5503.2 6260.2	(43/2 ⁻) (45/2 ⁻) (47/2 ⁻) (49/2 ⁻) (53/2 ⁻)		733.2 712.0 760.0 736.5 757.0			 ¹¹⁶Sn (⁵⁸Ni, n2p)¹⁷¹Os E=267 MeV. 3. CD crossing near ηω_c= 0.37 MeV is suggested. C=1/2[660](α=+1/2) D=1/2[660](α=-1/2) 4. Signature splitting with signature inversion at I= 39/2⁻. 5. Level energies are adopted from XUNDL.

 $^{181}_{76}Os_{105}$

keV	1	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) $(\mu_N/eb)^2$	Reference	Configuration and Comments
1 1745.1 2	21/2+					2003CU03 1995KU14	1. Tentative configuration is: v: 7/2[514] \otimes 9/2[624] \otimes 5/2[512] 2. Nuclear reaction: ¹⁵⁰ Nd (³⁶ S, 5n) ¹⁸¹ Os E=160 MeV. 3. Half-life of bandhead is 7(2) ns.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻ 35/2 ⁻ 37/2 ⁻ 39/2 ⁻ 41/2 ⁻ 43/2 ⁻ 43/2 ⁻ 45/2 ⁻ 47/2 ⁻ 55/2 ⁻ 55/2 ⁻ 55/2 ⁻ 55/2 ⁻ 55/2 ⁻ 55/2 ⁻ 59/2 ⁻ (61/2 ⁻) 63/2 ⁻ 67/2 ⁻	204.0 214.6 229.1 246 272 296 322	418.0 442.4 475.2 518.0 567.5 614.7 639.3 680.9 710.9 725.1 741.9 747.7 764.0 766 804.6 788.2 847 (801) 874 896	0.220(15) 0.258(23) 0.175(23) 0.160(23)	1.28(18) 0.78(21) 0.54(13) 0.46(18)	2003CU03 1995KU14	 v: 7/2[514]⊗9/2[624] ⊗7/2[633] At low frequency (< 0.35 MeV), it is explained as a tilted rotational band. Strong signature splitting at higher spins. The B(M1)/B(E2) and g_K-g_R values read from plots shown in 1995KU14 and 2003CU03, respectively. Assumed Q₀ = 7.6 eb .

	Elevel	I^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	g _K -g _R	B (M1)/B (E2)	Reference	Configuration and Comments
	keV		keV	keV		$(\mu_N/eb)^2$		
3	1928.2	21/2-					2003CU03	1. v: 1/2[521]⊗9/2[624]⊗7/2[633]
	2019.2	23/2-	91.0			0.22(9)	1995KU14	2. Strong signature splitting at
	2142.8	25/2-	123.6	213.0		0.11(3)		higher spins.
	2303.0	27/2-	160.2	284.0	0.046	0.09(4)		3. The B(M1)/B(E2) and $ g_K-g_R $
	2493.0	29/2-	190.0	349.8	0.068	0.10(4)		values read from plots shown
	2715.2	31/2-	222.2	412.4	0.137			in 1995KU14 and 2003CU03
	2961.6	33/2-	246.4	467.9	0.129(15)			respectively.
	3236.6	35/2-	275	521.4	0.274(23)			4. Assumed $Q_0 = 7.6$ eb.
	3527.4	37/2-	290.8	565.7	0.175(23)			
	3843.7	39/2-	316.3	607.3	0.289(23)			
	4166.1	41/2	322.4	640.7				
	4512.3	43/2-	346.2	669.4				
	4844.4	45/2-		678.3				
	5212.1	47/2-		699.8				
	5542.4	49/2-		698.0				
	5931.5	51/2-		719.4				
	6264.7	53/2-		722.3				
	6679.1	55/2-		747.6				
	7000.2	57/2-		(735.5)				
	7456.5	59/2-		777.4				
	7751.1	$61/2^{-1}$		(750.9)				
	8262.3	$(63/2^{-})$		(805.8)				
	9091.5	(67/2)		(829.2)				

