THE LOMA PRIETA, CALIFORNIA, EARTHQUAKE OF OCTOBER 17, 1989: EARTHOUAKE OCCURRENCE

MAIN-SHOCK CHARACTERISTICS

ELEVATION CHANGES ASSOCIATED WITH THE EARTHQUAKE AND THEIR USE TO INFER FAULT-SLIP GEOMETRY

By Grant A. Marshall and Ross S. Stein, U.S. Geological Survey

CONTENTS

	Page
Abstract	A105
Introduction	105
Data	106
Leveling network	106
Leveling errors	106
Observed coseismic elevation change	109
Modeling elevation changes	110
Elastic-half-space models	110
Planar one-rake model	110
Nonplanar one-rake model	111
Two-rake model	111
Elastic-half-space results	111
Sensitivity of results to data distribution	116
Nonhomogeneous elastic models	117
Layered model	118
Wedge model	119
Modifications to half-space models	120
Discussion	122
Comparison of geodetic results with studies of	
seismicity and geology	122
Relation to other geodetic studies	124
Conclusion	125
Acknowledgments	126
References cited	126
Appendix 1: Corrections and adjustments to leveling data	127
Appendix 2: Data tables	129

ABSTRACT

Leveling surveys conducted before and after the 1989 Loma Prieta earthquake provide observations of the coseismic elevation changes. We use these data to define the spatial pattern of elevation change and to deduce the faulting geometry and distribution of slip. Both planar and curved (listric and negatively listric) faults produce elevation changes consistent with observations. Using an elastic half-space, we treat the data as correlated observations and find that 60 percent of the observed signal can be modeled by a planar rupture surface that extends from 6- to 12-km depth, is 32 km long and 7 km wide, and dips 64° SW. With a slip amplitude of 3.6 m, this model fault produces a geodetic moment of 2.6×10¹⁹ N-m. A larger dip-slip component is found northwest of the epicenter (rake, 144°) and a larger strike-slip component southeast of the epicenter (rake, 157°). Models with larger rake variations (>40°) marginally reduce the fit to the data but require a seismic moment of only 1.8×10^{19} N-m. The rupture plane lies 2 km southwest of the aftershock zone. When a low-modulus layer or wedge is added to the model for consistency with the seismic P-wave-velocity structure, the fault deepens and locates adjacent to the aftershock zone, coming within 1.5 km of the hypocenter.

INTRODUCTION

Precise geodetic leveling surveys conducted both before and after the 1989 Loma Prieta earthquake provide observations of the coseismic elevation changes. Although no active program of vertical-deformation monitoring using leveling has been pursued along this section of the San Andreas fault zone, previous leveling surveys for topographic-control and land-subsidence studies have been used together with postearthquake releveling to construct the coseismic elevation changes. Station separation for more than half of this extensive network of vertical-control bench marks is about 1 km.

In this study, we focus on the broad-scale pattern of vertical deformation and its interpretation in terms of fault geometry and slip. We use simple uniform-slip elasticdislocation models to approximate the rupture surface at depth. In two different approaches, we treat the leveling observations as either independent or correlated elevation changes. We compare our models incorporating a heterogeneous elastic structure with the half-space models for consistency with the seismic-velocity models of Eberhart-Phillips and others (1990). We then compare the model rupture surface with seismologic, geologic, and other geodetic observations.

DATA

LEVELING NETWORK

The leveling network circumscribes the southern Santa Cruz Mountains and encloses most of the aftershock zone (fig. 1). The network spans 15 to 20 km (one hypocentral depth) on each side of the San Andreas fault and 67 km along strike. Postearthquake surveys were chosen to give maximum coverage of the aftershock zone and the area of expected vertical deformation. The leveling routes cross the San Andreas and Sargent faults in four places. The network is divided into seven routes (inset, fig. 1), each approximately parallel or perpendicular to the San Andreas fault.

Preearthquake leveling surveys were performed by both the U.S. National Geodetic Survey (NGS) and the U.S. Geological Survey (USGS) between 1948 and 1989. Postearthquake surveys were conducted from February through June 1990. We treat all of the vertical deformation occurring between the preearthquake and postearthquake surveys as "coseismic," noting that little postearthquake slip was observed between October 1989 and June 1990 (Behr and others, 1990; Langbein, 1990).

LEVELING ERRORS

Leveling can be contaminated by both systematic and random errors. Systematic errors generally produce a correlation between observed geodetic tilt and topographic slope, as is true for miscalibrated leveling rods (Jackson and others, 1981; Stein, 1981) and is sometimes true for atmospheric-refraction errors (Stein and others, 1986). Random errors have several causes: inaccurate readings of the leveling instrument caused by atmospheric scintillation and ground vibrations, incorrectly entered numerical values (blunders), random variations in the degree to which the instrument and rods are out of plumb, and so on. The NGS corrects all data for level collimation, rod

Figure 1.—Schematic map of Loma Prieta region, Calif., showing location of leveling network of 211 bench marks. Inset shows locations of leveling routes 1 through 7; bench marks (dots) indicate zero-distance points in profiles shown in figure 7. Stars, epicenters of Loma Prieta (Oct. 17, 1989; M_s =7.1), Coyote Lake (Aug. 6, 1979; M_s =5.9), and Morgan Hill (Apr. 24, 1984; M_L =6.1) earthquakes; crosses, epicenters of Loma Prieta aftershocks of M>2. Quaternary faults (dashed where inferred) from Jennings (1975). AN, Point Año Nuevo; AP, Aptos; BC, Boulder Creek; CA, Capitola; CO, Corralitos; CY, Coyote; DA, Davenport; FE, Felton; FR, Freedom; GI, Gilroy; HP, Hecker Pass; LG, Los Gatos; LP, Loma Prieta (triangle); LS, La Selva Beach; MH, Morgan Hill; OL, Olympia; PG, Pajaro Gap; SA, Sargent; SC, Santa Cruz; SJ, San Jose; SO, Soquel; SU, Sunnyvale; SV, Scotts Valley; WA, Watsonville; ZA, Zayante.

calibration, thermal expansion of the rod tapes, earth tides and associated gravitational effects, and atmospheric refraction. For the 1990 surveys, the thermal and refraction corrections were computed from the observed temperature gradient at the leveling instrument.

In contrast, the third-order USGS leveling data are not corrected for refraction, earth tides, or thermal-expansion effects. Refraction, collimation, and rod-calibration errors, which can lead to systematic errors detectable in third-order work, are evaluated by searching for height-dependent correlations. Profiles of elevation change and topography are shown in figure 2 for leveling routes 4 (fig. 2A) and 7 (fig. 2B), both of which cross substantial topography and show no correlation (positive or negative) between the tilt of elevation change and topographic slope. No such correlations are recognizable in the other coseismic data, although errors of ≤ 100 mm would be difficult to detect in the presence of large tectonic deformation.

Random error can be gaged from the height difference between adjacent bench marks when they are double-run (leveling in both directions), and from circuit misclosures.

Figure 2.—Profiles of topography (shaded curve) and coseismic elevation change (dots) along leveling routes 4 (A) and 7 (B) (see inset, fig. 1). No consistent positive or negative correlation between topography and elevation change is observed.

Random error accumulates with the square root of distance, expressed as $\alpha \sqrt{L}$, where α (in millimeters per kilometer $\frac{1}{2}$) is computed from the double-run sections and L is the length of each section (in kilometers). The observed α values listed in table 1 are derived from the statistics of all double-run sections and have been normalized to a distance of 1 km. The maximum allowable discrepancy between the forward and backward runs of each double-run section is the field tolerance, β . If this field tolerance is not met, the section must be rerun until the forward and backward runs agree to within the tolerance. In practice, arithmetic means of several runs are used for final elevation differences when the field tolerance cannot be met after several attempts. If random errors are normally distributed, then $\alpha = \frac{1}{3}\beta$. Generally, $\alpha < \frac{1}{3}\beta$ because the errors are not normally distributed or because the number of double-run sections used to compute α is small.

We have assigned α values to each survey on the basis of observed circuit misclosures. In the absence of large blunders or length-dependent systematic errors, observed circuit misclosures give an estimate of the random survey error. The accuracy of the 1990 surveys can be determined by examining five closed circuits. All the circuits are mapped in figure 3, and the observed misclosure, length, and allowable misclosure for each circuit are listed in table 2.

The assigned α values (table 1) are computed from the misclosures of circuits by the formula

$$\alpha^2 = \frac{1}{n} \sum \frac{e_i^2}{L_i},\tag{1}$$

where e_i is the misclosure (in millimeters), L_i is the length (in kilometers) of the *ith* circuit, and *n* is the number of circuits (Bomford, 1971, p. 816). Generally, this calculation leads to more conservative assignments of error than does the observed α value. Where circuit-closure data are unavailable, the α value is assigned by setting the ratio β/α equal for all first-order surveys. All third-order surveys have been assigned an α value on the basis of the single preearthquake circuit 5 misclosure, which yields a 7-mm/ \sqrt{km} mean error, whereas the expected error for third-order levels is 12 mm/ \sqrt{km} . Because circuit 5 was closed with several rod pairs, this small misclosure is consistent with an absence of rod-calibration error. Pure errors represented by circuit misclosures have been used to scale the relative precision of each survey.

The error assigned to each coseismic elevation change is based on survey precision and on the uncertainty and magnitude of the subsidence corrections (see app. 1). Relative uncertainties, δ_i , for each coseismic data point are computed as

$$\delta_i^2 = \alpha_{\text{post}}^2 + \alpha_{\text{pre}}^2 + (\gamma S_i)^2, \qquad (2)$$

Table 1.—Specifications for leveling surveys

[Agencies: NGS, U.S. National Geodetic Survey; USGS, U.S. Geological Survey. Assigned α values are derived from circuit misclosures. n.a., not available]

Leveling route (inset, fig. 1)	Survey agency and designation		Survey date	Order of leveling (run)	Field tolerance, β (mm)	Obscrvcd α valuc (mm)	Assigned α value (mm)
1	NGS NGS NGS NGS	L25239.1 L25172, L25174 L22841 L21038, L21016.1, L21026.2	Jan.–Fcb. 1990 Fcb.–Mar. 1989 July–Scpt. 1972 Mar.–May 1967	lst (single) lst (single) lst (double) lst (double)	4.0 4.0 3.0 4.0	0.77 .84 .98 1.67	2.5 2.5 1.9 2.5
2	NGS NGS NGS NGS NGS	L25239.1, L25239.2 L25251.8 L25174 L24298 L22841, L22869	Fcb. 1990 June 1990 Mar. 1989 1978 July-Oct. 1972	lst (single) lst (single) lst (single) lst (double) lst (double)	4.0 4.0 3.0 3.0	.11 1.32 .84 .89 .89	2.5 2.5 2.5 1.9 1.9
3	NGS	L25239.3	Feb.–Mar. 1990	lst (single)	4.0	1.30	2.5
	NGS	L21016.9	Jan.–Mar. 1967	lst (double)	4.0	1.67	2.5
	NGS	L18119.9	Dec. 1960	lst (double)	4.0	2.25	2.5
4	NGS USGS	L25239.4 PV 80, PV 208, PV 220	Mar.–Apr. 1990 1948/53	1st (single) 3d single)	4.0 n.a.	.80 n.a.	2.5 6.8
5	NGS	L25239.6	Apr. 1990	1st (single)	4.0	.75	2.5
	USGS	PV 220, PV 208	1953	3d (single)	n.a.	n.a.	6.8
6	NGS	L25239.5	Apr. 1990	1st (single)	4.0	1.50	2.5
	USGS	PV 220	1953	3d (single)	n.a.	n.a.	6.8
7	NGS	L25251.7, L25251.8	May–June 1990	1st (single)	4.0	1.72	2.5
	USGS	PV 218	1953/54	3d (single)	n.a.	n.a.	6.8

where α_{post} is the α value for the postearthquake survey, α_{pre} is the α value for the preearthquake survey, S_i is the subsidence correction for the *ith* data point, and γ is a parameter that depends on our confidence in the estimated subsidence rate. For points with a subsidence correction based on extensometer data, γ =0.15; for all other points, we assign γ =0.33.

The relative uncertainty indicates the relative importance of the elevation change at a point i with respect to any other point j. The uncertainty between two adjacent points i and i+1 is given by

$$\sigma_{(i,i+1)} = \left[(\delta_i^2 + \delta_{i-1}^2) L \right]^{\frac{1}{2}}$$
(3)

where L is the survey distance between the two points (in kilometers). The coseismic elevation changes and their relative uncertainties are listed in table 3. Each bench mark is identified by its NGS archival reference number (ACRN).

The coseismic signal available for modeling is best described by a signal-to-noise (S/N) ratio. The observed elevation-change signal is based on section-elevation changes (each section consists of two adjacent bench marks). The signal for the *ith* section, ΔH_i , is given by the difference between the coseismic elevation changes of the two bench marks at each end, $\Delta H_i = dH_{i+1} - dH_i$. The total error, σ_i , for each ΔH_i is calculated from equation 3 and is proportional to the square root of the survey length of the section and to the square root of the sum of squares of the uncertainties of the two observations. The *S/N* ratio is given by

$$\frac{S}{N} = \left[\frac{1}{n}\sum_{i}^{n} \left(\frac{\Delta H_{i}}{\sigma_{i}}\right)^{2}\right]^{\frac{1}{2}},$$
(4)

where n is the total number of sections used in the calculation (table 4). The S/N ratio is ≤ 3 for 81 percent of all the sections in the network (leveling routes 1, 2, 5, 7). The area of large signal near the epicenter has a moderate S/N ratio of 4 to 6, because the coseismic elevation changes are derived from less precise preearthquake surveys that have poor spatial resolution and larger uncertainty (leveling routes 3, 4, 6). The S/N ratio of the entire Loma Prieta leveling-data set is 3.3, despite the high quality and resolution of the 1990 surveys. In effect, the leveling routes around the periphery of the network receive a higher weight by virtue of their high precision and bench-mark density, whereas those in the interior of the network receive a relatively lower weight. If all the data were of equal precision and density, the interior routes of the network would have had much larger S/N ratios.

OBSERVED COSEISMIC ELEVATION CHANGE

The observed coseismic elevation changes are mapped in figure 4A. Maximum uplift of 550 mm occurs just to the northwest of the epicenter, on the west side of the San Andreas fault (fig. 1). Maximum subsidence of 100 mm occurs at both the northeast and southwest ends of the network. Maximum coastal uplift occurs where the bench marks are closest to the San Andreas fault. Along the northwest section of the coastline, between Santa Cruz (SC, fig. 1) and Point Año Nuevo (AN, fig. 1), the observations show little or no uplift. To the east of the San Andreas fault, a broad 50-mm downwarp extends along the fault zone.

Repeated coseismic vertical deformation may give rise to the observed height of the coastal marine terraces. Noting the similarity between terrace-uplift profiles and the vertical deformation predicted by Lisowski and others' (1990) coseismic model of the earthquake, Anderson (1990), Valensise and Ward (1991), and Valensise (1992) suggested that Loma Prieta-type events, if repeated every 300 to 600 yr, could produce the observed terrace deformation. The observed coseismic elevation changes from the earthquake are plotted along with the observed longterm vertical deformation of the youngest (125 ka) marine terrace in figure 5A. At distances greater than 25 km south of Point Año Nuevo, the two profiles are similar, although the terrace deformation is broader, partly because the leveling route does not everywhere coincide with the terrace's inner edge. Within 25 km of Point Año Nuevo, the uplift recorded by the terrace is not observed coseismically.

An alternative interpretation of the long-term uplift is uniform coastward tilting normal to the San Andreas fault. If this interpretation is correct, then the terrace heights would be inversely proportional to their distance from the fault, unrelated to parameters of the earthquake. Terrace height as a function of distance normal to the San Andreas fault is plotted in figure 5B. Uniform tilting is seen to be a plausible explanation for the terrace height, except near the San Gregorio-Hosgri fault at Point Año Nuevo. Thus, although the similarity of the coseismic deformation to the 125-ka deformation suggests that permanent uplift associated with dip slip on the San Andreas fault is recorded by the terraces, uniform regional tilting may also account for the terrace uplift. In both cases, discrepancies near the San Gregorio-Hosgri fault may be due to dip-slip motion on the San Gregorio-Hosgri fault or to obliquity

Figure 3.—Schematic map of Loma Prieta region, Calif., showing locations of leveling circuits (numbered loops) formed by 1990 releveling survey. Circuit misclosures computed in clockwise direction as indicated are listed in table 1. Leveling circuit 5 is closed by both preearthquake and postearthquake leveling. Circuit 1 is the outer perimeter loop.

Table 2.—Leveling circuits and misclosures

[Observed misclosure is computed in clockwise direction. Allowable misclosure is based on normal random error, $\alpha = \frac{1}{3}\beta$. NGS, U.S. National Geodetic Survey]

Circuit (fig. 3)	Date	Circuit length (km)	Observed misclosure (mm)	Allowable misclosure (mm)
1	1990	79.9	-51 34	+17.9
2	1990	146.0	-38.82	± 16.1
3	1990	81.3	+15.86	± 12.0
4	1990	90.5	-9.82	± 12.7
5	1990	105.0	-18.56	±13.7
5	11953/72	105.0	-70.00	² ±123.0

¹⁵ km of the preseismic loop is closed with an NGS 1972 height difference.

²Based on $\alpha = 12 \text{ mm}/\sqrt{\text{km}}$.

of the long-term San Andreas fault slip, as proposed by Valensise and Ward (1991).

MODELING ELEVATION CHANGES

To model the observed coseismic elevation changes, we constructed a series of three-dimensional models, each of which utilizes an elastic-half-space Earth structure and model faults with uniform slip. We first construct planar rectangular model faults and search for the model that best fits the observations; the data are considered to be independent point elevation changes. Next, we allow the model fault to take on listric and negatively listric shapes. In an additional experiment, we consider the observed elevation changes to be correlated and model the sectionelevation changes between adjacent bench marks. In our final series of models, we examine faults with alongstrike variations in rake.

To assess the influence of nonhomogeneous elastic Earth structure, we then tested several two-dimensional boundary-element models. In these tests, we compute the vertical displacement for a set of points aligned perpendicular to the strike of a model thrust fault embedded in a nonhomogeneous elastic medium. These displacements are then modeled with a two-dimensional elastic half-space, to deduce the correction that should be applied to our three-dimensional-half-space results to account for nonhomogeneous Earth structure. These nonhomogeneouselastic-media calculations are designed to test the effects of a realistic Earth structure on the basis of calculated seismic-velocity models of the Loma Prieta region. We consider both a layered elastic structure and a wedgeshaped low-modulus region.

ELASTIC-HALF-SPACE MODELS

PLANAR ONE-RAKE MODEL

The earthquake rupture can be described as a superposition of moment-tensor point sources buried within a uniform elastic half-space (Ward and Barrientos, 1986; Barrientos and others, 1987). The model-fault geometry and source parameters are fixed; the uniform slip is defined by a least-squares inversion. When the data are considered to be independent point elevation changes, a constant elevation-change offset is also determined by inversion. Because the coseismic elevation changes are independent of a datum (zero-level elevation change is unknown), the model must include an elevation-change offset that, together with the slip amplitude, best fits the observations (in a second approach, the need for an elevation-change offset is eliminated by constructing elevationchange differences between adjacent bench marks). The data are weighted by the square of the observed errors, σ_{0} , which are proportional to the relative uncertainties, $\sigma_0 = \sqrt{L_c} \delta_i$, where L_c is a characteristic length scale for the network ($L_c \approx 10$ km). Note that we model the elevation change of each bench mark, which is treated as independent, and there are no correlations between bench marks. The characteristic length scale is chosen so that the S/N ratio calculated both by section and by bench mark is the same; without the characteristic length scale, the magnitude of the signal is unbounded, owing to the arbitrary datum.

To account for correlations in the leveling observations, we also model the section-elevation changes. In these models, differencing the coseismic elevation changes of adjacent bench marks eliminates the elevation-change offset, and so we invert only for the slip amplitude, with the section-elevation changes weighted by the square of the uncertainties given by equation 3. Each section has a length scale (the leveled distance between adjacent bench marks), and the characteristic network length scale L_{c} is not required. Before inverting the section-elevation changes, we remove bench marks that create spikes, and sections with excessive tilt. Spikes, defined by adjacent sections that have large tilts of opposite sign, indicate a disturbed bench mark or leveling-observation blunder. Steps in the leveling data indicate blunders in the leveling observations and are characterized by individual sections that have excessively large tilt. For spikes, the causative bench mark is removed, and a new section is formed by differencing the bench marks on either side. The magnitude of tilt that is used to define spikes and steps is chosen to maximize the percentage of signal modeled, while at the same time removing as few of the data as possible (fig. 6).

Each model fault is described by eight fixed model parameters. The location of the model fault is designated by the coordinates of its upper northwest corner; the latitude, longitude, and vertical depth of this corner locate the fault in space. The fault area is described by an alongstrike length and a downdip width. The strike is defined as the angle measured clockwise from north, and the rake is measured on the fault surface counterclockwise from the strike azimuth. The dip is the acute angle between horizontal and the fault surface.

Our systematic forward search of parameter space begins by finding the best-fitting planar model fault. In this initial phase of modeling, we make no assumptions about fault geometry or location, as might be derived from aftershock locations, focal mechanisms, or previous studies. Instead, we adopt strikes and rakes that reflect the general strike of the San Andreas fault in the Loma Prieta region and a reverse-oblique style of faulting. These and all other model parameters, however, are assigned large ranges in the initial parameter-space search. During successive parameter-space searches, these ranges are narrowed, guided by the values that produce the best fit to the data.

NONPLANAR ONE-RAKE MODEL

For curved fault shapes, one additional parameter is required. The downdip fault shape in cross section can be described by the relation $x=b_1z+b_2z^2$, where x is the horizontal distance perpendicular to the fault strike in the direction of dip (Ward and Barrientos, 1986), z is the depth, and b_1 and b_2 describe the cross-sectional shape of the fault surface: b_1 is the cotangent of the dip at the upper edge of the fault, and b_2 is the fault curvature. When $b_2=0$, the model fault is planar (fig. 7A); when $b_2>0$, the model fault is listric (fig. 7B); and when $b_2<0$, the model fault is negatively listric, a "shoulder thrust" in geologic parlance (fig. 7C). We examine fault curvature over a narrower range of initial parameters, using our acquired knowledge of the best-fitting planar-fault geometry. The ranges of parameters tested are listed in table 5.

