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ABSTRACT:

This paper summarizes methodological advances in regional log-space
skewness analyses that support flood-frequency analysis with the log Pearson Type
III (LP3) distribution. A Bayesian Weighted Least Squares/Generalized Least
Squares (B-WLS/B-GLS) methodology that relates observed skewness coefficient
estimators to basin characteristics in conjunction with diagnostic statistics represents
an extension of the previously developed B-GLS methodology. B-WLS/B-GLS has
been shown to be effective in two California studies. B-WLS/B-GLS uses B-WLS to
generate stable estimators of model parameters and B-GLS to estimate the precision
of those B-WLS regression parameters, as well as the precision of the model. The
study described here employs this methodology to develop a regional skewness
model for the State of Iowa. To provide cost effective peak-flow data for smaller
drainage basins in Iowa, the U.S. Geological Survey operates a large network of crest
stage gages (CSGs) that only record flow values above an identified recording
threshold (thus producing a censored data record). CSGs are different from
continuous-record gages, which record almost all flow values and have been used in
previous B-GLS and B-WLS/B-GLS regional skewness studies. The complexity of
analyzing a large CSG network is addressed by using the B-WLS/B-GLS framework
along with the Expected Moments Algorithm (EMA). Because EMA allows for the
censoring of low outliers, as well as the use of estimated interval discharges for
missing, censored, and historic data, it complicates the calculations of effective record
length (and effective concurrent record length) used to describe the precision of
sample estimators because the peak discharges are no longer solely represented by
single values. Thus new record length calculations were developed. The regional
skewness analysis for the State of lowa illustrates the value of the new B-WLS/B-
GLS methodology with these new extensions.

INTRODUCTION:

For the log-transformation of the flood flows, Bulletin 17B [TACWD, 1982]
recommends using a weighted average of the at-site skewness coefficient and a
regional skewness coefficient to help improve flood quantile estimators. The Bulletin
supplies a national map, but also encourages hydrologists to develop more specific
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local relations. Since the first map was published in 1976, some 35 years of
additional information has accumulated, and better spatial estimation procedures have
been developed [Stedinger and Griffis, 2008].

Tasker and Stedinger [1986] developed a weighted least squares (WLS)
procedure for estimating regional skewness coefficients based on sample skewness
coefficients for the logarithms of annual peak-discharge data. Their method of
regional analysis of skewness estimators accounts for the precision of the skewness
estimator for each station, which depends on the length of record for each station and
the accuracy of an Ordinary Least Squares (OLS) regional mean skewness. More
recently, Reis and others [2005], Gruber and others [2007], and Gruber and Stedinger
[2008] developed a Bayesian generalized least squares (GLS) regression model for
regional skewness analyses. The Bayesian methodology allows for the computation
of a posterior distribution of both the regression parameters and the model error
variance. As shown in Reis and others [2005], for cases in which the model error
variance is small compared to the sampling error of the at-site estimates, the Bayesian
posterior distribution provides a more reasonable description of the model error
variance than both the GLS method-of-moments and maximum likelihood point
estimates [Veilleux, 2011]. While WLS regression accounts for the precision of the
regional model and the effect of the record length on the variance of skewness
coefficient estimators, GLS regression also considers the cross-correlations among
the skewness coefficient estimators. In some studies the cross-correlations have had a
large impact on the precision attributed to different parameter estimates [Gotvald,
2009; Parrett and others, 2011].

Due to complications introduced by the use of the Expected Moments
Algorithm (EMA) (see Cohn and others [1997]) and large cross-correlations between
annual peak discharges at pairs of gages sites, an alternate regression procedure was
developed to provide both stable and defensible results for regional skewness
coefficient models [Veilleux, 2011]. This alternate procedure is referred to as the B-
WLS/B-GLS regression framework [Veilleux, 2011; Veilleux and others, 2011]. It
uses an OLS analysis to fit an initial regional skewness model; that OLS model is
then used to generate a stable regional skewness coefficient estimate for each site.
That stable regional estimate is the basis for computing the variance of each at-site
skewness coefficient estimator employed in the WLS analysis. Then, B-WLS is used
to generate estimators of the regional skewness coefficient model parameters.
Finally, B-GLS is used to estimate the precision of those WLS parameter estimators,
to estimate the model error variance and the precision of that variance estimator, and
to compute various diagnostic statistics.

