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Comprehensive genomic characterization defines human 
glioblastoma genes and core pathways 

The Cancer Genome Atlas (TCGA) Research Network 

Abstract 
Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions and 
epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) 
pilot project aims to assess the value of large-scale multidimensional analysis of these molecular 
characteristics in human cancer and to provide the data rapidly to the research community. Here, we 
report the interim integrative analysis of DNA copy number, gene expression and DNA methylation 
aberrations in 206 glioblastomas (GBM), the most common type of adult brain cancer, and nucleotide 
sequence aberrations in 91 of the 206 GBMs. This analysis provides new insights into the roles of 
ERBB2, NF1 and TP53, uncovers frequent mutations of the PI3 kinase regulatory subunit gene 
PIK3R1, and provides a network view of the pathways altered in the development of GBM. 
Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link 
between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair 
deficiency in treated glioblastomas, an observation with potential clinical implications. Together, 
these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand 
knowledge of the molecular basis of cancer. 

Cancer is a disease of genome alterations: DNA sequence changes, copy number aberrations, 
chromosomal rearrangements, and modification in DNA methylation together drive the 
development and progression of human malignancies. With the complete sequencing of the 
human genome and continuing improvement of high-throughput genomic technologies, it is 
now feasible to contemplate comprehensive surveys of human cancer genomes. The Cancer 
Genome Atlas (TCGA) aims to catalogue and discover major cancer-causing genome 
alterations in large cohorts of human tumors through integrated multi-dimensional analyses. 
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The first cancer studied by TCGA is glioblastoma (GBM), the most common primary brain 
tumor in adults 1. Primary GBM, which comprises more than 90% of biopsied or resected 
cases, arises de novo without antecedent history of low grade disease, whereas secondary GBM 
progresses from previously diagnosed low-grade gliomas 1. Patients with newly diagnosed 
GBM have a median survival of approximately one year with generally poor responses to all 
therapeutic modalities 2. Two decades of molecular studies have identified important genetic 
events in human GBMs, including (i) dysregulation of growth factor signaling via amplification 
and mutational activation of receptor tyrosine kinase (RTK) genes; (ii) activation of the 
phosphatidyl inositol 3-kinase (PI3K) pathway; and (iii) inactivation of the p53 and 
retinoblastoma tumor suppressor pathways 1. Recent genome-wide profiling studies have also 
shown remarkable genomic heterogeneity among GBM and the existence of molecular 
subclasses within GBM that may, when fully defined, allow stratification of treatment 3–8. 
Albeit fragmentary, such baseline knowledge of GBM genetics sets the stage to explore 
whether novel insights can be gained from a more systematic examination of the GBM genome. 

Results 
As a public resource, all TCGA data are deposited at the Data Coordinating Center (DCC) for 
public access (http://cancergenome.nih.gov/). TCGA data are classified by data type (e.g. 
clinical, mutations, gene expression) and data level to allow structured access to this resource 
with appropriate patient privacy protection. An overview of the data organization is provided 
in Methods, and a detailed description is available in the TCGA Data Primer 
(http://tcga-data.nci.nih.gov/docs/TCGA_Data_Primer.pdf). 

Biospecimen collection 
Retrospective biospecimen repositories were screened for newly diagnosed GBM based on 
surgical pathology reports and clinical records (Fig. S1). Samples were further selected for 
having matched peripheral blood as well as associated demographic, clinical and pathological 
data (Table S1). Corresponding frozen tissues were reviewed at the Biospecimen Core 
Resource (BCR) to ensure a minimum of 80% tumor nuclei and a maximum of 50% necrosis 
(Fig. S1). DNA and RNA extracted from qualified biospecimens were subjected to additional 
quality control measurements (Methods) prior to distribution to TCGA centers for analyses 
(Fig. S2). 

