

	in SCALE-6
Source	Materials
ENDF/B-VII.0	Gd ^{152-158,160} Th ²³² Tc ⁹⁹ Ir ^{191,193}
Pre-released ENDF/B-VII	U ^{233,235,238} Pu ²³⁹
ENDF/B-VI	Na ²³ Si ²⁸⁻²⁹ Sc ⁴⁵ V ⁵¹ Cr ^{50,52-54} Mn ⁵⁵ Fe ^{54,56-58} Ni ^{58,60-62,64} Cu ^{63,65} Y ⁸⁹ Nb ⁹³ In ^(nat) Re ^{185,187} Au ¹⁹⁷ Pb ²⁰⁶⁻²⁰⁸ B ²⁰⁹ Am ²⁴
JENDL	Pu ²⁴⁰⁻²⁴¹
LANL Hi-Fi	H ¹⁻³ He ³⁻⁴ Li ⁶⁻⁷ Be ⁹ B ¹⁰⁻¹¹ C ¹² N ¹⁴⁻¹⁵ O ¹⁶⁻¹⁷ F ¹⁹
Lo-Fi	~ 200 materials

Nuclides in TAD Model										
Spen	t Fuel	Clac	lding	Moderator	Steel S	heaths	Borate	ed Steel	Tuff	
¹⁶ O	²³³ U	^{16}O	¹¹² Sn	¹ H	С	⁵⁴ Fe	$^{10}\mathbf{B}$	⁵⁵ Mn	¹⁶ O	1
⁹⁵ Mo	²³⁴ U	⁵⁰ Cr	¹¹⁴ Sn	¹⁶ O	^{14}N	⁵⁶ Fe	$^{11}\mathbf{B}$	⁵⁴ Fe	²³ Na	
⁹⁹ Tc	²³⁵ U	⁵² Cr	115Sn		Si	⁵⁷ Fe	C	⁵⁶ Fe	Mg	
¹⁰¹ Ru	²³⁶ U	⁵³ Cr	116Sn		³¹ P	⁵⁸ Fe	^{14}N	⁵⁷ Fe	²⁷ A1	
¹⁰³ Rh	238U	⁵⁴ Cr	117Sn		^{32}S	⁵⁸ Ni	Si	⁵⁸ Fe	Si	
¹⁰⁹ Ag	²³⁷ Np	⁵⁴ Fe	¹¹⁸ Sn		⁵⁰ Cr	⁶⁰ Ni	³¹ P	⁵⁹ Co	³¹ P	
143Nd	²³⁸ Pu	⁵⁶ Fe	¹¹⁹ Sn		⁵² Cr	⁶¹ Ni	³² S	⁵⁸ Ni	K	
145Nd	²³⁹ Pu	⁵⁷ Fe	¹²⁰ Sn		⁵³ Cr	⁶² Ni	⁵⁰ Cr	⁶⁰ Ni	Ca	
¹⁴⁷ Sm	²⁴⁰ Pu	⁵⁸ Fe	^{122}Sn		⁵⁴ Cr	⁶⁴ Ni	⁵² Cr	⁶¹ Ni	Ti	
¹⁴⁹ Sm	²⁴¹ Pu	Zr	¹²⁴ Sn		⁵⁵ Mn	Mo	⁵³ Cr	⁶² Ni	⁵⁵ Mn	
¹⁵⁰ Sm	²⁴² Pu						⁵⁴ Cr	⁶⁴ Ni	⁵⁴ Fe	
¹⁵¹ Sm	²⁴¹ Am								⁵⁶ Fe	
¹⁵² Sm	²⁴² Am								⁵⁷ Fe	
¹⁵¹ Eu	²⁴³ Am								⁵⁸ Fe	
¹⁵³ Eu										
¹⁵⁵ Gd										
9 Managed for the De	by UT-Battelle	y			L				4	