To provide cost effective peak-flow data for smaller drainage basins in lowa,
the U.S. Geological Survey (USGS) operates a large network of crest stage gages
(CSGs) that only record flow values above an identified recording threshold (thus
producing a censored data record). CSGs are different from continuous-record gages,
which record almost all flow values and have been used in previous B-GLS and B-
WLS/B-GLS regional skewness studies. Thus, while the Iowa regional skewness
study described here did not exhibit large cross-correlations between annual peak
discharges, it did make extensive use of EMA to estimate the at-site skewness
coefficients and its mean square error. Because EMA allows for the censoring of low
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outliers, as well as the use of estimated interval discharges for missing, censored, and
historic data, it complicates the calculations of effective record length (and effective
concurrent record length) used to describe the precision of sample estimators because
the peak discharges are no longer solely represented by single values. To properly
represent these complications, modifications were made to the B-WLS/B-GLS
procedure. The steps in this analysis are described below.

METHODOLOGY FOR REGIONAL SKEWNESS MODEL
This section provides a brief description of the B-WLS/B-GLS methodology.
Veilleux and others [2011] and Veilleux [2011] provide a more detailed description.

OLS Analysis
The first step in the B-WLS/B-GLS regional skewness analysis is the

estimation of a regional skewness model using Ordinary Least Squares (OLS). The
OLS regional regression yields parameters B, and a model that can be used to
generate unbiased and relatively stable regional estimates of the skewness for all gage
sites:

Yors = XBovs (1)
Here X is an (n x k) matrix of basin characteristics, ¥, are the estimated regional
skewness values, n is the number of gage sites, and k is the number of basin
parameters including a column of ones to estimate the constant. These estimated
regional skewness values y, ¢ are then used to calculate unbiased at-site regional

skewness variances using the equations reported in Griffis and Stedinger [2009].
These at-site regional skewness variances are based on the regional OLS estimator of
the skewness coefficient instead of the at-site skewness estimator, thus making the
weights in the subsequent steps relatively independent of the at-site skewness
estimates.

WLS Analysis

A Bayesian Weighted Least Squares (B-WLS) analysis is used to develop
estimators of the regression coefficients for each regional skewness model [Veilleux,
2011; Veilleux and others, 2011]. The WLS analysis explicitly reflects variations in
record length, but intentionally neglects cross correlations thereby avoiding the
problems experienced with GLS parameter estimators [Veilleux, 2011; Veilleux and
others, 2011].

GLS Analysis
After the regression model coefficients,,,, , , are determined with a WLS

analysis, the precision of the fitted model and the precision of the regression
coefficients are estimated using a Bayesian Generalized Least Squares (B-GLS)
analysis [Veilleux, 2011; Veilleux and others, 2011]. Precision metrics include the
standard error of the regression parameters, SE (ﬁWL s) , and the model error variance,
ag‘ s—cLs» pseudo R; as well as the average variance of prediction at a gage site not

used the regional model, AVP,y.
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DATA ANALYSIS:
Data for lowa Regional Skewness Study

This study is based on annual peak flow data from 273 stream flow gage sites
in Jowa and the surrounding states. The annual peak flow data were downloaded
from the USGS National Water Information System: Web Interface (NWISWeb). In
addition to the peak flow data, over 65 basin characteristics for each of the 273 sites
were available as explanatory variables in the regional study. The basin
characteristics available include percent of basin contained within different
hydrologic regions, as well as the more standard morphometric parameters such as
location of the basin centroid, drainage area, main channel slope, and basin shape
among others.

At-Site Skewness Estimators

In order to estimate the at-site log10 skewness, G, and its mean square error,
MSEG, the analysis used the expected moments algorithm (EMA) [Cohn and others,
1997, Griffis and others, 2004]. EMA provides a straightforward and efficient
method for the incorporation of historical information and censored data, such as
those from a crest stage gage, contained in the record of annual peak flows for a gage
site. PeakfqSA, an EMA software program developed by Cohn [2011], is used to
generate the at-site log10 estimates of G and its MSE, assuming an LP3 distribution
and employing a Multiple Grubbs-Beck test for low outlier screening.