TWO-RAKE MODEL

In an additional but limited modeling run, two new parameters are added to the model. By introducing an alongstrike segmentation, we create northwestern and southeastern fault segments with independent rakes. Slip is constrained to be uniform for both segments and is determined by inversion. Because Beroza (1991), Steidl and others (1991), and Wald and others (1991) modeled variations in rake in their analyses of strong-motion seismic data, we test whether the leveling observations also constrain variations in rake. This new parametrization is used to determine the best rakes and relative segment lengths for our best-fitting planar-model geometry and for perturbations to it.

ELASTIC-HALF-SPACE RESULTS

All models are ranked according to their misfit to the observations. Model misfits are characterized by a reduced χ^2 term here called the misfit-to-noise (*M*/*N*) ratio, computed as

$$\frac{M}{N} = \left[\frac{1}{n - N_f} \sum_{i}^{n} \left(\frac{\Delta H_o - \Delta H_c}{\sigma_o}\right)^2\right]^{\frac{1}{2}},$$
(5)

1 /

where ΔH_0 is the observed elevation change, ΔH_c is the calculated elevation change, σ_0 is the observed error, *n* is the number of bench marks, and $N_{\rm f}$ is the number of free model parameters computed from the data ($N_f=10$, planar; $N_{\rm f}$ =11, curved; $N_{\rm f}$ =12, two-rake, because we have used the data to find the best values of all the parameters). For the section-elevation-change models, the values of ΔH_0 and ΔH_c refer to section-elevation changes, the observed error is calculated by using equation 3, and n is the number of sections modeled. If a model fits the observations to within the noise level of the data, then $M/N \le 1.0$. Our best-fitting one-rake model has an M/N ratio of 1.62 for independent data and 1.57 for correlated data, and the segmented two-rake model has an M/N ratio of 1.33 for independent data. Because all of these models have M/Nratios >1.0, we have not modeled all the observed signal. The fit is improved by 4 percent when the data are treated as correlated observations, as indicated by the percentage of signal modeled. Árnadóttir and others (1992) also found solutions for both correlated and independent data similar to our models, but the misfits they reported are larger. We calculate an M/N ratio of 1.61 for Árnadóttir and others' best model. Our use of the characteristic length scale, when modeling the data as independent observations, properly scales that problem, and so we obtain M/N ratios comparable to those in the models with correlated data. Because we have removed spikes and steps from the data before modeling the section-elevation changes, the data set that we invert may differ slightly from that of Árnadóttir and others. We have also removed the adjustment (see app. 1) to the third-order USGS data for the section-elevation-change models.

Parameter values and inversion results for the best-fitting planar, listric, and negatively listric model faults, the two-rake model fault, and the section-elevation-change models are listed in table 6. The uncertainties shown for the slip and moment are derived from the inversion and depend on the weighted rms residuals. Each one-rake fault fits the data equally well $(1.57 \le M/N \le 1.67)$ and produces a similar moment release. With independent data, the tworake model fault significantly improves the fit and greatly reduces the magnitudes of slip and moment. With correlated data, the two-rake model fault does not improve the

MAIN-SHOCK CHARACTERISTICS

Table 3.—Coseismic elevation changes along leveling routes

[See inset, figure 1, for locations of leveling routes. ACRN, U.S. National Geodetic Survey archival reference number. A constant can be freely added to all elevationchange observations. Note that duplicate bench marks are listed at overlapping end points of leveling routes]

ACRN	Survey distance (km)	Latitude °N.	Longitude °W.	Coseismic elevation change (mm)	Relative uncertainty, δ_i (mm)	ACRN	Survey distance (km)	Latitude °N.	Longitude °W.	Coseismic elevation change (mm)	Relative uncertainty, δ_i (mm)
		Lev	eling route 1					Leveling ro	oute 1—Continue	ed	
HS5161 HS5160 HS2891 HS2886 HS5162 HS2828 HS2826	0.000 .598 1.745 2.598 4.166 4.787 4.968	37.3519 37.3489 37.3414 37.3461 37.3411 37.3394 37.3381	121.9169 121.9175 121.9111 121.9036 121.8958 121.8914 121.8906	18.2 15.1 8.7 12.4 5.4 1.8 1.0	4.3 4.3 4.4 4.5 4.6 4.6 4.6 4.6	GU2172 GU2171 GU2167 GU2154 GU2151 GU4097	68.187 68.274 69.904 71.743 72.394 74.431	36.9172 36.9172 36.9042 36.8878 36.8825 36.8922	121.5467 121.5467 121.5553 121.5567 121.5600 121.5742	$5.5 \\ -6.3 \\ -27.7 \\ -39.2 \\ -42.3 \\ -21.4$	$ \begin{array}{r} 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \end{array} $
HS2825 HS2822 HS5163	5.086 5.383 5.709	37.3378 37.3361 37.3378	121.8894 121.8894 121.8864	1.1 .3	4.6 4.5 4.6			Leve	eling route 2		
ns5163 HS2813 HS2814 HS2811 HS2810 HS2806 HS2796 HS2795 HS2795 HS2792 HS2788 HS2787 HS4926 HS5164 HS5164 HS2776 HS4775 HS4776 HS4776 HS4776 HS4776 HS4776 HS4776 HS4776 HS4776 HS4777 HS4776 HS4777 HS4776 HS4777 HS4776 HS4777 HS4776 HS4777 HS4777 HS4776 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777 HS47777 HS47777 HS47777 HS4777 HS4777 HS4777 HS4777 HS4777 HS4777	$\begin{array}{l} \text{5.709}\\ \text{6.972}\\ \text{8.568}\\ \text{10.085}\\ \text{10.0857}\\ \text{11.753}\\ \text{13.031}\\ \text{15.012}\\ \text{15.846}\\ \text{15.982}\\ \text{17.378}\\ \text{18.111}\\ \text{19.036}\\ \text{19.609}\\ \text{19.609}\\ \text{19.609}\\ \text{19.609}\\ \text{19.609}\\ \text{19.609}\\ \text{19.609}\\ \text{19.632}\\ \text{25.464}\\ \text{26.325}\\ \text{27.865}\\ \text{29.592}\\ \text{21.212}\\ \text{22.505}\\ \text{24.649}\\ \text{25.464}\\ \text{26.325}\\ \text{27.865}\\ \text{29.592}\\ \text{31.091}\\ \text{32.057}\\ \text{32.432}\\ \text{33.084}\\ \text{31.091}\\ \text{32.057}\\ \text{32.881}\\ \text{34.168}\\ \text{34.957}\\ \text{35.919}\\ \text{35.919}\\ \text{35.919}\\ \text{35.919}\\ \text{35.930}\\ \text{36.014}\\ \text{37.913}\\ \text{38.236}\\ \text{39.739}\\ \text{40.908}\\ \text{41.933}\\ \text{43.419}\\ \text{44.781}\\ \text{44.826}\\ \text{47.156}\\ \text{47.156}\\ \text{47.740}\\ \text{49.664}\\ \text{50.366}\\ \text{51.125}\\ \text{52.380}\\ \text{53.422}\\ \text{57.320}\\ \text{57.607}\\ \text{57.603}\\ \text{58.146}\\ \text{58.200}\\ \text{58.146}\\ \text{58.207}\\ \text{55.308}\\ \text{66.625}\\ \text{66.25}\\ \text{66.25}\\ \text{66.250}\\ \text{65.308}\\ \text{66.625}\\ \text{67.554}\\ \text{67.791}\\ \text{68.173}\\ \end{array}$	37,3344 37,3344 37,3253 37,3142 37,3075 37,3022 37,2944 37,2797 37,2744 37,2736 37,2617 37,2653 37,2653 37,2653 37,2653 37,2494 37,2450 37,2253 37,2494 37,2450 37,2281 37,2261 37,2281 37,2261 37,2281 37,2261 37,2281 37,2261 37,2261 37,2261 37,2261 37,2261 37,2261 37,1942 37,1836 37,1839 37,1744 37,1619 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,1525 37,061 37,0953 37,0058 37,0058 37,0058 37,00719 37,0058 37,0025 37,0072 37,0075 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,0006 37,000	121.8764 121.8764 121.8678 121.8678 121.8678 121.8678 121.8506 121.8308 121.8308 121.8308 121.8294 121.8183 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7981 121.7047 121.7450 121.7450 121.7450 121.7450 121.7688 121.6978 121.6978 121.6978 121.66947 121.6808 121.6805 121.6805 121.6805 121.6805 121.6639 121.6614 121.6500 121.6428 121.6513 121.6553 121.6566 121.5779 121.5700 121.5700 121.5700 121.57719 121.5700 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5653 121.5654 121.5653 121.5653 121.5653 121.5653 121.5653 121.5654 121.5467 121.5469 121.5469 121.5469 121.5467	$\begin{array}{c} & \cdot & \cdot \\ & -7.6 \\ & -9.8 \\ & -10.2 \\ & -17.9 \\ & -16.6 \\ & -24.9 \\ & -33.6 \\ & -34.9 \\ & -35.0 \\ & -30.7 \\ & -31.3 \\ & -33.6 \\ & -31.7 \\ & -29.5 \\ & -31.5 \\ & -32.6 \\ & -31.7 \\ & -29.5 \\ & -31.5 \\ & -32.6 \\ & -31.7 \\ & -32.3 \\ & -31.9 \\ & -31.5 \\ & -32.6 \\ & -31.7 \\ & -29.5 \\ & -31.5 \\ & -32.6 \\ & -31.7 \\ & -32.8 \\ & -31.9 \\ & -31.9 \\ & -32.0 \\ & -31.9 \\ & -31.5 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.6 \\ & -31.7 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.3 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -32.7 \\ & -31.6 \\ & -7.9 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -6.3 \\ & -7.1 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ & -7.6 \\ $	$\begin{array}{c} 4.0 \\ 5.1 \\ 4.9 \\ 4.6 \\ 4.3 \\ 4.6 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\$	GU4097 GU2161 GU2162 GU2263 GU2229 GU2231 GU2233 GU2233 GU2235 GU2237 GU2239 GU2240 GU2242 GU2246 GU2246 GU2246 GU2246 GU2246 GU2265 GU2265 GU2266 GU2266 GU2267 GU2277 GU2279 GU2278 GU2278 GU2277 GU2279 GU2278 GU2276 GU2278 GU2277 GU2279 GU2278 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU2278 GU2277 GU2279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU277 GU279 GU278 GU279 GU278 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU290 GU1954 GU1954 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU1955 GU195	$\begin{array}{c} 0.000\\ 2.766\\ 4.252\\ 5.070\\ 6.117\\ 8.532\\ 10.120\\ 11.305\\ 12.923\\ 14.374\\ 14.966\\ 15.546\\ 15.546\\ 15.546\\ 15.546\\ 15.546\\ 17.132\\ 17.952\\ 19.356\\ 29.151\\ 29.794\\ 31.156\\ 32.092\\ 27.316\\ 29.151\\ 29.794\\ 31.156\\ 32.092\\ 32.100\\ 33.700\\ 34.877\\ 37.958\\ 37.317\\ 37.457\\ 37.958\\ 38.207\\ 39.528\\ 41.374\\ 42.225\\ 42.277\\ 43.234\\ 44.452\\ 46.234\\ 47.466\\ 47.786\\ 48.822\\ 50.331\\ 52.171\\ 53.149\\ 53.944\\ 45.5451\\ 58.303\\ 60.897\\ 61.947\\ 62.447\\ 63.587\\ 61.947\\ 62.447\\ 63.587\\ 61.947\\ 62.447\\ 63.587\\ 71.391\\ 72.456\\ 73.464\\ 75.468\\ 75.463\\ 70.723\\ 71.391\\ 72.456\\ 73.464\\ 75.468\\ 75.463\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.305\\ 78.3$	36.8922 36.9014 36.9067 36.9092 36.8917 36.8922 36.8917 36.8922 36.8944 36.8975 36.9003 36.9003 36.9003 36.9003 36.9033 36.9033 36.9033 36.9103 36.9103 36.9156 36.9225 36.9250 36.9250 36.9317 36.9361 36.9483 36.9572 36.9566 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.9758 36.96692 36.96656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9656 36.9657 36.9681 36.9871 36.9881 36.9981 36.9981 36.9981 36.9981 36.9981 37.0011 37.00157 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00431 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441 37.00441337.0044137	121.5742 121.5975 121.6128 121.6203 121.6308 121.6425 121.6600 121.7056 121.717 121.7181 121.7275 121.7344 121.7536 121.7564 121.7564 121.7564 121.7564 121.7564 121.7564 121.8194 121.8375 121.8439 121.8639 121.8639 121.8639 121.8639 121.8733 121.8914 121.9914 121.9914 121.9914 121.9914 121.9944 121.9944 121.9431 121.9431 121.9431 121.9431 121.9431 121.9431 121.9432 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 121.9636 122.0728 122.0014 122.0178 122.0014 122.0178 122.0014 122.0511 122.0550 122.1617 122.1764 122.1764 122.1764 122.1550 122.1617 122.1764 122.2000 122.1031 122.1942 122.1041 122.0511 122.0511 122.0511 122.0550 122.1617 122.1764 122.2188 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.2244 122.22428 122.2453 122.2453 122.2453 122.2453 122.2453 122.2453 122.2455	$\begin{array}{c} -21.4\\ -31.6\\ -37.5\\ -51.3\\ -50.3\\ -78.2\\ -88.8\\ -104.5\\ -103.7\\ -104.8\\ -90.2\\ -94.9\\ -88.0\\ -82.5\\ -83.1\\ -70.7\\ -68.0\\ -44.6\\ -7.8\\ -5.8\\ 15.7\\ 20.2\\ 32.1\\ 16.5\\ 24.3\\ 53.9\\ 108.9\\ 137.8\\ 166.7\\ 165.0\\ 24.3\\ 53.9\\ 108.9\\ 137.8\\ 166.7\\ 165.0\\ 170.4\\ 159.0\\ 151.6\\ 150.6\\ 132.0\\ 118.2\\ 112.0\\ 86.8\\ 80.8\\ 73.9\\ 65.0\\ 35.4\\ 37.3\\ 45.9\\ 25.8\\ 10.4\\ 158.\\ 10.5\\ 10.2\\ 6.9\\5\\ 3.0\\ 5.3\\ 6.1\\ -3.7\\ -4.1\\ -1.6\\ -5.9\\ -2.8\\ -1.9\\ -2.7\\ -2.8\\ -1.9\\ -1.5\\ -2.7\\ -2.8\\ -1.9\\ -1.5\\ -5.4\\ -5.4\\ -5.4\\ -5.4\\ -5.4\\ -5.5\\ -5.4\\ -5.4\\ -5.4\\ -5.5\\ -5.4\\ -5.4\\ -5.5\\ -5.4\\ -5.5\\ -5.4\\ -5.4\\ -5.5\\ -5.4\\ -5.5\\ -5.4\\ -5.5\\ -5.4\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5\\ -5.5$	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$

Table 3.—Coseismic elevation changes along leveling routes—Continued Table 4.—Signal-to-noise ratios along leveling routes

ACRN	Survey distance (km)	Latitude °N.	Longitude °W.	Coseismic elevation change (mm)	Relative uncertainty, δ_i (mm)					
Leveling route 3										
HS3165 HS3174 HS3154 HS3154 HS3154 HS3145 HS3140 HS3145 HS3141 HS3131 HS31271 HS31271 HS31271 HS3127 HS3125 HS3122 HS3120 HS3124 HS3117 HS3109 HS3108 HS2891	$\begin{array}{c} 0.000\\ 2.091\\ 1.793\\ 4.014\\ 5.706\\ 6.958\\ 10.143\\ 10.232\\ 12.161\\ 12.845\\ 14.161\\ 14.676\\ 15.162\\ 15.868\\ 16.486\\ 17.504\\ 18.045\\ 19.473\\ 20.888\\ 21.617\\ 22.509\\ 22.814\\ 23.822\\ \end{array}$	$\begin{array}{c} 37.1706\\ 37.1678\\ 37.1873\\ 37.2008\\ 37.2147\\ 37.2242\\ 37.2469\\ 37.2636\\ 37.2636\\ 37.2669\\ 37.2639\\ 37.2819\\ 37.2856\\ 37.2809\\ 37.2908\\ 37.2908\\ 37.3978\\ 37.3019\\ 37.3108\\ 37.3194\\ 37.3194\\ 37.3347\\ 37.3414\\ \end{array}$	$\begin{array}{c} 121.9889\\ 121.9786\\ 121.9908\\ 121.9900\\ 121.9869\\ 121.9869\\ 121.9869\\ 121.9653\\ 121.9653\\ 121.9653\\ 121.9561\\ 121.9408\\ 121.9408\\ 121.9444\\ 121.9436\\ 121.9338\\ 121.9308\\ 121.9267\\ 121.9164\\ 121.9072\\ 121.9017\\ 121.9025\\ 121.9036\\ 121.9111\\ \end{array}$	$\begin{array}{c} 37.1\\ 71.6\\ -1.9\\ -17.9\\ -56.1\\ -108.0\\ -144.9\\ -136.5\\ -59.7\\ -95.5\\ -126.4\\ -81.9\\ -57.0\\ -66.0\\ -75.8\\ -76.9\\ -95.3\\ -111.3\\ 9.9\\ 20.8\\ -6.4\\ .2\\ 8.7\end{array}$	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.1\\ 4.1\\ 4.1\\ 4.2\\ 4.1\\ 4.4\\ 4.5\\ 7.1\\ 7.4\\ 9.4\\ 14.6\\ 17.4\\ 25.0\\ 32.5\\ 33.3\\ 39.9\\ 41.5\\ 40.7\end{array}$					
		Leve	ling route 4							
GU2287 GU4169 HS5196 HS5202 HS5203 HS5229 HS5231 HS5231 HS5233 HS5235 HS5238 HS5239 HS5239 HS5239	$\begin{array}{c} 0.000\\ 1.933\\ 7.398\\ 15.016\\ 15.934\\ 18.230\\ 34.410\\ 39.352\\ 40.445\\ 43.345\\ 44.533\\ 46.850\\ 48.527\\ 54.309 \end{array}$	36.9753 36.9906 37.0358 37.0947 37.1022 37.1144 37.1025 37.1236 37.1236 37.1322 37.1483 37.1519 37.1603 37.1722 37.2061	121.9494 121.9567 121.9431 121.9492 121.9464 121.9389 121.8056 121.7942 121.7917 121.7708 121.7597 121.7489 121.7583 121.7281	$118.2 \\ 150.3 \\ 342.3 \\ 570.4 \\ 620.4 \\ 395.2 \\ -86.3 \\ -65.2 \\ -69.9 \\ -56.3 \\ -83.2 \\ -47.3 \\ -41.0 \\ -28.6$	$\begin{array}{c} 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \end{array}$					
		Leve	ling route 5							
HS5281 HS5283 HS5285 GU4175 GU4177 GU4185 GU2278	0.000 2.786 7.981 15.066 16.759 25.263 48.142	37.0681 37.0453 37.0108 36.9972 36.9861 36.9353 36.9758	121.6589 121.6519 121.6619 121.7167 121.7169 121.7422 121.8975	-62.2 -48.2 -35.8 -5.4 39.3 -60.3 165.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0					
		Leve	eling route 6							
HS5283 HS5247 HS5252 HS5256 HS5262 HS5205	0.000 7.309 11.399 14.701 18.295 39.535	37.0453 37.0344 37.0133 37.0325 37.0508 37.1144	121.6519 121.7072 121.7172 121.7428 121.7619 121.9389	-48.2 -82.0 -58.9 -40.6 -16.8 395.2	7.0 7.0 7.0 7.0 7.0 7.0					
		Leve	eling route 7							
HT1568 HT3637 HT3636 HT3633 HT3631 HT3595 HT3600 HT3603 HT3607 HT3612	0.000 9.170 9.189 12.315 14.278 17.254 22.709 25.685 28.969 31.738	37.0153 37.0444 37.0672 37.1083 37.1286 37.1500 37.1739 37.1914 37.2069	122.2000 122.1494 122.1489 122.1400 122.1412 122.1217 122.1636 122.1694 122.1908 122.2053	$\begin{array}{c} -3.7\\ 47.8\\ 49.4\\ 66.1\\ 52.3\\ 150.1\\ 83.7\\ 80.1\\ 34.7\\ 30.0 \end{array}$	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0					

Leveling route (inset, fig.1)	Number of sections	Signal-to-noise ratio
1	86	2.1
2	71	2.8
3	22	5.5
4	13	6.5
5	6	2.9
6	5	4.1
7	9	2.4
1-7	212	3.3

fit to the observations but can provide an equally good fit with 13 percent less moment. Each model fault is about 34 km long, stretching over just half the length of the aftershock zone of October 1989. The fault strikes 127°-129°, similar to the aftershock zone (Dietz and Ellsworth, 1990), and approximately parallels the Santa Cruz Mountains section of the San Andreas fault. The depth of burial of the upper edge of each fault surface is 4 to 5 km; deeper faults are preferred when modeling with correlated data. The planar model fault dips 60°, approximately the average dip of each of the nonplanar model faults; with correlated data, the faults dip slightly steeper. With independent data, the model faults lie above and to the west of the main-shock hypocenter and aftershocks, whereas with correlated data they lie at the west edge of the aftershock zone but still do not intersect the hypocenter. The closest distance between any typical good-fitting model fault and the main-shock hypocenter is 6 km. Contours of observed, predicted, and residual (observed minus predicted) elevation changes are mapped in figure 4 for the best-fitting planar one-rake model fault with independent data. Profiles of the elevation changes for the one- and two-rake model faults are plotted along with the observations in figures 8A and 8B, respectively. In five places, notable misfits are visible in the one-rake model: (1) at the Sargent fault crossing on leveling route 1 (inset, fig. 1), (2) near the San Andreas fault crossing on leveling route 2, (3) in the center of leveling route 3, (4) near the Sargent fault on leveling route 6, and (5) near the Sargent fault on leveling route 4. These misfits may occur where nontectonic or secondary deformation has disturbed the bench marks. If, for example, we remove a small fraction (13 percent) of the bench marks in the network at sites where notable misfits to our best model fault occur, then the M/N ratio is reduced to 1.13 for the one-rake planar model fault. The two-rake model fault, however, explains the misfits on leveling routes 2 and 6.