 $^{183}_{76}Os_{107}$

	E _{level} keV	Ιπ	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B(M1)}{B(E2)}$ $(\mu_N/eb)^2$	Reference	Configuration and Comments
1	1560.1	15/2-					2001SH41	1. π: 5/2[402]⊗1/2[541]
	1583.1	$17/2^{-1}$	(23.2)					v: 9/2[624]
	1665.0	19/2-						2. Nuclear reaction:
	1779.1	$21/2^{-1}$	114.2	195.5	0.041(6)	0.01(1)		170 Er (18 O, 5n) 183 Os
	1925.5	23/2-	146.3	260.6	0.058(6)	0.05(1)		E=85 MeV.
	2101.3	25/2-	175.6	322.3	0.023(6)	0.01(1)		3. Half-life of bandhead is
	2305.1	27/2-	203.7	379.6	0.052(6)	0.02(1)		<3 ns.
	2536.4	29/2-	231.1	435.1	0.070(6)	0.04(1)		4. Signature splitting with
	2792.6	31/2-	256.3	487.6	0.070(6)	0.04(1)		signature inversion at $I=43/2^{-1}$.
	3075.0	33/2-	282.3	538.6	0.104(12)	0.08(1)		5. Average exp. g_K value is
	3377.4	35/2-	302.5	584.8	0.128(12)	0.12(1)		0.36(5) for $g_R = 0.30(5)$.
	3707.5	37/2-	330.2	632.5	0.104(12)	0.07(1)		6. Assumed $Q_0 = 5.8$ eb.
	4031.3	39/2-		653.7				7. The $B(M1)/B(E2)$ values are
	4422.7	41/2-		715.1				deduced in the present work.
	4814.0	43/2-		782.7				
	5192.8	45/2-		770.1				
	5617.9	$(47/2^{-})$		803.9				
	5977.8	$(49/2^{-})$		785				
	6460.9	(51/2)		843.0				

 $^{183}_{76}Os_{107}$

	E_{level} I^{π} keV	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
2	2209.4 23/ 2470.4 25/ 2753.9 27/ 3045.7 29/	2 ⁺ 2 ⁺ 260.9 2 ⁺ 283.7 2 ⁺ 291.9	544.5 575.2	0.180(6) 0.122(6)		2001SH41	 v: 7/2[503]⊗7/2[514] ⊗9/2[624] Half-life of bandhead is <3 ns. Average exp. g_K value is 0.45(5)/ 0.15(5) for g_R=0.30(5). Assumed Q₀ = 7.6 eb
	$^{185}_{76}Os_{109}$						
	${f E}_{ m level} = {f I}^{\pi} {f keV}$	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1	1591.2 19/2* 1844.4 21/2* 2108.0 23/2* 2386.7 25/2* 2678.9 27/2* 2987.4 29/2* 3309.2 (31/2) 3663.4 (33/2) 4010.9 (35/2)	252.9 263.4 278.8 292.5	516.8 542.5 570.8 600.7 630.3 676.0 701.8	0.19(1) 0.15(1) 0.08(1)	1.89(10) 0.64(4) 0.13(3)	2004SH08	1. v: $1/2[521] \otimes 7/2[503]$ $\otimes 11/2[615]$ 2. Nuclear reaction: 176 Yb (13 C,4n) 185 Os E=65 MeV. 3. Half-life of bandhead is <5 ns. 4. Signature splitting more pronounced at higher spins. 5. Assumed $Q_0 = 5.7$ eb. 6. The B (M1)/B (E2) values are deduced in the present work.
2	1987.1 23/2* 2264.3 25/2* 2551.7 27/2* 2848.4 29/2* 3139.8 31/2* 3460.9 33/2* 3703.0 35/2* 4101.1 (37/2 4304.6 (39/2 4792.6 (41/2 4976.6 (43/2 5541.9 (45/2 5713.6 (47/2 6338.6 (49/2 6506.6 (51/2 7358.6 (55/2)	277.1 287.5 296.4 291.3 321.0 241.9 (398) (398) (398)	565.0 584.5 588.2 612.6 563.0 640.1 601.6 691.6 672.0 749.3 736.9 796.7 793.1 852.0	$\begin{array}{c} 0.17(1) \\ 0.15(1) \\ 0.06(1) \\ 0.01(2) \\ 0.04(1) \end{array}$	2.54(13) 1.13(5) 0.15(1) 0.01(1) 0.03(2)	2004SH08	 v: 3/2[512]⊗9/2[624] ⊗11/2[615] Half-life of bandhead is 5.5(10) ns. Strong signature splitting. Assumed Q₀ = 5.7 eb. The B (M1)/B (E2) values are deduced in the present work.

$^{171}_{77}Ir_{94}$

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	B(M1)/B(E2) ($\mu_N/eb)^2$	Reference	Configuration and Comments
1	0+ Y	(23/2)				1999BA84	1. π : $h_{11/2}$
	98.0+Y	$(25/2^{-})$	98.0				v: $3/2[651](\alpha = +1/2)$
	223.0+Y	$(27/2^{-})$	125.0				$\otimes 3/2[521](\alpha = +1/2)$
	424.2+Y	(29/2)	201.2				2. Nuclear reaction:
	671.0+Y	(31/2)	246.8				¹¹⁶ Sn(⁵⁸ Ni, p2n) ¹⁷¹ Ir
	955.8+Y	$(33/2^{-})$	284.8				E=260, 267 MeV.
	1275.2+Y	(35/2-)	319.5				3. Level energies are adopted
	1631.0+Y	(37/2 ⁻)	355.5				from ENSDF; Y> 1.1 MeV.
2	2326.7+X	(23/2-)				1999BA84	1. π : h _{11/2} , v: i ² _{13/2}
	2381.5+X	$(25/2^{-})$					2. Level energies are adopted
	2496.8+X	$(27/2^{-})$	115.3				from ENSDF. Values are
	2677.9+X	$(29/2^{-})$	181.1				relative to the energy of the
	2945.6+X	$(31/2^{-})$	267.7				$11/2^{-1}$ state at 0+X, where
	3284.2+X	$(33/2^{-})$	338.6				X=180(30) from systematics.
	3671.7+X	(35/2)	347.5				