Pseudo Record Length

Because the data set includes censored data and historic information, the
effective record length used to compute the precision of the skewness estimators is no
longer simply the number of peak flows at a gage site. Instead, a more complex
calculation should be used to take into account the availability of historic information
and censored values. While historic information and censored peaks provide valuable
information, they often provide less information than an equal number of years with
systematically recorded peaks [Stedinger and Cohn, 1986]. The following
calculations provide a pseudo record length, Pry,, which appropriately accounts for all
peak flow data types available for a site. P equals the systematic record length if
such a complete record is all that is available for a site.

The first step is to run EMA with all available information, including historic
information and censored peaks (denoted EMAc, for EMA complete). From the
EMA run, the at-site skewness without regional information G and the MSE of that
skewness estimator MSE (GC) are extracted, as well as the year the historical period
begins, YBc, the year the historical period ends YEc and the length of the historical
period He. (YBc, YEc and Hc are used in Equation 9.)

The second step is to run EMA with only the systematic peaks (denoted
EMAg, for EMA systematic). From the EMAg analysis, the at-site skewness without
regional information Gg and the MSE of that skewness estimator, MSE (Gs) are
extracted, as well as the number of peaks Ps. (Ps is used in Equation 4.)

The third step is to represent, from both EMA¢ and EMAg, the precision of
the skewness estimators as two record lengths, RLc and RLg, based upon the
estimated skew and MSE. The corresponding record lengths are calculated using
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equation (2) below from Griffis and others [2004] and Griffis and Stedinger [2009]:
where RLc uses G and MSE(@C), and RLs uses G and MSE(@S).

MSE(G) = [% + a(RL)] + [1 + (Z + b(RL)) G? + (i—: + C(RL)) 64] )

17.75 = 50.06
a(RL) = —
( ) 39§L2 309“3 37.1
. .97 7.
b(RL) = —
RLO3  RLOS ° RLO9
6.16 36.83 66.9
c¢(RL) = — —
RLO.SG RL1.12 RL1.68

Next, the difference between RLc and RLs is employed as a measure of the extra
information provided by the historic and/or censored information that was included in
the EMA, analysis, but not in the EMA; analysis.

RLgirf = RLc — RLg 3)
The pseudo record length for the entire record at the gage site, Pry, is calculated using
RL gy from equation (3) and the number of systematic peaks Ps,

Prp = RLgjff + Ps 4)
Pr1, must be non-negative. If Pgy is greater than Hc, then Pgp should be set to equal
Hc. Also if Pry is less than Pg, then Pry is set to Ps. This ensures that the pseudo
record length will not be larger than the complete historical period or less than the
number of systematic peaks.

Unbiasing the At-Site Estimators

The at-site skewness estimates are unbiased by using the correction factor
developed by Tasker and Stedinger [1986] and employed in Reis and others [2005].
The unbiased at-site skewness estimator using the pseudo record length is

7=+ ®

RL,i

Here 7; is the unbiased at-site sample skewness estimate for site i, Py, ; is the pseudo
record length for site i as calculated in Equation 4, and G; is the traditional biased at-
site skewness estimator for site i from EMA.

The variance of the unbiased at-site skewness includes the correction factor
developed by Tasker and Stedinger [1986]:

2
Var[p;] = [1 + PL] Var[G,] 6)
RL,i
where Var[G;] is calculated using [Griffis and Stedinger, 2009]
A 6 9 A 15 A
Var(G) = [P—RL + a(PRL)] + [1 + (g + b(PRL)> G? + <E + c(PRL)) 04]
A(Py,) = — 1175 | 5006
RL) =

B PrL? PrL?
b(Pg,) = -
RL PRLo.s PRL0'6

3.92 31.10 34.86
0.9

PRrp
7.31 45.90 86.50

C(PRL) =- PRLO® | PR i1 - Pt

Estimating the Mean Square Error of the Skewness Estimator

There are several possible ways to estimate MSEs. The approach used by
EMA (taken from Cohn and others [2001, eqn 55]) generates a first order estimate of
the MSE, which should perform well when interval data are present. Another option



World Environmental and Water Resources Congress 2012: Crossing Boundaries © ASCE 2012 2258

is to use the Griffis and Stedinger [2009] formula in Equation 6 (the variance is
equated to the MSE), employing either the systematic record length or the length of
the whole historical period. However, this method does not account for censored
data, and thus can lead to inaccurate and underestimated MSEs. This issue has been
addressed by using the pseudo record length instead of the length of the historical
period; the pseudo record length reflects the impact of the censored data and the
number of recorded systematic peaks. Figure 1 compares the unbiased MSEg
estimates from the Griffis and Stedinger [2009] approach based upon pseudo record
lengths and regional skewness estimates, and the unbiased EM A MSE estimates
based on the estimated at-site skewness.
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Figure 1: Comparison of EMA and Griffis and Stedinger [2009] MSE estimates of at-site
skewness estimators for each of the 273 gage sites in the State of lowa regional skewness
study.