To examine the variation in our best parameter values and the inversion results with independent data, we select an acceptable range of M/N ratios above the minimums

for the one-rake planar, listric, and negatively listric model faults. The acceptable ranges in the fixed parameters and the corresponding inversion results for each model fault at an M/N ratio of the best value plus 5 percent are listed in table 7. Depth of burial is well constrained between 4and 6-km depth. Strike is constrained to a 5° range that at its upper bound includes the strike of the observed aftershock locations. For planar model faults, acceptable dips vary only slightly, whereas for nonplanar model faults, the dip of the upper edge of the rupture surface is not well constrained. Our results do not indicate a preference between planar and nonplanar model faults within the range of curvatures tested. The inversion results indicate a consistent determination of the moment release, whereas slip amplitude varies by a factor of as much as 2. Because the geodetic moment is proportional to the product of the fault area and the slip amplitude ($M_0 = \mu As$, where μ is the elastic rigidity, A is the fault area, and s is the average slip amplitude), models with similar moment release and fault length exhibit a tradeoff between slip amplitude and fault width. The distance between the fault surface and

the hypocenter is consistently greater than 4 km. The bestfitting faults do not pass through the main-shock hypocenter. The best-fitting model fault that passes within 1 km of the main shock is listric and has an M/N ratio of 2.54, whereas the best-fitting one-rake model fault has an M/N ratio of 1.61. Results of the section-elevation-change models, though within 5 percent of the M/N ratio for models with independent data, are omitted from table 5 and indicate somewhat different parameter values. We note that model discrimination is weaker, and the acceptable range of parameters values is larger, with correlated data.

Use of a two-rake model fault significantly improves the fit by reducing the M/N ratio from 1.61 to 1.33 with independent data. Although we have added two new degrees of freedom to the model, the improvement in fit is significant above the 99-percent-confidence level. We follow the method of Barrientos and others (1987, 1989) to analyze the significance of this improvement in fit. The geometry of the two-rake model fault changes only slightly from that of the one-rake model fault: The dip is slightly greater at 62° , the depth of burial is 4.5 km, and the

Figure 4.—Schematic map of Loma Prieta region, Calif., showing contours of observed (A), predicted (B), and residual (C) (observed minus predicted) coseismic elevation change. Predicted and residual elevation changes for one-rake planar model fault are listed in table 4. Star, epicenter of Loma Prieta earthquake of October 17, 1989 ($M_s=7.1$); triangle, Loma Prieta; dots, bench marks. Map in figure 4C was constructed by contouring residual elevation changes, not by subtracting predicted from observed contours. Residual and observed contours are valid only where they are adjacent to bench marks. Contour intervals: 50 mm (figs. 4A, 4B), 20 mm (fig. 4C; shaded where positive).

Figure 4.—Continued

Figure 4.—Continued

ELEVATION CHANGES ASSOCIATED WITH THE EARTHQUAKE AND THEIR USE TO INFER FAULT-SLIP GEOMETRY A115

length is 37 km. The segment lengths are equal (18.5 km each) and have rakes of 116° in the northwest and 163° in the southeast, similar to the average rake values determined from modeling of strong-motion data (115° NW., 156° SE.; Steidl and others, 1991). The two-rake model fault is illustrated in figure 9. With correlated data, the best two-rake model fits the data no better than the onerake model. We prefer the two-rake model because it produces the same data misfit with a lower moment-it is a more efficient source. Furthermore, the greater width of the two-rake model fault is more consistent with the spatial extent of the aftershock zone. In comparison with the two-rake model with independent data, the variation in rake is subtle (13°) for the section-elevation-change model. A still more efficient source is obtained if we use the tworake model with independent data to model the sectionelevation changes; then, the M/N ratio is 1.64, and the seismic moment is 1.8×10¹⁹ N-m.

SENSITIVITY OF RESULTS TO DATA DISTRIBUTION

Because peak-elevation changes are measured on few bench marks and are derived from third-order preearthquake levelings (route 4, inset, fig. 1), we examine how these data influence the goodness of fit of onerake models with independent data. When we remove leveling route 4, our best-fitting planar-fault geometry

Figure 5.—Marine-terrace deformation. A, Profiles of coseismic (circles) and long-term (shaded curve) coastal deformation; long-term deformation is derived from 125-ka marine terrace. Profile is projected along lat N. 115° E. from Point Año Nuevo. Note that leveling route does not everywhere coincide with inner edge of terrace (see fig. 1) B, Terrace elevation as a function of perpendicular distance from the San Andreas fault. Dashed line shows linear fit to data, excluding first seven data points.

Figure 6.—Coseismic section-elevation changes, showing tilt by section (upper plot) and histogram of tilt populations (lower plot). *A*, Entire data set. Tilt population: standard deviation, 8 microradians; mean, -1 microradian. *B*, Data set with four bench marks with spikes greater than 40 microradians and eight sections with steps greater than 70 microradians omitted. Tilt population: standard deviation, 7 microradians; mean, -2 microradians. Tilt limits: spikes, 40 microradians; steps, 70 microradians. Note that tilt limits are 5 and 9 times the original standard deviation, respectively, and that only 5 percent of data are omitted.

(table 6) gives the same M/N ratio as with all the data, indicating that the best-model selection is insensitive to these data.

If all third-order leveling and data with large subsidence corrections are removed (leveling routes 3–7, inset, fig. 1), the precise first-order surveys (leveling routes 1, 2) that circumscribe the aftershock zone remain. Using only these observations increases the acceptable range of fault parameters. The best-fitting planar one-rake model obtained using all the data (table 6), however, remains among the best-fitting models. Marginally better fits can be obtained by changing the fault geometry as follows: length, <34 km; width, <9 km; strike, <128°; dip, >50°, and rake, >145°; however, these faults are displaced still farther to the southwest of the aftershock zone. Faults

Figure 7.—Profiles of model faults: (A) planar, (B) listric, and (C) negatively listric. In figure 7A, maximum and minimum dips are shown; in figures 7B and 7C, maximum and minimum curvatures are shown. Dip of upper edge of fault is 85° in figure 7B and 45° in figure 7C. Downdip fault widths are arbitrary. Star, location of hypocenter relative to strikeline.

with a width >10 km, a strike >130°, a dip $<50^{\circ}$, a rake $<140^{\circ}$, and a depth <5 km are precluded when only leveling routes 1 and 2 are used. Thus, the less precise data from the interior of the network do not dictate the modeling results, although including them limits the range of acceptable models.

If the model fault is restricted to lie within the aftershock zone, a substantial misfit results. Translating the best-fitting fault perpendicular to strike 2 km to the northeast, and increasing the dip to 65° and the downdip width to 13 km, so that the fault approximately coincides with the aftershock zone and the main-shock hypocenter, the minimum M/N ratio we obtain is 3.01, representing an 86percent increase in the average misfit relative to our bestfitting fault. Increasing the fault dip from 60° through 65°-70° produces large misfits adjacent to the east side of the San Andreas fault, resulting from excessively large subsidence (leveling routes 3-6, inset, fig. 1). Increasing the downdip width of the fault produces too much deformation in the far field at any of the three dips tested, too much uplift along the coast (leveling route 2), and too much subsidence inland (leveling route 1); in addition, the peak uplift along leveling route 4 cannot be modeled with a wider fault.

The section-elevation-change models place nearly all weight on the leveling routes at the periphery of the network, owing to the high bench-mark density; the interior leveling routes receive less weight because the section lengths are longer than those of the exterior leveling routes (see eq. 3). For section-elevation changes, the exterior data have 50 times the weight of the interior data, whereas with independent elevation changes, the exterior data have 17 times the weight of the interior data. The fact that wider variation in parameter values is acceptable for the section-elevation-change models stems from the absence of constraints furnished by the large signal of the interior data, consistent with results of the data-sensitivity tests.

NONHOMOGENEOUS ELASTIC MODELS

Next, we examine the systematic bias inherent in the use of an elastic half-space in place of more realistic Earth structure. Eberhart-Phillips and others (1990) demonstrated a marked velocity gradient with depth in the southern Santa Cruz Mountains: Seismic *P*-wave velocities range from 3.2 to 5.6 km/s in the uppermost 3 to 5 km, increasing to 6.5 to 6.8 km/s below 10- to 15-km depth. Reches and Zoback (1990) argued that strain is concentrated in the low-modulus (low velocity) layer. To test whether the modulus contrast caused by the velocity and associated rock-density gradient influences the deduced fault geometry and slip, we carry out a suite of simple boundary-element tests.

Table 5.—Ranges of parameters of one-rake model faults

[Dip on nonplanar faults is for upper edge of fault surface. Latitude and longitude are for vertical projection onto the Earth's surface of northwest corner of upper edge of fault surface. Strike is measured clockwise from north. Rake is measured on fault surface counterclockwise from strike azimuth. Downdip fault shape is described by the relation $x=b_1z+b_2z^2$, where x is the horizontal distance perpendicular to strike in the direction of dip and z is the depth]

Parameter	Planar fault	Listric fault	Negatively listric fault
Length (km) Width (km) Dip (°) Latitude (°N.) Longitude (°W.) Depth (km) Strike (°) Rake (°) b ₂ (km ⁻¹)	$\begin{array}{c} 20 \rightarrow 40 \\ 3 \rightarrow 24 \\ 45 \rightarrow 86 \\ 37.127 \rightarrow 37.265 \\ 122.099 \rightarrow 121.939 \\ 0 \rightarrow 9 \\ 120 \rightarrow 140 \\ 120 \rightarrow 160 \\ 0 \end{array}$	$\begin{array}{c} 30 \rightarrow 35 \\ 7 \rightarrow 16 \\ 66 \rightarrow 85 \\ 37.149 \rightarrow 37.184 \\ 122.027 \rightarrow 121.983 \\ 1 \rightarrow 6 \\ 125 \rightarrow 130 \\ 140 \rightarrow 150 \\ .02 \rightarrow 0.06 \end{array}$	$\begin{array}{c} 30 \rightarrow 35 \\ 6 \rightarrow 12 \\ 45 \rightarrow 59 \\ 37.147 \rightarrow 37.177 \\ 122.031 \rightarrow 121.990 \\ 3 \rightarrow 5 \\ 126 \rightarrow 130 \\ 140 \rightarrow 150 \\05 \rightarrow -0.02 \end{array}$
Number of models computed.	64,000	32,000	32,000

Table 6.—Best-fitting uniform-elastic-half-space models

[Length is measured along strike. Width is measured downdip. Latitude and longitude are for vertical projection onto the Earth's surface of northwest corner of upper edge of fault surface. Depth is to upper edge of fault surface. Strike is measured clockwise from north. Rake is measured on fault surface counterclockwise from strike azimuth. Downdip fault shape is described by the relation $x=b_1z+b_2z^2$, where x is the horizontal distance perpendicular to strike in the direction of dip and z is the depth. Distance to hypocenter is closest approach between fault surface and hypocentral location of Dietz and Ellsworth (1990). Geodetic moment is based on shear modulus $\mu=3.23\times10^{10}$ Pa]

								Inversio	on results					
Fault style	Length (km)	Width (km)	Dip, upper edge (°)	Dip, lower edge (°)	Latitude (°N.)	Longitude (°W.)	Depth (km)	Strike (°)	Rake (°)	<i>b</i> ₂ (km ⁻¹)	Distance to hypocenter (km)	Slip (m)	Geodetic moment (10 ¹⁹ N-m)	<i>M/N</i> ratio
							Indepen	dent data						
Planar Listric Negatively listric. Two-rake planar.	- 34 - 34 34 ¹ 37	9 11 6 9	60 75 51 62	60 45 72 62	37.161 37.159 37.159 37.164	122.013 122.014 122.021 122.014	4 4 5 4.5	128 127 127 128	145 143 142 2116/163	0.000 .040 045 .000	6 5 8 6	2.9±0.1 2.4±0.1 4.3±0.1 2.1±0.1	2.9±0.1 2.9±0.1 2.8±0.1 2.2±0.1	1.62 1.67 1.61 1.33
							Correla	ted data						
Planar Two-rake planar.	- 31 32	4 7	66 64	66 64	37.136 37.140	121.971 121.972	7 6	129 129	155 ² 144/157	0.000 .000	7 6	7.4±0.4 3.6±0.2	3.0±0.2 2.6±0.2	1.57 1.57

¹Two-rake fault is segmented halfway along strike; each segment is 18.5 km long.

²First rake value applies to northwest segment, and second to southeast segment.

LAYERED MODEL

We conducted three experiments to assess the effects of the modulus contrast at Loma Prieta. In the first experiment, we considered a dip-slip fault of infinite length along strike embedded in a layer over a half-space, using the boundary-element program of King and Ellis (1990). Shear and normal stresses were prescribed to be continuous across the layer interface. Taking a 5-km-thick layer velocity of 4 km/s and a density of 2,700 kg/m³, with an underlying-half-space velocity of 6.7 km/s and a density of 3,000 kg/m³, yields a contrast in Young's modulus, *E*, between the half-space and the layer of 3 $(3.6 \times 10^{10} \text{ Pa}$ above and $11.2 \times 10^{10} \text{ Pa}$ below). Poisson's ratio is 0.25 in both the layer and the underlying half-space. In our test, we used a contrast in Young's modulus of 5 to examine the maximum possible effects of the weak layer. Uniform slip was imposed on a 65° -dipping fault extending from 6- to 18-km depth. The vertical deformation calculated for this model was then inverted, assuming a uniform half-space.

WEDGE MODEL

In the second experiment, we replaced the low-modulus layer with a wedge extending from the San Andreas fault 10 km to the west and extending vertically from the surface to a depth of 7 km, (see Eberhart-Phillips and Stuart, 1992). The wedge exaggerates the observed acrossfault modulus contrast, particularly near the surface, and thus furnishes an upper-bound case to assess how nonhomogeneous Earth models affect the fault parameters. Both the layer and wedge models are approximations to features observed in Eberhart-Phillips and others' (1990) seismic-velocity model. Young's modulus in the wedge is 3.5×10^{10} Pa, and in the surrounding medium 8.8×10^{10} Pa, for a contrast of 2.5. Note that the fault contacts the wedge at a depth of 5 to 7 km (fig. 10*E*). Poisson's ratio within the wedge is 0.333, and in the surrounding medium 0.258.

In the third experiment, we retained the wedge geometry but imposed a uniform shear-stress drop on the fault, rather than uniform fault slip. This condition, also used by Eberhart-Phillips and Stuart (1992), results in tapered slip. For an elastic half-space, the condition produces maximum slip at the center of the fault; in the wedge model,

Figure 8.—Profiles of best one-rake (A) and two-rake (B) planar model faults and observed coseismic elevation changes along leveling routes 1 through 7 (see inset, fig. 1). Vertical bars indicate relative uncertainty of determinations; note that relative uncertainties are large where substantial subsidence corrections have been made (for example, profile 3). Arrows indicate locations where notable misfits occur; note that misfits are substantially reduced for two-rake model fault (fig. 8*B*).

slip is concentrated near the top of the fault because the wedge is more compliant than its surroundings.

MODIFICATIONS TO HALF-SPACE MODELS

Models with a nonhomogeneous elastic structure reduce the misfit of the geodetic fault plane to the aftershock zone and main-shock hypocenter. In the layered model, the location of the upper edge of the fault, its dip, and the slip amplitude are nearly unaffected by the lowmodulus layer. The upper edge of the fault, however, locates 1 km too shallow, and the lower depth is as much as 2.3 km too shallow. Thus, if a contrast in Young's modulus of as much as 5 is appropriate for Loma Prieta, then faults would extend 2 to 3 km deeper and be slightly steeper than those deduced by half-space models. Inclusion of the low-modulus layer therefore moves faults several kilometers closer to the main-shock hypocenter than do half-space models (compare figs. 10B, 10D).

Similarly, imposing uniform slip on the fault in the wedge model results in the fault locating 1 km to the east of its former position, and the fault width increases by several kilometers. With the uniform-shear-stress wedge model, the fault again is found to locate 1 km farther east than for a half-space; in addition, the fault width is found to increase by 4 to 5 km, the slip is reduced by 25 to 30 percent, and the dip may increase slightly (<5°). The effect of these changes is shown in figure 10E. The fault lies closer to the aftershock zone and main-shock hypocenter, although the locations of the fault and aftershocks do not coincide. The improvements in fit to the aftershock zone gained by considering a nonhomogeneous structure are illustrated in figure 11, which also shows the dependence of the fit on hypocentral distance for elastic-halfspace planar model faults.

Figure 8.—Continued

Table 7.—Ranges of parameters for uniform-elastic-half-space models

[Dip on nonplanar faults is for upper edge of fault surface. Latitude and longitude are for vertical projection onto the Earth's surface of northwest corner of upper edge of fault surface. Strike is measured clockwise from north. Rake is measured on fault surface counterclockwise from strike azimuth. Downdip fault shape is described by the relation $x=b_1z+b_2z^2$, where x is the horizontal distance perpendicular to strike in the direction of dip and z is the depth. Geodetic moment is based on shear modulus $\mu=3.23\times10^{10}$ Pa]

Fixed parameter	Planar fault	Listric fault	Negatively listric fault
Length (km) Width (km) Dip (°) Latitude (°N.) Dopth (km) Strike (°) Rake (°) b_2 (km ⁻¹) Number of models	$\begin{array}{c} 32 \rightarrow 35 \\ 9 \rightarrow 11 \\ 57 \rightarrow 60 \\ 37.153 \rightarrow 37.167 \\ 122.023 \rightarrow 122.003 \\ 4 \rightarrow 5 \\ 126 \rightarrow 129 \\ 139 \rightarrow 147 \\ 0 \\ 641 \end{array}$	$\begin{array}{c} 30 \rightarrow 35 \\ 7 \rightarrow 12 \\ 66 \rightarrow 85 \\ 37.147 \rightarrow 37.172 \\ 122.031 \rightarrow 121.997 \\ 4 \rightarrow 6 \\ 125 \rightarrow 130 \\ 140 \rightarrow 150 \\ .020 \rightarrow 0.060 \\ 200 \end{array}$	$31 \rightarrow 35 \\ 6 \rightarrow 10 \\ 48 \rightarrow 55 \\ 37.148 \rightarrow 37.169 \\ 122.027 \rightarrow 121.998 \\ 4 \rightarrow 5 \\ 126 \rightarrow 129 \\ 140 \rightarrow 150 \\045 \rightarrow -0.020 \\ 90$
	Inversio	on results	
Distance to hypocenter (km). Slip (m) Geodetic moment (10 ¹⁹ N-m). <i>M/N</i> ratio	$5 \rightarrow 7$ 2.3 \rightarrow 3.0 2.6 \rightarrow 3.0 1.62 \rightarrow 1.70	$4 \rightarrow 7$ 2.1 \rightarrow 4.2 2.6 \rightarrow 3.4 1.67 \rightarrow 1.75	$6 \rightarrow 8$ $2.5 \rightarrow 4.6$ $2.6 \rightarrow 3.1$ $1.61 \rightarrow 1.69$
	1.02→1.70	1.07→1.75	1.01→1.09

Although all non-half-space models move the fault closer to the aftershock zone, none moves it far enough, and so we have made the modulus contrast as large as permitted by the velocity data of Eberhart-Phillips and others (1990). We note that the uniform-shear-stress-drop model produces about the same geodetic moment as the uniform-slip model because the increased fault width is compensated by the decreased slip. The top of the fault surface undergoes increased slip in the presence of the more compliant wedge under the uniform-shear-stress-drop assumption, a plausible result for an individual earthquake. Over many earthquake cycles, however, uniform slip from

Figure 9.—Alongstrike cross section of two-rake model fault from southwest side. Arrowheads indicate slip direction of hanging-wall block. Stars, main shock and largest aftershock. Fault motion is primarily dip slip to northwest of hypocenter and primarily strike slip to southeast of hypocenter.

the Earth's surface to the base of the seismogenic layer must prevail, and so it is unclear which assumption best represents the Loma Prieta rupture.

DISCUSSION

COMPARISON OF GEODETIC RESULTS WITH STUDIES OF SEISMICITY AND GEOLOGY

The seismic-source mechanism and waveforms of the 1989 Loma Prieta earthquake appear to have simple characteristics, in comparison with those of other earthquakes of similar magnitude, such as the 1988 M=6.7 Armenia earthquake (Kanamori and Satake, 1990). Nevertheless, seismologic studies of the Loma Prieta mechanism suggest a range of source parameters, some of which are compatible with our geodetic results. The source mecha-

nisms found in 10 such studies are compared with the results of our elastic-half-space modeling with independent data in table 8. Four of these studies provide estimates of the strike, dip, and rake that fall within our acceptable model range: the first-motion mechanisms of Plafker and Galloway (1989) and Oppenheimer (1990), and the body-wave inversions of Choy and Boatwright (1990) and Langston and others (1990). Of the 10 studies, 5 report a fault dip and seismic moment consistent with our acceptable model range, and most of the studies agree with our values of strike and rake. The seismologic determination of the source dip, however, is least consistent with our results. The 10 studies report dips ranging from 53° to 85°, and several studies have solutions with dips \geq 70°, a value that produces significant misfits to the leveling observations. Seismic values of the fault rake, which range from 110° to 155°, also exceed our acceptable model range. Seismic moments derived from surface-wave analy-

Figure 10.—Schematic map (A) and cross sections (B-F) of Loma Prieta region, Calif., showing locations of aftershocks of $M \ge 3$ (Dietz and Ellsworth, 1990) and vertical projection of best-fitting planar model fault (shaded rectangle). Dotted line, updip projection. Quaternary faults (dashed where inferred) from Jennings (1975). Cross sections C-C' (figs. 10B-10E) show updip projection of fault surface (dotted line) and locations of the San Andreas (SA) and Sargent (S) faults. *B*, Results for elastic-half-space two-rake model fault with independent data. *C*, Results for elastic-half-space two-rake model fault with correlated data: *D*, Corrections for low-modulus layer (shaded area) over half-space. E_1 , E_2 , Young's modulus. *E*, Corrections for low-modulus wedge (shaded area) in half-space. E_1 , E_2 , Young's modulus. *F*, Alongstrike projection of fault surface. Bold rectangle, elastic half-space; dotted rectangle, layer over half-space; long-dashed rectangle, wedge in half-space; short-short-long-dashed rectangle, model fault with correlated data.

ses (Romanowicz and Lyon-Caen, 1990; Zhang and Lay, 1990) and from the body-wave solutions of Barker and Salzberg (1990), Nábělek (1990), and Kanamori and Satake (1990), however, agree with the calculated geodetic moment. Seismic moments derived from data at different frequencies and from different studies vary by a factor of as much as 2.