After exclusion based on insufficient tumor content (n=234) and suboptimal nucleic acid 
quality or quantity (n=147), 206 of the 587 biospecimens screened (35%) were qualified for 
copy number, expression, and DNA methylation analyses. Of these, 143 cases had matched 
normal peripheral blood DNAs and were therefore appropriate for re-sequencing. This cohort 
also included 21 post-treatment GBM cases used for exploratory comparisons (Table S1). 
While it is possible that a small number of progressive secondary GBMs were among the 
remaining 185 cases of newly diagnosed glioblastomas, this cohort represents predominantly 
primary GBM. Indeed, when compared with published cohorts, overall survival of the newly 
diagnosed glioblastoma cases in TCGA is similar to that reported in the literature (Fig. S3, 
p=0.2)9–12. 

Genomic and transcriptional aberrations 
Genomic copy number alterations (CNAs) were measured on three microarray platforms 
(Methods) and analyzed with multiple analytical algorithms13–15 (Fig. S4; Tables S2–S4). 
Besides the well-known alterations3,13,14, we detected significantly recurrent focal alterations 
not previously reported in GBMs, such as homozygous deletions involving NF1 and PARK2 
and amplifications of AKT3 (Fig. 1a; Tables S2–S4). Search for informative but infrequent 
CNAs also uncovered rare focal events, such as amplifications of FGFR2 and IRS2 and deletion 
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of PTPRD (Table S4). Abundances of protein-coding genes and non-coding microRNA were 
also measured by transcript-specific and exon-specific probes on multiple platforms (Methods, 
and manuscript in preparation). The resulting integrated gene expression data set showed that 
~76% of genes within recurrent CNAs have expression patterns that correlate with copy 
number (Table S2). In addition, SNP-based analyses also catalogued copy-neutral loss of 
heterozygosity (LOH), with the most significant region being 17p, which contains TP53 
(Methods). 

Patterns of somatic nucleotide alterations in GBM 
91 matched tumor-normal pairs (72 untreated and 19 treated cases) were selected from the 143 
cases for detection of somatic mutations in 601 selected genes (Table S5). The resulting 
sequences, totaling 97 million base pairs (1.1±0.1 million bases per sample), uncovered 453 
validated non-silent somatic mutations(Table S6; 
http://tcga-data.nci.nih.gov/docs/somatic_mutations/tcga_mutations.htm). The background 
mutation rates differed drastically between untreated and treated GBMs, averaging 1.4 versus 
5.8 somatic silent mutations per sample (98 among 72 untreated vs 111 among 19 treated, 
p<10−21), respectively. This difference was predominantly driven by seven hypermutated 
samples, as determined by frequencies of both silent and non-silent mutations (Fig. 1b,c). Four 
of the 7 hypermutated tumors were from patients previously treated with temozolomide and 3 
from patients treated with CCNU alone or in combination (Table S1b). A hypermutator 
phenotype in GBM has been described in 3 GBM specimens with MSH6 mutations 16,17, 
prompting us to perform a systematic analysis of the genes involved in mismatch repair 
(MMR). Indeed, 6 of the 7 hypermutated samples harbored mutations in at least one of the 
mismatch repair genes MLH1, MSH2, MSH6, or PMS2, as compared with only one sample 
among the 84 non-hypermutated samples (p = 7×10−8), suggesting a role of decreased DNA 
repair competency in these highly mutated samples derived from treated patients. 

By applying a statistical analysis of mutation significance 18, we identified eight genes as 
significantly mutated (false discovery rate (FDR) <10−3) (Fig. 2d, Table S6). Interestingly, 27 
TP53 mutations were detected in the 72 untreated GBMs (37.5%) and 11 mutations in the 19 
treated samples (58%). All of those mutations clustered in the DNA binding domain, a well-
known hotspot for p53 mutations in human cancers (Fig. S5; Table S6). Given the 
predominance of primary GBM among this newly diagnosed collection, that result 
unequivocally proves that p53 mutation is a common event in primary GBM. 

