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	 Introduction: A key requirement for performing 
reconnaissance missions using small unmanned aerial 
vehicles (UAVs) from a ship is the ability to automati-
cally recover the air vehicle on board the ship. The 
automatic landing system must be simple to use, not 
add additional hardware to the air vehicle, and have a 
minimal footprint to the operation of the ship. 
	 Current systems used for automatic landing of 
UAVs on board ships require the installation of large 
and/or expensive equipment on the air vehicle.1-3  Some 
of these systems present a logistics challenge due to 
their large footprint on board ships. 
	 The system in this program addresses these issues 
by leveraging the existing reconnaissance payload 
consisting of a video camera and transmitter, along 
with the existing UAV autopilot and data link. On the 
ship, in addition to the UAV operator terminal and 
hardware, is a laptop computer and recovery target with 
optical markers. Figure 1 presents the recovery system 
concept. 

	 System Development: The development of the 
vision-based automatic landing system began with 
the creation of a simulation environment. The simula-

tor models the behavior of the vehicle, autopilot, and 
data link, and generates a synthetic camera view. The 
simulation tool was useful in the invention and evalua-
tion of the vision and guidance algorithms. In addition 
to computer simulation, a series of static real-world 
experiments were performed to validate the robustness 
of the machine vision algorithms in various lighting 
environments. 
	 Flight experiments were conducted to evaluate the 
closed-loop performance of the prototype automatic 
landing system. The experiments were performed 
against a stationary optical landing target. The landing 
target was a square of 1.8 m per side with high-intensity 
lights at the corners. The vehicle was flown at a speed 
of approximately 18 m/s. With a camera resolution of 
640 × 480 pixels and field of view of about 40 degrees, 
which is similar to that of cameras used on UAVs in 
current operation with the Fleet, the system can detect 
the landing target at a range of approximately 121 m. 
At this closure speed and range, the system has about 
7 seconds to maneuver the vehicle into a collision path 
with the landing target. During the flight experiments, 
eight fully automatic approaches were performed, 
with the computer acquiring and tracking the target 
six times. Based on recorded video from the UAV, the 
vehicle would have hit the target on four attempts. This 
was estimated as the vehicle was told to automatically 
wave-off the approach at a range of 36.5 m from the 
target. This was done because the target was made of 
2 by 4 lumber instead of a net. Figure 2 is a photograph 
of the UAV automatically approaching the target during 
one of these runs.	

	 Conclusion: The new automatic recovery technol-
ogy uses the existing hardware sensor package already 
present in many small tactical UAVs. The data from 

FIGURE 1
Vision-based automatic recovery system diagram.

FIGURE 2
UAV in automatic approach to the simulated recovery target.
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these sensors are fused using a ship-based computer 
that generates steering commands for the vehicle to 
perform. This system has a significantly smaller foot-
print on board ship in comparison to other existing 
landing systems. Manpower requirements and logistics 
are reduced because the system performs recoveries 
fully automatically, and no additional expensive hard-
ware is needed on board the air vehicle. A simulator 
was developed to evaluate the machine vision and guid-
ance algorithms. A prototype system has been success-
fully flight tested. 

	 Acknowledgments: Special thanks to Kim Goins 
and Allan Ellsbery for their support in the testing of the 
optical target and cameras. Also, thanks to Steven Car-
ruthers for his assistance in the flight test experiments. 
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	 Introduction: Detonations are violent, supersonic, 
high-pressure reaction waves that can develop during 
an explosion and cause severe damage. In the most 
powerful explosions, detonations can be initiated di-
rectly by strong shock waves. Under certain conditions, 
however, detonations can arise spontaneously from 
weak explosions or even from simple sparks. 
	 This latter process, called the deflagration-to-deto-
nation transition (DDT), takes place in two stages.1 In 
the first stage, the relatively slow initial flame acceler-
ates and becomes a fast, turbulent flame (“deflagra-
tion”) that moves at nearly the speed of sound into 
the unburned but combustible gas. This can occur in 
semiconfined areas where the flow caused by thermal 
expansion of the burning gases acts like a piston to ac-
celerate the flame. Flow instabilities and other interac-
tions with the surrounding environment stretch and 
distort the flame and cause it to release energy more 
and more quickly. Eventually, pressure builds up in 
front of the flame and causes a high-pressure shock 

wave to form. In the second stage of the DDT process, 
this shock wave collides with physical obstructions or 
disturbances in the flow, heating and compressing small 
pockets of gas just ahead of the flame. The compressed 
gas in these “hot spots” can then ignite and produce a 
detonation.
	 In the past, this DDT process has been studied for 
simple, highly reactive fuels, such as hydrogen, acety-
lene, and ethylene. Now, we are working toward under-
standing the conditions necessary for DDT to occur in 
natural gas, an important but less reactive fuel that can 
be found in mine tunnels, access corridors on a ship, 
power-generation plants, fuel-storage facilities, and 
many other military and industrial settings. The loss of 
lives and property in several recent coal mine explo-
sions in the United States and abroad have highlighted 
the need for an improved understanding of how and 
why detonations can form in natural gas explosions.