The consistency between the seismic and geodetic results can be addressed further by examining the spatial

Figure 10.—Continued

relation between the geodetically determined fault surface and the main shock and its aftershocks. Dietz and Ellsworth (1990) found that the aftershock distribution is approximately planar, extending upward from the main-shock hypocenter along a 65°-dipping zone that is 4 to 5 km wide perpendicular to strike. Along strike, Loma Prieta aftershocks tend to cluster around the periphery of a central zone that is depleted of aftershocks. The observed vertical-deformation field is best modeled by a rupture surface approximately parallel to and southwest of the aftershock zone, with a homogeneous elastic Earth structure and independent data. Correlated data reduce this discrepancy and place the fault closer to the aftershock zone. Models that lie within the aftershock zone increase the misfit to the correlated observations by 3 percent. Our models of nonhomogeneous elastic structure also suggest a significant reduction of the misfit of the geodetic fault plane to the aftershock zone and main-shock hypocenter. Our best-fitting planar model faults are mapped in figure 10, with aftershocks of $M \ge 3$ from Dietz and Ellsworth (1990). In map view, the epicenter nearly bisects the fault plane along strike, consistent with bilateral rupture as modeled by Beroza (1991), Steidl and others (1991), and Wald and others (1991). The updip projection of the model fault surface at its northwest terminus coincides with the trace of the San Andreas fault; at its southeast end, the updip projection is equidistant between the Sargent and San Andreas faults. Most aftershock activity is clustered approximately 4 to 5 km northeast and below our elastichalf-space model fault (fig. 10B). Including correlations in the leveling data or nonhomogeneous elastic structure improves the fit to the aftershocks, as shown in figures 10C through 10F. Our acceptable range of latitudes and longitudes allows the elastic model fault to move less than 2 km perpendicular to strike, and the results of our nonhomogeneous tests indicate that the half-space solutions may shift the fault plane 1 km perpendicular to strike.

Figure 10.-Continued

Thus, if our two-dimensional nonhomogeneous models are appropriate for the Loma Prieta region, then the combined results indicate that the discrepancy between the position of the geodetic fault plane and the aftershock zone is small (\sim 1 km). In modeling with correlated data, this discrepancy becomes insignificant.

Studies of teleseismic body waves place centroidal depths between 8 and 16 km, shallower than the mainshock hypocenter, which is presumably the depth of rupture initiation (table 8). These teleseismic studies generally only weakly constrain the spatial extent of significant slip on the fault plane. Modeling of local strong-motion seismic data provides better resolution, and these studies suggest that moment release is concentrated in two zones lying between about 9- and 16-km depth (Beroza, 1991; Steidl and others, 1991; Wald and others, 1991). The location of the rupture surface, as constrained by vertical geodetic data and corrections for nonhomogeneous elastic structures, suggests that significant moment release occurred from 6- to 18-km depth, moderately consistent with these interpretations of the strong-motion data.

Focal mechanisms of aftershocks are diverse over short spatial scales. Oppenheimer (1990) presented focal mechanisms for a representative sample of aftershocks; the variations in and distinctness of the aftershock mechanisms, in comparison with the main-shock mechanism, could mean that the aftershocks occurred on structures adjacent to the main-shock rupture surface. The misfit of our model faults to the aftershock zone, however, could also be due to unmodeled three-dimensional variations in elastic modulus or to greater variations in fault geometry or slip distribution. Inaccurate velocity models used to locate the aftershocks might also explain part of this misfit.

The oblique slip inferred from geodetic observations is consistent with the abundance of young (Pliocene-Quaternary) fold structures and reverse faults identified throughout the Santa Cruz Mountains. The Loma Prieta rupture occurred within a structural domain, bounded by the San Gregorio-Hosgri fault in the west, the Ben Lomond, Zayante, and Vergeles faults in the southwest, and a discontinuous series of faults east of the San Andreas fault (Aydin and Page, 1984) that is characterized by southwest-dipping faults and northwest-trending folds. At the surface, the fault features indicate both strike-slip and reverse displacements. The surface projection of model faults compatible with the vertical geodetic data could match either the Sargent or the San Andreas fault.

RELATION TO OTHER GEODETIC STUDIES

A geodetic model (Lisowski and others, 1990) derived from precise electronic distance measurement (EDM), Global Positioning System (GPS) vectors, and very long baseline interferometry (VLBI) observations is not fully consistent with our best-fitting model fault (table 8). Lisowski and others modeled the offsets in the relative positions of geodetic stations, using an elastic dislocation, and determined the source mechanism: strike, 136°; dip, 70°; rake, 144°; geodetic moment, 3.0×10¹⁹ N-m. The rake and moment of their solution are consistent with our results, whereas the strike and dip do not fall within our acceptable model range. Their model has a strike slightly different from that of the aftershock zone, producing a close fit to the aftershocks in the northwest but a misfit of about 2 km in the southeast. Although their model agrees better with the locations of aftershocks, it has an M/N ratio of 2.4 (twice as large as that of our best fitting model) when used to model the coseismic elevation changes. Likewise, our model doubles the average misfit of their obser-

Figure 11.—Misfit-to-noise ratio for one-rake (shaded area) and two-rake (black area) planar model faults versus distance to hypocenter. Best-fitting faults are those with smallest misfit-to-noise ratio and a corresponding hypocentral distance of 6 km. Two-rake model substantially reduces misfit of elevation change. Low-modulus layer and wedge reduce misfit of model fault surface to aftershock zone.

Table 8.—Comparison of fault parameters from seismologic studies with the results of our elastic-half-space modeling

[Boldface values are consistent with our ranges of model parameters listed at bottom. Strike is measured clockwise from north. Rake is measured on fault surface counterclockwise from strike azimuth. Depth from P-wave first-motion data is depth to rupture initiation; depth from body-wave data is average depth; and depth from body- and surface-wave data is centroidal depth, using a 4-km radius. Do., ditto]

Strike (°)	Dip (°)	Rake (°)	Scismic moment (10 ¹⁹ N-m)	Depth (km)	Type of data	Reference
120–140 122–138 130 125–135 117–127 126–130 126 132–144 125–129 122–132 125–135 136 126–129	55–85 60–80 73 60–70 53–63 61–65 66 71–81 70–75 61–71 65–75 70 57–60	125–155 115–145 146 135–145 139–149 127–131 138 110–130 130–144 127–137 130–140 142–147 139–147	2.8 2.0-2.2 2.1-2.4 3.0-3.1 1.7 1.5-2.5 2.5-3.0 2.8-3.8 2.9-3.9 2.6-3.4 2.6-3.0	18 19 18 12–16 8 11–12 10 10–12 15 20 12–22 11 8	P-wave first motions do Body waves do do	 Oppenheimer (1990). Plafker and Galloway (1989). Barker and Salzberg (1990). Choy and Boatwright (1990). Langston and others (1990). Romanowicz and Lyon-Caen (1990). Ruff and Tichelaar (1990). Kanamori and Satake (1990). Romanowicz and Lyon-Caen (1990). Kanamori and Satake (1990). Zhang and Lay (1990). Lisowski and others (1990). This study.

vations. Future studies that combine both geodetic data sets are needed to find the fault geometry and source mechanism that are most consistent with all the observations.

CONCLUSION

Observations of coseismic elevation changes associated with the 1989 Loma Prieta earthquake favor a rupture surface extending from 6- to 12-km depth, dipping 64°. With a geodetic moment of 2.6×10^{19} N-m, slip direction on this rupture surface ranges in rake from 144° northwest of the epicenter to 157° southeast of the epicenter, with a slip amplitude of 3.6 m. A two-rake model fault produces the same fit to the observations as a one-rake model fault, with 13 percent less moment. Thus, the tworake model fault is a more efficient source of surface deformation and, in our judgment, more probable. With independent data, two-rake models with a rake variation greater than 40° can be found that offer smaller model misfit and less moment.

The rupture surface determined by our half-space modeling lies 1 to 2 km southwest of most aftershocks and is 6 km from the main-shock hypocenter. With independent data, preferred model faults lie still farther away from the aftershock zone, whereas with correlated data, faults can be found within the aftershock zone that produce only a few-percent increase in model misfit.

The strength of the section-elevation-change modeling is that the correlation of the leveling observations is incorporated into the analysis. Although the section-elevation-change modeling is more sensitive to outliers (such as spikes and steps), we have found that these features can be objectively purged. The weakness of the sectionelevation-change modeling stems from the uniquely inhomogeneous distribution of the Loma Prieta data set, in which most of the signal is contained in a few long sections in the interior of the network. Although the influence of these sections is modest with independent data, it is almost nonexistent in the section-elevation-change modeling. Thus, most of the signal we seek to explain with the section-elevation-change modeling has no influence on model selection, and our ability to discriminate among candidate model faults is greatly diminished.

Two-dimensional models with nonhomogeneous elastic structure reduce the misfit between the geodetic fault plane and the aftershock zone, suggesting that more complex (three dimensional) models of the modulus structure of the crust might bring the geodetic and seismic observations into even-better accord. Using a low-modulus layer or wedge model instead of a uniform half-space also deepens and steepens the fault.

The connection between the Loma Prieta rupture surface at depth and the known faults mapped at the Earth's surface remains unclear. Because both listric and negatively listric faults are permitted by the vertical geodetic data, a connection can be inferred to either the San Andreas or the Sargent fault. Further study of the localized anomalous elevation changes seen in some of the leveling data, along with observations of surface displacements northeast of the San Andreas fault (Haugerud and Ellen, 1990), may provide the necessary evidence to infer a connection to shallow surface faults.

ACKNOWLEDGMENTS

All of the postearthquake leveling was funded by the USGS, NGS, and Santa Cruz County Public Works Department. We thank the NGS leveling crew, including Richard Hattesohl, Leonard Bergman, Don Breidenbach, Jim Palo. Scott Hanford. Chris Jacobs, and Verland Pierson, for their expertise in performing a careful and timely leveling job and in releveling after the earthquake. Emery Balazs helped to define and organize the leveling project at the NGS. Gary Perasso provided field-summary books and helpful discussions on the USGS leveling data. Kim Vester provided access to and information about Santa Cruz County leveling data. Accurate subsidence corrections could not have been made without the depth-to-water and extensometer data provided by the Santa Clara Valley Water Conservation District, with the assistance of Adele Sheperd and Lauren Mall. Robert Johnson of the Monterey County Flood Control and Water Conservation District supplied additional depth-to-water data for Monterey County. We greatly appreciate the guidance and encouragement of Wayne Thatcher and the contributions of Geoffrey C.P. King and Jian Lin in creating and testing, respectively, the boundary-element program, and the generosity of Donna Eberhart-Phillips for sharing her finite-element results with us. Thoughtful reviews of the manuscript were provided by Mike Lisowski, David Oppenheimer, and Richard Snay.

REFERENCES CITED

- Anderson, R.S., 1990, Evolution of the northern Santa Cruz Mountains by advection of crust past a San Andreas Fault bend: Science, v. 249, no. 4967, p. 397–401.
- Árnadóttir, Thora, Segall, Paul, and Matthews, M.V., 1992, Resolving the discrepancy between geodetic and seismic fault models for the 1989 Loma Prieta, California, earthquake: Seismological Society of America Bulletin, v. 82, no. 5, p. 2248–2255.
- Aydin, Atilla, and Page, B.M., 1984, Diverse Pliocene-Quaternary tectonics in a transform environment, San Francisco Bay region, California: Geological Society of America Bulletin, v. 95, no. 11, p. 1303–1317.
- Bakun, W.H., Clark, M.M., Cockerham, R.S., Ellsworth, W.L., Lindh, A.G., Prescott, W.H., Shakal, A.F., and Spudich, Paul, 1984, The 1984 Morgan Hill, California, earthquake: Science, v. 225, no. 4659, p. 288–291.
- Barker, J.S., and Salzberg, D.H., 1990, Long-period and broad-band teleseismic body-wave modeling of the October 18, 1989 Loma Prieta earthquake: Geophysical Review Letters, v. 17, no. 9, 1409– 1412.
- Barrientos, S.E., Stein, R.S., and Ward, S.N., 1987, Comparison of the

1959 Hebgen Lake, Montana, and the 1983 Borah Peak, Idaho, earthquakes from geodetic observations: Seismological Society of America Bulletin, v. 77, no. 3, p. 784–808.

- ——1989, Errata; comparison of the Hebgen Lake, Montana and the 1983 Borah Peak, Idaho, earthquakes from geodetic observations: Seismological Society of America Bulletin, v. 79, no. 6, p. 2018.
- Behr, Jeffrey, Bilham, Roger, Bodin, Paul, Burford, R.O., and Bürgmann, Roland, 1990, Aseismic slip on the San Andreas fault south of Loma Prieta: Geophysical Research Letters, v. 17, no. 9, p. 1445– 1448.
- Beroza, G.C., 1991, Near-source modeling of the Loma Prieta earthquake; evidence for heterogeneous slip and implications for earthquake hazard: Seismological Society of America Bulletin, v. 81, no. 5, p. 1603-1621.
- Bomford, Guy, 1971, Geodesy: Oxford, U.K., Oxford University Press, 855 p.
- Choy, G.L., and Boatwright, John, 1990, Source characteristics of the Loma Prieta, California, earthquake of October 18, 1989 from global digital seismic data: Geophysical Research Letters, v. 17, no. 8, p. 1183-1186.
- Dietz, L.D., and Ellsworth, W.L., 1990, The October 17, 1989, Loma Prieta, California, earthquake and its aftershocks; geometry of the sequence from high-resolution locations: Geophysical Research Letters, v. 17, no. 9, p. 1417–1420.
- Eberhart-Phillips, D.M., Labson, V.F., Stanley, W.D., Michael, A.J., and Rodriguez, B.D., 1990, Preliminary velocity and resistivity models of the Loma Prieta earthquake region: Geophysical Research Letters, v. 17, no. 8, p. 1235–1238.
- Eberhart-Phillips, D.M., and Stuart, W.D., 1992, Material heterogeneity simplifies the picture; Loma Prieta: Seismological Society of America Bulletin, v. 82, no. 4, p. 1964–1968.
- Haugerud, R.A., and Ellen, S.D., 1990, Coseismic ground deformation along the northeast margin of the Santa Cruz Mountains, stop 7 of Schwartz, D.P., and Ponti, D.J., eds., Field guide to neotectonics of the San Andreas fault system, Santa Cruz Mountains, in light of the 1989 Loma Prieta earthquake: U.S. Geological Survey Open-File Report 90-274, p. 32-36.
- Jackson, D.D., Lee, W.B., and Liu, C.-C., 1981, Height dependent errors in southern California leveling, *in* Simpson, D.W., and Richards, P.G., eds., Earthquake prediction; an international review: Washington, D.C., American Geophysical Union, p. 457–472.
- Jennings, C.W., compiler, 1975, Fault map of California: Sacramento, California Division of Mines and Geology, scale 1:750,000.
- Kanamori, Hiroo, and Satake, Kenji, 1990, Broadband study of the 1989 Loma Prieta earthquake: Geophysical Research Letters, v. 17, no. 8, p. 1179–1182.
- King, G.C.P., and Ellis, Michael, 1990, The origin of large local uplift in extensional regions: Nature, v. 348, no. 6303, p. 689-693.
- King, N.E., Savage, J.C., Lisowski, Michael, and Prescott, W.H., 1981, Preseismic and coseismic deformation associated with the Coyote Lake, California, earthquake: Journal of Geophysical Research, v. 86, no. B2, p. 892–898.
- Langbein, J.O., 1990, Post-seismic slip on the San Andreas fault at the northwestern end of the 1989 Loma Prieta earthquake rupture zone: Geophysical Research Letters, v. 17, no. 8, p. 1223-1226.
- Langston, C.A., Furlong, K.P., Vogfjord, K.S., Clouser, R.H., and Ammon, C.J., 1990, Analysis of teleseismic body waves radiated from the Loma Prieta earthquake: Geophysical Research Letters, v. 17, no. 9, p. 1405–1408.
- Lisowski, Michael, Prescott, W.H., Savage, J.C., and Johnston, M.J.S., 1990, Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake: Geophysical Research Letters, v. 17, no. 9, p. 1437–1440.
- Nábělek, J.L., 1990, Rupture process of the October 18, 1989 Loma

ELEVATION CHANGES ASSOCIATED WITH THE EARTHQUAKE AND THEIR USE TO INFER FAULT-SLIP GEOMETRY A127

Prieta earthquake from broadband teleseismic body waves [abs.]: Seismological Research Letters, v. 61, no. 1, p. 46.

- Oppenheimer, D.H., 1990, Aftershock slip behavior of the 1989 Loma Prieta, California earthquake: Geophysical Research Letters, v. 17, no. 8, p. 1199–1202.
- Plafker, George, and Galloway, J.P., eds., 1989, Lessons learned from the Loma Prieta, California, earthquake of October 17, 1989: U.S. Geological Survey Circular 1045, 48 p.
- Poland, J.F., and Ireland, R.L., 1988, Land subsidence in the Santa Clara Valley, California, as of 1982: Washington, D.C., U.S. Government Printing Office, 61 p.
- Prescott, W.H., King, N.E., and Gu Guohua, 1984, Preseismic, coseismic, and postseismic deformation associated with the 1984 Morgan Hill, California, earthquake, *in* Bennett, J.H., and Sherburne, R.W., eds., The 1984 Morgan Hill, California earthquake: California Division of Mines and Geology Special Publication 68, p. 137–148.
- Reasenberg, P.A., and Ellsworth, W.L., 1982, Aftershocks of the Coyote Lake, California, earthquake of August 6, 1979; a detailed study, Journal of Geophysical Research, v. 87, no. B13, p. 10637-10655.
- Reches, Ze'ev, and Zoback, M.D., 1990, Theoretical analysis of the deformation of a layered sequence above a fault—preliminary application to the Loma Prieta earthquake, chap. 10 of Nur, Amos, Mavko, Gary, and Zoback, Mark, eds., Stanford rock physics and borehole geophysics, v. 40, p.X1-X22.
- Romanowicz, B.A., and Lyon-Caen, Hélène, 1990, The Loma Prieta earthquake of October 18, 1989; results of teleseismic mantle and body wave inversion: Geophysical Research Letters, v. 77, no. 8, p. 1191-1194.
- Ruff, L.J., and Tichelaar, B.W., 1990, Moment tensor rate functions for the 1989 Loma Prieta earthquake: Geophysical Research Letters, v. 17, no. 8, p. 1187–1190.
- Steidl, J.H., Archuleta, R.J., and Hartzell, S.H., 1991, Rupture history of the 1989 Loma Prieta, California, earthquake: Seismological Society of America Bulletin, v. 81, no. 5, 1573–1602.
- Stein, R.S., 1981, Discrimination of tectonic displacement from slopedependent errors in geodetic leveling from southern California, 1953–1979, *in* Simpson, D.W., and Richards, P.G., eds., Earthquake prediction; an international review: Washington, D.C., American Geophysical Union, p. 441–456.
- Stein, R.S., Whalen, C.T., Holdahl, S.R., Strange, W.E., and Thatcher, Wayne, 1986, Saugus-Palmdale, California, field test for refraction error in historical leveling surveys: Journal of Geophysical Research, v. 91, no. B9, p. 9031–9044.
- Valensise, Gianluca, 1994, Geologic assessment of the relative contribution of strike-slip faulting, reverse-slip faulting, and bulk squeezing in the creation of the central Santa Cruz Mountains, California, *in* Simpson, R.W., ed., The Loma Prieta, California, earthquake of October 17, 1989—tectonic processes and models: U.S. Geological Survey Professional Paper 1550–F, p. 17–34.
- Valensise, Gianluca, and Ward, S.N., 1991, Long-term uplift of the Santa Cruz coastline in response to repeated earthquakes along the San Andreas fault: Seismological Society of America Bulletin, v. 81, no. 5, p. 1694–1704.
- Wald, D.J., Helmberger, D.V., and Heaton, T.H., 1991, Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data: Seismological Society of America Bulletin, v. 81, no. 5, p. 1540–1572.
- Ward, S.N., and Barrientos, S.E., 1986, An inversion for slip distribution and fault shape from geodetic observations of the 1983 Borah Peak, Idaho, earthquake: Journal of Geophysical Research, v. 91, no. B5, p. 4909–4919.
- Zhang, Jiajun, and Lay, Thorne, 1990, Source parameters of the 1989 Loma Prieta earthquake determined from long-period Rayleigh waves: Geophysical Research Letters, v. 17, no. 8, p. 1195-1198.

APPENDIX 1: CORRECTIONS AND ADJUSTMENTS TO LEVELING DATA

To isolate the elevation change associated with the earthquake ("coseismic"), each survey route must be corrected to eliminate other sources of elevation change, on the basis of knowledge of subsidence caused by ground-water withdrawal during the coseismic time interval, and on the preearthquake rate of subsidence. In some places, the preearthquake subsidence pattern can easily be attributed to tectonic or nontectonic sources (for example, water withdrawal); in other places, disturbed bench marks can lead to unpredictable patterns. Leveling routes 1 through 3 (inset, fig. 1) have preearthquake leveling histories; whereas leveling routes 4 through 7 do not. Leveling routes 4 through 7 are primarily located in mountainous regions and are unlikely to be influenced by ground-water-withdrawal-induced subsidence.

Land subsidence due to ground-water withdrawal in San Jose is documented by leveling surveys and compaction monitoring. Multiple releveling projects during 1934-67 have documented approximately 2.5 m of land subsidence in San Jose. In 1960, the USGS installed several extensometers (corehole compaction-measuring devices; Poland and Ireland, 1988) in San Jose and Sunnyvale, five of which remain in operation today and are maintained by the Santa Clara Valley Water Conservation District. These extensometers provide an excellent record of the compacting aquifer system and, in comparison with leveling data, confirm that land subsidence is compensated by compaction at depths of 61 to 305 m. The land subsidence, which is correlated with ground-water withdrawal and an associated water-table decline, has slowed drastically since the introduction of substantial surface-water imports during the late 1960's (Poland and Ireland, 1988). An example extensometer record for well 7S/1E-16C11 in San Jose is shown in figure 12, along with depth-to-water data for the period 1982-90. Note that during the coseismic interval 1989-90 along leveling route 1, the aquifer system shows a net expansion or land-surface rebound.

