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In many places, earthquakes with similar characteristics have been shown to recur. If this is
common, then relatively small deformations associated with individual earthquake cycles should
accumulate over lime to create geological structures. Following this paradigm, we show that
existing models developed to describe leveling line changes associated with the seismic cycle can
be adapted to explain geological features associated with a fault. In these models an elastic layer
containing the fault overlies a viscous half-space with a different density. Fault motion associated
with an earthquake results in immediate deformation followed by a long period of readjustment as
stresses relax in the viscous layer and isostatic equilibrium is restored. Deformation is also cansed
as a result of the loading and unloading due to sediment deposition and erosion. In this paper, the
parameters that control the growth of dip-slip structures are identified. We find that the flexural
rigidity of the crust (or the apparent elastic thickness) provides the main control of the width of a
structure. The loading due to erosion and deposition of sediment determines the ratio of uplift to
subsidence betwecn the two sides of the fault. The flexure due to sediment load is much more
important in this respect than whether the fault is normal or reverse in character. We find that, in
general, real structures are associated with apparent elastic thicknesses of 4 km or less and thus

with very low flexural rigidities.

INTRODUCTION

We explore here and in an accompanying paper [Stein et
al. this issue; hereafter Paper 2] the concept that basins and
ranges bounded by active faults evolve by sudden
deformation during large earthquakes, and by slow
deformation between the earthquakes. This paper considers
the geomeitrical concepts involved and provides idcalized
examples, while the sccond paper adoplts these concepls Lo
consider specific field examples.

Reid [1910] argued that, for great strike-slip earthquakes,
seismic and interseismic deformations are nearly equal in
magnitude and opposite in sign and thus result in no
permanent deformation except for the offset at the fault. We
suggest that this interpretation is generally untrue because
of the effects of finite fault dimensions, ductility and
gravitational forces. The seismic and interseismic
deformation do not entirely cancel but accumulate to form
permanent structures. The processes are particularly clear
for the dip-slip earthquakes that we examine in this study.
Comparable techniques can be applied to strike-slip fault
systems (R. G. Bilham and G. C. P. King, The influence
of fault zonc gcometry and non uniform slips on the
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geopraphic expression of strike-slip faulis: Examples from
the San Andreas Fault, California, submitted to Journal of
Geophysical Research, 1988) although the structures created
are less dramatic.

At the boundaries of occanic plates, where great
earthquakes can repeat at 100-year intervals, the seismic and
interseismic deformation have been directly measured
landward of the trench. Within continents, where
deformation becomes distributed, large normal or reverse
faulting earthquakes repeat at much longer periods, and the
complete interseismic deformation cannot possibly be
measured in the foreseeable future [Wallace, 1984].
However, the geological structures that result from many
cycles can be predicted on the basis of our understanding of
interseismic processes and used to investigate both these
processes and the nature of the geological structures
themselves.

A model similar (o the one that we adopt was originally
proposed by Rundle [1982a]; it has also been used by other
authors [Thatcher and Rundle, 1979; Thatcher, 1984;
Savage and Gu, 1985]. In their studies, post earthquake
deformation is considered to result from the partial
relaxation of stresses set up in the crust by the earthquake.
These stresses result from both elastic deformation and
gravitational forces. The principal difference between our
model and theirs is that we also include the crustal flexure
due to the erosion and deposition of sediment. This is
summarized in Figure 1.
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Fig. 1. Deformation duc to faulting in the crust, The final
deformation is the sum of that due to faulting in a gravitating

elastic plate overlying a fluid inedium and the surface loading on
the same system due to crosional loading and unloading. The
faulting that accompanies eathquakes can extend well into the
underlying eclastic-ductile medium. However, if this region
behaves in the long term like a fluid, then this feature of
coseismic behavior leaves no trace in the surface rocks or
structures. The model does nut consider shallow processes that
create surface folds [Stein and King, 1984); we are concerned

with modeling longer wavelength features that are the surface
reflection of deeper processces.

Although deformation can occur by surface loading, such
deformation scarcely secms significant within a single
earthquake cycle. Viewed over a longer period of time,
however, it clearly cannot be ignored. If the material eroded
from an uplified range simply fills the adjacent basin, then
flexure occurs because the surface load is moved. More
commonly, however, the busrier created by a structure traps
sediment transported by rivers over great distances,
resulting in a net build up of the load. Alternatively, an
overall loss of load is possible, and surprisingly large
uplifts can occur.