 $^{181}_{77}Ir_{104}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1632.1 $21/2$ 73.5 $(7/2)$ 1989.8 $23/2^+$ 107.8 183 2. Nuclea 2129.5 $25/2^+$ 139.6 247.2 $0.19(4)$ $1.0(5)$ (a) 2298.5 $27/2^+$ 169.0 309 $0.22(3)$ $1.0(3)$ (b) 2498.2 $29/2^+$ 199.7 368.9 $0.21(2)$ $0.75(14)$ $E=7$ 2720.6 $31/2^+$ 222.4 422.1 $0.14(2)$ $0.29(7)$ $3.$ Small 2969.0 $33/2^+$ 248.4 470.6 $0.21(2)$ $0.57(11)$ presen 3239.1 $35/2^+$ 270.1 518.9 $0.21(2)$ $0.53(9)$ $4.$ Pure K 3528.3 $37/2^+$ 288.9 559.6 assum 3837.3 $39/2^+$ 309.0 597.9 4161.7 $41/2^+$ 633.4 4494.5 $43/2^+$ 678 (5205) $(47/2^+)$ (710) 5564 $(49/2^+)$ (724) (6332) $(53/2^+)$ (768)	2[541] 2[514] \otimes 7/2[633] ear reactions: $\Gammam ({}^{16}O, 4n) {}^{181}Ir$ $\Gammam ({}^{17}O, 5n) {}^{181}Ir$ 77-105 MeV. I signature splitting is nt. K and $Q_0 = 6$ eb ned.

	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	g _K -g _R	B(M1)/B(E2) (μ_N/eb) ²	Reference	Configuration and Comments
2	1837.6 2123.7 2494.4 2981.7 3534.5 4133.9 4777.2 5474 (6234)	$\begin{array}{c} 21/2^+\\ 25/2^+\\ 29/2^+\\ 33/2^+\\ 37/2^+\\ 41/2^+\\ 45/2^+\\ 49/2^+\\ (53/2^+)\end{array}$		286.1 371.0 487.3 552.8 599.4 643.3 697 (759)			1993DR02	1. Authors discuss different scenarios about configuration assignment but none agree with the observed behavior; thus the structure remains uncertain.
3	1956	(17/2 ⁺)					1993DR02	 Two possible configurations are: (a) π: 1/2[541] v: 7/2[514]⊗5/2[512] (b) π: 5/2[541] v: 7/2[514]⊗7/2[633]
4	1961	19/2-					1993DR02	1. π: 5/2[402] v: 7/2[514]⊗7/2[633]
5	1979.0 2174.6 2381.4 2601.9 2836.4 3083.6 (3340.3) (3600.1) (3877.4) (4174.0) (4443.2)	21/2 ⁻ 23/2 ⁻ 25/2 ⁻ 27/2 ⁻ 29/2 ⁻ 31/2 ⁻ (33/2 ⁻) (35/2 ⁻) (37/2 ⁻) (39/2 ⁻) (41/2 ⁻)	195.6 206.8 220.5 234.5 247.2 (256.7) (259.8) (277.3) (296.6)	402.7 427.4 454.9 481.8 (503.6) (516.6) (536.5) (573.9) (565.8)	0.16(2) 0.19(2) 0.18(2) 0.12(2) 0.14(2) 0.15(2) 0.22(4) 0.31(14)	$\begin{array}{c} 1.6(5) \\ 1.2(2) \\ 0.8(2) \\ 0.30(8) \\ 0.34(9) \\ 0.40(8) \\ 0.8(3) \\ 1.4(4) \end{array}$	1993DR02	 π: 9/2[514] v: 5/2[512]⊗7/2[514] 2. Backbending at I=33/2⁻. 3. Pure K and Q₀ = 6 eb assumed.
6	2033.9 2191.2 2381.5 2596.6 2832.8 3087.2 3356.7 3640.0 3935.2 4242.7 4562.3 4895.7 5242.3 5602.1 (5974) (6360)	$\begin{array}{c} 23/2^+\\ 25/2^+\\ 27/2^+\\ 29/2^+\\ 31/2^+\\ 33/2^+\\ 35/2^+\\ 37/2^+\\ 39/2^+\\ 41/2^+\\ 43/2^+\\ 45/2^+\\ 47/2^+\\ (49/2^+)\\ (51/2^+)\\ (53/2^+) \end{array}$	157.3 190.3 215.1 236.2 254.4 269.5 283.3 295.4 307.8 319.6	347.7 405.5 451.5 490.8 523.9 552.8 578.5 603.1 627.6 653.1 680.0 706.4 (732.9) (758)	$\begin{array}{c} 0.132(18)\\ 0.20(1)\\ 0.19(1)\\ 0.15(1)\\ 0.162(12)\\ 0.216(14)\\ 0.17(2)\\ 0.114(16)\\ 0.12(2) \end{array}$	$\begin{array}{c} 1.4(4) \\ 1.70(18) \\ 1.14(14) \\ 0.60(6) \\ 0.62(9) \\ 1.00(13) \\ 0.56(11) \\ 0.24(7) \\ 0.25(8) \end{array}$	1993DR02	 π: 9/2[514] v: 7/2[633]⊗7/2[514] Half-life of bandhead is 29 ns. Small signature splitting at higher spins. Pure K and Q₀ = 6 eb assumed.

