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We calculatethe probability of strong shakingin Istanbul,an urbancenter of 10
million people,from the descriptionof earthquakeson the North Anatolian fault
systemin the MarmaraSeaduringthe past500yearsandtest the resultingcatalog
against the frequency of damagein Istanbul during the precedingmillennium.
Departingfrom current practice,we include the time-dependenteffect of stress
transferredby the 1999 moment magnitudeM 5 7.4 Izmit earthquaketo faults
nearerto Istanbul.We find a 62 6 15% probability (one standarddeviation) of
strong shakingduring the next 30 yearsand 32 6 12% during the next decade.

The 17 August 1999 M 5 7.4 Izmit and 12
November1999M 5 7.1 Du»zceearthquakes
killed 18,000people,destroyed15,400build-
ings, and caused$10 billion to $25 billion in
damage.But the Izmit eventis only the most
recent in a largely westwardprogressionof

sevenlargeearthquakesalongthe North Ana-
tolian fault since1939. Justnorthwestof the
regionstronglyshakenin 1999lies Istanbul,a
rapidly growing city which has beenheavily
damagedby earthquakes12 times during the
past15 centuries.Here,we calculatetheprob-
ability of futureearthquakeshakingin Istanbul,
using new conceptsof earthquakeinteraction,
in which the long-term renewalof stresson
faults is perturbedby transferof stressfrom
nearbyevents.

Stresstriggeringhasbeeninvokedto explain
the 60-yearsequenceof earthquakesrupturing
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toward Istanbul (1–3), in which all but one event
promoted the next (4). Although an earthquake
drops the average stress on the fault that slipped,
it also changes the stress elsewhere. The seis-
micity rate has been observed to rise in regions
of stress increase and fall where the off-fault
stress decreases (5, 6). The M 5 7.4 Izmit
earthquake, as well as most background seis-
micity (7), occurred where the failure stress is
calculated to have increased by 1 to 2 bars (0.1
to 0.2 MPa) because of M $ 6.5 earthquakes
since 1939 (Fig. 1A) (8). The Izmit event, in
turn, increased the stress beyond the east end of
the rupture by 1 to 2 bars, where the M 5 7.2
Düzce earthquake struck, and by 0.5 to 5.0 bars
beyond the west end of the 17 August 1999
rupture, where a cluster of aftershocks occurred
(Fig. 1B). The correspondence seen here be-
tween calculated stress changes and the occur-
rence of large and small earthquakes, also re-
ported in (9), strengthens the rationale for incor-
porating stress transfer into a seismic hazard
assessment.

A probabilistic hazard analysis is no better
than the earthquake catalog on which it is
based. Global observations support an earth-
quake renewal process in which the probability
of a future event grows as the time from the
previous event increases (10). To calculate such
a renewal probability, ideally, one wants an
earthquake catalog containing several large
events on each fault to deduce earthquake mag-
nitudes, the mean interevent time of similar
events, and the elapsed time since the last shock
on each fault (11). Although such catalogs are
rarely, if ever, available, Ambraseys and Finkel
compiled a wealth of earthquake damage de-
scriptions for events since A.D. 1500 in the
Marmara Sea region (12–15). We assigned
modified Mercalli intensities (MMI) to 200
damage descriptions (16), and used the method
of Bakun and Wentworth (17) to infer M and
epicentral location from MMI through an em-
pirical attenuation relation (18). We calibrated
the relation against Marmara Sea events that
have both intensity and instrumental data (19).
Uncertainties in earthquake location were ex-
plicitly calculated from MMI inconsistencies
and inadequacies.