NF1 is a human glioblastoma suppressor gene—Although somatic mutations in 
NF1 have been reported in a small series of human GBM tumors 21, their role remains 
controversial 22, despite strong genetic data in mouse model systems 19,20. Here, 19 NF1 
somatic mutations were identified in 13 samples (14% of 91), including six nonsense mutations, 
four splice site mutations, five missense changes, and four frameshift indels (Fig. 2a). Five of 
these mutations—R1391S (23), R1513* (24), e25 −1 and e29 +1 (25), and Q1966* (26)—have 
been reported as germline alterations in neurofibromatosis patients, thus are likely inactivating. 
In addition, 30 heterozygous deletions in NF1 were observed among the entire interim sample 
set of 206 cases, 6 of which also harbor point mutation (Tables S8 and S9). Some samples also 
exhibited loss of expression without evidence of genomic alteration (Fig. 2b). Overall, at least 
47 of these 206 patient samples (23%) harbored somatic NF1 inactivating mutations or 
deletions, definitively address NF1’s relevance to sporadic human GBM. 

Prevalence of EGFR family activation—EGFR is frequently activated in primary GBMs. 
Variant III deletion of the extracellular domain (so-called “vIII mutant”)27 has been the most 
commonly described event, in addition to extracellular domain point mutations and 
cytoplasmic domain deletions 28.29. Here, high resolution genomic and exon-specific 
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transcriptomic profiling readily detected vIII and C-terminal deletions with correspondingly 
altered transcripts (Fig. 2c). Among the 91 GBM cases with somatic mutation data, 22 harbored 
focal amplification of wild type EGFR with no point mutation, 16 had point mutations in 
addition to focal amplification, and three had EGFR point mutations but no amplification (Fig. 
S6; Table S9). Collectively, EGFR alterations were observed in 41 of the 91 sequenced 
samples. 

ERBB2 mutation has previously been reported in only one GBM tumor 30. In the TCGA cohort, 
11 somatic ERBB2 mutations in 7 of 91 samples were validated, including 3 in the kinase 
domain and two involving V777A, a site of recurrent missense and in-frame insertion mutations 
in lung, gastric, and colon cancers 31. The remaining eight mutations (including seven missense 
and one splice-site mutation) occurred in the extracellular domain of the protein, similar to 
somatic EGFR substitutions in GBM (Fig. 2d). Unlike in breast cancers, focal amplifications 
of ERBB2 were not observed in GBMs. 

Somatic mutations of the PI3K complex in human glioblastoma—The PI3 kinase 
complex is comprised of a catalytically active protein, p110α, encoded by PIK3CA, and a 
regulatory protein, p85α, encoded by PIK3R1. Frequent activating missense mutations of 
PIK3CA have been reported in multiple tumor types, including GBM32,33. These mutations 
occur primarily in the adaptor binding domain (ABD) as well as the C2 helical and kinase 
domains 34–36. Indeed, PIK3CA somatic nucleotide substitutions were detected in six of the 
91 sequenced samples (Table S6). Besides the 4 matching events already reported in the 
COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/), two novel in-frame 
deletions were detected in the ABD of PIK3CA (“L10del” and “P17del”). Those deletions may 
disrupt interactions between p110α and its regulatory subunit, p85α 37. 

Unlike PIK3CA, PIK3R1 has rarely been reported as mutated in cancers. Among the five 
reported PIK3R1 nucleotide substitutions in cancers 38,39, one was in a glioblastoma 39. In 
our TCGA cohort, 9 PIK3R1 somatic mutations were detected among the 91 sequenced GBMs. 
None of them was in samples with PIK3CA mutations. Of the nine mutations, eight lay within 
the intervening SH2 (or iSH2) domain and four are 3-basepair in-frame deletions (Fig. 3a and 
Table S6). In accord with the crystal structure of PI3 kinase, which identifies the D560 and 
N564 amino acid residues in p85α as contact points with the N345 amino acid residue in the 
C2 domain of p110α37, the mutations detected in GBM cluster around those three amino acid 
residues (Fig. 3b), including a N345K mutation in PIK3CA (previously reported in colon and 
breast cancers 40) and two novel D560 mutations in PIK3R1 (D560Y and N564K). We also 
identified an 18-basepair deletion spanning residues D560 to S565 (DKRMNS) in PIK3R1 
(Fig. 3b) in addition to three other novel deletions (R574del, T576del, and W583del) in 
proximity to the 3 key residues. We speculate that spatial constraints due to these deletions 
might prevent inhibitory contact of p85α nSH2 with the helical domain of p110α, causing 
constitutive PI3K activity. Taken together, the pattern of clustering of the mutations around 
key residues defined by the crystal structure of PI3K strongly suggest that these novel 
PIK3R1 point mutations and insertions/deletions disrupt the important C2-iSH2 interaction, 
relieving the inhibitory effect of p85α on p110α. 