 $^{185}_{78}Pt_{107}$

E _{level} keV	Ιπ	E _γ (M1) keV	E _γ (E2) keV	$\frac{B (M1)/B (E2)}{(\mu_N/eb)^2}$	Reference	Configuration and Comments
1 3131.4 3294.3 3511.4 3725.0 3990.7 4263.2 4564.6 4902.2	(33/2 ⁻) (35/2 ⁻) (37/2 ⁻) (39/2 ⁻) (41/2 ⁻) (43/2 ⁻) (45/2 ⁻) (47/2 ⁻)	162.9 217.1 213.6 265.7 272.5 301.4	380.0 430.7 479.3 538.2 573.9 639.0	1.12(8)	1989PI09	 π: 1/2[541]⊗1/2[660] v: 9/2[624] Nuclear reaction: ¹⁷³Yb(¹⁶O,4n)¹⁸⁵ Pt E=90 MeV. Strong signature splitting.

References

- 1969FU03 L. Funke, K.-H. Kaun, P. Kemnitz, H. Sodan, G. Winter, M. Bonitz and F. Stary, Nucl. Phys. A 130, 333 (1969).
- 1971MA45 P. Manfrass, H. Prade, M.R. Beitins, W.A. Bondarenko, N.D. Kramer and P.T. Prokofew, Nucl. Phys. A **172**, 298 (1971).
- 1971MI01 M.M. Minor, R.K. Sheline and E.T. Jurney, Phys. Rev. C 3, 766 (1971).
- 1972AD12 B.L. Ader and N.N. Perrin, Nucl. Phys. A 197, 593 (1972).
- 1975GE11 D. Geinoz, J. Kern and R. Piepenbring, Nucl. Phys. A 251, 305 (1975).
- 1975ME20 B.J. Meijer and J. Konijn, Z. Phys. A 275, 67 (1975).
- 1977AN04 S. Andre, D. Barneoud, C. Foin, B. Ader and N. Perrin, Nucl. Phys. A 279, 347 (1977).
- 1979BE54 R.B. Begzhanov, K.S. Azimov, A. Mukhammadiev, M. Narzikulov and P.S. Radzhapov, Izv. Akad. Nauk SSSR, Ser. Fiz. **43**, 145 (1979).
- 1980DR06 G.D. Dracoulis and P.M. Walker, Nucl. Phys. A 342, 335 (1980).
- 1982BA21 D. Barneoud, S. Andre and C. Foin, Nucl. Phys. A 379, 205 (1982).
- 1982RA19 S. Rastikerdar, C. Garrett and W. Gelletly, J. Phys. (London) G 8, 1301(1982).
- 1982VY07 Ts. Vylov and V.M. Gorozhankin, Izv. Akad. Nauk SSSR Ser. Fiz. **46**, 2239 (1982).
- 1983BR24 D.S. Brenner, D. Barkey, S. Blair, D.D. Warner and R.A. Meyer, Nucl. Phys. A 408, 285 (1983).
- 1987BE07 E.M. Beck, J.C. Bacelar, M.A. Deleplanque, R.M. Diamond, F.S. Stephens, J.E. Draper, B. Herskind, A. Holm and P.O. Tjom, Nucl. Phys. A 464, 472 (1987).
- 1989PI09 S. Pilotte, G. Kajrys, S. Monaro, M.P. Carpenter, V.P. Janzen, L.L. Riedinger, J.K. Johansson, D.G. Popescu, D.D. Rajnauth and J.C. Waddington, Phys. Rev. C 40, 610 (1989).
- 1991FA06 B. Fabricius, G.D. Dracoulis, T. Kibedi, A.E. Stuchbery and A. M. Baxter, Nucl. Phys. A 523, 426 (1991).
- 1991WA26 P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibedi and

A.E. Stuchbery, Phys. Rev. Lett. 67, 433 (1991).