Crustal deformation resulting from the addition or
removal of surface loads has been well studied. For
example, uplift associated with the shrinking of Lake
Bonneville has been re-examincd by Bills and May [1987],
and Fennoscandian uplift {ollowing glaciation was re-
evaluated by Cochran [1980]. Similarly, the loading within
large sedimentary basins wus discussed recently by Watts et
al. [1982]. Such studics produce estimates of the flexural
rigidity of the crust (commonly described by an effective
elastic thickness) that range from 5 to 25 km. Flexural
rigidity has also been examincd by comparing gravitational
profiles with topographic profiles. The method involves
producing a filter Q(x) that, when convolved with the
topography H(x), produces the gravity G(x), where
Gx)=0(x) » H(x). The filter so determined is then compared
with theoretical filters generated for various models. The
method usually assumes that topography and gravity
anomalies result solely [rom loads placed on the surface,
although alternative explanations have been considered
[Rundle, 1982b; Forsyth, 1985]. Instead of examining the
admittance function Q(x), some authors now prefer to
examine the coherence between G(x) and #(x). Whatever
technique is adopted, values for effective elastic thickness
are generally small compured with those derived from
studies of loading flexure, For tcctonically active parts of
the western United States, values range from 4 to 8 km
[Forsyth, 1985]); much less than the depth range over which
small earthquakes occur [e.g., Sibson, 1982). Here, we also
find low values for flexural rigidity. These follow as a
direct consequence of a simple, general observation which
is independent from other approaches. Coseismic

KNG ET AL: GEOLOGICAL STRUCTURES BY REPEATED EARTHQUAKES, 1

deformation observed geodetically occurs over a zone
comparable in width with geological structures associated
with an active fault. If creep occurs only below the depth 1o
which an earthquake ruptures, then the long-term structures
produced by repeating earthquakes would be much wider
than those observed. Only by allowing the crust to have
long-term strength over a smaller depth range can the
conundrum be resolved. ’

COSEISMIC AND POSTSEISMIC DEFORMATION

As a first approximation, the deformation in an seismic
cycle is that which occurs at the time of the earthquake, the
coseismic deformation [King and Brewer, 1983, Stein and
King, 1984; Vita-Finzi and King, 1985]. Such models
adequately describe small features, such as surface folds or
footwall folds, but large features cannot be modeled.

A more realistic model was devcloped by Rundle [19824]
to explain deformation in the seismic cycle. An upper layer
containing the earthquake fault retains strength indefinitely
and acts elastically, but the material beneath relaxes stress
at a rate determined by its viscosity. Thus, deformation
changes with time following the earthquake. The procedure
to calculate surface deformation for such a modcl was
described in detail by Rundle [1980], who adopted the
Thomson-Haskell (propagator) matrix method to first
calculate the response of a layered elastic medium 10 an
embedded dislocation source of arbitrary orientation. To
fully incorporate the effects of gravitation, 6x6 matrices arc
required. Rundle [1981], however, showed that these can be
reduced to 4x4 matriccs for a flat laycred model because the
effect of the gravitational gradicnt is negligible. The
resulting Green's functions are integrated analytically to
provide the response due to a fault of finite extent.

The propagator matrix method is quite general and can
be used to calculate the time dependent effects from one or
more viscoelastic, or viscous, layers. Displacemex]ts.
stresses, and strains are decomposed by means of Fouricr-
Bessel transforms in space, so that physical quantitics are
functions of the Fourier wave number & only. Elastic
properties, such as modulii, are replaced by the Laplace
transforms of the viscoelastic relaxation functions.
Inversion back o the space-time domain is accomplished
by means of inverse Fourier-Besscl and Laplace um_sfoms.
Although inverse Laplace transforms are, in principle,
complicated by the existence of poles and branch culs in the
complex 5 plane, stable results can nevertheless be obtained
by numerical methods [see Rundle, 1982a). For the
purposes of this study we evaluate deformation at t=0 and
for very large t.