MGMT methylation and MMR proficiency in post-treatment GBMs 
Cancer-specific DNA methylation of CpG dinucleotides located in CpG islands within the 
promoters of 2,305 genes were measured relative to normal brain DNA (Table S7; Methods). 
The promoter methylation status of MGMT, a DNA repair enzyme that removes alkyl groups 
from guanine residues 41, is associated with GBM sensitivity to alkylating agents 42,43. 
Among the 91 sequenced cases, 19 samples were found to contain MGMT promoter 
methylation (including 13 of the 72 untreated and 6 of the 19 treated cases). When juxtaposed 
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with somatic mutation data, an intriguing relationship between the hypermutator phenotype 
and MGMT methylation status emerged in the treated samples. Specifically, MGMT 
methylation was associated with a profound shift in the nucleotide substitution spectrum of 
treated GBMs (Fig. 4a). Among the treated samples lacking MGMT methylation (n=13), 29% 
(29/99) of the validated somatic mutations occurred as G:C to A:T transitions in CpG 
dinucleotides (characteristic of spontaneous deamination of methylated cytosines), and a 
comparable 23% (23/99) of all mutations occurred as G:C to A:T transitions in non-CpG 
dinucleotides. In contrast, in the treated samples with MGMT methylation (n=6), 81% of all 
mutations (146/181) turned out to be of the G:C to A:T transition type in non-CpG dinucleotides 
whereas only 4% (8/181) of all mutations were G:C to A:T transition mutations within CpGs. 
That pattern is consistent with a failure to repair alkylated guanine residues caused by treatment. 
In other words, MGMT methylation shifted the mutation spectrum of treated samples to a 
preponderance of G:C to A:T transition at non-CpG sites. 

Significantly, the mutational spectra in the mismatch repairs (MMR) genes themselves 
reflected MGMT methylation status and treatment consequences. All seven mutations in MMR 
genes found in six MGMT methylated hypermutated (treated) tumors occurred as G:C to A:T 
mutations at non-CpG sites (Fig. 4b; Table S6), while neither MMR mutations in non-
methylated hypermutated tumors was of this characteristic. Hence, these data show that MMR 
deficiency and MGMT methylation together, in the context of treatment, exert a powerful 
influence on the overall frequency and pattern of somatic point mutations in GBM tumors, an 
observation of potential clinical importance. 

Integrative analyses define core pathways required for GBM pathogenesis 
To begin to construct an integrated view of common genetic alterations in the GBM genome, 
we mapped the unequivocal genetic alterations—validated somatic nucleotide substitutions, 
homozygous deletions and focal amplifications—onto major pathways implicated in GBM 1. 
That analysis identified a highly interconnected network of aberrations (Figs. S7–S8), 
including three major pathways: receptor tyrosine kinases (RTKs) signaling, and the p53/RB 
tumor suppressor pathways (Fig. 5). 