To correct leveling routes 1 through 3 (inset, fig. 1) for nontectonic subsidence effects, we use both preearthquake leveling and extensometer data. Subsidence-rate functions are determined from preearthquake leveling surveys, and subsidence corrections are computed by multiplying the subsidence-rate functions by the coseismic time intervals. In this correction, subsidence rates are implicitly assumed to remain constant over time. Near the extensometer sites where subsidence is greatest, however, the observed rates vary over time; for bench marks near the extensometer sites, the subsidence-rate functions have been modified by the observed rate changes. Preearthquake leveling data for routes 1 through 3 are plotted in figure 13. The preearthquake interval for leveling route 1 (1967-89) spans both the August 6, 1979, M_I =5.9 Coyote Lake, Calif., earthquake and the April 24, 1984, M_I = 6.1 Morgan Hill, Calif., earthquake (King and others, 1981; Reasenberg and Ellsworth, 1982; Bakun and others, 1984; Prescott and others, 1984). Although the vertical deformation along leveling route 1 from these two events is small (+8 to -10 mm), we remove their contributions to elevation change. Bench marks seated in bedrock presumably are least affected by nontectonic subsidence and so are used to establish the zero-elevation-change datum for the preearthquake surveys. The San Jose subsidence basin is evident in the profiles for leveling routes 1 (1967-89) and 3 (1960-67), and subsidence rates apparently decline after 1967. Subsidence-rate modifications are made for all bench marks that lie within this subsidence basin. To correct for subsidence-rate changes, the subsidence-rate functions are multiplied by a rate-correction factor, which is the ratio of the subsidence rate during the coseismic interval to that during the preearthquake interval. Average subsidence rates and rate-correction factors along leveling routes 1 and 3 are listed in table 9; these average rates are derived from readings of the two extensometers at the San Jose site. Extensometer-tape readings for the period 1982-90 are listed in table 10; increasing values indicate compaction during the period between readings, whereas decreasing values indicate expansion. Poland and Ireland (1988) discussed extensioneters and presented compaction data for the period 1960-81.

Depth-to-water records for wells along leveling routes 1 and 2 (inset, fig. 1) were examined to assess the validity of our assumption of constant subsidence rates in areas outside the San Jose subsidence basin. The locations of the 16 wells whose histories we examined are shown in figure 13. The coupling of land subsidence to water-table fluctuations is not spatially uniform; except in one well, no large water-table fluctuations were noted that would require a modification of the subsidence rates represented by the leveling data outside the San Jose area. Well 12S/ 2E-15E01 (fig. 13B) near Watsonville (WA, fig. 1) has a larger ratio of subsidence to water-table decline than that observed in San Jose, possibly indicating that subsidence is particularly sensitive to the water table there. The ratio of subsidence to water-table decline, and the total watertable decline during the period 1978-89, are used to predict subsidence of the junction-point bench mark between these two preearthquake surveys and thus to adjust the datum level for the preearthquake leveling survey along route 2.

Corrected coseismic profiles along leveling routes 1 through 3 were computed by subtracting the subsidencecorrection functions from the observed-elevation-change profiles. The correction functions may not contain all the bench marks of the coseismic survey, and so they are interpolated for missing points. Because subsidence basins and the subsidence patterns determined from preearthquake leveling have primarily short spatial wavelengths, elevation-change profiles generally are smoother after correction. Reduction of the short-wavelength com-

Figure 12.—Extensioneter readings (circles) and depth-to-water records (squares) for 305-m-deep well 7S/ 1E-16C11 in San Jose. Increasing readings indicate compaction, whereas decreasing readings indicate expansion of aquifer system in depth range 0-305 m.

ponents serves as a test of the efficacy of the correction. The corrections for leveling routes 1 through 3 are all well behaved, except at the north end of leveling route 2 between 55 and 84 km. We believe that this problem originates in the north half of the 1972 survey, where a heightdependent error may have occurred; thus, we neglected the subsidence correction for this area. The observed and corrected elevation changes and the correction functions along leveling routes 1 through 3 are plotted in figure 14.

For the network to be self-consistent, overlapping end points of each survey route must have the same coseismic elevation change. To accomplish this agreement, we adjust the third-order USGS data. The test for the efficacy of these adjustments is that the circuit misclosure of the adjusted data must be smaller than that of the observed data. We use the original field data from the USGS surveys and thus remove all previous USGS adjustments.

Figure 13.—Precarthquake leveling data along routes 1 (A, 1989–67/72), 2 (B, 1989–72, 1978–72), and 3 (C, 1967–60) (see inset, fig. 1), showing locations of bedrock, water wells, and bench marks closest to San Jose extensioneter site.

The end point of leveling route 4 has an unadjusted coseismic mismatch with leveling routes 1 and 2 of 115 mm, which, using the assigned α value (see table 1), is about twice as great as the expected random error for the length of this leveling route. We apply an adjustment of 2 mm/km to the 1953 elevations along leveling route 4, so that the adjusted coseismic elevation changes match at both ends. At the junction of leveling routes 5 and 6, the mismatch is 46 mm, which is about the expected random error at this point for both leveling routes. The misfit is divided equally, and so leveling route 6 is adjusted by 0.5 mm/km and leveling route 5 by 0.6 mm/km. After these adjustments, the computed circuit misclosure for the preearthquake circuit is reduced from -70 to +15 mm. These adjustments reduce the 1953 circuit misclosure to that of the precise 1990 survey (-19 mm; see table 2). The adjusted and subsidence-corrected coseismic elevation changes used in our modeling, and their relative uncertainties, are listed in table 3; each bench mark is identified by its ACRN. The elevation changes listed in table 3 are relative to an arbitrary datum, and so a constant can be added to all the bench marks. Specifications for all the data listed in table 3 are listed in table 1.

APPENDIX 2: DATA TABLES

All the postearthquake elevation-change observations made by the NGS are listed in tables 11 through 24, along with the corresponding historical leveling data, our corrections, and some additional data that were analyzed for use in the subsidence corrections. The title of each table corresponds to the survey titles as named during the 1990 survey.

Tables 11 through 13 contain only NGS orthometric heights for which all standard NGS corrections have been applied. These heights, however, may differ from current NGS data-base values because some heights were obtained from unadjusted ("print file") elevations. Also included in these tables are our earthquake and subsidence corrections to the coseismic elevation changes; these corrections are omitted from the orthometric heights listed in these tables. The coseismic correction was computed by assuming right-lateral slip on a vertical fault for both the 1979 Coyote Lake and 1984 Morgan Hill earthquakes. For the 1979 Coyote Lake earthquake, we used 0.33 m of slip on a 20-km-long fault plane extending from 4- to 12km depth. For the 1984 Morgan Hill earthquake, we used 0.76 m of slip on a 25-km-long fault plane extending from 4- to 10-km depth (King and others, 1981; Reasenberg and Ellsworth, 1982; Bakun and others, 1984; Prescott and others, 1984). Tables 14 through 24 contain NGS, USGS, and Santa Cruz County leveling data.

The USGS data are all from surveys dated 1953, although a few are actually from 1948. In some places, both

Leveling route (inset, fig. 1)	Survey interval	Average subsidence rate (mm/yr)	Rate-correction factor (Coseismic rate/ preearthquake rate)
1	1989–90 1967–89	-18.67 14.57	-1.28
3	1967–90 1960–67	13.31 181.93	.07

[First, the average of the first and second readings of the cable extensometer after manual oscillation was computed; then, this average was combined with the reading of the pipe extensometer to compute

Table 9.—Average subsidence rates along leveling routes 1 and 3

1953 observed and adjusted heights are listed. The adjusted heights are the observed heights adjusted by us as described here; the observed heights are the original field observations with the original USGS adjustments removed. The USGS heights were measured with a three-wire leveling instrument and one 3-yd (3 m)-long, single-piece leveling rod; some rod-calibration tables are available. Leveling was conducted between NGS bench marks and adjusted to closure with previous NGS heights for those bench marks.

the average subsidence rate]

The Santa Cruz County data are all surveys dated "1970." Although the precise dates for these surveys are unknown, we were told by Santa Cruz County officials that they were conducted during the late 1960's and early 1970's. The heights were measured with a three-wire leveling instrument and a folding leveling rod ("Philadelphia rod") ruled in hundredths of feet; we do not know whether the rods had been calibrated. Leveling was conducted between USGS bench marks and adjusted to closure with previous USGS heights for those bench marks. Original unadjusted heights may be obtained from the Santa Cruz County Public Works Department, Office of the Surveyor, where the original leveling books are kept. The designations listed for the Santa Cruz bench marks are in the form of a height (in feet), an equal sign, and a integer designation (for example, "271.52=301"); the actual stampings on the marks are simply the height (in feet). The integer following the equal sign is the index number given to that bench mark by Santa Cruz County. The index numbers are used to find the adjusted heights listed in an index-card file and to locate the bench marks on a map in the Office of the Surveyor.

We did not use coseismic elevation changes constructed from the Santa Cruz County data for several reasons. Extensive research on the original field books is required, and the quality of the data is uncertain. Three leveling rods were used during the surveys, only one of which is still available for calibration, and the correspondence between rod serial numbers and particular surveys is uncertain. Tilt of elevation change and slope of topography appear to be correlated along several of the leveling routes that we examined, indicating a rod-calibration problem.

The locations of all the bench marks at which coseismic elevation changes were measured (both those used in this study and those not used) are shown in figure 15.

 Table 10.—Extensioneter-tape readings in two wells in San Jose for the period 1982–90

[F.O., first reading of tape, before manual oscillation; M.O., second reading of tape, after counterweight was manually oscillated]

Date	Well 7S/1E-16C11	W 7S/1E cable ((ell 16C5 (277 m)
	pipe (305 m) (mm)	F.O. (mm)	M.O. (mm)
1/22/82		0.00	0.31
6/4/82	4.27	-12.80	-8.84
8/27/82	14.02	-8.84	3.66
10/18/82	9.45	2.74	.31
1/10/83	30		
3/25/83	-9.75		-15.54
5/18/83 7/15/83	-15.54 -3.96	-23.47 -21.95	-21.34 -8.23
9/15/83	1.53	-8.53	30
11/17/83	-5.18	-10.06	-9.45
4/6/84	-12.19	-16.15	-12.50
5/29/84	-4.27	-17.07	-3.35
7/26/84	11.28	-3.05	7.01
11/27/84	16.77	12.80	16.15
1/16/85	11.58	9.75	12.80
2/27/85	12.50	10.36	10.97
5/20/85	19.51	10.67	20.42
7/19/85	40.24	20.12	36.88
9/30/85 11/22/85	48.77 46.64	43.28	44.30
2/13/86	41.76	40.23	40.54
4/24/86	39.93	30.78	37.19
8/29/86	68.58	47.55	58.52
10/27/86	62.18	55.17	55.17
12/19/86	57.00 48 77	53.95	54.56 49.99
5/21/87	67.97	48.77	63.70
8/5/87	91.44	(1.57	
8/10/87 9/17/87		81.38	81.99
10/27/87	93.88	80.77	
12/15/87	78.34	67.06	68.89
3/8/88		66.75	70.41
6/9/88	90.83	70.10	78.64
9/8/88 9/12/88	121.62	79.25	97.23
9/15/88		97.23	98.76
12/7/88	108.21	86.87	91.44
3/0/89 6/8/89	93.88 85 35	88.09 61.26	70.10 69.49
9/5/89	86.57	68.88	76.20
10/20/89	88.09	66.14	61.27
1/9/90 4/4/90	80.77	00.00 48.16	49.07
4/16/90		48.46	44.50
4/23/90	71.63		

Figure 14.—Observed (dots) and corrected (circles) coseismic elevation changes and correction functions along leveling routes 1 (A), 2 (B), and 3 (C) (see inset, fig. 1, for locations). Note change of scale between correction function and elevation changes in figures 14A and 14B but not in figure 14C.

DISTANCE, IN

KILOMETERS

Figure 14.—Continued

Figure 14.—Continued

Table 11.—Leveling observations along a line from San Jose through Gilroy and Sargent to Watsonville

							Orthometric	: height (m)				100
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1967 (3-5) L21038, L21016.1, L21016.2	1968 (10–11) L21602	1969 (3–10) L219691, L21746	1972 (7–9) L22841	1989 (2–7) L2517.2, L2517.4	1990 (1–2) L25239.1	Subsidence correction (mm)	Earthquake correction (mm)
HT0651	V 1197	37°47′33″	122°16′07″	-69.693			2.62559		2.56716			
HT0648	U 469 Ookland 6	37°47′26″	122°15′32″	-68.804			3.77282		3.72073			
HT0049	Oakland 8 reset	37°47′20″	122°14′24″	-66.407					16.86315			
HT3546	K 1444	37°46′53″	122°14'01″	-65.067					10.13692			
HT3547	L 1444 Oakland 7	37°46′35″	122°13′31″	-64.108			4 62102		12.70819			
HT0012	Oakland / O 148 reset	37°46'19″	122°13'43	-62.295			5.88354		5.85996			
HT0008	20 G	37°46′09″	122°13′06″	-61.648			6.06521		6.04251			
HT0003	San Leandro NW base	37°45′48″	122°12′34″	-60.679			2.70758		2.67620			
HT0002	N 554 M 1444	37°45′18″ 37°45′02″	122°12'02"	-59.486			1.91654		3 56099			
HT0281	M 554	37°44′39″	122°11′17″	-57.872			3.52047		3.49978			
HT0252	K 738 reset	37°44′16″	122°10′50″	-56.828			7.56252		7.53342			
HT0253	941 4711 tidal 6	37°44′25″	122°10′47″	-56.424			7.08717		7.06291			
HT3556	L 334 U 1435	37°43′53″	122°10'09"	-55.030			12.27936		12.95211			
HT3557	X 1435	37°43'25″	122°09'39"	-53.865					15.80825			
HT0241	K 554	37°43′06″	122°09'28″	-53.171			15.93973		15.90496			
HT0239 HT0240	1 1197 M 148	37°42'40 37°42'28″	122*08 58	-52.027			12.03104		12.59509			
HT0238	J 554	37°42′08″	122°08′18″	-50.574			12.24255		12.21673			
HT0237	H 554	37°41′27″	122°07'36"	-48.888			11.13984		11.11455			
HT1876	Q 1256	37°41′13″	122°07′15″	-48.178			14 61744		13.97392			
HT1866	E 148 R 1256	37°40′56″	122°06'59"	-47.988			14.01/44		11 92283			
HT0223	S 1197	37°40′35″	122°06'33″	-46.417			16.35982		16.33930			
HT0226	K 148	37°39′58″	122°05′55″	-44.946	,		22.49624		22.46721			
HT3558 HT0208	V 1435 N 1197	37°39'36"	122°05′29″	-43.970			21 02241		25.59443			
HT0203	V 591	37°39′16″	122°05′06″	-43.117			20.49403		20.47668			
HT0201	P 1197	37°38′46″	122°04′31″	-41.858			13.29236		13.27336			
HT0200	Q 1197	37°38'31″	122°04′14″	-41.252			12.84962		12.82873			
HT0197	R 1197 reset	37°37'30″	122°03'05″	-38 626					4.53620			
HT2434	X 1446	37°37′33″	122°03'02″	-38.575					6.19229			
HT3562	F 1447	37°36′39″	122°02′06″	-36.356					16.70963			
HT0187	253 M 1107	37°36'21"	122°01'34"	-35.336			25.63398		25.61522			
HT2446	Y 1446	37°35′34″	122°01′07″	-33.109					17.96061			
HT0184	B 46 reset	37°35′40″	122°00′59″	-32.687	18.02171		18.08764		18.07497			
HT0182	50.5	37°35′08″	122°00'13″	-31.187	15.32380		15.38993		15.37849			
HS3383	K 177	37°34′46″	121°59′04″	-29.352	19.91230		19.96777		19.89738			
HS3382	Niles AZ MK	37°34'42"	121°58'54"	-29.121	19.47716		19.53420		19.48375			
HS3381	F 148	37°34'43″	121°58′53″	-29.063	22.58309		22.64050		22.59410			
HS3379	N 874	37°34'30"	121°58'20"	-28.230	29.28733		29.34030		29.31019			
H\$3565	Switch	37°34′21″	121°58′11″	-27.448	25.61108		25.66508		25.62402			
HS3375	T 591	37°34'09″	121°57′55″	-26.871	24.82369		24.87956		24.83114			
HS3374 HS3370	B 148 reset M 886	37°33'4'/" 37°32'30"	121°57'32″	-26.054	17 87337		17 93522		22.58554			
H\$5153	K 1447	37°32′05″	121°57′14″	-22.805					22.11553			
HS3337	D 175	37°31′26″	121°56′59″	-21.450	15.26510		15.32480		15.32068			
HS3335	F 1076 D 1447	37°31′00″	121°56'45″ 121°56'41″	-20.514	8.85408		8.91096		8.90941			
HS5154	J 1447	37°30′23″	121°56′25″	-19.280					10.67165			
HS2880	N 874	37°29′15″	121°55′53″	-17.047	13.86164		13.90928		13.90672			
HS2877	Q 591 reset	37°28′39″	121°55′33″	-16.023			13.14489		13.14609			
HS2856	D 1076	37°27'07″	121°54′46″	-12.603	3.71923		3.75836		3.75451			
HS2852	Jacklin RM 1	37°26′21″	121°54′23″	-11.066	3.32197		3.36280		3.34855			
HS2851	M 874	37°26′10″	121°54′20″	-10.752	3.94223		3.98305		3.97993			
HS5150 HS5157	G 1447 D 176 reset	37°25'30"	121°54'1/ 121°54'30″	-10.246					2.00388			
HS2849	Z 174	37°25′33″	121°54'12″	-8.940	5.24552		5.29129		5.27474			
HS2969	Milpitas	37°25′31″	121°54′12″	-8.866	5.30201		5.34227		5.33907			
HS2968	Milpitas RM 1	37°25′31″	121°54′11″	-8.851	5.62744		5.66884		5.66102			
HS2847	G 554	37°24'50″	121°54′01″	-7 524	10 09069		10.13329		10.11783			
HS3086	K 179 reset	37°24′30″	121°53'20″	-6.091					14.99672			
HS5158	M 1447	37°24'15″	121°53′59″	-4.898					11.20016			
HS2840	IN 1447 X 147	37°23'17" 37°22'44"	121°53'54" 121°53'50"	-3.135	19 14230		19 15978		15.13/48			
HS2838	B 1076	37°22′06″	121°53′47″	-0.963	16.98160		16.96284		16.84116			
HS5161	G 1448	37°21′07″	121°55'01″	0.000					17.22686	17.22686	9.81	
HS2835 HS5160	C 1121 reset 1 1447	37°21'41" 37°20'56"	121°53'42″	0.088	18.22893		18.18108		18.00880	22 74729	10.78	
HS2833	U 174	37°21′06″	121°53′28″	1.173	19.41924		19.37769		19.22744		10.70	
HS2891	Z 111 reset 1962	37°20'29″	121°54′40″	1.745	23.22841				23.05946	23.05275	12.64	3.10
HS2885	Z 876 reset B 112	37°20′58″ 37°20′46″	121°53′59″	2.060	22 14160		19.75525		19.59935	21 0/75/	14 02	3 21
HS5162	E 1447	37°20'28″	121°53′45″	4.166	22.14109				23.47840	23.47067	14.82	
HS2828	P 7 reset 1965	37°20'22"	121°53'29"	4.787	26.51995		26.46974		26.30861	26.29759	15.14	3.66

Table 11.—Leveling observations along a line from San Jose through Gilroy and Sargent to Watsonville—Continued