Our catalog thus consists of nine M $ 7
earthquakes in the Marmara Sea region since
1500. For the six events that occurred before
instrumental recording began in 1900, we se-
lected the minimum magnitude falling within
the 95% confidence bounds at locations asso-
ciated with faults of sufficient length (20) to
generate the event (Fig. 2). We estimated rup-
ture lengths and the mean slip from empirical
relations on M for continental strike-slip faults
(21). The locations and geometry of faults in the
Marmara Sea are under debate; we follow (20),
which is based on seismic reflection profiles
(Fig. 2), and find four faults capable of produc-
ing strong shaking in Istanbul: the Yalova,
Izmit, Prince’s Islands, and central Marmara

faults. Our catalog suggests two earthquakes
on the Izmit fault (occurring in 1719 and
1999), yielding an interevent time of ;280
years, and three on the Yalova fault (1509,
1719, 1894), permitting an estimate of ;190
years (22). We infer one earthquake (May
1766) on the Prince’s Islands fault and one
(1509) on the central Marmara fault (Fig. 2).
For these, we gauge interevent times by di-
viding the seismic slip estimated from the
catalog by the global positioning system
(GPS)–derived slip rate (23, 24), yielding
interevent times of ;210 years for the

Prince’s Islands fault and ;540 years for the
central Marmara fault. Thus, at least two of
the four faults are likely late in their earth-
quake cycles.

One way to validate the catalog magnitudes,
locations, and segment interevent times is to
compare the relative abundance of small to
large shocks through the b-value; another is
to see if the seismic strain release from the
catalog is consistent with the measured strain
accumulation from GPS. The frequency-
magnitude relation for our catalog yields b 5
1.1 by maximum likelihood (25), close to the
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Fig. 1. (A) Stress change caused by earthquakes since 1900. Shown are the maximum Coulomb stress
changes between 0 and 20 km depth on optimally oriented vertical strike-slip faults (44). The assumed
friction coefficient is 0.2, as has been found for strike-slip faults with large cumulative slip (45, 46). A
100-bar deviatoric tectonic stress with compression oriented N55°W (47) is used, under which
optimally oriented right-lateral faults strike E-W except along the rupture surface. The 1993 to July
1999 seismicity recorded since installation of IZINET (7) has uniform coverage over the region shown.
Calculated stress increases are associated with heightened seismicity rates and with the future epicenter
of the 17 August 1999 Izmit earthquake (indicated by star); sites of decreased stress exhibit low
seismicity. (B) Izmit aftershocks are associated with stress increases caused by the main rupture [first
12 days from IZINET (7)], such as the Yalova cluster southeast of “Y,” and the occurrence of the 12
November 1999 Düzce earthquake. Faults: Y, Yalova; P, Prince’s Islands; M, Marmara; I, Izmit.
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global average (26). Over a sufficiently long
time period, the moment release by earth-
quakes must balance the moment accumula-
tion by elastic strain if aseismic creep is
negligible. We compared the seismic slip rate
represented by the catalog (23.5 6 8 mm/
year) to the observed slip rate measured by
GPS across the North Anatolian fault system
in the Marmara region (22 6 3 mm/year)
(quoted uncertainties are one standard devia-
tion here and elsewhere) (Fig. 3) (27). For
b ; 1, most of the moment is conferred by
the largest shocks, so the consistency be-
tween GPS and catalog strain means that the
size and location of the three M ; 7.6 events,

as well as the number of smaller earthquakes,
are plausible.

Perhaps the strongest test of the 500-year
catalog can be made by calculating the com-
bined Poisson, or time-independent, probabil-
ity predicted from the interevent times for the
three faults we regard as capable of produc-
ing MMI * VIII shaking in Istanbul. This is
the probability averaged over several earth-
quake cycles on each fault and yields 29 6
15% in 30 years. This can be compared to the
Poisson probability calculated directly from
the longer record of MMI * VIII shaking in
Istanbul during the preceding ;1000 years
(A.D. 447 to 1508). The older record gives

the long-term frequency of shaking used in a
Poisson calculation without knowledge of the
earthquake locations. At least eight earth-
quakes (28) caused severe damage in Istanbul
from A.D. 447 to 1508 (12–14), translating
into a 20 6 10% 30-year probability, roughly
comparable to that derived from our catalog.
Thus, the fault interevent times estimated
from the 500-year catalog are consistent with
the independent record of shaking in Istanbul
during the preceding millennium.