- 1992KI06 T. Kibedi, G.D. Dracoulis, B. Fabricius, A.P. Byrne and A.E. Stuchbery, Nucl. Phys A 539, 137 (1992).
- 1992RA17 D.C. Radford, H.R. Andrews, G.C. Ball, D. Horn, D. Ward, F. Banville, S. Flibotte, S. Monaro, S. Pilotte, P. Taras, J.K. Johansson, D. Tucker, J.C. Waddington, M.A. Riley, G.B. Hagemann and I. Hamamoto, Nucl. Phys. A 545, 665 (1992).
- 1992SI12 J. Simpson, F. Hanna, M.A. Riley, A. Alderson, M.A. Bentley, A.M. Bruce, D.M. Cullen, P. Fallon and L. Walker, J. Phys. (London) **G 18**, 1207 (1992).
- 1992TH06 K. Theine, A.P. Byrne, H. Hubel, M. Murzel, R. Chapman, D. Clarke, F. Khazaie, J. C. Lisle, J.N. Mo, J.D. Garrett, H. Ryde and R. Wyss, Nucl. Phys. A 548, 71 (1992).
- 1993DR02 G.D. Dracoulis, B. Fabricius, T. Kibedi, A.P. Byrne and A.E. Stuchbery, Nucl. Phys. A 554, 439 (1993).
- 1993NE01 M. Neffgen, E.M. Beck, H. Hubel, J.C. Bacelar, M.A. Deleplanque, R.M. Diamond, F.S. Stephens and J.E. Draper, Z. Phys. A 344, 235 (1993).
- 1994BR09 A. Brockstedt, J. Lyttkens-Linden, M. Bergstrom, L.P. Ekstrom, H. Ryde, J.C. Bacelar, J.D. Garrett, G.B. Hagemann, B. Herskind, F.R. May, P.O. Tjom and S. Frauendorf, Nucl. Phys. A 571, 337 (1994).
- 1994VL02 R. Vlastou, C.T. Papadopoulos, M. Serris, C.A. Kalfas, N. Fotiades,
 S. Harissopulos, S. Kossionides, J.F. Sharpey-Schafer, E.S. Paul, P.D. Forsyth,
 P.J. Nolan, N.D. Ward, M.A. Riley, J. Simpson, J.C. Lisle, P.M. Walker,
 M. Guttormsen and J. Rekstad, Nucl. Phys. A 580, 133 (1994).
- 1994WA05 P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibedi, A.E. Stuchbery and N. Rowley, Nucl. Phys. A 568, 397 (1994).
- 1995BA67 R.A. Bark, G.B. Hagemann, B. Herskind, H.J. Jensen, W. Korten,
 J. Wrzesinski, H. Carlsson, M. Bergstrom, A. Brockstedt, A. Nordlund, H. Ryde,
 P. Bosetti, S. Leoni, F. Ingebretsen, P.O. Tjom, Nucl. Phys A 591, 265 (1995).
- H. Carlsson, R.A. Bark, L.P. Ekstrom, A. Nordlund, H. Ryde, G.B. Hagemann,
 S.J. Freeman, H.J. Jensen, T. Lonnroth, M.J. Piiparinen, H. Schnack-Petersen,
 F. Ingebretsen and P.O. Tjom, Nucl. Phys. A 592, 89 (1995).