	 Model Development: Simulating an explosion 
requires specifying a model for the release of energy 
by chemical reactions in addition to solving the typical 
fluid flow equations. Detailed chemical models often 
involve hundreds of reactions. In a large, multidimen-
sional simulation, computing each of these reactions 
would be too time-consuming. To make such com-
putations feasible, we instead approximate the energy 
release from these hundreds of reactions with a single 
global reaction. This one-step model cannot exactly 
reproduce all properties of flames and detonations in 
natural gas–air mixtures, but we can calibrate it so that 
it gives reasonable approximations of the key length 
and time scales involved at the different stages of DDT, 
namely the speed, thickness, and temperature of flames 
and the speed and thickness of detonations in these 
mixtures.

	 Flame Acceleration and DDT in Semiconfined 
Channels: The calibrated reaction model is used with 
the usual fluid flow equations to simulate flame ac-
celeration and DDT in a two-dimensional, semicon-
fined channel. The system we simulate, a diagram of 
which is shown in Fig. 3(a), is a simplified model of an 
experimental system that was used to study DDT in 
mixtures of methane (the primary fuel in natural gas) 
and air.2  The physical obstructions arranged periodi-
cally in the channel help to more quickly accelerate the 
flame. A time progression of the temperature fields in 
the lower half of a 17.4 cm wide channel with obstruc-
tions blocking 30% of the cross-sectional area of the 
channel (blockage ratio of 0.3) is shown in Figs. 3(b-i). 
Both stages of the DDT process are shown. After being 
ignited by a weak spark, a flame travels from the closed 
(left) end of the channel toward the outflow. In the pro-
cess, it becomes distorted and speeds up considerably. 
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FIGURE 3
(a) Two-dimensional model geometry of a semiconfined space used in the simulations. Obstacles 
(blue rectangles) are spaced uniformly throughout the channels. We assume the channel is perfectly 
symmetric and simulate only the bottom half. In this simulation, d = 8.7 cm, h = 2.61 cm, L = 11.8 m, 
and S = 17.4 cm. (b-i) Temperature maps in the lower half of the channel near the leading edge of 
the reaction front showing (b) flame ignition by a weak spark, (c) laminar flame propagation, (d) flame 
stretching caused by thermal expansion and flame wrinkling, (e) pressure buildup in front of a defla-
gration, (f) shock wave formation, (g) hot spot formation after collision of a shock with an obstacle, (h) 
detonation initiation, and (i) detonation propagation.

FIGURE 4
Velocity of the leading edge of the reaction front as a function of its position in the system 
calculated using the reaction model (red lines) and measured in experiments (blue and green 
symbols) for systems (a) 17.4 cm wide with blockage ratio 0.3, (b) 17.4 cm wide with blockage 
ratio 0.6, (c) 52 cm wide with blockage ratio 0.3, and (d) 52 cm wide with blockage ratio 0.6.
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The shock wave that forms ahead of the flame collides 
with the solid obstacles, and the hot spot created by the 
collision shown in Fig. 3(g) ignites a detonation (see the 
figure caption and Ref. 3 for more complete descrip-
tions). In Fig. 4(a), we compare the average velocity of 
the leading edge of the reaction zone in this simulation 
to several experimental measurements taken in a 17.4 
cm diameter tube with the same blockage ratio. The 
results of three other simulations in channels of various 
sizes and blockage ratios are also compared to similar 
experiments in Figs. 4(b-d). The results calculated 
using the simple reaction model qualitatively, and in 
many cases quantitatively, match the experiments.

	 Summary and Future Directions: The innovation 
in this work is the development of a fast, reliable model 
for simulating DDT in natural gas–air mixtures that 
we have validated with existing experimental data. The 
speed of these calculations gives us the ability to simu-
late larger and more complex systems. We are currently 
working to understand how the DDT process scales 
to larger systems similar to those used in experiments 
conducted by the National Institute for Occupational 
Safety and Health (NIOSH)4 and are finding that meth-
ane still detonates, in large systems, with concentra-
tions lower than previously thought possible.
	 [Sponsored by NIOSH and NRL]
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	 Introduction: In systems far from equilibrium, 
noise is found to play an increasingly important role in 
understanding the dynamics. Many of the systems we 
have studied, including delay coupled lasers,1 adaptive 
networks,2 and epidemic spread in finite populations,3,4 
are all modeled in the presence of noise. As sensing 
devices become smaller, or as the number of particles 
in populations gets smaller, new metastable states may 
be created, leading to novel observed dynamics. 
	 For very small noise, it is known the system will re-
main close to an equilibrium state for very long times. 
However, if the system is nonlinear, sufficiently large 
noise will cause the system to leave its local attracting 
state, and explore other parts of phase space. In partic-
ular, it may find other distinct states, which may or may 
not be stable. If the dynamical system has more than 
one attracting state, noise may cause the dynamics to 
switch between states. A physical example of a system 
having more than one attractor is that of a microme-
chanical oscillator, shown in Fig. 5(a). It has a potential 
similar to that schematically drawn in Fig. 5(b), which 
is a generic picture of a bistable potential. It is clear 
that each attracting state is separated from the other 
by a barrier height of the potential, and in the case of 