By copy number data alone, 66%, 70% and 59% of the 206 samples harbored somatic 
alterations of the RB, TP53 and RTK pathways, respectively (Table S8). In the 91 samples for 
which there was also sequencing data, the frequencies of somatic alterations increased to 87%, 
78% and 88%, respectively (Table S9). There was a statistical tendency toward mutual 
exclusivity of alterations of components within each pathway (p-values of 9.3×10−10, 
2.5×10−13, and 0.022, respectively for the p53, RB, and RTK pathways; Tables S10), consistent 
with the thesis that deregulation of one component in the pathway relieves the selective pressure 
for additional ones. However, we observed a greater than random chance (one-tailed p = 
0.0018) that a given sample harbors at least one aberrant gene from each of the three pathways 
(Table S10). In fact, 74% harbored aberrations in all three pathways, a pattern suggesting that 
deregulation of the three pathways is a core requirement for glioblastoma pathogenesis. 

Besides frequent deletions and mutations of the PTEN lipid phosphatase tumor suppressor 
gene, 86% of the GBM samples harbored at least one genetic event in the core RTK/PI3K 
pathway (Fig. 5a). In addition to EGFR and ERBB, PDGFRA (13%) and MET (4%) showed 
frequent aberrations (Tables S9). 10 of the 91 sequenced samples have amplifications or point 
mutations in at least two of the four RTKs catalogued (EGFR, ERBB2, PDGFRA and MET) 
(Table S9), suggesting genomic activation can be a mechanism for co-activated RTKs 44. 

Inactivation of the p53 pathway occurred in the form of ARF deletions (55%), amplifications 
of MDM2 (11%) and MDM4 (4%), in addition to mutations of p53 itself (Fig. 5b; Table S8). 
Among 91 sequenced samples (Table S9), genetic lesions in TP53 were mutually exclusive of 

Nature. Author manuscript; available in PMC 2009 April 23. 



Page 6 

N
IH

-PA Author M
anuscript 

N
IH

-PA Author M
anuscript 

N
IH

-PA Author M
anuscript
 

those in MDM2 or MDM4 (odds ratios of 0.00 for both; p = 0.02 and 0.068, respectively; Tables 
S10), but not of those in ARF. In fact, 10 of the 32 tumors with TP53 mutations also deleted 
ARF, suggesting that homozygous deletion of the CDKN2A locus (which encodes both 
p16INK4A and ARF) was at least in part driven by p16INK4A. 

Among the 77% samples harboring RB pathway aberrations (Fig. 5c), the most common event 
was deletion of the CDKN2A/CDKN2B locus on chromosome 9p21 (55% and 53%), followed 
by amplification of the CDK4 locus (14%) (Fig. 1a; Table S8 and S9). Although copy number 
alterations in the CDK/RB pathway members can co-occur in the same tumor 14, all nine 
samples with RB1 nucleotide substitutions (Table S9) lacked CDKN2A/B deletion or other 
copy number alterations in the pathway, suggesting that inactivation of RB1 by nucleotide 
substitution, in contrast to copy number loss, obviates the genetic pressure for activation of 
upstream cyclin/cyclin-dependent kinases.. 

Discussion 
In establishing this pilot program, TCGA has developed important principles in biospecimen 
banking and collection (manuscript in preparation), and established the infrastructure that will 
serve similar efforts in the future. Although it ensured high quality data, the stringent 
biospecimen selection criteria may have introduced a degree of bias because small samples 
and samples with high levels of necrosis were excluded. Nonetheless, the clinical parameters 
of this cohort are similar to other published cohorts (Table S1; Fig. S3). 