					Orthometric height (m)							
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1967 (3–5) L21038, L21016.1, L21016.2	1968 (10–11) L21602	1969 (3–10) L219691, L21746	1972 (7–9) L22841	1989 (2–7) L2517.2, L2517.4	1990 (1–2) L25239.1	Subsidence correction (mm)	Earthquake correction (mm)
HS2826	D 886	37°20′17″	121°53′26″	4.968	26.45147		26.40250		26.23949	26.22769	15.17	3.63
HS2825 HS2822	A 326 reset 1970 M 177	37°20'16″ 37°20'10″	121°53′22″ 121°53′22″	5.086 5.383	27.34161		27.29548		25.69628 27.14673	25.68429 27.13324	14.90	4.59
HS5163	I 19=96 reset 1976	37°20′16″	121°53′11″	5.709					23.70753	23.69523	15.60	5.17
HS2813 HS2814	A 1122 San Jose AZ MK	37°20'04" 37°19'31″	121°52'35 121°52'11″	8.568	29.61819		20.92388 29.54719		29.34023	29.32154	19.12	5.45
HS2811	B 149	37°18′51″	121°52′04″	10.085	30.56198		30.50680		30.36366	30.34000	14.52	6.13 6.41
HS2810 HS2809	2=J 19	37°18′08″	121°51′45 121°51′29″	10.957	36.57012		36.51550		36.37031	36.34033	14.63	6.54
HS2806	C 886 reset 1962	37°17'40"	121°51′02″	13.031	44.16217		44.17860		44.18479	44.13360 50.17403	1.69	6.81 6.83
HS2795	Q 877 reset 1964	37°16′28″	121°49′51″	15.846	64.08164		64.10134		64.13296	64.07007	03	7.04
HS2792	B 1121 P 453	37°16′25″ 37°15′55″	121°49′46″	15.982	53.18187 55.37796		53.20085 55.40304		53.23023 55.41240	53.16702 55.35291	17 - 81	7.14
HS2789	R 174	37°15′42″	121°48′41″	18.111	54.71156		54.73644		54.73319	54.67250	-1.39	7.41
HS2787	QQ 453	37°15′23″ 37°15′12″	121°48'12"	19.036	57.36310		57.38652		57.38041 58.85663	57.31731 58 79086	-1.60	7.59
HS5164	JCT RM3	37°15′13″	121°47′53″	19.615					59.13915	59.06825	-1.82	
HS2785	P 174 N 453	37°14'58" 37°14'42"	121°47′30″ 121°47′03″	20.301	59.23695 60.02265		59.25801 60.03420		59.24368 60.04362	59.18601 59.98473	-2.08 -1.42	7.58
HS5165	H 1447	37°14′17″	121°46′19″	22.505					65.40824	65.34790	88	
HS4141 HS2778	L 453 M 174	37°13′34″ 37°13′21″	121°45′02″ 121°44′42″	24.649 25.464	79.23240		79.23369 74.60037		79.28453 74.65133	79.22396 74.59144	03	6.09
HS2776	P 19	37°13′00″	121°44′21″	26.325	77.65145		77.65462		77.70273	77.64330	.04	5.56
HS2775 HS2773	L 174 Y 176	37°12′22″ 37°11′39″	121°43′41″ 121°42′56″	27.865 29.592	79.83738 88.56798		79.84146 88.56946		79.85548 88.61912	79.79742 88.55947	-1.46	4.79
HS2769	Perrys	37°11′01″	121°42′17″	31.084	91.36767		91.36921		91.41696	91.35666	.01	4.23
HS2771 HS5166	A 1448	37°11'02' 37°10'37″	121°42'17 121°41'52″	32.057			91.30000		91.60079 94.02074	93.96089	.07	
HS2768	K 453 reset 1974	37°10′28″	121°41′41″	32.432					96.86834	96.80890	.09	
HS5167 HS2762	В 1448 J 453	37°1017 37°09′43″	121°40′59″	34,168	101.44952		101.45073		101.50033	101.44053	.20	1.45
HS2757	A 177	37°09′25″	121°40'39″	34.957	102.87953	105 45202	102.87917		102.93175	102.86655	.29	.90
HS2758 HS2759	B 1077 X	37°09'09″	121°40'50″	35.919	105.58296	105.67947	105.57601		105.63412	105.56405	.33	-1.07
HS2761	C 1077 X	37°09'09"	121°40′50″	36.014	102.74605	102.84134	102.73934		102.79502	102.72574	.25	-1.46
HS2753	RV 2501	37°08′28″	121°39′41″	38.236	107.53127	107.62476	107.53570		107.57909	107.51500	.24	-2.32
HS2751	D 1080	37°07′49″	121°39'00"	39.739	106.96565	107.06415	106.96679		107.01052	106.94802	.13	-3.00
HS5168	P 1448	37°06′56″	121°38′07″	41.933					99.96772	99.90848	.08	
HS2745	E 1080	37°06'11"	121°37′20″	43.419	95.79480	95.88446 95.51430	95.79689 95.41404		95.83563 95.46137	95.78015 95.41688	.04	-4.89 -6.02
HS2743 HS2742	T 19 reset 1938	37°05′43″	121°36′56″	44.826	93.66576	93.76229	93.66226		93.71473	93.67007	.47	-6.24
HS5170	D 1448	37°05′06″	121°36′31″	46.147					87.24420	87.19758 85.88483	.05	
HS2738	G 1080	37°04′19″	121°36′04″	47.740	80.47289	80.54364	80.45440		80.49911	80.44464	45	-8.86
HS2737	C 812 M 149	37°03′22″ 37°03′00″	121°35′32″	49.664 50.366	74.75169	74.83194	74.74230		74.77397	74.72653	62	9.08 8.96
HS2733	Rucker reset 1957	37°02′38″	121°35′11″	51.125		69.28362			69.22693	69.18477	84	
HS2727 HS2725	E 812 reset 1973 D 812	37°02′12″ 37°02′04″	121°35′30″ 121°34′52″	52.380 53.422	67.11539	67.19149	67.09881		67.49486 67.12845	67.45765	96 -1.07	-8.35
HS5172	Q 1448	37°01′33″	121°34′37″	54.449					62.83462	62.79470	76	
HS2724 HS2723	N 149 L 1193	37°01'13" 37°01'02"	121°34′25″ 121°34′19″	55.119 55.512	61.93561	61.11025	61.01427		61.05964	61.02322	54	-7.00
HS5143	E 1448	37°00′45″	121°34′12″	56.083					60.67193	60.63577	51	6.96
HS2720 HS2721	Z 19 Y 19	37°00'28" 37°00'25"	121°34'14 121°34'01″	56.822 57.287	62.80408 61.20904	61.28681			61.23684	61.20166	47	-6.42
HS2722	11 D 140	37°00′25″	121°34′02″	57.320	60.84984	60.92697	60.83076		60.87549	60.84059	60	-6.13
HS2719 HS2718	P 149 RV 22	37°00'09″	121°33′55″	57.664	60.49429	60.57143			60.52009	60.48431	58	-6.27
HS5144	F 1448	37°00'02″	121°33′47″	58.146				60 53572	59.78645 60.55068	59.74900 60.51207	55	-7.12
GU2195	C 1193	36°59'42″	121°33′40″	58.785	57.35129	57.42843		57.35129	57.37748	57.34027	51	-7.56
GU2192	Q 149 reset 1967	36°59'27"	121°33′30″	59.329		59.02364 53.80850		58.94728 53.73351	58.97008 53.76051	58.93271 53.72144	83	-7.99 -8.40
GU2189	RV 24	36°58'39″	121°32′40″	61.564		52.14657		52.06820	52.08874	52.04508	91	-8.87
GU2188	R 149 E 1103	36°58'09″	121°32′30″	62.363 63.974		54.07306 46.44321		53.98806 46.35519	53.97888 46 35174	53.93024 46 30512	-2.65	-9.12 -9.43
GU2180 GU2178	F 1193	36°56′39″	121°32'47"	65.207		43.28335		43.19479	43.18976	43.14411	-2.37	-9.61
GU4096 GU2177	M 1448 S 149	36°56′36″ 36°55′52″	121°32'48" 121°32'49"	65.308 66.625		44.02923		43,95420	42.92262 44.01788	42.88038 43.97529	-2.21 11	-8.99
GU2176	G 1193	36°55′43″	121°32′49″	66.879		46.00386		45.93814	45.97923	45.95170	.30	-8.93
GU2174 GU2175	E 1236 SF 138	36°55′19″ 36°55′15″	121°32'48″ 121°32'50″	67.554 67.791		42.10530		44.81370	44.85771 42.09616	44.84713	.43	-8.34
GU2173	K 1193	36°55'04″	121°32′48″	68.173		46.09696		46.04545	46.08843	46.06083	.37	-8.16
GU2172 GU2171	Sargent AZ MK	36°55'02″	121°32'48 121°32'48″	68.274		46.35530		46.29594	46.33384	46.29952	.02	-7.32
GU2167	G 1236	36°54'15"	121°33′19″	69.904				48.62907	48.67581	48.62064	.52	-6.97 -6.66
GU2155 GU2154	B 1193	36°53'16″	121°33′24″	71.743		44.97181		44.90292	44.93956	44.87223	12	-6.24
GU2151	A 1193	36°52′57″	121°33′36″	72.394		45.68985		45.62485	45.67091	45.60102 54 53640	.39 73	-5.56
GU4097 GU2161	K 812	36°54'05″	121°34′27 121°35′51″	77.197				40.90965	40.96978	40.91139	1.19	-4.96
GU2162	E 20 L 1236	36°54'24" 36°54'34"	121°36′46″	78.683				37.94356 38 35744	38.01785 38.43214	37.95440 38.35483	2.01 2.02	-4.74 -4.57
GU2226	M 1236	36°54′33″	121°37′51″	80.548				37.43106	37.50049	37.42382	1.67	-3.87
GU2229 GU2230	N 1236 W 149	36°53'30″ 36°53'28″	121°38′33″ 121°38′58″	82.963 83 574				28.96355 29.28700	29.02759 29.34896	28.92277 29.21428	1.33	-3.45 -3.11
GU2231	P 1236	36°53′32″	121°39′36″	84.551				24.90692	24.96232	24.84626	.76	-2.42
GU2232	Q 1236	36°53′40″	121°40′22″	85.736				19.23247	19.28686	19.15505	.68	-2.17

							Orthometrie	e height (m)			Subsidence I correction ((mm) 9 .35	
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1967 (3–5) L21038, L21016.1, L21016.2	1968 (10–11) L21602	1969 (3–10) L219691, L21746	1972 (7–9) L22841	1989 (2–7) L2517.2, L2517.4	1990 (1–2) L25239.1	Subsidence correction (mm)	Earthquake correction (mm)
GU2233	R 1236	36°53′51″	121941/24″	87 354				18 88477	18 93404	18 80269	35	-1.58
GU2235	Y 149	36°54'03″	121°42′20″	88.805				12.21096	12.24087	12.10724	82	-1.01
GU4098	V 1448	36°54'05″	121°42′42″	89.397					14.11705	13.99848	38	
GU2237	S 1236	36°54'01"	121°43'05"	89.977				11.89650	11.94221	11.81938	.05	.00
GU2239	T 1236	36°53′55″	121°43′39″	90.899				10.35522	10.39775	10.28159	14	.00
GU2240	U 1236	36°53′50″	121°44'04"	91.563				8.63629	8.68082	8.57030	02	.00
GU2242	M 20 reset 1964	36°53′44″	121°44'40″	92.383				8.66899	8.68768	8.57506	-1.54	.00

Table 11.-Leveling observations along a line from San Jose through Gilroy and Sargent to Watsonville-Continued

Table 12.-Leveling observations along a line from Watsonville to Santa Cruz

[See figure 1 for locations. Number(s) in parentheses below year of survey indicate month(s) when survey was conducted. L-number is U.S. National Geodetic Survey designation. Subsidence correction applies to 1978-90 height difference]

					C	rthometric heig	ht (m)	
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1972 (7–9) L22841	1978 (5) L24298	1990 (2) L25239.2	Subsidence correction (mm)
GU2242	M 20 reset 1964	36°53′44″	121°44′40″	0.000	8.69274	8.67814	8,57506	-1.54
GU2245	V 1236	36°54'12"	121°45′13″	1.404	10.18733	10.17828	10.09895	-5.23
GU2246	W 1236	36°54'19"	121°45′23″	1.768	7.46515	7.46053	7.39289	6.11
GU4162	H 249 reset 1979	36°54'28"	121°45′37″	2.204			8,12852	
GU2248	X 1236	36°54'01″	121°46'35"	3.947	5.46739	5.45611	5.39828	15.16
GU4161	A 1455	36°53'39"	121°47′56″	6.166			7.10690	
GU2260	Z 1236	36°54'37"	121°48′42″	8,257	22.37276	22.36318	22.34565	1.55
GU2262	A 1237	36°54'56"	121°49′10″	9.364	37.47246	37.46232	37.44568	5.03
GU2264	E 249	36°55'21″	121°50′15″	11.199	47.88581	47.86756	4.85577	3.88
GU2265	C 1237	36°55'30″	121°50′40″	11.842	36.09285	36.08243	36.09116	-12.69
GU2266	D 1237	36°55′54″	121°51′25″	13.204	15.87628	15.86939	15.89721	3.31
GU2269	RV 6	36°56'10"	121°51′50″	14,140	23.43842	23,42989	23.43879	10.52
GU2268	E 1237	36°56′10″	121°51′50″	14.148	23,37247	23.36326	23.37856	7.17
GU2272	C 249	36°56′52″	121°52′20″	15.636			35.90532	
GU2273	F 1237	36°56'54"	121°52'24"	15.748	33.08911	33.06446	33.07778	5.78
GU2276	G 1237	36°57′26″	121°52′54″	16.925	37.22072	37.20603	37.29474	-25.77
GU2277	H 1237	36°58'01″	121°53′29″	18.321	31.53158	31.51163	31.61853	-5.42
GU2279	J 1237	36°58'32"	121°53′50″	19.365	30.37252	30.35453	30.49432	-16.16
GU2278	RV 5	36°58'33"	121°53′51″	19.505	29.78264	29.76600	29.90682	-12.16
GU2281	RV 4	36°58'35"	121°54′11″	20.006	32.16769	32.14712	32.28531	-9.40
GU2282	K 1237	36°58'33"	121°54'16"	20.255	34.82839	34.81040	34.94245	-17.43
GU2283	L 1237	36°58'45"	121°55′05″	21.576	40.88461	40.86311	40.98057	-12.16
GU2285	M 1237	36°58'53"	121°56′11″	23.422	22.61641	22.59380	22,70805	-19.33
GU2286	N 1237	36°58'37"	121°56'35"	24.273	24,54349	24.52137	24.61802	-21.60
GU2287	Z 212	36°58'31"	121°56'58"	24.815	19.40660	19.38520	19.46904	-20.60
GU2290	P 1237	36°58'23"	121°57′10″	25.282	16.45093	16.43249	16.51665	-19.13
GU2289	61.94	36°58'06"	121°57'49"	26.500	18.84766	18.82875	18.88675	-13.08
GU2291	55.79	36°58'09"	121°59'03"	28.282	16.97265	16.95073	16.99658	-14.04
GU2294	51.93	36°58'09"	121°59'48"	29.454	15,79953	15.77982	15.82329	-20.19
GU1941	R 1237	36°58'06"	122°00'05"	29.834	8.63581	8.61349	8.64272	-15.67
GU1944	S 1237	36°57′56″	122°00'42"	30.870	7.31218	7.29741	7.31251	-21.01
GU3223	941 3745 tidal 4	36°57′56″	122°01′28″	32,137		13.21725	13.23207	-5.58
GU1945	14	36°57′53″	122°01′30″	32.379	4.20406	4.18806	4.21113	-7.69

ELEVATION CHANGES ASSOCIATED WITH THE EARTHQUAKE AND THEIR USE TO INFER FAULT-SLIP GEOMETRY A137

Table 13.—Leveling observations along a line from Santa Cruz through Los Gatos to San Jose

[See figure 1 for locations. Numbers in parentheses below year of survey indicate months when survey was conducted. L-numbers are U.S. National Geodetic Survey designations. Subsidence correction applies to 1967-90 height difference]

				<u> </u>	Orth	hometric height	(m)				
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1954 (4-7) L15275.9, L15275.10	1960 (9–12) L18119.9, L18119.10	1967 (1-3) L21016.9, L21016.10, L21016.13	1990 (2–3) L25239.3	Subsidence correction (mm)		
GU3223	941 3745 tidal 4	36°57′56″	122°01′28″	0.000				13.23207			
GU1945	14	36°57′53″	122°01′30″	.147				4.21146			
GU1952	T 1237	36°58′05″	122°01′42″	.601	/			4.55344			
GU4167	B 1455	36°58'15"	122°01′50″	1.042				4.41596			
GU4163	C 1455	36°58'42"	122°01′24″	2.329				8.12574			
GU4165	D 1455	36°59′10″	122°01′22″	3.365				12.63562			
GU4165	E 1455	36°59′24″	122°01′15″	3.796				26.60844			
GU4166	F 1455	36°59′58″	122°01′12″	4.970				78.09381			
HT3563	G 1455	37°00'31"	122°01'13″	6.103 7.519				103.22221			
HT3565	I 1455	37°02′08″	122°01′13″	9.482				169.60427			
HT3566	K 1455	37°02′34″	122°01′24″	10.349				156.57370			
HT3567	M 1455	37°03′12″	122°02′19″	10.506				135.65247			
HT3568	L 1455	37°03′18″	122°03′04″	10.662				156.30220			
HT3570	P 1455	37°03'19"	122°03′36″	10.819				106.74056			
HT1429	L 249	37°03′05″	122°03′43″	11.132				91.08537			
HT1430	RV 12	37°02′55″	122°03′48″	11.288				89.43701			
HT3571	Q 1455	37°02′51″	122°00′53″	11.445				166.37080			
HI3572	K 1455 S 1455	37°03'19'	122°00 35	12.525				102 78008			
LIS4900	TRAILL	37°03′31″	121°59′35″	15.070				281.51432			
IIS5175	T 1455	37°04′19″	121°59'24"	15.560				248.10103			
HS5176	U 1455	37°04′42″	121°58′43″	16.947				306.37117			
HS5177	V 1455	37°05′10″	121°58′40″	17.909				346.31595			
HS5178 HS5179	X 1455	37°06′20″	121°58′24″	20.378				370.64274			
HS5180	Y 1455	37°06′48″	121°58'24"	21.425				423.19583			
HS5181	Z 1455	37°07′20″	121°58′21″	22.477				469.51265			
HS5182	A 1456 B 1456	37°07'59″	121°58′48″ 121°50′02″	23.891				553.06745			
HS3171	R 1077 reset 1970	37°08′44″	121°59'02″	25.590				558,60804			
HS5184	C 1456	37°09′06″	121°59′01″	26.676				485.80749			
HS5185	D 1456	37°09′26″	121°58′52″	27.590				423.41982			
HS5186	E 1456	37°09'42"	121°59′21″	28.580	222 14184	222 06118	222 07112	365.70972			
HS3174	R 878	37°10′04″	121 59 20 121°58′43″	30.300	205.79353	205.74637	205.73157	205.84335	.00		
HS5187	F 1456	37°10′41″	121°59′39″	30.821				263.53229			
HS3160	M 878	37°11′00″	121°59′27″	31.572	228.18700	228.13815	228.12361	228.16190	.00		
HS5188	G 1456	37°11'41"	121°59'32"	32.974	202 28128	202 22001	203 23140	203.69486			
HS3154	D 177	37°12′53″	121°59′13″	35.485	135.17397	135.12746	135.11170	135.09580	.00		
HS5189	II 1456	37°13′19″	121°58′57″	36.454				124.60494			
HS3145	C 177	37°13′27″	121°58′48″	36.737	121.88043	121.83275	121.82025	121.75144	-1.01		
HS5190	J 1456 V 1456	37°13'55"	121°58'36″	37.904				112.04248			
HS3140	G 386	37°14′49″	121°57′55″	39 922	93,57815	93 53010	93 50326	93 39370	-4.86		
HS4911	VASO-	37°14′50″	121°57′54″	39.975				92.90174			
HS3141	G 875	37°14′49″	121°57′55″	40.011	93.31040	93.27220	93.24122	93.13894	5.97		
HS5192	L 1456	37°15′24″	121°57′51″	41.256	77 42417	77 20116	77 24461	85.22922	0.20		
HS3132	T 1122	37°16′05″	121 38 37 121°57′22″	41.940	//.4241/	71.64922	71 61770	71 55630	-9.29		
HS5193	M 1456	37°16′26″	121°57′04″	43.424				67.62296			
HS3271	A 887 reset 1962	37°16′01″	121°56′27″	43.940			71.65135	71.55339	-11.71		
HS3131	S 1122	37°16′55″	121°56′40″	44.455	(1.54100	63.34012	63.27957	63.22391	-13.90		
HS3127	L 075 U 176 reset 1940	37°17′13″	121°56'15"	44.941	58 95799	58 87831	58 71350	58 64586	-38.94		
HS3125	D 875	37°17′27″	121°56′18″	46.265	59.19844	59.09533	58.87475	58.78229	-56.81		
HS3124	T 176 reset 1962	37°17′52″	121°55′51″	47.283			52.26381	52.13361	-93.45		
HS3122	S 176 reset 1962	37°18′07″	121°55′36″	47.824			50.23288	50.06486	-112.92		
HS3118	R 170 reset 1902 P 176	37°19'10"	121 34 39	49.232 50.667	34 32425	33 03303	42.33933	42.10389	-164.32 -215.25		
HS3117	D 877	37°19′28″	121°54′06″	51.396	31.00216	30.60606	29.77560	29,61618	-220.37		
HS3109	C 112	37°19′55″	121°54′09″	52.288	30.60766	30.13155	29.13692	28.90626	-264.40		
HS3108	B 875	37°20′05″	121°54′13″	52.593	28.52997	28.02726	26.99132	26.75623	-275.48		
HS2891 HS5160	Z 111 reset 1962 L 1447	37°20'29"	121-54.40"	53.601 54 722		24.23590	23.22121	23.00027	-269.78		
HS5161	G 1448	37°21′07″	121°55′01″	55.311				17.17585			

MAIN-SHOCK CHARACTERISTICS

Table 14.—Leveling observations along a line from Capitola through Loma Prieta to Coyote

[See figure 1 for locations. Numbers in parentheses below year of survey indicate months when survey was conducted; month of 1953 survey is unknown. L-number is U.S. National Geodetic Survey designation; PV numbers are U.S. Geological Survey (USGS) field-summary-book designations. Obs., original field observations, with previous USGS adjustments removed; adj., observations adjusted for consistent coseismic network (see text)]

					(Orthometric height (m)		
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1953 (obs.)	1953 (adj.)	1990 (3-4)	
					PV 80, PV	V208, PV220	L25239.4	
GU2286	N 1237	36°58'37″	121°56′35″	0.000			24.61802	
GU2287	Z 212	36°58'31″	121°56′58″	.540	19.47200	19.35700	19.46874	
GU4168	N 1456	36°58′59″	121°57′22″	1.631			10.90370	
GU4169	32 WLS	36°59'26″	121°57′24″	2.473	12.55000	12.44000	12.58387	
HS5194	P 1456	37°00 19	121°57'08	4.081			63 00953	
HS5195	Chiseled square A	37°02′09″	121°56'35″	7.938	69.45100	69.35200	69.68787	
HS5197	R 1456	37°02′44″	121°56′18″	9.183			70.75253	
HS5198	S 1456	37°03'19"	121°56'21"	10.388			80.92999	
HS5199	Т 1456	37°04′09″	121°56′15″	12.079			141.75804	
HS5200	U 1456	37°04′36″	121°56′21″	12.914			176.51875	
HS5201	1940 28 W/L G	37°05′10″	121°57'02"	14.197	228 66800	228 58500	253.93246	
HS5202	28 WLS Chiseled square B	37°06'08"	121°56'47"	15.550	393 53200	393 45100	394 06493	
HS5210	Z 1456	37°06'39"	121°56′52″	17.769			437.11351	
HS5204	Burdett	37°06′37″	121°56′43″	18.074			458.02049	
HS5205	27 WLS	37°06′52″	121°56′20″	18.770	471.42400	471.34800	471.73675	
HS5206	V 1456	37°07′06″	121°55′26″	20.234			477.26362	
HS5207	W 1456	37°06′40″	121°54′40″	21.624			548.68660	
HS5208	X 1456	37°06'22"	121°53′56″	22.910			572.60387	
HS5209	1 1430 A 1457	37°06'19	121°53'50	23.377			687 67126	
HS5212	B 1457	37°06′17″	121°52′45″	25.372			762.65041	
HS5213	C 1457	37°05′56″	121°52′02″	26.767			768.58749	
HS5214	D 1457	37°06′01″	121°51'42"	27.478			844.04796	
HS5215	E 1457	37°05′56″	121°51′13″	28.106			906.54151	
HS5216	F 1457	37°05′49″	121°50′41″	29.151			939.09174	
HS5217	U 1457 Loma Prieta reset 1958	37°0622	121-50 49	30,340			1,024.92195	
HS5218	LOMA	37°06'41″	121°50'35"	31.045			1,154,12757	
HS5220	Loma Prieta 1	37°06′35″	121°50'37″	31.295			1.152.23547	
HS5221	Н 1457	37°06'25"	121°50'14"	31.544			906.77804	
HS5222	J 1457	37°06′35″	121°50′06″	31.997			870.71964	
HS5223	K 1457	37°06′18″	121°49′14″	33.535			788.32005	
HS5224	HJH 55 L 1457	37°06'09"	121°48′20″	34.950	728.26800	728.22600	728.13323	
HS5225	M 1457	37°06'41″	121 46 16	36 585			480 67033	
HS5227	N 1457	37°06'47″	121°48′25″	37.650			364.02224	
HS5228	P 1457	37°07′11″	121°48'06"	38.787			300.72020	
HS5230	Q 1457	37°07′25″	121°47′40″	39.885			279.08001	
HS5229	TBM angle iron	37°07′25″	121°47′39″	39.892	276.80400	276.77200	276.70031	
HS5231	HJH 53	37°07′56″	121°47′30″	40.985	246.37300	246.34400	246.26767	
HS5232	K 145/ Chicalad aquara C	37°08'26'	121°46'58"	42.420	207 11700	207 00400	227.65294	
HS5233	S 1457	370034	121 40 15	43.883	207.11700	207.09400	207.03122	
HS5235	TBM spike	37°09′07″	121°45′35″	45.073	201.97200	201.95100	201.86131	
HS5236	T 1457	37°09'05″	121°44′49″	46.341			191,44521	
HS5237	U 1457	37°09′37″	121°44′56″	47.370			230.54392	
HS5238	TBM manhole	37°09′37″	121°44′56″	47.390	230.22200	230.20600	230.15221	
HS5239	HJH 51 V 1457	37°10′20″	121°45′30″	49.067	156.36400	156.35200	156.30456	
HS5240	v 1437 W 1457	3/~11'03"	121°45′12″	50.963			145,71067	
HS5241	VY 1457 X 1457	37°11'10 37°11'17″	121 45 19	51.095 53.100			94.49410 76 06677	
HS2775	L 174	37°12'22"	121 43'41"	54 849	79 81900	79 81900	10.000// 70 78205	
HS2776	P 19	37°13′00″	121°44′21″	56.388			77.63078	