FIGURE 5
(a) An image of a micro-torsional oscillator. There are two 
stable states and hysteresis under suitable driving conditions. 
For details, see Ref. 8. (b) A schematic of a scalar potential 
possessing bistability. The two attracting states, located at the 
minima, are separated by an unstable object, such as a saddle. 
Deterministically, the trajectories go to one of the two attract-
ing states, and remain there. However, if noise is added to the 
system, the trajectory may switch from one attractor to another.
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Gaussian thermal noise, the exponent of the switching 
rate between attractors is proportional to the barrier 
height. The left graph in Fig. 6 depicts the phase space 
topology of the bistability in two dimensions. There is 
a saddle separating the two attracting states. The stable 
manifold acts as a basin boundary separating the basins 
of attraction between the two attractors. The noise must 
overcome the basin boundary to switch states.
	 On the other hand, if the system consists of a finite 
number of particles, such as a chemical reaction or 
population, noise may cause one or more of the species 

to approach zero, i.e., the species goes extinct. Generic 
epidemic models typically have one attracting endemic 
state and one extinct state. The extinct state is typically 
a saddle; the topology of this type of system is given in 
the right graph of Fig. 6. For extinction to occur, noise 
again must overcome an unstable barrier to approach 
the extinct state. 
	 An example of probability to extinction is shown 
in Fig. 7(a). In this finite population epidemic model, 
there is one attracting state and one unstable extinct 
state. However, due to random interactions between 

FIGURE 6
Phase portraits of two examples of changing states. (Left) The topology of a switching process. The stable 
manifold of a saddle divides the phase space between two attractors, forming a basin boundary. The stable 
manifold is a barrier that must be crossed in order to switch from one state to another. (Right) The topology of 
an extinction process. There exists a unique attracting state and an unstable extinct, which is a saddle. Noise 
drives the process to extinction by overcoming the unstable force of the extinct state.
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FIGURE 7(a)
An example of an extinction event in an epidemic model in a finite population of individuals. The 
population consists of infectious and susceptible individuals. Colors indicate the probability density 
(lighter corresponding to higher probability) for 20,000 stochastic realizations. The results were com-
puted using Monte Carlo simulations. (Figure made by Simone Bianco, currently with the University of 
California at San Francisco.)
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particles, internal noise causes the system to overcome 
the instability of the extinct state, and one component 
vanishes. 
	 One important point in understanding the prob-
ability of switching or extinction is that there exist 
many paths which generate a probability distribution of 
the events. One interesting question that may be asked 
is which paths optimize the probability of switching 
events, or extinctions? In particular, how do these paths 
arise as noise-driven events, and how do they depend 
on parameters of the system? The answers to these 
questions may be addressed by considering certain 
parameter regions. The graphs in Fig. 7(b) show pos-
sible optimal paths for switching and extinction, and 
the graph in Fig. 7(a) shows the actual optimal path for 
an epidemic model going from the endemic state to the 
extinct state where the number of infectious individuals 
(y-axis) approaches zero. For the rest of this article, we 
concentrate on quantifying switching rates in non-
Gaussian noise situations near bifurcations. This is used 
to actually quantify parameters and noise characteris-
tics in general sensing devices. References 5 through 7 
provide the general theory in generic models as well as 
in stochastic models with multiple time scales. 