As shown in Figure 1, for those gage sites with MSE less than about 0.4 the
two methods generate similar MSE;. However, for 33 gage sites, EMA generates
unreasonably large MSE; with values greater than about 0.4. For these sites, the
Griffis and Stedinger [2009] formula does not generate a MSE greater than 0.5. It
appears that for these 33 gage sites EMA 1is having trouble estimating the parameters
due at least in part to the number of censored observations. Of these 33 sites with
EMA unbiased MSEg > 0.4, 45% of the sites had 50% or more of their record
comprised of censored observations, whereas 81% of the sites had 20% or more of
their record comprised of censored observations. Also the average Py, for all 273
sites in the Iowa study is 49 years. However, the longest record of the 33 sites with
EMA unbiased MSE; > 0.4 is 43 years, with 85% of the 33 sites having Prr. < 35
years and 42% of the 33 sites have Pr, < 25years. Thus, it appears that for those sites
with shorter record lengths and a large percentage of their record comprised of
censored observations, EMA has trouble estimating the moments. For this reason,
these 33 sites with EMA unbiased MSE¢ > 0.4 were removed from the analysis.
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Thus, there are 240 gage sites remaining from which to build a regional skewness
model for the State of lowa. The unbiased Griffis and Stedinger [2009] MSE is used
in the regional skewness model because it is more stable and relatively independent
of the at-site skewness estimator.

Cross-Correlation Models

A critical step for a GLS analysis is estimation of the cross-correlation of the
skewness coefficient estimators. Martins and Stedinger [2002] used Monte Carlo
experiments to derive a relation between the cross-correlation of the skewness
estimators at two stations i and j as a function of the cross-correlation of concurrent
annual maximum flows, p;;:

p(7:.7,) = Sign(p,) cf; |2, @
where p;; is the cross-correlation of concurrent annual peak discharge for two gaged
stations, k is a constant between 2.8 and 3.3, and cfj;, a factor that accounts for the

sample size difference between stations and their concurrent record length, is defined
as follows:

‘k

Cfij = CYij/ (PRL,i)(PRL,j) (8)
CY;= pseudo record length of the period of concurrent record, and

Ppgyi» Pgy,j= the pseudo record length corresponding to sites i and j,
respectively (see equation 4)

Pseudo Concurrent Record Length
After calculating the Pry. for each gage site in the study, the pseudo concurrent

record length between pairs of sites can be calculated. Due to the use of censored
data and historic data, the effective concurrent record length calculation is more
complex than determining in which years the two gage sites both have recorded
systematic peaks.

The years of historical record in common between the two gage sites is first
determined. For the years in common, with beginning year YB;; and ending year
YE;;, the following equation is used to calculate the concurrent years of record
between site i and site j.

cYy = (YEy; —YBy; + 1) (ZR—CL) (%) )
The computed pseudo concurrent record length depends upon the years of

historical record in common between the two gage sites, as well as the ratios of the
pseudo record length to the historical record length for each of the two gage sites.

IOWA REGIONAL SKEWNESS RESULTS
This section describes the lowa regional skewness regression analysis using

the B-WLS/B-GLS regression methodology [see Veilleux, 2011; Veilleux and others,
2011] described above. All of the available basin characteristics were considered as
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explanatory variables in the regional skewness analysis. Available basin
characteristics include: precipitation (mean annual, mean monthly, maximum 24
hours over a number of years), soil (hydrologic soil types, percent clay and sand, soil
permeability), stream characteristics (main channel slope, stream density, ruggedness,
number of first order streams, total stream length), basin measures (drainage area,
slope, relief, length, perimeter, shape factor), hydrologic parameters (streamflow
variability index, base flow index, base flow recession), and hydrologic regions. A
few basin characteristics were statistically significant in explaining the site-to-site
variability in skewness, including slope, drainage area, basin length, and the total
length of mapped streams in the basin. The best model, as classified by having the
smallest model error variance, 0§ , and largest pseudo R§, which included a constant
and a parameter (or combination of parameters) was the model which included
drainage area. Table 1 provides the final results for the constant skewness model
denoted “Constant,” and the model that uses a linear relation between skewness and
log10[Drainage Area], denoted “DA.”