We combined earthquake renewal and
stress transfer into the probability calculation
on the basis that faults with increased stress
will fail sooner than unperturbed faults. Be-
cause two of the three faults within 50 km of
Istanbul are interpreted to be late in their
earthquake cycles, the renewal probability is
higher than the Poisson probability. Addition-
ally, the permanent probability gain caused by
stress increase is amplified by a transient gain
that decays with time. The transient gain is an
effect of rate- and state-dependent friction
(29–31), which describes behavior seen in
laboratory experiments and in natural seis-
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Fig. 2. Large historical earthquakes since 1500. Intensities (dots) were assigned from damage
descriptions compiled by (12–15). Red dashed contours give the moment magnitude M needed to
satisfy the observations for a given location (17), because the farther the epicenter is from the
observations, the larger the M required to satisfy them. The confidence on location is governed by
the relative intensities; magnitude is a function of absolute intensities. We assigned earthquakes to
faults by minimizing M within the 95% confidence region (18, 19). Faults labeled in lower panels:
I, Izmit; Y, Yalova; P, Prince’s Islands; M, Marmara; G, Ganos; NAF, North Anatolia fault.

Fig. 3. Seismic slip from the 500-
year-long catalog of Fig. 2 is
summed in four transects across
the North Anatolia fault system
in the Marmara Sea. All known or
estimated M * 7 sources are
included (27). The mean seismic
strain release rate balances the
strain accumulation rate ob-
served from GPS geodesy (24).
Whether earthquakes in paren-
theses extend to a given transect
is uncertain. “1766a” is May;
“1766b” is August.

Fig. 4. (A) Observed and modeled transient re-
sponse to stress transfer. The 13 M $ 6.8 North
Anatolian earthquakes for which the stress at the
future epicenter was increased by $0.5 bars are
plotted as a function of time. The earthquake rate
decays as t –1 in a manner identical to aftershocks,
as predicted by (29–32). (B) Calculated probability
of a M $ 7 earthquake (equivalent to MMI * VIII
shaking in greater Istanbul) as a function of time.
The probability on each of three faults is summed
(43). The large but decaying probability increase is
caused by the 17 August 1999 Izmit earthquake.
“Background” tracks the probability from earth-
quake renewal; “interaction” includes renewal and
stress transfer. Light blue curve gives the proba-
bility had the Izmit earthquake not occurred.
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mic phenomena, such as earthquake se-
quences, clustering, and the occurrence of
aftershocks. We estimated the duration of
the transient decay directly from the times
between triggering and rupturing earth-
quakes on the North Anatolian fault (Fig.
4A). Because parameter assignments used
in the calculation are approximate, we per-
formed a Monte Carlo simulation to ex-
plore the uncertainties (32). The resulting
probability functions (Fig. 4B) exhibit a
gradual rise as the mean time since the last
shock on each fault grows, then a sharp
jump in August 1999 followed by a decay.
We find a 62 6 15% probability of strong
shaking [MMI * VIII; equivalent to a peak
ground acceleration of 0.34 to 0.65g (33)]
in greater Istanbul over the next 30 years
(May 2000 to May 2030), 50 6 13% over
the next 22 years, and 32 6 12% over the
next 10 years (Table 1). Inclusion of renew-
al doubles the time-averaged probability;
interaction further increases the probability
by a factor of 1.3.

The 12 earthquakes that damaged Istanbul
during the past 1500 years attest to a signif-
icant hazard and form the basis for a 30-year
Poisson, or time-averaged, probability of 15
to 25%. Because the major faults near Istan-
bul are likely late in their earthquake cycles
(with no major shocks since 1894), the re-
newal probability climbs to 49 6 15%. We
calculate that stress changes altered the rate
of seismicity after the 1999 Izmit earthquake,
promoting the M 5 7.2 Düzce shock and the
Yalova cluster. Because the 1999 Izmit shock
is calculated to have similarly increased
stress on faults beneath the Marmara Sea, the
interaction-based probability we advocate
climbs still higher, to 62 6 15%.
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