The parameters controlling the major features of the
Rundle model can be scen by using example calculations.
Figure 2 shows the vertical displacements due to a fault
extending to a depth, H, of 16 km in a uniform elasuc half-
space, and those that remain for the same fault when all
stress is relaxed below a depth of 16 km. Figure 2a shows
the vertical displacements for a thrust fault and Figure 2b
for a normal fault. For faults dipping at 45°, the only
difference between the displacements, and hence the strains
and stresses, between a normal and a reverse fault 1s.1hc
sign. Thus in the absence of the effects of loading,
generalizations about normal fault relaxation processes
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Fig. 2. Coseismic and relaxed deformation for 45° dipping faults associated with no erosion and deposition.

by reversing the sign of fault slip for a thrust fault. All

vertical displacements change sign in the same way. Coseismic faulting extends to a depth of 15 km; stress is
relaxed below this depth to represent interseismic processes. A 15-km-thick elastic layer causes the relaxed

deformation to spread over a width (W) of 36 km much
effect is not observed in real structures.

apply equally to reverse faults. Two features are evident
from the models. First, whereas a large difference exists
between the amount of uplift and subsidence at the time of
an earthquake, they are similar when stress has been relaxed
at depth. Second, the width over which deformation extends
is greater after stress is relaxed at depth than immediately
following the earthquake. For convenience, we define the
width, W, of the deformation to be the horizontal
dimension normal to the fault strike where the uplift or

subsidence is greater than 20% of the vertical offset at the
fault.

wider than the coseismic deformation (W=14 km). This

The effect of changing the dip of the fault is shown in
Figure 3. Coseismic deformation associated with faults
dipping at 30°, 45° and 60° are shown in Figure 3a. The
vertical displacements are normalized to 1 m of dip-slip
1aotion with the consegence that the vertical offset is less
for the 30° than for the 60° dipping faults, Figure 3b shows
the deformation when stress is relaxed at a depth of 15 km.
These profiles differ mainly in total offset and very liule in
form. We conclude that the models in this paper and Paper
2 are not sensitive 1o restricting our calculations to 45°
dipping faults,
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Fig. 3. (a) Coseismic and (b) relaxed deformation for faults

dipping at 30°, 45°, and 60°, The faulting extends to a depth of
15 km and stress is relaxed at the same depth.

The width of the relaxed deformation observed in the
field is much less than that indicated in Figure 2, as
illustrated in Paper 2. The most straightforward way in
which the relaxed deformation can be reduced is if stress
relaxation occurs such that the final elastic layer thickness

0.6 1

VERTICAL DISPLACEMENT
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is substantially less than the depth to which coseismic
faulting extended. Figure 4 compares the coseismic
deformation for a fault extending to a depth of 16 km with
the final deformation for surface clastic layer thicknesses of
16, 8, 4, and 2 km. Reducing the elastic thickness narrows
the width of the deformation. For a gravitating model the
width and form of the deformation do not exactly scale with
elastic layer thickness. As elastic thickness decreases,
gravitational forces become progressively more important;
halving the elastic thickness slightly more than halves the
width of the deformation region. For the 45° dipping fault
used, an elastic thickness of about 4 km produces a profile
of about the same width as a coseismic fault extending to a
depth of 16 kilometers; broadly what is observed. This
factor of about four that we find for a 45°-dipping fault
extending to a depth of 16 kilometers will not generalize to
all fault dips and to all elastic thickness ranges. However,
the conclusion that it is necessary to thin the effective
elastic crust thickness for relaxed deformation to have the
same regional extent as coseismic deformation is true for
most geometries.

A crustal model with many of the material property
boundaries thought to exist is shown in Figure 5; we will
now discuss how this model can be reasonably
approximated by using the Rundle model plus the simple
loading calculations discussed in the next section. Four
density changes are shown: the atmosphere with density po,
the upper crust with density p,, the lower crust with density
p2. and the mantle with density ps. Apart from the
atmosphere, the model divides into three types of material.

g
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Fig. 4. Surface displacement due to stress relaxation at different depths. The heaviest solid line shows the
coseismic deformation for faulting extending 1o a depth of 16 km. Other lines show the deformation resulting from
relaxing stress at depths (/) less than 16 km. The width (W, defined in the text) over which the relaxed

deformation occurs narrows as H is reduced.



K6 BT AL: GEOLOGICAL STRUCTURES BY REPEATED EARTHQUAKES, 1

(a)
MATERIAL PROPERTIES

GRAVITATIONMAL MECHAMICAL

Po
1 Layer 1 “
T ATTIG ez [TE b
g s it & eaniiE . e
l .5
P2 Layer 3 ‘I}'n
Fa b

DEPOSITION
(positive Ioad}‘ 1 {negative load)

13.311

(b) {c)
EROSION

SEISMIC SLIP

—
Ay
~

DEPTH

Fig. 5. Parameters that could control crustal deformation.Relations between the simple deformation model that
we adori and more elaborate models represented by Figures 5a and 5b are discussed in the text. A typical depth
distribution of seismic slip is shown in Figure 5c¢ [e.g., Bakun etal,, 1986].