Table 1: Regional skewness models for lowa. [Standard deviations are in parentheses. 0§ is
the model error variance. ASEV is the average sampling error variance. AVP,,, is the
average variance of prediction for a new site. Pseudo R% (%) describes the fraction of the
variability in the true skewness explained by each model (Gruber and others, 2007)]

egression Param

Model by b, O; ASEV AVP,., R
Constant: ¥ = b, -0.40 - 015 001 016 0%
(0.09) (0.03)
0%
DA: ¥ = b, + b,[log,,(DA)] -0.78 0.20 012 001 013 19%
(0.16)  (0.05)  (0.02)
0% 0%

Table 1 includes the pseudo R; value for both models; pseudo R; describes

the estimated fraction of the variability in the true skewness from site-to-site
explained by each model [Gruber and others, 2007; Parrett and others, 2011]. A

constant model does not explain any variability, so the pseudo R; equals 0. The
“DA” model has a pseudo R; of 19 %. The posterior mean of the model error
variance, 0'§ , for the DA model is 0.12, which is smaller than that for the Constant

model for which ¢;=0.15. This indicates that the inclusion of drainage area as an

explanatory variable in the regression helps explain some of the variability in the true
skewness. However, this small gain in precision does not warrant the increased
model complexity. Thus, the Constant model is chosen as the best regional model for
Iowa skewness. The average sampling error variance (ASEV) in Table 1 is the
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average error in the regional skewness estimator at the sites in the data set. The
average variance of prediction at a new site (AVP,y) corresponds to the mean square
error (MSE) used in Bulletin 17B to describe the precision of the generalized
skewness. The Constant model has an AVP,., equal to 0.16, which corresponds to
an effective record length of 50 years. An AVP,y of 0.16 is a marked improvement
over the Bulletin 17B skewness map, whose reported MSE is 0.302 [Interagency
Advisory Committee on Water Data, 1982] for a corresponding effective record
length of only 17 years. Thus the new regional model has three times the information
content (as measured by effective record length) of that claimed by the Bulletin 17B
map.

Figure 2 shows the relation between the unbiased at-site skewness and
drainage area; the marker selected for each gage site represents the at-site pseudo
record length. The sites with the largest drainage area generally have the longest
pseudo record lengths. It is not apparent from the data that the upward trend,
suggested by the DA model, exists between the unbiased at-site skewness and

drainage area. Thus, for this study, the simpler model is chosen, i.e. the Constant

model.
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Figure 2: Relation between the unbiased at-site skewness and drainage area for the 240 sites
in the State of Iowa regional skewness study. All 240 sites are represented with shapes
signifiying five different groupings of at-site pseudo record length (Pg): solid diamonds,
record length greater than 100 years; circles, record length between 80-99 years; squares,
record length between 60-79 years; triangles, record length between 40-59 years; open
diamonds, record length between 25-39 years. The solid black line represents the Constant
Model from Table 1, while the dashed black line represents the DA model from Table 1.
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CONCLUSIONS
This paper continues efforts to develop a regional statistical methodology for

the estimation of skewness parameters. Regional log-space skewness studies to
support frequency analysis with the LP3 distribution have extended the Bayesian-
Generalized Least Squares methodology presented by Reis and others [2005] [Parrett
and others, 2011; Veilleux and others, 2011]. The inclusion of censored data from
crest stage gages and historic information in Iowa required significant adaptations of
the B-WLS/B-GLS regression procedures. This paper describes those extensions of
the B-WLS/GLS algorithm to account for the censored data in record length and
concurrent record length calculations required for the GLS covariance matrix. The
Bayesian WLS/GLS methodology is used successfully to develop regional skewness
models for the log-skewness of Iowa peak flows. The nominal effective record length
(ERL) of the regional skewness estimators is 50 years (MSE = 0.16). This ERL is
dramatically better than the ERL of 17 years (MSE = 0.302) reported for Plate 1 in
Bulletin 17B, the current flood frequency guidelines used by Federal agencies in the
United States.
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