The integrated analyses of multi-dimensional genomic data from complementary technology 
platforms have proved informative. In addition to pinpointing deregulation of RB, p53 and 
RTK/RAS/PI3K pathways as obligatory events in most, and perhaps all, GBM tumors, the 
patterns of mutations may also inform future therapeutic decisions. It would be reasonable to 
speculate that patients with deletions or inactivating mutations in CDKN2A or CDKN2C or 
patients with amplifications of CDK4/CDK6 would be candidates for treatment with CDK 
inhibitors, a strategy not likely to be effective in patients with RB1 mutation. Similarly, patients 
with PTEN deletions or activating mutations in PIK3CA or PIK3R might be expected to benefit 
from a PI3 kinase or PDK1 inhibitor, while tumors in which the PI3 kinase pathway is altered 
by AKT3 amplification might prove refractory to those modalities. The presence of genomic 
co-amplification reinforces the recent report of multiple phosphorylated (activated) RTKs in 
individual GBM specimens 44, suggesting a way to tailor anti-RTK therapeutic cocktails to 
specific patterns of RTK mutation. In addition, combination anti-RTK therapy might synergize 
with downstream inhibition of PI3K or cell cycle mediators. In contrast, GBMs with NF1 
mutations might benefit from a RAF or MEK inhibitor as part of a combination, as shown for 
BRAF mutant cancers 45. 

One of the most important biomarkers for GBM is the methylation status of MGMT, which 
predicts sensitivity to temozolomide 42,43, an alkylating agent that is the current standard of 
care for GBM patients. Integrative analysis of mutation, DNA methylation and clinical 
(treatment) data, albeit with small sample numbers, suggests a series of inter-related events 
that may impact clinical response and outcome. Newly diagnosed glioblastomas with 
MGMT methylation respond well to treatment with alkylating agents, in part as a consequence 
of unrepaired alkylated guanine residues initiating cycles of futile mismatch repair, which can 
lead to cell death 46–48. Therefore, treatment of MGMT-deficient GBMs with alkylating 
therapy introduces a strong selective pressure to lose mismatch repair function 49. That 
conclusion is consistent with our observation that the mismatch repair genes themselves are 
mutated with characteristic C:G → A:T transitions at non-CpG sites resulting from unrepaired 
alkylated guanine residues. Thus, initial methylation of MGMT, in conjunction with treatment, 
may lead to both a shift in mutation spectrum affecting mutations at mismatch repair genes 
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and selective pressure to lose mismatch repair function. In other words, our finding raises the 
possibility that patients who initially respond to the frontline therapy in use today may evolve 
not only treatment resistance, but also an MMR-defective hypermutator phenotype. If such a 
mechanism indeed underlies emergence of MMR-defective resistance, one may speculate that 
selective strategies targeting mismatch-repair deficiency 50 would represent a rational upfront 
combination that may prevent or minimize emergence of such resistance. Validation of this 
hypothesis will have immediate clinical impact and implication for therapeutic design. For one, 
it suggests that treatment mediated mutator phenotype may lead to pathway mutations that 
confer resistance to new targeted therapies thereby raising the concern that combined or serial 
treatment with alkylating agents and pathway targeted therapies may substantially increase the 
probability of developing resistance to such targeted drugs. 

In conclusion, the power of TCGA to produce unprecedented multi-dimensional data sets 
employing statistically robust numbers of samples sets the stage for a new era in the discovery 
of new cancer interventions. The integrative analyses leading to formulation of an 
unanticipated hypothesis on a potential mechanism of resistance highlights precisely the value 
and power of such project design, demonstrating how unbiased and systematic cancer genome 
analyses of large sample cohorts can lead to paradigm-shifting discoveries. 

Method Summary 
Biospecimens were screened from retrospective banks of Tissue Source Sites under appropriate 
IRB approvals for newly diagnosed GBM with minimal 80% tumor cell percentage. RNA and 
DNA extracted from qualified specimens were distributed to TCGA centers for analysis. Whole 
genome-amplified genomic DNA samples from tumors and normals were sequenced by the 
Sanger method. Mutations were called, verified using a second genotyping platform, and 
systematically analyzed to identify significantly mutated genes after correcting for the 
background mutation rate for nucleotide type and the sequence coverage of each gene. DNA 
copy number analyses were performed using the Agilent 244K, Affymetrix SNP6.0, and 
Illumina 550K DNA copy number platforms. Sample-specific and recurrent copy number 
changes were identified using various algorithms (GISTIC, GTS, RAE). mRNA and miRNA 
expression profiles were generated using Affymetrix U133A, Affymetrix Exon 1.0 ST, custom 
Agilent 244K, and Agilent miRNA array platforms. mRNA expression profiles were integrated 
into a single estimate of relative gene expression for each gene in each sample. Methylation at 
CpG dinucelotides was measured using the Illumina GoldenGate assay. All data for DNA 
sequence alterations, copy number, mRNA expression, miRNA expression, and CpG 
methylation were deposited in standard common formats in the TCGA DCC at 
http://cancergenome.nih.gov/dataportal/. All archives submitted to DCC were validated to 
ensure a common document structure and to ensure proper use of identifying information. 