Starting from the bottom, layer 3 behaves in an elastic-
brittle fashion during earthquakes, but over longer time
periods is ductile. Layer 2 behaves in an elastic-brittle
manner and is the only part of the crust that has substantial
long-term strength. If all the long term strength resided in
it alone, it would have a thickness of H. Layer 1 is
modelled to have similar properties to layer 3. Layer 1
cannot be truly ductile, however, or topography would
disappear, although stress may be partly relieved [e.g.,
King and Brewer, 1983]. Thus deviatoric stresses can be
adequate to maintain topography but remain well below the
stresses required for brittle failure. The material can be
thought of as having properties similar to those of a
standard linear solid (e.g., Fung, 1965). We therefore treat
layer 1 as being capable of sustaining only limited loads
and to behave such that: a load placed at the top of layer 1
has the same effect as the same load acting at the base of
layer 1, and a vertical displacement at the top of the layer
is equal to the vertical displacement at the bottom of the
layer immediately below.

Layer 3 includes two density changes (Figure 5).
Whether these changes are significant in modeling depends
on if layer 3 behaves entirely or only partly as a fluid. If it
were truly fluid, then these interfaces would always
equilibriate to horizontal surfaces and have no effect on the
deformation field in layer 2 and above. This behavior seems
likely for the b-c interface because temperatures at mid
crustal depths are sufficient to activate thermal creep
processes [e.g., Ashby and Verrall, 1977; Sibson, 1982]
and allow substantial stress relief, The possibility that an
interface closer to the base of layer 3 becomes defarmed is
greater if the upper part of layer 3 behaves in a manner
similar to layer 1. We do not consider this possibility.
Rather, we consider layer 3a to be of zero thickness and
layer 3b to extend infinitely downward. Since density
differences at the deeper interfaces are small, they coniribute
no more than a few percent to changes in the gravity
potential and thus litle to the deformation. We use a
mantle density for this lower layer, although we recognize
that in some cases this choice can cause loading flexure to
be underestimated (se¢ Table 1).

FLEXURE DUE TO EROSION AND DEPOSITION

The effect of sedimentation and erosion can be treated as a
set of positive and negative loads acting at the top (and thus

the bottom) of layer 1. We treat layer 2 as a thin plate. The
added complexity of considering a plate of finite thickness
[e.g., McKenzie and Bowin, 1976] does not seem justified
for the cases that we consider (see Rundle, [1982b] and
Comer, [1983] for discussions).

Expressions for a two-dimensional (line load) are
provided by Gunan [1943] and are reproduced by McNuit
[1980]. To model flexure, we approximate sediment
deposition and erosion by a series of loads F and sum
together the deflections calculated from the following

expression:

w=ek Lk (cos|kx| + sin |kx) 0]
2Apg
where the flexural rigidity of the crust D is given by
pauBi )
12 (1)
and the wave number of the deformation, k, is related to
other constants by
p*=4D 6))
Apg

TABLE 1. Modeling Constants

Variable Definition Value

E Young's Modulus
Po  Atmospheric Density
Ps Sediment Density

2.5%1010 Nm2
0.0x10° kgm3
272108 kgm3

P Upper Crustal Density 3.0x10° kgmd
p:  Lower Crustal Density 352100 kgm?
v Poisson's Ratio 0.25

Density layers are illustrated in Figure 5.
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Fig. 6. Surface deformation of a gravitating plate overlying a fluid medium due to a localized load. Deformation
distributions are normalized to constant maximum displacement. The width (W) comresponds to where the
dcformation amplitudes drop to 20% of the maximum displacement.

The plate has a thickness H and an elastic modulus E. The
difference in density between the fluid beneath the plate and
the air above we term ap. Referring to Figure 5, ap=py-p;.
The x axis is horizontal and the load acts at x=0. The plate
corresponds to layer 2 and the fluid to layer 3, in Figure 5.
Recall that deflections at the top of layer 1 are considered
adequately represented by those at the base.

