
“Let’s show ‘em what we’re made of ”
might be an effective battle cry for human warfighters, 
but when considering the materials on which these 
warfighters rely, relating material composition to properties 
and performance has been an extremely difficult task. 
Knowing that relationship, however, is crucial for those 
using computational design to make better, more reliable 
materials for specific Naval applications. In the last few years, 
breakthroughs in 3D characterization, which uses information 
from experimentally measured images, and analysis of the 
reconstructed material microstructures have resulted from 
the availability of faster and more accurate measurement 
tools. Researchers in the Multifunctional Materials Branch of 
NRL’s Materials Science and Technology Division, using serial 
sectioning techniques that they devised, along with optical 
microscopy and electron backscatter diffraction (EBSD), 
collect and analyze 3D data from a variety of polycrystalline 
alloy microstructures to relate structure to properties and 
attempt to correlate such phenomena as material failure, 
corrosion behavior, mechanical response, and phase 
transformations to microstructure. Recent data sampling of 
a large reconstructed volume from a titanium alloy revealed 
a correlation between crystallography, applied load, and 
mechanical response. These data are applied to predictive 
models and simulations that in turn drive the development 
of materials that will function as designed under real-world 
conditions.
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IntroductIon

 To design new Naval materials that meet specific 
performance criteria, an in-depth understanding of 
the relationships between processing, microstructure, 
properties, and performance is required. It is now well 
known that the three-dimensional (3D) microstructure 
of materials dictates their mechanical performance and 
physical properties, and to develop accurate predictive 
models of processing and performance of advanced 
Naval materials, it is critical to understand the mor-
phology and evolution of real 3D microstructures. 
 In recent years, 3D characterization and analysis of 
material microstructures have advanced rapidly, as the 
speed and accuracy of computational and measurement 
tools have increased. Three-dimensional microstruc-
tures, reconstructed from experimentally measured 
images, can now be used as input for simulations of 
mechanical response, corrosion behavior, and phase 
transformations.
 Techniques developed in the Multifunctional Ma-
terials Branch at NRL have been applied to a variety of 
polycrystalline alloy microstructures for the collection 
and analysis of 3D data, and the application of this data 
to predictive models and simulations to develop an un-
derstanding of microstructure–property relationships. 
The overall goal of this research is to provide a frame-
work for efficient and accurate design of materials by 
developing the tools for the prediction of material re-
sponse under service conditions. Recently, to develop a 
general framework for understanding the relationships 
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between material microstructure and response, a beta 
titanium alloy has been investigated at the micro-scale 
to study structure–property correlations and determine 
critical microstructural features that cause initiation of 
failure.

three-dIMenSIonaL MIcroStructure 
reconStructIon

 The three-dimensional microstructure of the beta 
titanium alloy (Timet 21s) was reconstructed using 
serial sectioning with optical microscopy and electron 
backscatter diffraction (EBSD). The microstructure of 
beta titanium is prototypical of many metallic systems, 
including stainless steels and high-performance alumi-
num alloys, thus investigation of this microstructure 
provides important insights into the behavior of many 
alloy systems of interest to the Navy. In the serial sec-
tioning process, a fixed amount of material is removed 
from the sample surface through automated polishing. 
The sample is then etched to reveal contrast between 
the microstructural features, and finally images are 
collected using light optical microscopy. The serial sec-
tioning process is repeated multiple times with a practi-
cal limit of a few hundred sections. The process results 
in a “stack” of images, which can be reconstructed to 
create the 3D microstructure. 
  Figure 1 illustrates the serial sectioning laboratory 
at NRL, where the data were collected. For this study, 
sectioning was performed on a semiautomatic polisher, 
which was calibrated to remove 1.5 μm of material 
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per section. After final polishing and etching, a series 
of tiled light optical micrographs was taken for each 
section at 500× magnification (see Fig. 2). These image 
tiles are stitched together to form a single image of that 
section, representing a large field of view (approximate-
ly 1 mm by 0.5 mm), while simultaneously maintaining 
a high image resolution (<0.6 μm per pixel). Over 200 
such image montages were collected and aligned using 
fiducial marks placed at the edges of the region of inter-
est, resulting in a dataset measuring approximately 1 
mm by 0.5 mm by 0.3 mm. 

 After every tenth optical micrograph was collected, 
EBSD was used to measure the crystallographic ori-
entation of each grain. This technique allows the user 
to scan an electron beam over a polished surface and 
measure the crystallographic orientation at each point. 
This results in a “map” of the crystallography of the 

specimen. The alignment of these EBSD images to the 
optical micrographs (and, thus, to the final 3D recon-
struction) was accomplished by a semi-automatic align-
ment routine that matched the position of the center of 
area of a grain in the optical micrographs of a section 
with the equivalent center of area of the same grain in 
the EBSD map for that section. After the two images 
(EBSD map and optical micrograph) were aligned, 
the measured crystallographic orientations were then 
corrected for the EBSD image rotation, and an average 
crystallographic orientation was assigned to each grain 
in the 3D reconstruction.
 The reconstructed 3D dataset for the beta titanium 
alloy is shown in Fig. 3. The dataset consists of over 
4300 individual grains, and for each grain, the true 3D 
size, shape, and crystallography have been measured. 
From this data, a number of microstructural param-

FIGURE 1
Serial Sectioning Laboratory setup at NRL.

FIGURE 2
Micrograph showing beta titanium grains, from one of the 
200 sections that make up the 3D dataset. The yellow lines 
approximate the size of the individual image tiles that were 
stitched together to form this image.