The Cancer Genome Atlas (TCGA) Research Network 
Tissue Source Sites 

Duke University Medical School—Roger McLendon(6), Allan Friedman(7), Darrell 
Bigner(6), Emory University: Erwin G Van Meir(45,46,47), Daniel J Brat(47,48), Gena Marie 
Mastrogianakis(45), Jeffrey J Olson(45,46,47) Henry Ford Hospital: Tom Mikkelsen(8), 
Norman Lehman(50), MD Anderson Cancer Center: Ken Aldape(10), W.K. Alfred Yung(11), 
Oliver Bogler(12), University of California San Francisco: Scott VandenBerg(9), Mitchel 
Berger(51), Michael Prados(51) 
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Genome Sequencing Centers 
Baylor College of Medicine—Donna Muzny(34), Margaret Morgan(34), Steve Scherer 
(34), Aniko Sabo(34), Lynn Nazareth(34), Lora Lewis(34), Otis Hall(34), Yiming Zhu(34), 
Yanru Ren(34), Omar Alvi(34), Jiqiang Yao(34), Alicia Hawes(34), Shalini Jhangiani(34), 
Gerald Fowler(34), Anthony San Lucas(34), Christie Kovar(34), Andrew Cree(34), Huyen 
Dinh(34), Jireh Santibanez(34), Vandita Joshi(34), Manuel L. Gonzalez-Garay(34), 
Christopher A. Miller(34,36), Aleksandar Milosavljevic(34,36,37), Larry Donehower(35), 
David A. Wheeler(34), Richard A. Gibbs(34), Broad Institute of MIT and Harvard: Kristian 
Cibulskis(52), Carrie Sougnez(53), Tim Fennell(54), Scott Mahan(59), Jane Wilkinson(55), 
Liuda Ziaugra(56), Robert Onofrio(56), Toby Bloom(57), Rob Nicol(58), Kristin Ardlie(59), 
Jennifer Baldwin(55), Stacey Gabriel(56), Eric Lander(4,60,61), Washington University in 
Saint Louis: Li Ding(19), Robert S. Fulton(19), Michael D. McLellan(19), John Wallis(19), 
David E. Larson(19), Xiaoqi Shi(19), Rachel Abbott(19), Lucinda Fulton(19), Ken Chen(19), 
Daniel C. Koboldt(19), Michael C. Wendl(19), Rick Meyer(19), Yuzhu Tang(19), Ling Lin 
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Figure 1. Significant copy number aberrations and pattern of somatic mutations 
(a) Frequency and significance of focal high-level copy-number alterations. Known and 
putative target genes are listed for each significant CNA, with “Number of Genes” denoting 
the total number of genes within each focal CNA boundary. 
(b–c) Distribution of the number of (b) silent and (c) non-silent mutations across the 91 GBM 
samples separated according to their treatment status, showing hypermutation in 7 out of the 
19 treated samples. 
(d) Significantly mutated genes in 91 glioblastomas. The eight genes attaining a false discovery 
rate <0.1 are displayed here. Somatic mutations occurring in untreated samples are in dark 
blue; those found in statistically non-hypermutated and hypermutated samples among the 
treated cohort are in respectively lighter shades of blue. 
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Figure 2. Mutations in NF1 tumor suppressor gene and EGFR family members 
(a) NF1 somatic mutations in 91 glioblastoma tumors. Both missense mutations and truncating 
nonsense, frameshift, and splice site mutations were observed. Splice positions are given in 
number of bases to the closest exon (e#) numbered according to the NF1 reference transcript 
in the Human Gene Mutation Database; positive = 3′ of exon, negative = 5′ of exon. *: stop 
codon. fs: frameshift. 
(b) Correlation of copy number and mutation status at the NF1 locus with level of expression 
(Y axis). Mutation events predicted to result in fewer expressed copies (including deletion, 
nonsense, splice site, and frameshift mutations) generally have lower observed expression. 
HomoDel = homozygous deletion; HemiDel = single-copy loss; Neutral = no change in copy 
number (presumed diploid); Amp = increased copy number. Copy number status of the NF1 
locus in each sample was determined as described in the Supplementary Information. 
(c). DNA Copy number and mRNA expression profiles for TCGA samples TCGA-08–0356 
(red), TCGA-02–0064 (blue), and TCGA-02–0529 (green) at the EGFR locus. The upper panel 
shows the segmented DNA copy number (based on Affymetrix SNP6.0 data) versus genomic 
coordinates on chromosome 7. The lower panel shows relative exon expression levels across 
the known EGFR exons from the Affymetrix Exon array ordered by genomic position, where 
relative expression is the median-centered difference in exon intensity and gene intensity. The 
EGFR gene model lies between the two plots. Black lines map the genomic positions of exons 
2 through 7 and 26 through 28. Note that structural deletions cause the relatively lower 
expression of exons 2–7 in the green and blue samples and exons 26–28 in the red sample. 
(d) ERBB2 somatic mutations in 91 glioblastoma tumors. Mutations cluster in the extracellular 
domain in both genes. Splice site mutation position is given in number of bases to the closest 
exon (e#); positive = 3′ of exon. 
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Figure 3. PIK3R1 and PIK3CA mutations in GBM 
(a). Diamonds above the backbone indicate the locations of mutations found in TCGA tumors.
 