From these expressions it can be seen that plate deflection
is inversely proportional to the fourth root of flexural
rigidity of the plate and the wavelength of the deflection is
nearly inversely proportional to the plate thickness.
Combining (1), (2), and (3) and evaluating the surface
displacement at x=0,

. N
3 (Hapg)“E™

The displacement is thus linearly dependent on the load,
depends modestly on the plate thickness and the density
contrast and is insensitive to the modulus E,

The expression for vertical displacements due to a point
load is also straightforward [e.g., Lambeck and Nakiboglu,
1980]:

@

wmFL pei (A ©®
!

2nD
where
Pl
Apg

r is the radial distance from the load, and kei (x) is the
zero-order Kelvin funciion. Equation (5) is evaluated
numerically [e.g., Abramowiiz and Stegun, 1972].

The deflection due to a localized load as a function of
radial distance is shown for various elastic thicknesses in

Figure 6. It can be scen that for a 16-km-thick layer, the
width is about 165 km; for a 2 km thick layer, the width is
34 km. The area under the curves outside these regions is
about 5% of the total area. Thus localized loads at half
these distance ranges would have 1o be very large to cause
even a 5% error in a two-dimensional approximation of a
structure. Even at a fourth of the distances, 20% errors
would result only if the loads deviated by 100% from the
assumption of constant behavior along strike. A
satisfactory rule that determines the range of validity of
later figures is that two-dimensional models are accurate
within a few percent provided that the length of the
structure is about 10 times the effective elastic thickness.
Tests of both the dislocation program and the loading
program for a set of structures of finite extent were used to
independently confirm this conclusion.

IDEALIZED STRUCTURES

We now combine the relaxed deformation and the
deflection caused by surface loads, as shown schematically
in Figure 1 1o illusirate the influence of effective elastic
thickness and erosicn and deposition of sediment. Note that
we only calculate vertical and not horizontal components of
displacement, and thereby introduce some error in the form
of the figures. However we display the results at 20:1
vertical exaggeration and since the horizontal displacements
have about the same amplitude as the vertical
displacements, apparent errors in the figures due to this
simplification do not exceed 5%. Both the dislocation and
the loading models are strictly appropriate only when the
elastic strains are small. Because the elastic parts are in the
form of thin plates even the large displacements that we
show do not violate the small strain assumption.

The effect of varying clastic thickness for a series of
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Fig. 7. The influence of flexural rigidity on vertical displacements associated with reverse faulting. The upper
figures show coseismic displacement for a fault extending to a depth of 16 km. The middle figures show vertical
displacements when stress is relaxed at various depths. Loads to account for erosion and deposition are added.
Elastic thicknesses (/1) are, from left to right 16, 8, 4, and 2 km. The deformation with loading is shown in the
middle row and the loads used in each case are shown as dotted histograms. The lower figures indicate the type
of structure represented by the middle figures. Assumptions used to construct these cross seclions are discussed in

the text.

reverse faults is shown in Figure 7. The upper row of
figures are identical and show the coseismic displacement
for a fault extending to a depth of 16 km. The middle
figures show, with a solid line, the relaxed deformation
summed with the deformation due (o the load. The relaxed
deformation profiles are for layer thicknesses of 16, 8, 4,
and 2 km (Figures 7a-7d). The loads used to calculate the
deformation (dotted histograms) represent depths of
sediment measured downwards from the horizontal axes
(positive loads) or depth of erosion when measured upward
(negative loads). The form of the loads has been chosen
such that when the histograms are smoothed and subtracted
from the deformation profile, the land surfaces generated are
nod unreasonable. Extreme examples of unreasonable load
distributions produce hills of sediment in the down thrown
block or valleys cutting below the mean ground surface in
the up thrown block. Less extreme examples also produce
unlikely morphologies. In practice the choice of load
distribution is limited. The chosen land surfaces are shown
in the third row of figures. To indicate the rclation of these

plots to geological structures, other features have been
added to the figures in the third row. The sediment includes
dashed lines 1o indicate earlier surface profiles in the
evolution of the structure; they are positioned assuming
that the feature has evolved by steadily increasing its
vertical exaggeration. The validity of such an assumption is
discussed in Paper 2 in the context of modeling real
structures. Bedding is also shown in the material that was
beneath the original undeformed land surface. Bedding lines
are drawn parallel to and beneath that surface. We see from
the figures that if the long-term effective elastic thickness
of the crust is the same as the depth of earthquake faulting
(i.e., H=16 km), then the width of the resulting structure
(W=110 km) is much greater than the coseismic width
(W=35 km), However, if the effective elastic thickness
drops to W=4 km, then the structure width and the
coseismic width become the same,