- 1995GA13 S.J. Gale, J. Simpson, M.A. Riley, J.F. Sharpey-Schafer, E.S. Paul, M.A. Bentley, A.M. Bruce, R. Chapman, R.M. Clark, S. Clarke, J. Copnell, D.M. Cullen, P. Fallon, A. Fitzpatrick, P.D. Forsyth, S.J. Freeman, P.M. Jones, M.J. Joyce, F. Liden, J.C. Lisle, A.O. Macchiavelli, A.G. Smith, J.F. Smith, J. Sweeney, D.M. Thompson, S. Warburton, J.N. Wilson and I. Ragnarsson, J. Phys. (London) G 21, 193 (1995).
- 1995GJ01 N.L. Gjorup, P.M. Walker, G. Sletten, M.A. Bentley, B. Fabricius and J.F. Sharpey-Schafer, Nucl. Phys A 582, 369(1995).
- 1995KU14 T. Kutsarova, R.M. Lieder, H. Schnare, G. Hebbinghaus, D. Balabanski, W. Gast, A. Kramer-Flecken, M.A. Bentley, P. Fallon, D. Howe, A.R. Mokhtar, J.F. Sharpey-Schafer, P. Walker, P. Chowdhury, B. Fabricius, G. Sletten and S. Frauendorf, Nucl. Phys. A 587, 111 (1995).
- 1995MA46 Y. Ma, H. Sun, Y. Liu, S. Wen, H. Zheng, S. Li, G. Li, G. Yuan, P. Weng and C. Yang, J. Phys. (London) **G 21**, 937 (1995).
- 1995RI01 M.A. Riley, T.B. Brown, N.R. Johnson, Y.A. Akovali, C. Baktash, M.L. Halbert, D.C. Hensley, I.Y. Lee, F.K. McGowan, A. Virtanen, M.E. Whitley, J. Simpson, L. Chaturvedi, L.H. Courtney, V.P. Janzen, L.L. Riedinger and T. Bengtsson, Phys. Rev. C 51, 1234 (1995).
- 1995SH18 R.K. Sheline, L. Bergholt, M. Guttormsen, J. Rekstad and T.S. Tveter, Phys. Rev. C 51, 3078(1995).
- 1996KO17 F.G. Kondev, G.D. Dracoulis, A.P. Byrne, M. Dasgupta, T. Kibedi and G. J. Lane, Nucl. Phys. A 601, 195 (1996).
- 1996PE05 P. Petkov, W. Andrejtscheff, H.G. Borner, S.J. Robinson, N. Klay and S.Yamada, Nucl. Phys. A **599**, 505 (1996).
- 1996SM05 D.H. Smalley, A.G. Smith, S.Y. Araddad, C.W. Beausang, R. Chapman,
 J. Copnell, A. Fitzpatrick, S.J. Freeman, S. Leoni, F. Linden, J.C. Lisle,
 J.F. Sharpey-Schafer, J. Simpson, J.P. Sweeney, D.M. Thompson, W. Urban,
 S.J. Warburton and J. Wrzesinski, J. Phys. (London) G 22, 1411 (1996).
- 1997CU01 D.M. Cullen, D.E. Appelbe, A.T. Reed, C. Baktash and C.-H. Yu, Phys. Rev. C 55, 508 (1997).
- 1997HA23 G.B. Hagemann, H. Ryde, P. Bosetti, A. Brockstedt, H. Carlsson, L.P. Ekstrom,
 A. Nordlund, R.A. Bark, B. Herskind, S. Leoni, A. Bracco, F. Camera, S. Frattini,
 M. Mattiuzzi, B. Million, C. Rossi-Alvarez, G.de Angelis, D. Bazzacco, S. Lunardi
 and M. De Poli, Nucl. Phys. A 618, 199 (1997).
- 1997KO13 F.G. Kondev, G.D. Dracoulis, A.P. Byrne, T. Kibedi and S. Bayer, Nucl. Phys. A 617, 91 (1997).
- 1997PE15 C.J. Pearson, P.M. Walker, C.S. Purry, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.G. Kondev, T. Shizuma, R.A. Bark, G. Sletten and S. Frauendorf, Phys. Rev. Lett. **79**, 605 (1997).
- 1997SH36 T. Shizuma, G. Sletten, R.A. Bark, I.G. Bearden, S. Leoni, M. Mattiuzzi, S. Mitarai, S.W. Odegard, S. Skoda, K. Strahle, J. Wrzesinski and Y.R. Shimizu, Nucl. Phys. A 626, 760 (1997).
- 1998BB02 R.A. Bark, H. Carlsson, S.J. Freeman, G.B. Hagemann, F. Ingebretsen, H.J. Jensen, T. Lonnroth, S. Mitarai, M.J. Piiparinen, H. Ryde, H. Schnack-Petersen and P.O. Tjom, Nucl. Phys. A 644, 29 (1998).
- 1998HA37 D.J. Hartley, T.B. Brown, F.G. Kondev, R.W. Laird, J. Pfohl, A.M. Richmond, M.A. Riley, J. Doring and J. Simpson, Phys. Rev. C 58, 1321 (1998).
- 1998HA51 N. Hashimoto, T.R. Saitoh, G. Sletten, R.A. Bark, M. Bergstrom, K. Furuno, T. Komatsubara, T. Shizuma, S. Tormanen and P.G. Varmette, Eur. Phys. J. A 2, 327 (1998).
- 1998HA54 D.J. Hartley, T.B. Brown, F.G. Kondev, J. Pfohl, M.A. Riley, S.M. Fischer, R.V.F. Janssens, D.T. Nisius, P. Fallon, W.C. Ma and J. Simpson, Phys. Rev. C 58, 2720 (1998).
- 1998MU14 S.M. Mullins, A.P. Byrne, G.D. Dracoulis, T.R. McGoram and W. A. Seale, Phys. Rev. C 58, 831 (1998).
- 1998SA60 T.R. Saitoh, N. Hashimoto, G. Sletten, R.A. Bark, S. Tormanen, M. Bergstrom, K. Furuno, K. Furutaka, G.B. Hagemann, T. Hayakawa, T. Komatsubara, A. Maj, S. Mitarai, M. Oshima, J. Sampson, T. Shizuma and P. G. Varmette, Eur. Phys. J. A 3, 197 (1998).
- 1998SI03 J. Simpson, M.A. Riley, R.W. Laird, D.J. Hartley, F.G. Kondev, J. Sweeney, A.N. Wilson, S.J. Gale, M.A. Bentley, A.M. Bruce, R. Chapman, R.M. Clark, D.M. Cullen, P. Fallon, P.D. Forsyth, S.J. Freeman, P.M. Jones, J.C. Lisle, A.O. Macchiavelli, J.F. Sharpey-Schafer, A.G. Smith, J.F. Smith and D.M. Thompson, Eur. Phys. J. A 1, 267 (1998).
- 1998WH02 C. Wheldon, R. D'Alarcao, P. Chowdhury, P.M. Walker, E. Seabury, I. Ahmad, M. P. Carpenter, D.M. Cullen, G. Hackman, R.V.F. Janssens, T.L. Khoo, D. Nisius, C.J. Pearson and P. Reiter, Phys. Lett. B 425, 239 (1998).
- 1999BA13 R.A. Bark, S. Tormanen, T. Back, B. Cederwall, S.W. Odegard, J.F.C. Cocks, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Rahkila and A. Savelius, Nucl. Phys. A 646, 399 (1999).

