Groundwater Resources Program

Groundwater Availability in Hawaii Volcanic-Rock Aquifers

Scot Izuka

U.S. Geological Survey Pacific Islands Water Science Center

U.S. Department of the Interior

I S. Geokairal Sumer

First Annual Joint Hawaii State Water Conference January 14 – 18, 2013 Lihue, Wailuku, Honolulu, Kailua-Kona, and Hilo

Overview

- Objectives: assess current condition, reconstruct the past, provide tools and information for the future
- Federally funded
- Uses/complements cooperative work USGS does with State and County

Water Mission of the USGS

- Provide information to manage, protect, and enhance the Nation's water resources
- Address water-related hazards
- Provide information that is reliable, impartial, and timely
- Do science, not regulate or manage

USGS Water Programs

COOPERATIVE WATER PROGRAM

- Joint funding USGS shares costs with State and County
- Meets specific management and planning needs
- Data collection & hydrologic investigations

GROUNDWATER RESOURCES PROGRAM

- Federally funded
- Quantifies groundwater at regional and national scales
- Uses/complements information from the Cooperative Water Program
- Major current activity study groundwater availability of principal regional aquifers in US

Principal Regional Aquifers in the Nation

Hawaii Aquifers

Provide much of the freshwater taken for human use

- Drinking water
- Diverse industries agriculture, tourism, military
- Traditional and cultural uses

Supports stream and coastal ecosystems

Objectives

- Document current condition of the Hawaii volcanic-rock aquifers
- Determine effect of human activities
- Develop tools to assess responses to future stresses
- Evaluate adequacy of current data networks

Hawaii Differs from Other Study Areas

- Separate islands, not a contiguous aquifer
- Saltwater surrounds, underlies fresh groundwater
- Limited capacity to store fresh groundwater
- Sharp contrasts in climate within each island
- Sharp contrasts in geology and hydrology within each island

Hawaii Included in USGS National Groundwater Assessments Since Early 20th Century

1923 — Described large production from Honolulu basalt aquifers

1963 — Described high extraction rate for population size

1978 — Described abundant groundwater, but also problems with seawater intrusion

1980s-90s — USGS Regional Aquifer System Analysis (RASA)

- Access to new computer-based tools: Numerical groundwater modeling, Geographic Information System (GIS)
- Limited to Oahu

Need for Updated Groundwater Assessment

Factors Impacting Groundwater are Changing

- Population growth 1.11 million in 1990; 1.36 million in 2010
- Land-use changes have altered the groundwater budget
- Climate change effects detected in rainfall and stream base flow records
- Native forests reduced; replaced by invasive plants

Improved Technologies

Groundwater models

Recharge assessment

Geologic & hydrologic surveying

Faster, more powerful computers

New Information

New subsurface data

Revised state-wide geologic maps

Revised, higher-resolution rainfall maps

Numerous hydrologic studies since last assessment

 Not all Hawaii aquifers fit conventional concepts

Study Elements

Groundwater Budget

Hydrogeologic Framework and Conceptual Model

Hydrogeologic Framework – 3D distribution of rocks, structures, and hydraulic properties

Conceptual Model groundwater occurrence and flow in aquifer

Require data on

- Geology
- Water levels
- Aquifer & well performance tests
- Well yields

Numerical Groundwater Modeling

Computer Simulation of an Aquifer

Models Must be Able to Simulate Saltwater-Freshwater Systems

Modeling Transition Zone

Sharp-Interface Simplification

Resource Assessment

Sharp-interface models

- Allow whole–island models
- Meet resource assessment objectives

Use models to assess groundwater resources

- Study past, present, future human impacts
- Study effects of climate change

Models can be used to evaluate adequacy of current data network

Limitation of Sharp-Interface Models

Future use of Models from this Study

Continue to be used as a tool for assessing future conditions at island-wide scales

Provide a hydrogeologic framework in which more complex models can be embedded

Study Elements

Study Period

Recap: Hawaii Volcanic Rock Aquifer Study

- Updated assessment of groundwater availability in the Hawaii Volcanic Rock Aquifers
- Objectives: assess current condition, reconstruct the past, provide tools and information for the future
- Fully federally funded by the USGS Groundwater Resources Program
- Uses and complements studies already funded by the USGS Cooperative Water Program

