Overview of ORIGEN-ARP and its Application to VVER and RBMK

Germina Ilas, Brian Murphy, Ian Gauld

Oak Ridge National Laboratory

Managed by UT-Battelle for the Department of Energy

Outline

- Overview of ORIGEN-ARP
- Description of VVER and RBMK libraries
- Validation studies
- Summary

Overview of ORIGEN-ARP

- Allows easy setup of ORIGEN-S depletion and decay cases
- Interactive Windows program with built-in help files
- Windows interface generates SCALE input file for execution on PC or workstation
- Executes code sequence within SCALE on PC
- Runs very fast in a few seconds
- Used for analysis of fuel samples in this study

- Structure three main components
 - ARP code
 - interpolate on a set of pre-generated burnupdependent cross sections to obtain cross sections for use with ORIGEN-S
 - for uranium-based fuel, interpolation parameters are: burnup, fuel enrichment, coolant density
 - ORIGEN-S code
 - perform isotopic depletion and decay simulations
 - OPUS/PlotOPUS codes
 - extract and plot the calculated results

CrigenArp						
<u> </u>						
Options Plot Setup	new open save princ neij OK Apply Reset Close MOX	p run oucput piot cables editor detail				
	Title PWB 17x17	<u>40</u> ₂				
	Fuel Type ce14x14 Uranium (g) ce14x14 Uranium (g) ce14x14 Enrichment s14x14 (MVd/MTU) w17x17_ofa ge7x7-0 ge8x8-4 abb8x8-1 ge7x7-0 ge10x10-8 atrium10-9 svea64-1 svea464-1 wver440(3.6) vver440(4.38) vver440(4.38) vver40(4.38) gr/groom agr magnox candu37 candu28 candu28	(1.5 to 6) Power History 100% Up Average Power 40 MW/MTU Per Cycle				
Ready						
🎊 Start	📼 🥶 🔟 🕑 😿 😫 🗭	🔤 Command Prompt 🗀 3 Windows Expl 🖌 🖳 Windows Task Ma 🖄 ORNL_template.ppt 📖 👋 💽 🗙 🔳 🥔 💈	::37 PM			
	😂 🗹 📀 🔝	X Cygwin/X - nuc25 O Inbox - Microsoft S OrigenArp	ednesday			

ORIGEN-ARP graphical interface – Express option

ANS Winter Meeting, Washington, DC, November 14, 2007

ORIGEN-ARP graphical interface – Plot menu

6 Managed by UT-Battelle for the Department of Energy

ANS Winter Meeting, Washington, DC, November 14, 2007

LWR libraries for ORIGEN-ARP in SCALE 5.1

PWR

- 14x14: Westinghouse, Westinghouse CE, Siemens
- 15x15: Westinghouse
- 16x16: Westinghouse CE
- 17x17: Westinghouse, Westinghouse OFA
- BWR
 - 7x7: GE
 - 8x8: GE, ABB, SVEA-64
 - 9x9: GE, ATRIUM-9
 - 10x10:GE, ATRIUM-10, SVEA-100

VVER VVER440 VVER1000

Cross section library generation methods (TRITON)

- TRITON couples the 2-D arbitrary polygonal mesh transport code NEWT with the point depletion and decay code ORIGEN-S
- Additional 3-D depletion capabilities using KENO V.a and KENO VI Monte Carlo codes available in SCALE 5.1
- TRITON/NEWT sequence
 - generates burnup-dependent cross sectionsperforms pin-by-pin depletion of different materials
 - generates few-group cross-section data (including discontinuity factors) for use in subsequent nodal diffusion calculations

Description of VVER libraries

Assembly design	Name of library	Enrichment profile	Enrichment (wt % ²³⁵ U)
VVER-440	vver440(3.6)	flat	1.6, 2.4, 3.6
VVER-440	vver440(3.82)	zoned	average 3.82
VVER-440	vver440(4.25)	zoned	average 4.25
VVER-440	vver440(4.38)	zoned	average 4.38
VVER-1000	vver1000	flat	1.5, 2.0, 3.0, 4.0, 5.0, 6.0

Burnup range: 0 – 70 GWd/MTU

10 Managed by UT-Battelle for the Department of Energy

2-D TRITON models for VVER assemblies

VVER-440

(zoned enrichment)

VVER-1000

11 Managed by UT-Battelle for the Department of Energy

ANS Winter Meeting, Washington, DC, November 14, 2007

Description of RBMK libraries

- Libraries were generated based on design data representative of the Chernobyl Unit 4 reactor
- Work performed in support of an IAEA project
- Libraries were prepared for variable parameters:
 - enrichment: 1.8 to 2.2 wt % ²³⁵U
 - coolant density: 0.15 to 0.80 g/cm³
 - burnup: 0 to 25 GWd/MTU
- Libraries not included in SCALE 5.1 release

2-D TRITON model for RBMK assembly

Validation studies – VVER libraries

- Performed by comparison to isotopic assay experimental data from experiments performed at the Khlopin Radium Institute in Russia
- VVER-440 fuel
 - > 20 samples
 - enrichment : 3.6 wt % ²³⁵U
 - burnup: 20 43 GWd/MTU
 - cooling time: 3 4 years

VVER-1000 fuel

- > 13 samples
- enrichment : 4.4 wt % ²³⁵U
- burnup: 14 52 GWd/MTU
- cooling time: 7 10 years

Validation studies – VVER-440 (average of 20 samples)

15 Managed by UT-Battelle for the Department of Energy

ANS Winter Meeting, Washington, DC, November 14, 2007

National Laboratory

Validation studies – VVER-1000 (average of 13 samples)

16 Managed by UT-Battelle for the Department of Energy

Validation studies – VVER libraries

- Validation results show good agreement between measured data and ORIGEN-ARP results
- Sources of uncertainty include:
 - Uncertainties in irradiation history data
 - irradiation details not available
 - Uncertainties in burnup
 - burnup indicator ¹⁴⁸Nd overpredicted 5% on average for VVER-1000 data
 - correlated to underprediction of major actinides
 - Uncertainties in measured data
 - Effect of pin location (peripheral vs. assembly average)
 - cross sections derived for average assembly
 - effect can be reduced, depending on the accuracy level desired, by generating cross-section libraries for specific fuel rod locations in an assembly

Validation studies – VVER-1000 effect of uncertainty in burnup

18 Managed by UT-Battelle for the Department of Energy

ANS Winter Meeting, Washington, DC, November 14, 2007

OAK

Vational Laboratory

Validation studies – RBMK libraries

- Performed by comparison to isotopic assay experimental data from experiments performed at the Khlopin Radium Institute
 - 15 samples
 - enrichment : 1.80 2.09 wt % ²³⁵U
 - burnup: 6 23 GWd/MTU
 - coolant densities not available (estimated)
 - detailed irradiation history data not available

Validation studies – RBMK (average of 15 samples)

20 Managed by UT-Battelle for the Department of Energy

Summary

- VVER and RBMK cross section libraries for ORIGEN-ARP were generated using the depletion module TRITON/NEWT
- VVER 440 & 1000 libraries released in SCALE 5.1
- Validation of libraries was performed by comparison to measured isotopic assay data for spent fuel
- Validation results show good agreement between the measured data and ORIGEN-ARP results

Thank you for your attention!

Questions?

22 Managed by UT-Battelle for the Department of Energy

ANS Winter Meeting, Washington, DC, November 14, 2007