	 Quantifying Switching Rates Near Instabilities: 
One aspect of nonlinear systems in noisy environments 
is that the rates of switching depend on a parameter 
that controls the number of states in the systems. In 
particular, when a system undergoes changes in stabil-
ity or in the number of observed states in a system, it is 
said to undergo a bifurcation. Parameters ranges near 
bifurcations are important in that they control the rate 
at which the dynamics proceeds. In particular, the rele-
vant components are slowed down in this range, and as 
a result of weak stability, noise-induced fluctuations are 
comparatively large. They ultimately lead to switching 
of the system from the stable state. Close to a bifurca-
tion point, the switching rate becomes measurable even 

where far from this point it is exceedingly small for a 
given noise level. The high sensitivity of the rate to the 
system parameters has been broadly used to determine 
parameters of many high quality sensing devices such 
as Josephson junctions and Josephson junction-based 
systems, nanomagnets, mechanical nanoresonators, 
and recently in quantum measurements. (Reference 5 
provides a list of references to specific devices.) 
	 The analysis of switching conventionally relies on 
the assumption that the underlying noise is Gaussian. 
Then the switching exponent Q, i.e., the exponent in 
the expression for the switching rate, W ≅ exp(-Q), 
displays a power law dependence on the distance to 
the bifurcation point in the parameter space, η. That is, 
Q = ηε. Recently, there has been much interest in large 
fluctuations and switching induced by non-Gaussian 
noise. Such switching can be used to determine the 
noise statistics. However, the features of the switching 
rate near bifurcation points have not been explored. 
Yet, one may expect that the dependence of the switch-
ing exponent will differ from that for a Gaussian noise 
and will be very sensitive to the noise statistics. Indeed, 
we have found that there exists a non-power-law behav-
ior when non-Gaussian noise is considered. 

	 Non-Gaussian Noise-Induced Switching: We 
consider noise-induced switching in two different 
generic bifurcations: a saddle-node bifurcation and a 
pitchfork bifurcation. In both cases, we consider a Lan-
gevin problem where the potential function is a scalar, 
and the non-Gaussian noise source is Poisson, having 
amplitude g and mean frequency ν. Figure 8 shows ex-
amples of two potential functions that characterize the 
saddle-node and pitchfork bifurcations. Several curves 
are plotted to illustrate the dependence on the bifurca-
tion parameter for each bifurcation. 
	 To predict what scaling law behavior occurs, we 
theoretically find the exponent of the switching rate. 
The exponent of the switching rate is given by classical 

FIGURE 7(b)
A schematic of optimal paths for switching and extinction. (Left) The path to switch in a bistable situation. 
(Right) The optimal path to an extinct state. In both cases, noise is the driving force causing the system to 
overcome unstable directions of a saddle to either switch, as in the left panel, or go extinct. 

x2

x1

xA2

xA1

xS

x2

xS

xA

switching optimal extinction path
x1



220 2011 NRL REVIEW  |  simulation, computing, and modeling

analogue of the action, which is defined as the path in-
tegral from one state to the saddle. The trajectory of the 
path comes from an associated Hamiltonian, and may 
be computed from the derived equations of motion. 
	 The interesting fact about computing the path for 
switching rates in a stochastic problem is that the opti-
mal path maximizing the switching rate is determined 
by a deterministic conservative system. This system 
is twice the dimension of the original deterministic 
model. The extra dimensions model the noise as an 
effective force on the system, which drives the dynam-
ics across the barrier. (See Fig. 7(a) for an optimal path 
example.)
	 The non-power-law behavior is predicted for both 
bifurcations in Ref. 5, and theory is compared with 
simulation in Fig. 9. Clearly, the power law dependence 
no longer exists due to a logarithmic correction. For 
Poisson noise, the change in sensor measurement char-
acteristics is considerable, even for small noise ampli-
tudes, g. 

	 Conclusions: Many devices used as sensors, such 
as photonics and mesoscale devices, are driven by non-
Gaussian noise sources. Here, we briefly reviewed new 
theoretical machinery that can characterize the physical 
parameters of a device by examining the scaling laws 
associated with switching rates. In contrast to power 
law behavior that is observed for Gaussian noise, non-
Gaussian noise leads to non-power-law behavior. In the 
case of Poisson noise found in many devices, we find 
different logarithmic corrections in the two bifurcation 
scenarios. Thus, accurate measurements of switch-
ing rates may also determine the type of instability in 
the device, as well as where the bifurcation points are 
located. 
	 Elsewhere, we have also considered the mix-
ing between Gaussian and non-Gaussian sources.5 It 
turned out that even a weak additional Gaussian noise 
becomes the major cause of switching sufficiently close 
to the bifurcation point. A qualitative and quantitative 
description of the crossover from Poisson- to Gaussian-

FIGURE 8
Potential functions for different bifurcation values of r in U(q). The left panel is the potential for a saddle node bifurcation, 
while the right panel is that of a pitchfork bifurcation.

FIGURE 9
Switching exponents comparing numerical Monte Carlo simulations (symbols) vs theoretical predictions (solid curves). Pois-
son noise is characterized by amplitude g and mean frequency ν. Pulses were only positive; i.e., pulses were one-sided. 
Saddle-node results are in the left panel and pitchfork results in the right panel.
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noise-controlled switching and of the bifurcation 
distance dependence of the switching exponent is in 
full agreement with numerical simulations. 
	 [Sponsored by ONR]
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