The equivalent set of figures for normal faults are shown
in Figure 8, and we can draw similar conclusions about the
role of effective elastic thickness. In both cases the
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Fig. 8. The influence of flexural rigidity on the vertical displacement associated with normal faulting. Like
Figure 7, the upper row is coseismic deformations, the middle row are relaxed deformation with loading, and the
bottom row is representative structures. Note that for similar load conditions, reverse and normal faults result in

structures of similar width.

examples illustrate that the structure widths (W) depend on
the effective elastic thickness. The structures (Figures 8a
and 8b) produced using effective elastic thicknesses (i) of
16 or 8 kilometers with widths (W) of 120 and 65 km
respectively are much wider than structures commonly
observed in the field and wider than the region of coseismic
deformation. Thicknesses of 4 and 2 km (in Figures 8c and
d) produce features with dimensions that resemble observed
structures. We examine this in relation to specific
structures in Paper 2, but this observation forms the basis
for concluding that whatever we may believe its physical
significance to be the effective elastic thickness of the crust
is substantially less than the elastic depth of coseismic
faulting or the depth range over which micro-earthquakes
occur.

The effect of changes in the amount of erosion and
sedimentation on the form of the resulting structures is
illustrated in Figures 9 and 10. Again the upper plots
show the caseismic deformation for a fault extending to a
depth of 16 km. In the second row the relaxed deformation
is shown for a 4 km effective elastic thickness but the net
cross-sectional area of the load (A= [depositional load]-

[erosional load]) i mcreases from left to nght. from 1 km? in
Figure 9a and 2 km? in Figure 95 10 9 km? in Figure 9¢
for reverse faults, and from 2 km:E in Figure 10a and 4.5
km? in Figure 10b to 5.5 km?2 in Figure 10¢ for normal
faults. The corresponding structures are shown in the row
below, It can be seen that increased loading always acts to
widen the structure and never to narrow it. In Figure 9, a
small basin can be seen io form in the upthrown block.
Like the larger basin formed by the downthrown block, this
basin can collect sediment (Figure 9¢). For the normal
faults illustrated in Figure 10, the equivalent up-arching of
the downdropped footwall block is diminished in amplitude
by loading in the main basin. It is very interesting that the
feature which forms the basin in the hanging wall of a
reverse fault has the same geomelrical origin as the up-arch
in the footwall of a normal fault. Both are illustrated with
field examples in Paper 2.

DISCUSSION

Existing models can be adapted to describe the vertical
deformation associated with a complete earthquake cycle,
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1o right. The cross-sectional area (A) of each load is indicated. Note that the right-hand figure corresponds to a
structure, such as the White Wolf fault, associated with a large net sediment influx. Note also the dip in the
vertical displacement in the hanging wall of all of the figures. The botiom row of figures indicates the structures
represented by the middle row of figures. Arrows indicate hanging wall dips. In the bottom right-hand figure the
hanging wall dip is filled with sediment. This structure is similar in scale and form to the those associated with the

White Wolf fault (Paper 2).

but the effect of loading due to erosion and deposition of
sediment must be considered. The complete seismic cycle
takes too long for us to hope to make direct measurements
except at oceanic plate boundaries; intraplate earthquakes
have afforded the opportunity to measure postseismic
deformation only during the first several decades after a
large event [Reilinger, 1986]. However, we can conclude
that originally horizontal geological horizons become
deformed as the sum of the effects of repeating earthquakes
and may be treated as if they are fossilized leveling lines
that record very large displacements.

Following this view, we can produce structures that
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closely resemble those commonly observed in the field and
in reflection profiles. Two parameters control the form of
the structures. The overall width is determined by the long-
term effective elastic thickness of the crust, and the
asymmetry of uplift to subsidence is largely controlled by
sediment loading. Loading can increase the width of a
structure, but it cannot reduce it.

The form of geological structures is such that the crust
commonly appears to have an effective elastic thickness of
less than 4 km, even in regions where major earthquakes
are known (0 extend to depths 4 times as great and where
micro-earthquakes occur over a similar extended depth



13.31%

effective elastic thickness and the load distribution, we can
produce a wide range of possible structures to compare with
field examples. The most reasonable structures, however,
can only be generated if we assume that the effective elastic
thickness is very small.
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