FIGURE 3
3D reconstruction of the beta titanium microstructure. Each 
grain is colored according to the crystallographic direction 
parallel to the z-axis (legend at lower right).
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eters can be measured or derived, including the true 
3D grain size distribution, number of grain neighbors 
or grain faces, grain boundary curvatures, crystallo-
graphic texture, and crystallographic interface normal 
distributions.1
 
3d IMage-BaSed FInIte eLeMent anaLySIS

 In addition to the microstructural and crystal-
lographic information that can be obtained from the 
3D dataset, the reconstructed volume can be used as 
input into simulations of phase transformations, grain 
growth, or local mechanical response. One of the chal-
lenges in producing predictive simulations of materials 
performance is that typically very little is known about 
the initial conditions of the microstructure. Many re-
searchers use algorithms to create a virtual microstruc-
ture that appears similar to real microstructures, but 
often these virtual microstructures lack important mi-
crostructural details that significantly affect the results 
of the models. By using the actual 3D representation of 
the microstructure as our initial condition for simula-
tions, however, we have a perfect representation of the 
initial state of the microstructure with no additional 
assumptions or approximations. 
 The 3D reconstructed microstructures just de-
scribed have been used as input for image-based finite 
element modeling (FEM) of mechanical response. 
Although computation power currently limits FEM 
simulations based on crystal plasticity to smaller datas-
ets (consisting of up to about a few hundred grains), the 
results from these simulations are very powerful in that 
they can be used to determine critical microstructural 
features where local plasticity failure is likely to initiate.
 For ease of computation and analysis, a subvol-
ume containing approximately 100 grains was selected 
from the larger dataset, and is shown in Fig. 4(a). For 
this specimen, data were sampled from the original 
high-resolution dataset so that every third voxel (i.e., 
volumetric pixel) in the x- and y-directions and every 
second voxel in the z-direction were represented, to 
create a volume measuring 136 by 128 by 137 μm, 
represented by approximately 200,000 voxels. As shown 
in Fig. 4(b), an FEM mesh was generated that consisted 
of eight-noded brick elements, with each element cor-
responding to one voxel in the sampled microstructure. 
The finite element simulations were performed using 
ABAQUS™ finite element software with customized 
anisotropic linear elasticity and crystal plasticity con-
stitutive relationships for the body centered cubic (bcc) 
beta titanium.
 Figure 4(c) is a contour plot of the response of 
the beta titanium microstructure subvolume. This 
plot shows the cumulative shear strain as a result of 
0.7% applied uniaxial strain in the x-direction, which 
allows for qualitative visualization of the areas in the 

microstructure with high local stresses. Plotting the 
data in this fashion, and relating mechanical response 
to microstructural features (by mapping back to the 
3D reconstruction) allows for identification of features 

FIGURE 4
(a) Reconstruction of a subset of the titanium microstructure. 
(b) Finite element mesh of the reconstructed subset. (c) Con-
tour plot of cumulative shear strain in the titanium subset, as a 
result of a uniaxial tensile load applied in the global x-direction. 
Figure adapted from Ref. 3.
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where failure initiates, and can be used to aid in materi-
als design. One example of such a critical microstruc-
tural feature identified by this technique is the initiation 
of plastic flow at grain boundaries between grains with 
a high degree of misorientation.2

data SaMPLIng For Large-ScaLe anaLySIS

 Because of the large amounts of memory and com-
putation time required for the simulation of mechani-
cal response of a volume as large as that shown in Fig. 
3, it is prudent to sample multiple smaller subvolumes 
from the larger volume and analyze the responses of 
these subvolumes in combination to elucidate specific 
correlations. To investigate the relationship between 
grain orientation and mechanical response, five subvo-
lumes, each containing approximately 100 grains, were 
selected from the larger volume. Figure 5 shows the 
location of these subvolumes within the reconstructed 
microstructure. The mechanical response of each 
subvolume was simulated separately, applying the same 
loading conditions.

  
 

        To visualize the complex 3D interactions within 
the microstructure, the scalar mean effective stress for 
each individual grain was calculated and plotted vs 
the crystallographic orientation of the grain in each 
of the five subvolumes. Figure 6 shows one such plot, 
for the case of uniaxial tensile strain applied in the x-
direction. In this figure, the location of each data point 
on the unit triangle corresponds to the crystallographic 
direction in that grain that is aligned with the loading 
axis. (For example, data for a grain with its <001> axis 
aligned with the global x-direction would be plotted 
in the lower left corner of the unit triangle.) The value 
of effective stress is indicated by the color of each data 
point, according to the scale bar in the figure, with the 
lower stresses shown in blue and the higher stresses 

in red. A correlation between crystallography and 
mechanical response can be seen from this plot; grains 
with a <001> direction aligned with the loading axis 
have a lower effective stress in response to the applied 
load, whereas grains with <101> and <111> directions 
aligned with the loading axis have a higher effective 
stress.
  By sampling the data in this manner, it was pos-
sible to increase the number of data points without 
increasing the size of the model beyond the computa-
tional limits for the simulation. This method allows for 
calculation of properties for a statistically significant 
number of grains, while keeping data sets and file sizes 
manageable. This type of data can be used to build reli-
able statistical structure–property correlations that can 
guide design of materials intended for specific Naval 
applications.

SuMMary and concLuSIonS

 Three-dimensional materials characterization, 
analysis, and simulation tools developed in the Multi-
functional Materials Branch have been applied to ex-
amine the role of microstructure on material behavior. 
These tools are used to determine structure–property 
correlations in Naval materials, and to facilitate efficient 
computational materials design. In this study, this is 
demonstrated for a titanium alloy, where data sampling 
from a large reconstructed volume was used to reveal a 
correlation between crystallography, applied load, and 
mechanical response. 
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