- 1999BA84 R.A. Bark, S. Tormanen, T. Back, B. Cederwall, S.W. Odegard, J.F.C. Cocks, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Rahkila, A. Savelius, M. Bergstrom, F. Ingebretsen, A. Maj, M. Mattiuzzi, W. Mueller, L.L. Riedinger, T. Saitoh and P.O. Tjom, Nucl. Phys. A 657, 113 (1999). 1999SA60 T.R. Saitoh, N. Saitoh-Hashimoto, G. Sletten, R.A. Bark, M. Bergstrom, P. Regan, S. Tormanen, P.G. Varmette, P.M. Walker and C. Wheldon, Nucl. Phys. A 660, 171 (1999); Erratum Nucl. Phys. A 669, 381 (2000). 1999WH03 C. Wheldon, P.M. Walker, R. D'Alarcao, P. Chowdhury, C.J. Pearson, E.H. Seabury, I. Ahmad, M.P. Carpenter, D.M. Cullen, G. Hackman, R.V.F. Janssens, T.L. Khoo, D. Nisius and P. Reiter, Eur. Phys. J. A 5, 353 (1999). 2000DA09 M. Dasgupta, G.D. Dracoulis, P.M. Walker, A.P. Byrne, T. Kibedi, F.G. Kondev, G.J. Lane and P.H. Regan, Phys. Rev. C 61, 044321 (2000). 2000MU06 S.M. Mullins, G.D. Dracoulis, A.P. Byrne, T.R. McGoram, S. Bayer, R.A. Bark, R.T. Newman, W.A. Seale and F.G. Kondev, Phys. Rev. C 61, 044315 (2000). 2000PE18 C.J. Pearson, P.M. Walker, C.S. Purry, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi and F.G. Kondev, Nucl. Phys. A 674, 301 (2000). 2000PU01 C.S. Purry, P.M. Walker, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.G. Kondev, C.J. Pearson, J.A. Sheikh and F.R. Xu, Nucl. Phys. A 672, 54 (2000). 2000SM09 J.F. Smith, S.J. Dorning, B.J. Varley, W.R. Phillips, Ch-. Vieu, J.S. Dionisio, C. Schuck and M. Pautrat, Phys. Rev. C 62, 034312 (2000). 2001JE09 H.J. Jensen, R.A. Bark, P.O. Tjom, G.B. Hagemann, I.G. Bearden, H. Carlsson, S. Leoni, T. Lonnroth, W. Reviol, L.L. Riedinger, H. Schnack-Petersen, T. Shizuma, X.Z. Wang and J. Wrzesinski, Nucl. Phys. A 695, 3 (2001). 2001JO11 D.T. Joss, S.L. King, R.D. Page, J. Simpson, A. Keenan, N. Amzal, T. Back, M.A. Bentley, B. Cederwall, J.F.C. Cocks, D.M. Cullen, P.T. Greenlees, K. Helariutta, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, A. Savelius, J. Uusitalo and S.J. Williams, Nucl. Phys. A 689, 631 (2001). K.A. Schmidt, M. Bergstrom, G.B. Hagemann, B. Herskind, G. Sletten, 2001SC49
 - K.A. Schmidt, M. Bergstrom, G.B. Hagemann, B. Herskind, G. Sletten,
 P.G. Varmette, J. Domscheit, H. Hubel, S.W. Odegard, S. Frattini, A. Bracco,
 B. Million, M.P. Carpenter, R.V.F. Janssens, T.L. Khoo, T. Lauritsen, C.J. Lister,
 S. Siem, I. Wiedenhover, D.J. Hartley, L.L. Riedinger, A. Maj, W. C. Ma and
 R. Terry, Eur. Phys. J. A 12, 15 (2001).