Table 15.—Leveling observations along a line from 9.6 km south of Morgan Hill to Loma Prieta

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; month of 1953 survey is unknown. L-number is U.S. National Geodetic Survey designation; PV-number is U.S. Geological Survey (USGS) field-summary-book designation. Obs., original field observations, with previous USGS adjustments removed; adj., observations adjusted for consistent coseismic network (see text)]

					Or	thometric height	(m)
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1953 (obs.)	1953 (adj.)	1990 (4)
					PV	220	
110.00 40	0.1450	27901/50//	121820/20//	0.000			102 20476
HS5243	Q 1458	37°01'50"	121°39 20	0.000			103.304/0
HS5244	P 1458	37°01'49"	121°39 49	1.339			108.51847
HS5245	N 1458	3/201 38	121°40 57	3.1/1			134,40203
HS5246	M 1458	3/°01 50°	121°41 39	4.277	148 60100	149 62000	130.10303
HS5247	Chiseled square 1	37°02'04"	121°42 26	5.612	148.60100	148.62000	148.45545
HS5248	L 1458	3/°01 50	121°42 34	0.337			250.89983
HS5249	K 1458	3/°01°36″	121°42 56	/.049			350.51604
HS5250	J 1458	3/°01 11	121°43 05	8.844			520 02921
HS5251	H 1458	3/~00 48	121°43 01	9.094	521 12000	521 14500	521.00257
HS5252	114 JD X 1450	37°0048	121 43 02	9.702	521.12900	521.14500	550 60397
HS5253	Y 1459	37°0103	121 45 24	11 140	•••		571 23601
HS5254	G 1458 X 1450	37'01 22	121 43 57	12 154			505 01050
HS5255	X 1459	3/101 3/	121°44 15	12.134	624 22700	624 24200	624 21920
HS5256	115 JD W 1450	37'01 37	121 44 54	12,004	034,32700	034.34200	622 27002
H55257	W 1459	37'02 17	121 44 49	14 229			620 02 276
HS5258	F 1458	37"02 32	121 44 59	14,320			640 27022
HS5259	P 1459	37-02 33	121 45 14	15,180			701 92274
HS5260	E 1458	37-02 32	121-45 54	15.880			701.83374
HS5261	Q 1459	37°02 55	121-45 40	10.234	75(40000	756 44000	752.00204
HS5262	116 JD	37°03'03"	121°45 43″	10.598	/56.42800	/56.44000	/30.34009
HS5263	V 1459	37°03'10"	121°46 15	17.554			/38.38398
HS5264	D 1458	37°03'22"	121°46'39"	18.393			7/1.94006
HS5265	R 1459	3/203 38	121-47 02	19.198			703.99801
HS5266	C 1458	3/°03 46	121°4/10	19.039			/92.30940
HS5267	B 1458	3/~03.50	121°4/ 30″	20.393			854.10806
HS5268	N 1459	3/°04'04''	121°48 08	21.320			855.10936
HS5269	END	37°04 25	121-48 40	22.303			848.20998
HS52/1	A 1458	3/*04 40	121°48 59	23.245			908.00462
HS52/2	S 1459	37°04 49	121-48 57	23.327			914.07271
HS52/3	L 143/	37-05-07	121-49 10	24.254			0/4./0002
1552/4	1 1439 N 1457	3/20318	121-49 45	25.190			005 70207
HS52/5	Y 1457	3/~05/24"	121*49 54	23.013			905,/039/
HS5276	M 1459	37~05.31"	121°50'15″	26.288			914.85099
HS5216	F 1457	37~05.49"	121°50'41″	27.443			939,12012
H55215	E 145/	3/-03 30	121-31 15	28.302			906.57015

Table 16.—Leveling observations along a line from Morgan Hill to Watsonville

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; month of 1953 survey is unknown. L-number is U.S. National Geodetic Survey designation; PV-numbers are U.S. Geological Survey (USGS) field-summary-book designations. Obs., original field observations, with previous USGS adjustments removed; adj., observations adjusted for consistent coseismic network (see text)]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Or	Orthometric height (m)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1953 (obs.)	1953 (adj.)	1990 (4)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						PV208	3, PV220	L25239.6	
$\begin{split} & HS5169 P 448 37^{\circ}06^{\circ}56' 12^{\circ}38'07'' 1.020 \cdots \cdots 9.9.906/9 \\ & HS5277 Chiseled square 3 37^{\circ}05'39'' 12^{\circ}38'15'' 2.569 9.6.51000 9.6.48300 9.6.48360 \\ & HS5278 R 458 37^{\circ}05'39'' 12^{\circ}38'42'' 4.297 \cdots \cdots 11.9.2432 \\ & HS5279 S 458 37^{\circ}05'05'' 12^{\circ}39'10'' 5.579 \cdots \cdots 11.9.2432 \\ & HS5280 Chiseled square B 37^{\circ}05'05'' 12^{\circ}39'10'' 5.579 \cdots \cdots 11.9.2432 \\ & HS5279 S 458 37^{\circ}05'06'' 12^{\circ}39'10'' 5.579 \cdots \cdots 11.9.2432 \\ & HS5281 109 \ JD 37^{\circ}04'05'' 12^{\circ}32'' 7.545 130.64300 130.43800 102.47966 \\ & HS5281 1109 \ JD 37^{\circ}04'05'' 12^{\circ}39'10'' 8.857 \cdots \cdots 116.77682 \\ & HS5283 110 \ JD 37^{\circ}02'35'' 12^{\circ}39'10'' 10.331 102.58700 102.56400 102.47966 \\ & HS5284 U 458 37^{\circ}00'57'' 12^{\circ}139'20'' 12.028 \cdots \cdots 98.28815 \\ & HS5283 110 \ JD 37^{\circ}00'39'' 12^{\circ}39'43'' 15.526 109.07800 109.05800 108.98607 \\ & HS5284 U 458 37^{\circ}00'13'' 12^{\circ}40'16'' 16.882 \cdots \cdots 143.68643 \\ & HS5286 V 458 37^{\circ}00'13'' 12^{\circ}40'16'' 16.882 \cdots \cdots 143.68643 \\ & HS5286 V 458 37^{\circ}00'02'' 12^{\circ}42'10'6'' 18.286 \cdots \cdots 143.68643 \\ & GU4170 X 458 36^{\circ}59'25'' 12^{\circ}42'10'' 21.326 \cdots \cdots 226.40284 \\ & GU4171 Y 458 36^{\circ}59'50'' 12^{\circ}42'20'' 21.175 \cdots \cdots 377.78833 \\ & GU4172 Chiseled riangle A 36^{\circ}59'50'' 12^{\circ}42'10''' 24.304 315.72500 315.70900 315.71218 \\ & GU4174 Chiseled square 2 36^{\circ}59'10'' 12^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ & GU4174 Chiseled square 2 36^{\circ}59'10'' 12^{\circ}43'00''' 22.610 \cdots \cdots 378.481834 \\ & GU4177 Chiseled square 2 36^{\circ}59'10'' 12^{\circ}43'00'' 22.610 \cdots \cdots 378.481834 \\ & GU4177 Chiseled square 2 36^{\circ}59'10'' 12^{\circ}43'00'' 22.610 -\cdots \cdots 278.481834 \\ & GU4178 Ch459 36^{\circ}58'45''' 12^{\circ}43'00'' 22.610 \cdots \cdots 278.481859 \\ & GU4183 H 1459 36^{\circ}59'10'' 12^{\circ}43'00'' 22.610 \cdots \cdots $	HS5168	N 1448	37°07′22″	121°38′34″	0.000			103.40712	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5169	P 1448 Chiceled course 3	37°06′56″ 37°06′26″	121°38′07″ 121°38′05″	1.020	96 51000	96 48300	99.90679	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5278	R 1458	37°05′39″	121°38′42″	4.297			102.69264	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5279	S 1458	37°05′06″	121°39′10″	5.579			111.92432	
$ HS5279 & S 1458 & 37^{0}05'06'' & 121^{0}39'10'' & 5.79 & & & 111.92432 \\ HS5281 & 109 JD & 37^{0}4'05'' & 121^{0}39'32'' & 7.545 & 130.46300 & 130.43800 & 130.33963 \\ HS5282 & T 1458 & 37^{0}02'43'' & 121^{0}39'40'' & 8.857 & & & 116.77682 \\ HS5283 & 10 JD & 37^{0}02'43'' & 121^{0}39'20'' & 10.31 & 102.58700 & 102.56400 & 102.47966 \\ HS5284 & U 1458 & 37^{0}00'50'' & 121^{0}39'23'' & 14.040 & & & 98.28815 \\ HS5285 & 38 WLS & 37^{0}00'13'' & 121^{0}39'43'' & 15.526 & 109.07800 & 109.05800 & 108.98607 \\ HS5284 & U 1458 & 37^{0}00'13'' & 121^{0}40'49'' & 17.563 & & & 143.68643 \\ HS5286 & V 1458 & 37^{0}00'13'' & 121^{0}40'49'' & 17.563 & & & 149.51767 \\ HS5287 & W 1458 & 36^{5}9'32'' & 121^{0}41'16'' & 18.286 & & & 128.43834 \\ GU4170 & X 1458 & 36^{5}9'32'' & 121^{0}41'58'' & 20.326 & & & 278.43834 \\ GU4171 & Y 1458 & 36^{6}59'30'' & 121^{0}42'20'' & 21.175 & & -278.43834 \\ GU4173 & Chiseled triangle A & 36^{5}9'50'' & 121^{0}42'47'' & 22.214 & & & 339.73900 \\ GU4175 & 36 WLS & 36^{6}59'24'' & 121^{0}42'54'' & 23.275 & & & 371.84734 \\ GU4177 & Chiseled square 2 & 36^{6}59'10'' & 121^{0}42'54'' & 23.275 & & & 274.438.18594 \\ GU4179 & D 1459 & 36^{6}59'06'' & 121^{0}42'30'' & 26.611 & 406.73500 & 416.71800 & 406.67640 \\ GU4176 & B 1459 & 36^{6}59'06'' & 121^{0}42'36'' & 26.278 & & & 274.388.18594 \\ GU4180 & E 1459 & 36^{6}58'30'' & 121^{0}43'00'' & 25.650 & & & 249.36555 \\ GU4181 & F 1459 & 36^{6}58'30'' & 121^{0}43'00'' & 26.6278 & & & 249.36555 \\ GU4182 & G 1459 & 36^{6}58'30'' & 121^{0}43'07'' & 27.546 & & & 159.1854 \\ GU4184 & J 1459 & 36^{6}58'30'' & 121^{0}43'07'' & 27.546 & & & 59.13198 \\ GU4184 & H 1459 & 36^{6}58'30'' & 121^{0}43'07'' & 27.546 & & & 59.1398 \\ GU4184 & H 1459 & 36^{6}58'30'' & 121^{0}43'30'' & 26.678 & & & 59.1398 \\ GU4184 & H 1459 & 36^{6}55'10'' & 121^{0}44'32'' & 32.808 & 21.077700 & 21.06500 & 20.96856 \\ GU4186 & W 17 & 36^{6}55'31''' & 121^$	HS5280	Chiseled square B	37°05'05"	121°39'12"	5.647	112.89600	112.87000	110.35487	
$ HS5281 109 JD 37^{\circ}04'05'' 121^{\circ}39'27'' 7.545 130.46300 130.43800 130.33663 \\ HS5282 T 1458 37^{\circ}02'43'' 121^{\circ}39'07'' 10.331 102.58700 102.56400 102.47966 \\ HS5284 Q 1458 37^{\circ}01'50'' 121^{\circ}39'20'' 12.028 103.30476 \\ HS5284 U 1458 37^{\circ}00'57'' 121^{\circ}39'37'' 14.040 98.28815 \\ HS5285 38 WLS 37^{\circ}00'39'' 121^{\circ}39'43'' 15.526 109.07800 109.05800 108.98607 \\ HS5284 U 1458 37^{\circ}00'13'' 121^{\circ}40'16'' 16.882 143.68643 \\ HS5286 V 1458 37^{\circ}00'16'' 121^{\circ}40'49'' 17.563 149.51767 \\ HS5286 V 1458 37^{\circ}00'16'' 121^{\circ}40'49'' 17.563 184.2037 \\ GU4170 X 1458 36^{\circ}59'25'' 121^{\circ}41'14'' 19.203 220.40284 \\ GU4171 Y 1458 36^{\circ}59'25'' 121^{\circ}41'14'' 19.203 278.43834 \\ GU4172 Z 1458 36^{\circ}59'25'' 121^{\circ}41'14'' 22.214 387.78833 \\ GU4173 C hiseled triangle A 36^{\circ}59'50'' 121^{\circ}42'47'' 22.214 387.78833 \\ GU4175 36 WLS 36^{\circ}59'50'' 121^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ GU4176 B 1459 36^{\circ}59'60'' 121^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ GU4176 C 1459 36^{\circ}59'60'' 121^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ GU4178 C 1459 36^{\circ}59'60'' 121^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ GU4178 C 1459 36^{\circ}59'60'' 121^{\circ}43'00'' 22.611 406.73500 406.71800 406.67640 \\ GU4178 C 1459 36^{\circ}59'60'' 121^{\circ}43'00'' 22.610 248.18595 \\ GU4180 E 1459 36^{\circ}58'60'' 121^{\circ}43'00'' 22.610 248.18595 \\ GU4181 F 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 23.650 248.18595 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 23.650 249.3655 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 23.650 248.18595 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 23.650 248.18595 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 23.650 248.18595 \\ GU4184 H 1459 36^{\circ}55'6'1'' 121^{\circ}4'4'2''' 33.953 19.1844 \\ $	HS5279	S 1458	37°05′06″	121°39′10″	5.579			111.92432	
$ HS5282 T 1458 37^{\circ}03'25'' 121^{\circ}39'07'' 10.331 102.58700 102.56400 102.47966 \\ HS5283 I10 JD 37^{\circ}02'43'' 121^{\circ}39'07'' 10.331 102.58700 102.56400 102.47966 \\ HS5284 U 1458 37^{\circ}01'50'' 121^{\circ}39'20'' 12.028 98.28815 \\ HS5285 38 WLS 37^{\circ}00'39'' 121^{\circ}39'43'' 15.526 109.07800 109.05800 108.98607 \\ HS5284 L 1459 37^{\circ}01'13'' 121^{\circ}40'16'' 16.882 143.68643 \\ HS5286 V 1458 37^{\circ}00'13'' 121^{\circ}40'16'' 18.286 143.68643 \\ HS5286 V 1458 37^{\circ}00'16'' 121^{\circ}41'04'' 17.563 148.20379 \\ GU4170 X 1458 36^{\circ}59'32'' 121^{\circ}41'14'' 19.203 278.43834 \\ GU4171 Y 1458 36^{\circ}59'32'' 121^{\circ}41'14'' 19.203 278.43834 \\ GU4171 Y 1458 36^{\circ}59'40'' 121^{\circ}42'24''' 22.214 377.8833 \\ GU4173 Chiseled triangle A 36^{\circ}59'50'' 121^{\circ}42'47'' 22.214 377.8433 \\ GU4175 36 WLS 36^{\circ}59'50'' 121^{\circ}42'47'' 22.214 371.84734 \\ GU4177 Chiseled square 2 36^{\circ}59'10'' 121^{\circ}42'47'' 24.304 315.72500 315.70900 315.71218 \\ GU4178 C 1459 36^{\circ}59'60'' 121^{\circ}42'47'' 24.304 315.72500 315.70900 315.71218 \\ GU4178 C 1459 36^{\circ}58'49'' 121^{\circ}43'01'' 24.304 315.72500 315.70900 315.71218 \\ GU4178 C 1459 36^{\circ}58'49'' 121^{\circ}43'01'' 24.304 315.72500 315.70900 315.71218 \\ GU4178 C 1459 36^{\circ}58'49'' 121^{\circ}43'01'' 24.304 315.72500 315.70900 315.71218 \\ GU4178 C 1459 36^{\circ}58'49'' 121^{\circ}43'01'' 24.304 315.72500 315.70900 315.71218 \\ GU4180 E 1459 36^{\circ}58'30'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4181 F 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4181 F 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4184 J 1459 36^{\circ}58'30'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 25.650 214.85295 \\ GU4184 H 1459 36^{\circ}57'34'' 121^{\circ}43'00'' 25.650 25.51.51616 \\ $	HS5281	109 JD	37°04′05″	121°39′32″	7.545	130.46300	130.43800	130.33963	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5282	T 1458	37°03′25″	121°39′40″	8.857			116.77682	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5283	110 JD	37°02′43″	121°39′07″	10.331	102.58700	102.56400	102.47966	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5243	Q 1458	37°01′50″	121°39′20″	12.028			103.30476	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5284	U 1458	37°00'57″	121°38'57"	14.040			98.28815	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5285	38 WLS	37°00'39"	121°39'43"	15.526	109.07800	109.05800	108.98607	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS5288	L 1459	37°00 13"	121°40 16	10.882			143,08043	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H55280	V 1458	370010	121 40 49	18 286			184 203 70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H55287	W 1458 V 1459	36050'22"	121 41 00	10.200			220 40284	
	GU4170	X 1450 V 1459	36°50'25"	121 41 14	20 3 26			220,40284	
	GU4172	7 1458	36°59'40"	121°42′20″	21 175			327 78833	
	GU4173	Chiseled triangle A	36°59'50"	121°42′47″	22 214			389 73900	
	GU4175	36 WLS	36°59'50"	121°43′00″	22.611	406 73500	406.71800	406 67640	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4176	B 1459	36°59'24"	121°42′54″	23.275			371.84734	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4177	Chiseled square 2	36°59'10"	121°43'01″	24.304	315.72500	315,70900	315.71218	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GU4178	C 1459	36°59'06"	121°42'47"	24.847			288.18594	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GU4179	D 1459	36°58'49"	121°43′00″	25,650			249.36555	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GU4180	E 1459	36°58'45"	121°42′36″	26.278			214.85295	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4181	F 1459	36°58′30″	121°43′07″	27.546			159.18544	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4182	G 1459	36°58′06″	121°43′06″	28.427			109.08097	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GU4183	Н 1459	36°57′34″	121°43′20″	29.569			59.13198	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4184	J 1459	36°56′54″	121°44′01″	31.158			35.16116	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GU4185	33 WLS reset 1965	36°56′07″	121°44′32″	32.808	21.07700	21.06500	20.96856	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4186	W 17	36°55′31″	121°44′42″	33.953			17.04438	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GU4187	W 16	36°55′10″	121°44′49″	34.600			12.49995	
GU4189 W 9 36°54'37" 121°45'32" 36.326 8.56993 GU4162 H 249 reset 1979 36°54'28" 121°45'37" 36.778 8.14009 GU2246 W 1236 36°54'19" 121°45'23" 37.215 7.40400 GU2245 V 1236 36°54'12" 121°45'13" 37.586 10.10877	GU4188	K 1459	36°55′01″	121°45′09″	35,319			12.50816	
GU4162H 249 reset 1979 $36^{\circ}54'28''$ $121'45'37''$ 36.778 $$ 8.14009 GU2246W 1236 $36^{\circ}54'19''$ $121^{\circ}45'23''$ 37.215 $$ 7.40400 GU2245V 1236 $36^{\circ}54'12''$ $121^{\circ}45'13''$ 37.586 $$ 10.10877	GU4189	W 9	36°54′37″	121°45′32″	36.326			8.56993	
GU2246 W 1236 36°54'19" 121°45'23" 37.215 7.40400 GU2245 V 1236 36°54'12" 121°45'13" 37.586 10.10877	GU4162	H 249 reset 1979	36°54′28″	121°45′37″	36.778			8.14009	
GU2245 V 1236 36°54°12″ 121°45′13″ 37.586 10.10877	GU2246	W 1236	36°54′19″	121°45′23″	37.215			7.40400	
	GU2245	V 1236	36°54'12"	121~45 13"	37.586			10.10877	

Table 17.—Leveling observations along a line from Watsonville, through Freedom, Browns Valley Road, and Casserly Road, to 6.1 km northwest of Watsonville