Gap Analysis for TAD							
the relative s	the relative standard deviation of k_{eff} (% $\Delta k/k$) due to uncovered sensitivity data is: 0.1829 ± 0.0000 percent contributions to uncertainty in k_{eff} (% $\Delta k/k$) by individual energy covariance matrices:						
	Covarian	ice Matrix	% Δk/k	∆k/k			
	Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix				
	²³⁹ Pu nubar	²³⁹ Pu nubar	7.0692E-02 ± 5.5661E-06				
	²³⁹ Pu n,gamma	²³⁹ Pu n,gamma	6.5976E-02 ± 6.9402E-05				
	²³⁹ Pu fission	²³⁹ Pu fission	6.2445E-02 ± 4.1232E-05				
	⁵⁶ Fe n,gamma	⁵⁶ Fe n,gamma	5.1023E-02 ± 5.5337E-05				
	²³⁵ U fission	²³⁵ U fission	5.0409E-02 ± 3.0036E-05				
	²³⁸ U n,gamma	²³⁸ U n,gamma	4.7994E-02 ± 9.7189E-05				
	235TT -1-1	235TT -1-1	A A762E 02 + 8 3535E 06				
18 Managed by UT-Battelle for the Department of Energy	i			CAK RIDGE Automiliatorian			

- With few exceptions, fission products are absent from experimental database and ENDF covariance data.
- Quantification of bias not possible because of lack of available experimental data.
- Bias can only be conservatively bounded by uncertainty quantification – or penalty.
- Fission product penalty is 0.07% ∆k/k of 0.18% ∆k/k total penalty

Nuclide	Reaction	Penalty Contribution %∆k/k
143Nd	n,gamma	4.18E-02
¹⁰³ Rh	n,gamma	2.69E-02
¹⁴⁵ Nd	n,gamma	2.30E-02
¹⁴⁹ Sm	n,gamma	2.20E-02
¹⁰¹ Ru	n,gamma	2.13E-02
⁹⁹ Tc	n,gamma	1.47E-02
¹⁵¹ Sm	n,gamma	1.37E-02
¹⁴⁷ Sm	n,gamma	1.12E-02
¹⁵³ Eu	n,gamma	1.02E-02
¹⁵² Sm	n,gamma	9.08E-03
¹⁵⁰ Sm	n,gamma	5.99E-03
⁹⁵ Mo	n,gamma	5.35E-03
¹⁰⁹ Ag	n,gamma	3.40E-03
¹⁵⁵ Gd	n,gamma	2.75E-03

<mark>≇</mark>Олк <u>Ridgi</u>

19 Managed by UT-Battelle for the Department of Energy

Data Adjustment Tool TSURFER TSURFER Generalized Linear Least-Squares (GLLS) Simultaneously examines measured and calculated data and adjusts integral experiment values within their uncertainties and cross sections within their uncertainties to minimize differences between measured and computed results. Uses TSUNAMI sensitivity data for uncertainty propagation and to • determine optimum adjustments Can consolidate useful data from different types of experiments ۲ that each contribute to the validation of the application - adjust to k_{eff} of 1.0 or reactivity difference to 0.0 Once adjustments that minimize biases in experiments are • computed, the adjustments are projected to the application via the sensitivity coefficients to predict its bias. Adjusted data are not used for further calculations, only to predict the bias. Can only make adjustments where experiments are available $\frac{1}{2}$ • 24 Managed by UT-Battelle for the Department of Energy

Growing Use

- The relatively easy-to-use TSUNAMI codes, GUIs, documentation, training courses and user support have brought sensitivity and uncertainty analysis into the mainstream.
- Distributed as part of SCALE by RSICC and NEA Data Bank.
- OECD/NEA Expert groups:
 - Uncertainty Analysis in Methods (UAM)
 - Uncertainty Analysis in Criticality Safety Assessment (UACSA)
- Recent and upcoming TSUNAMI training courses:
 - January 2008, NRC Headquarters, Washington, D.C. 2 day refresher
 - February 2008, NEA Headquarters, Paris 5 days
 - April 2008, WSMS Offices, SRNL 2 day refresher
 - October 2008, NEA course hosted by KFKI, Budapest, Hungary 5 days

≇Олк Впра

- November 2008, ORNL – 4 days

26 Managed by UT-Battelle for the Department of Energy