- I. Shestakova, G. Mukherjee, P. Chowdhury, R. D'Alarcao, C.J. Pearson,
 Zs. Podolyak, P.M. Walker, C. Wheldon, D.M. Cullen, I. Ahmad, M.P. Carpenter,
 R.V.F. Janssens, T.L. Khoo, F.G. Kondev, C.J. Lister, D. Seweryniak and
 I. Wiedenhoever, Phys. Rev. C 64, 054307 (2001).
- 2001SH41 T. Shizuma, K. Matsuura, Y. Toh, Y. Hayakawa, M. Oshima, Y. Hatsukawa, M. Matsuda, K. Furuno, Y. Sasaki, T. Komatsubara and Y. R. Shimizu, Nucl. Phys. A 696, 337 (2001).
- 2002BR52 T.B. Brown, M.A. Riley, D. Campbell, D.J. Hartley, F.G. Kondev, J. Pfohl, R.V.F. Janssens, S.M. Fischer, D. Nisius, P. Fallon, W.C. Ma, J. Simpson and J.F. Sharpey-Schafer, Phys. Rev. C 66, 064320 (2002).
- 2002DRZZ G.D. Dracoulis, Priv.Comm to F.G. Kondev (2002).
- 2002TH12 C. Thwaites, C. Wheldon, A.M. Bruce, P.M. Walker, G.D. Dracoulis, A. P. Byrne, T. Kibedi, F.G. Kondev, C.J. Pearson and C.S. Purry, Phys. Rev. C 66, 054309 (2002).
- 2003CU03 D.M. Cullen, L.K. Pattison, J.F. Smith, A.M. Fletcher, P. M. Walker, H.M. El-Masri, Zs. Podolyak, R.J. Wood, C. Scholey, C. Wheldon, G. Mukherjee, D. Balabanski, M. Djongolov, Th. Dalsgaard, H. Thisgaard, G. Sletten, F. Kondev, D. Jenkins, G.D. Dracoulis, G.J. Lane, I-Y. Lee, A.O. Macchiavelli and F. Xu, Nucl. Phys. A 728, 287 (2003).
- 2003SH13 T. Shizuma, Y. Toh, M. Oshima, M. Sugawara, M. Matsuda, T. Hayakawa, M. Koizumi, A. Osa, Y.H. Zhang and Z. Liu, Eur. Phys. J. A 17, 159 (2003).
- 2004DR06 G.D. Dracoulis, F.G. Kondev, G.J. Lane, A.P. Byrne, T. Kibedi, I. Ahmad,
 M.P. Carpenter, S.J. Freeman, R.V.F. Janssens, N.J. Hammond, T. Lauritsen,
 C.J. Lister, G. Mukherjee, D. Seweryniak, P. Chowdhury, K.S. Tandel and
 R. Gramer, Phys. Lett. B 584, 22 (2004).
- 2004GA04 P.E. Garrett, D.E. Archer, J.A. Becker, L.A. Bernstein, K. Hauschild, E.A. Henry, D.P. McNabb, M.A. Stoyer ,W. Younes, G.D. Johns, R.O. Nelson and W.S. Wilburn, Phys. Rev. C 69, 017302 (2004).
- 2004HO19 D. Hojman, M.A. Cardona, B. Bazzacco, N. Blasi, J. Davidson, M. Davidson, M.E. Debray, A.J. Kreiner, S.M. Lenzi, G.Lo Bianco, D.R. Napoli and C. Rossi Alvarez, Eur. Phys. J. A 21, 383 (2004).
- D.R. Jensen, G.B. Hagemann, I. Hamamoto, B. Herskind, G. Sletten, J.N. Wilson,
 S.W. Odegard, K. Spohr, H. Hubel, P. Bringel, A. Neusser, G. Schonwasser, A. K.
 Singh, W. C. Ma, H. Amro, A. Bracco, S. Leoni, G. Benzoni, A. Maj, C.M. Petrache,
 G. Lo Bianco, P. Bednarczyk and D. Curien, Eur. Phys. J. A 19, 173 (2004).

- 2004SC14 G. Schonwasser, N. Nenoff, H. Hubel, G.B. Hagemann, P.Bednarczyk, G.Benzoni, A. Bracco, P. Bringel, R. Chapman, D. Curien, J. Domscheit, B. Herskind, D.R. Jensen, S. Leoni, G. Lo Bianco, W.C. Ma, A. Maj, A. Neusser, S.W. Odegard, C.M. Petrache, D. Rossbach, H. Ryde, A.K. Singh and K.H. Spohr, Nucl. Phys. A 735, 393 (2004).
- 2004SC41 D.T. Scholes, D.M. Cullen, F.G. Kondev, R.V.F. Janssens, M.P. Carpenter, D.J. Hartley, M.K. Djongolov, G. Sletten, G. Hagemann, C. Wheldon, P.M. Walker, K. Abu Salem, I. Ahmad, D.L. Balabanski, P. Chowdhury, M. Danchev, G.D. Dracoulis, H.M. El-Masri, J. Goon, A. Heinz, R.A. Kaye, T.L.Khoo, T. auritsen, C.J. Lister, E.F. Moore, L.L. Riedinger, M.A.Riley, D. Seweryniak, I. Wiedenhover, O. Zeidan, and Jing-ye Zhang, Phys. Rev. C 70, 054314 (2004).
- 2004SH08 T. Shizuma, S. Mitarai, G. Sletten, R.A. Bark, N.L. Gjorup, H.J. Jensen, M. Piiparinen, J. Wrzesinski and Y. R. Shimizu, Phys. Rev. C 69, 024305 (2004).
- 2004ZH05 X.H. Zhou, M. Oshima, F.R. Xu, Y. Toh, Y.H. Zhang, Y.B. Xu, M. Koizumi, A. Osa, T. Hayakawa, Y. Hatsukawa, T. Shizuma and M. Sugawara, Eur. Phys. J A 19, 11 (2004).