[See figure 1 for locations. Numbers in parentheses below year of survey indicate months when survey was conducted; month of 1970 survey is unknown. L-number is U.S. National Geodetic Survey designation]

				T 1.1	Orthometri	c height (m)
ACRN	Designation	Latitude N.	Longitude W.	distance (km)	1970	1990 (4–5) L25251.1
GU4183	H 1459	36°57'34″	121°43′20″	0.000		59.13198
GU4203	15724 = 118	36°57'23"	121°43′35″	.506	47.92800	47.91718
GU4204	150.42 = 119	36°57'38″	121°43′47″	1.127	45.84800	45.87621
GU4205	A 1460	36°57'54"	121°44′14″	2.032		39.47554
GU4206	133.06=121	36°58'14"	121°44′15″	3,150	40.56000	40.62783
GU4207	138.62 = 122	36°58'34"	121°44'29"	3.900	42.25000	42.37796
GU4208	271.10=319	36°59'21"	121°44′19″	5.492	82.63000	82.76526
GU4209	423.34=318	36°59'35"	121°44′03″	6.165	129.03300	129,12294
HS5289	412.23=317	37°00'06"	121°44′20″	7.231	125,64600	125.96969
HS5290	B 1460	37°00'23″	121°44′45″	8.069		174,79177
HS5291	737.58=316	37°00'48″	121°45'04"	8.970	224,81500	225,12059
HS5292	C 1460	37°01'09"	121°45′46″	9.896		244.48891
HS5293	739.34=315	37°01′16″	121°45′27″	10.449	225.35000	225,36587
HS5294	D 1460	37°01'24"	121°46′07″	11.229		192.87509
HS5295	529.07=314	37°01′34″	121°46′43″	12.050	161.26000	161.39395
HS5296	411.31=313	37°00′59″	121°47′15″	13.544	125.36700	125.60414
HS5297	361.00=312	37°00'29″	121°47′36″	14.729	110.03400	110.29602
HS5298	323.74=311	37°00'03″	121°47′47″	15.558	98.67500	98.93378
GU4210	270.33=310	36°59′19″	121°47′59″	16.985	82.39500	82.63666
GU4211	236.78=309	36°58′50″	121°48′00″	17.875	72.17200	72.38569
GU4212	295.16=308	36°58′17″	121°47′39″	19.074	89.96600	90.12004
GU4213	257.94=307	36°57′54″	121°47′32″	19.783	78.62000	78.75199
GU4214	223.07=306	36° 57′ 36″	121°47′11″	20,511	67.99000	68.09088
GU4215	149.99=304	36°56′59″	121°46′17″	22.303	45.71700	45.71554
GU4216	Gaging station	36°56'21″	121°46′10″	23.739		32,74371
GU4217	Z 1459	36°56'04"	121°46'18"	24.324		35.32309
GU2250	T 738 reset 1963	36°55′32″	121°45′44″	25.605	27.50600	27.47638
GU4188	K 1459	36°55′01″	121°45′09″	27.021		12.49315

Table 18.—Leveling observations along a line from 0.5 km west of Corralitos through Freedom Boulevard to Aptos

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; month of 1970 survey is unknown. L-number is U.S. National Geodetic Survey designation]

			<u></u>		Orthometrie	c height (m)
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1970	1990 (4) L25251.2
GU4210	270 33=310	36°59'19″	121°47′59″	0.000	82 39500	82 63666
GU4218	E 1460	36°59′20″	121°48′05″	168		77.26547
GU4219	271.52 = 301	36°59′18″	121°48′20″	.553	82.75900	82,99344
GU4220	469.60=300	36°59′40″	121°48′54″	1.722	143,13500	143,41648
GU4221	K 1460	36°59'29"	121°49'17"	2,441		126.06179
GU4222	48	36°59'25"	121°49'38"	2.985	113.76000	113.52423
GU4223	J 1460	36°59'15"	121°50'09"	4.013		110.88108
GU4224	H 1460	36°59'12"	121°50'46"	4.966		111.28063
GU4225	G 1460	36°59'04"	121°51′43″	6.422		69.80046
GU4226	R 125	36°58'12″	121°52′21″	8.241		54.80430
GU4227	F 1460	36°58'31″	121°53′07″	9.992		46.45767
GU2278	RV 5	36°58′33″	121°53′51″	11.336	29.80000	29.91452

MAIN-SHOCK CHARACTERISTICS

Table 19.—Leveling observations along a line from 0.8 km northwest of Freedom, through Valley Road and Buena Vista Drive, to 0.6 km south of La Selva Beach

[See figure 1 for locations. Numbers in parentheses below year of survey indicate months when survey was conducted; month of 1970 survey is unknown. L-number is U.S. National Geodetic Survey designation]

gnation Latitude	Longitude	Leveled		
	W.	distance (km)	1970	1990 (4–5) L25251.3
59 36°56'04' 34=96 36°56'26' 36°56'25' 36°56'25' 36°56'25' 36°56'36' 1220 36°56'36' 4=220 36°56'49' 54=221 36°56'703' 54=223 36°57'13' 1 36°56'532' reset 36°56'10'	7 121°46'18" 7 121°46'51" 7 121°47'17" 7 121°47'49" 7 121°47'49" 7 121°48'52" 7 121°48'52" 7 121°48'52" 7 121°49'19" 7 121°50'45" 7 121°51'23" 7 121°51'50"	0.000 1.086 1.827 2.666 3.689 4.672 5.473 6.290 7.945 8.594 9.798 10.955	43.29800 48.26000 51.08000 10.94000 20.54300 28.57300 39.78800 84.61700 51.56600 23.46000	35,32309 43,30354 48,29119 51,11660 10,96152 20,60159 28,62398 39,86020 84,71139 86,33585 51,60000 23,43919
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 Table 20.—Leveling observations along a line from 5.3 km north of Soquel, through

 Laurel Glen Road and Granite Creek Road, to 2.7 km north of Scotts Valley

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; month of 1970 survey is unknown. L-number is U.S. National Geodetic Survey designation]

					Orthometr	ic height (m)
ACRN	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1970	1990 (5) L25251.4
HS5195	O 1456	37°01′18″	121°57′01″	0.000	~	63.00953
HS5300	225.29=273	37°02′06″	121°56′47″	1,601	68.66800	68.91768
HS5301	L 1460	37°02'43″	121°57′05″	2.868		83.43431
HS5302	326.21=275	37°03'12"	121°57′16″	3.891	99.42700	99.75107
HS5303	M 1490	37°03′24″	121°57'30"	4.463		140.12288
HS5304	616.48=276	37°03'20"	121°57′43″	5.024	187.90200	188.58406
HS5305	N 1460	37°03′22″	121°58'12"	5.870		114.50819
HS5306	329.11=277	37°03′15″	121°58′36″	6.445	100.31200	100.60661
HS5307	P 1460	37°02′55″	121°58′51″	7.177		95.08478
HS5308	273.96=278	37°02′27″	121°59′01″	8.106	83.50400	83.73823
HS5309	Q 1460	37°02′02″	121°59′08″	9.005		80.62321
HS5310	179.72=279	37°01′40″	121°59′11″	9.674	54.77900	54.96567
HS5311	164.37=280	37°01′25″	121°59′19″	10.271	50.10100	50.26312
HS5312	145.36=281	37°01′05″	121°59′46″	11.320	44.30600	44.41088
HS5313	224.23=282	37°01′37″	121°59'42"	12.181	68.34400	68.50599
HS5314	R 1460	37°02'21″	121°59′45″	13.702		135.22959
HS5315	490.32=284	37°02′49″	121°59′51″	14.666	149.44900	149.67292
HS5316	S 1460	37°03′04″	121°59′48″	15.215		177.79975
HS5317	723,10=285	37°03'21″	121°59'47"	15,748	220,40200	220.66285
HS5299	S 1455	37°03'38"	121°59'47"	16.609		192.80965

Table 21.—Leveling observations along a line from the junction of Mount Hermon Road and Zayante Road 1 km east of Felton through Olympia to 4.3 km northeast of Zayante

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; month of 1970 survey is unknown. L-number is U.S. National Geodetic Survey designation]

ACRN					Orthometric height (m)		
	Designation	Latitude N.	Longitude W.	Leveled distance (km)	1970	1990 (5) L25251.5	
HT3570 HT3569 HT3574 HT3575 HT3576 HT3577 HT3577 HT3578 HT3579 HT3580 HT3581 HT3581 HT3583	P 1455 N 1455 312.55=65 T 1460 373.95=399 379 Gaging station 415.66=381 V 1460 U 1460 495.98=383 339.04=384	37°03'19" 37°03'20" 37°03'36" 37°04'18" 37°04'55" 37°05'00" 37°05'09" 37°05'22" 37°05'37" 37°06'18" 37°06'18"	122°03'36" 122°03'31" 122°03'26" 122°02'58" 122°02'58" 122°02'59" 122°02'45" 122°02'45" 122°02'27" 122°02'27" 122°02'27" 122°02'27"	0.000 .140 .525 1.898 3.211 3.374 3.908 4.541 5.108 6.331 7.148 8.353	95.26700 113.98000 122.92900 115.67000 126.69400 151.17500 164.57300	106.74056 109.07589 95.35649 106.51974 114.15402 123.09959 116.47835 127.52141 163.04166 147.60536 152.13281 165.56408	

 Table 22.—Leveling observations along a line from Felton, through Boulder Creek and China Grade Road, to the Santa Cruz-San Mateo County line

[See figure 1 for locations. Numbers in parentheses below year of survey indicate months when survey was conducted; months of 1953 and 1970 surveys are unknown. PV-numbers are U.S. Geological Survey (USGS) field-summary-book designations. Obs., original field observations, with previous USGS adjustments removed]

	Designation	Latitude N.			Orthometric height (m)		
ACRN			Longitude W.	Leveled distance (km)	1953 (obs.) PV218	1970	1990 (5–6) L25251.6
HT3570	P 1455	37°03′19″	122°03′36″	0,000			106.74056
HT3584	W 1460	37°03′11″	122°04'07"	.960			85.42397
HT3585	X 1460	37°03′33″	122°04'40"	2.181			91.51486
HT3586	296.80 = 74	37°04′06″	122°04'54"	3,344		90.46500	90.54245
HT3587	324.23=72	37°04'27"	122°04'53"	4.214		98.82400	98.90366
HT3588	Y 1460	37°04'59"	122°04'40"	5.506			94.53565
HT3589	177 reset	37°05'20"	122°05′14″	6.743		96.42000	96.47190
HT3590	390.58 = 179	37°05′43″	122°05′45″	7.980		119.05000	119.13706
HT3591	446.86=181	37°06'22"	122°06′19″	9.617		136.20000	136.27642
HT3592	457.31=182	37°06'28"	122°06′44″	10.395		139.39000	139.46544
HT3593	Z 1460	37°06'46"	122°06′52″	11.017			141.07272
HT3594	501.74 = 184	37°07'09"	122°07′11″	12.026		152.93000	153.00554
HT3595	BEN 8	37°07′43″	122°07′18″	13.053	150.20200	150.20000	150.31979
HT3596	A 1461	37°07'40"	122°07′53″	14.339			166.63621
HT3597	566.17=187	37°07'55"	122°08'11″	15.064		172.57000	172.68552
HT3598	640.87=188	37°08'18"	122°08'33"	15.997		195.34000	195.39077
HT3599	799.37=190	37°08'41"	122°09'21"	17.578		243.65000	243.70177
HT3600	46 WLS	37°09'00"	122°09'49"	18.508	276,42500	276.43000	276.47643
HT3601	B 1461	37°09'22"	122°09'39"	19.019			247.76378
HT3602	C 1461	37°09'55"	122°09'43"	20.095			259.91990
HT3603	916 SF	37°10′26″	122°10'10"	21.484	279.17300	279.18100	279.22082
HT3604	D 1461	37°11′04″	122°10'46"	23.116			305.98060
HT3605	E 1461	37°11′06″	122°11′00″	23.487			346.52185
HT3606	F 1461	37°11′10″	122°11'14"	23.917			394.54974
HT3607	48 WLS	37°11'29"	122°11′27″	24.768	484.99500	485.00400	484,99741
HT3608	G 1461	37°11′36″	122°11'36"	25.321			540.41797
HT3609	H 1461	37°11′49″	122°11'40"	25.810			572.08818
HT3610	J 1461	37°11′56″	122°11′58″	26.278			606.54402
HT3611	K 1461	37°12′09″	122°12'08"	26.874			651.69761
HT3612	49 WLS	37°12'25"	122°12'19"	27.537	671.43100	671.44100	671.42870
HT3613	L 1461	37°12'33″	122°12'03"	27,947			686.34978
HT3614	M 1461	37°12′48″	122°12′20″	28.719			706.35417

Table 23.—Leveling observations along a line from 1 km east of Felton, through Felton Empire Road and Bonny Doon Road, to 1.4 km southeast of Davenport

[See figure 1 for locations. Number in parentheses below year of survey indicates month when survey was conducted; months of 1953 and 1970 surveys are unknown. L-number is U.S. National Geodetic Survey designation; PV-number is U.S. Geological Survey (USGS) field-summary-book designation. Obs., original field observations, with previous USGS adjustments removed]

			Longitude W.		Orthometric height (m)		
ACRN	Designation	Latitude N.		Leveled distance (km)	1953 (obs.) PV218	1970	1990 (6) L25251.7
HT3570 HT3584 HT3615 HT3616 HT3617 HT3619 HT3620 HT3621 HT3622 HT3622 HT3623 HT3624 HT3625 HT3626 HT3626 HT3627 HT3628 HT3629	P 1455 W 1460 N 1461 P 1461 Q 1461 R 1461 170 T 1461 168 167 U 1461 1822.20=360 V 1461 163 W 1461 X 1461	37°03'19" 37°03'04" 37°02'56" 37°03'56" 37°03'14" 37°03'14" 37°03'21" 37°03'21" 37°03'21" 37°03'28" 37°03'36" 37°03'41" 37°03'32" 37°03'41" 37°03'29" 37°04'00" 37°04'40" 37°05'26"	122°03'36" 122°04'40" 122°04'58" 122°05'40" 122°05'40" 122°06'22" 122°06'20" 122°06'28" 122°06'45" 122°06'45" 122°06'45" 122°06'54" 122°07'17" 122°07'17" 122°07'18"	0.000 .961 1.897 2.402 3.192 3.673 4.225 4.896 5.341 5.838 6.285 6.844 7.540 8.748 9.672 10.534 10.994		363.45000 443.64000 476.87000 555.41000 614.27000	$\begin{array}{c} 106.74056\\ 85.42219\\ 132.66295\\ 160.46799\\ 225.17783\\ 270.27996\\ 304.49007\\ 363.46421\\ 404.93420\\ 443.64950\\ 443.64950\\ 545.4230\\ 655.54230\\ 601.7282\\ 614.30540\\ 663.20385\\ 759.81158\\ \end{array}$
$\begin{array}{c} HT3631\\ HT3632\\ HT3633\\ HT3633\\ HT3634\\ HT3635\\ HT3636\\ HT3636\\ HT3638\\ HT3638\\ HT3640\\ HT3641\\ HT3641\\ HT3642\\ HT3642\\ HT3643\\ HT1572 \end{array}$	43 WLS Z 1461 41 WLS 1707.48=202 A 1462 40 WLS REF WLS 122°0.26=366 B 1462 C 1462 D 1462 E 1462 86.24=199 H 1238	37°06'30" 37°04'52" 37°03'45" 37°03'11" 37°02'40" 37°02'40" 37°02'12" 37°01'51" 37°01'51" 37°01'51" 37°01'02" 37°01'02" 37°00'42"	122°08'39" 122°08'24" 122°08'24" 122°08'49" 122°08'56" 122°08'56" 122°08'56" 122°09'17" 122°09'17" 122°09'17" 122°09'55" 122°10'22" 122°10'32"	$\begin{array}{c} 11.223\\ 11.453\\ 13.186\\ 14.018\\ 15.164\\ 16.312\\ 16.331\\ 17.243\\ 18.108\\ 18.732\\ 19.645\\ 20.135\\ 21.331\\ 22.456\end{array}$	754.26300 576.08000 404.66300 404.01000	754.27400 576.09500 520.44100 404.67900 404.03000 371.93700 26.28600	754.28303 638.85854 576.11380 520.45432 450.14035 404.68017 404.02556 371.92109 301.01995 237.56842 173.17029 123.63265 26.23643 17.38950

Table 24.—Leveling observations along a line from Santa Cruz through Davenport to 1 km northwest of the Santa Cruz-San Mateo County line

[See figure 1 for locations. Number(s) in parentheses below year of survey indicates month(s) when survey was conducted; months of 1953 and 1970 surveys are unknown. L-number is U.S. National Geodetic Survey designation; PV-number is U.S. Geological Survey (USGS) field-summary-book designation. Obs., original field observations, with previous USGS adjustments removed. Subsidence correction applies to 1978–90 height difference]

	Designation	Latitude N.	Longitude W.	Leveled distance (km)	Orthometric height (m)					~
ACRN					1953 (obs.) PV218	1970	1972 (9–10) L22869	1978 (5) L24298	1990 (2) L25251.8	Subsidence correction (mm)
GU4167	B 1455	36°58'15″	122°01′50″	0.000					4.41596	
GU4240	M 1462	36°57'49″	122°02'04"	1.248					16.43267	
GU1954	V 1237	36°57'41″	122°02'28"	1.935			16.66813	16.65667	16.66569	-8.09
GU1959	W 1237	36°57′32″	122°03'04"	2.913			20.90586	20.89493	20.89860	-2.00
GU1960	X 1237	36°57′40″	122°03'20"	3,708			27.23047	27.22063	27.22301	92
GU1964	Y 1237	36°57'44"	122°04'22"	5.215			28,97503	28.96455	28.96023	1.31
GU4239	L 1462	36°57′42″	122°05′15″	6.559					17.55808	
GU1970	A 1238	36°57'52"	122°06'12"	8.067			37.42997	37.42533	37.41212	.00
GU1971	B 1238	36°58'10"	122°06′58″	9.253		`	22,21088	22,19706	22.15864	.00
GU4238	83.13=196	36°58'21"	122°07'37"	10.329		25.33800			25,29608	
GU1972	C 1238	36°58'29"	122°07'48"	10.661			30.61819	30.59394	30.57968	.00
GU1974	W 1241	36°58'52"	122°08'23"	11.711			25.86363	25.85264	25.84810	.00
GU1975	D 1238	36°59'00"	122°08'37"	12.211			39.76853	39.75735	39.74951	.00
GU1976	E 1238	36°59'16"	122°09′18″	13.351			22.43417	22.41807	22,40278	.00
GU1978	F 1238	36°59'25"	122°09'42″	13.996			31.25946	31.24745	31.23566	.00
GU1979	G 1238	36°59'55"	122°10′35″	15.796			21.60505	21.59166	21.58221	.00
HT1572	H 1238	37°00'04"	122°10′45″	16.182			17.42189	17.40993	17.40127	.00
HT3654	K 1462	37°00′24″	122°11′09″	16.985					33.64295	
HT1568	N 212	37°00'55"	122°12′00″	19.227	30.35400	30.35400	30.35193	30.33650	30.31804	.00
HT1567	62.66=255	37°01′29″	122°12′39″	20.487		19.09800	19.08944	19.07194	19.05309	.00
HT1566	L 1238	37°01′43″	122°12′52″	21.036		·	25.62267	25.60467	25.58826	.00
HT1565	X 1241	37°01′45″	122°12′56″	21.155			31.58854	31.57324	31.55260	.00
HT3653	93,17=270	37°01′48″	122°13′02″	21.351		28.56300			28.51359	
HT1564	76.85=256	37°02′14″	122°13′10″	22.220		23.42200	23.41831	23.40107	23.38483	.00
HT3652	24.85=269	37°02′25″	122°13′40″	22.860		7.57300			7.47924	
HT1563	43.94=257	37°02′35″	122°13′15″	23.228		13.39300	13.37642	13.35670	13.33919	.00
HT1562	M 1238	. 37°03′06″	122°13′28″	24.212			7.12583	7.10686	7.08926	.00
HT3651	188.54=267	37°03′12″	122°14′30″	24.722		57.46000			57.40858	
HT1559	L 212	37°03′35″	122°13′27″	25.232		33.94700	33.93433	33.91710	33.90047	.00
HT1558	N 1238	37°03′49″	122°13′31″	25.694			21.80674	21.78391	21.77368	.00
HT3650	187.39=266	37°03′44″	122°15′04″	26.107		57.11600			57.07146	
HT1557	60.71=259	37°04′01″	122°13′41″	26.109		18.50000	18.48609	18.46317	18.44942	.00
HT3649	J 1462	37°04′21″	122°1 <i>5′</i> 29″	27.371					63.89437	
HT1556	P 1238	37°04′40″	122°14′34″	28.069			28.43204	28.40855	28.39844	.00
HT3648	116.40=264	37°04′48″	122°15′50″	28.384		50.71900			50.65059	
HT1555	K 212	37°04′48″	122°14′43″	28.399		30.84800	30.81644	30.79572	30.77721	.00
HT1554	321.22=261	37°05′07″	122°15′00″	29.343		97.90900	97.90094	97.89572	97.90777	.00
HT1552	Y 1241	37°05′00″	122°15′21″	30.107			148.16900	148.15189	148.13270	.00
HT1549	R 1238	37°05′48″	122°16'36″	30.615			5.73782	5.71298	5.66232	.00
HT3644	19.13=272	37°05′48″	122°16′38″	30.676		5.83000			5.73119	
HT3647	H 1462	37°05′03″	122°15′43″	30.770					116.02240	
HT3646	G 1462	37°04′54″	122°15′43″	31.184					103.58959	
HT1547	S 1238	37°06′16″	122°17′14″	31.905			9.91889	9.89843	9.88313	.00
HT3645	F 1462	37°05′04″	122°16′03″	32.092					45.96247	
HT1545	Z 1241	37°06′51″	122°18′02″	33.558			30.12716	30.10597	30.08577	.00

Figure 15.—Schematic map of Loma Prieta region, Calif., showing locations of leveling network of bench marks used in this study (dots) and additional bench marks for which coseismic elevation changes were measured (triangles). Unused bench marks were surveyed by Santa Cruz County at low precision; unassessed elevation-dependent error evident in Santa Cruz County observations limits their utility for geodetic modeling. Quaternary faults (dashed where inferred) from Jennings (1975). LP, Loma Prieta (solid triangle).