ABD: adaptor binding domain; RDB: Ras binding domain; C2: membrane-binding domain;
 
iSH2: intervening domain.
 
(b). Four mutations found in the interaction interface of the p110α; C2 domain with iSH2 of
 
p85 α. Two residues of p85 α, D560 and N564, are within hydrogen-bonding distance of the
 
C2 residue of p110 α, N345.
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Figure 4. Pattern of somatic mutations, MGMT DNA methylation, and MMR gene mutations in 
treated GBMs 
(a). The mean number of validated somatic nucleotide substitutions per tumor for key sample 
groups is indicated on the Y-axis and denoted by the height of the bar histograms. Samples are 
grouped along the X-axis according to treatment status of the patient (− = untreated; + = 
treated), DNA methylation status of MGMT (meth = DNA methylated; − = not methylated), 
and genetic status of MMR genes − = no genes mutated and mut = one or more of the MLH1, 
MSH2, MSH6, or PMS2 genes mutated); the number below each bar indicates the number of 
samples in the group. Bars are color-coded for types of nucleotide substitutions including G-
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to-A transitions at non-CpG sites (orange), G-to-A transitions at CpG sites (blue), and other
 
mutation types (green).
 
(b). Bar histogram for mutation spectrum in the MMR genes as a function of treatment status,
 
and methylation status of MGMT. The color code for substitution types is the same as in (a).
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Figure 5. Frequent genetic alterations in three critical signaling pathways 
Primary sequence alterations and significant copy number changes for components of the (a) 
RTK/RAS/PI-3K, (b) p53, and (c) RB signaling pathways are shown. Red indicates activating 
genetic alterations, with frequently altered genes showing deeper shades of red. Conversely, 
blue indicates inactivating alterations, with darker shades corresponding to a higher percentage 
of alteration. For each altered component of a particular pathway, the nature of the alteration 
and the percentage of affected tumors affected are indicated. Blue boxes contain the final 
percentages of glioblastomas with alterations in at least one known component gene of the 
designated pathway. 
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