ORNL/TM-2003/239

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Criticality Safety Study of UF₆ and UO₂F₂ in 8-in.-Diameter Piping

October 2003

Prepared by K. R. Elam

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone:* 703-605-6000 (1-800-553-6847) *TDD:* 703-487-4639 *Fax:* 703-605-6900 *E-mail:* info@ntis.fedworld.gov *Web site:* http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source:

Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 *Telephone:* 865-576-8401 *Fax:* 865-576-5728 *E-mail:* reports@adonis.osti.gov *Web site:* http://www.osti.gov/contact.html

> This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-2003/239

Nuclear Science and Technology Division (94)

Criticality Safety Study of UF₆ and UO₂F₂ in 8-in.-Diameter Piping

K. R. Elam

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6170

> (865) 574-4538 elamkr@ornl.gov

Date Published: October 2003

Prepared by OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6170 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

CONTENTS

	Page
LIST OF FIGURES	v
LIST OF TABLES	vii
1. INTRODUCTION	1
2. DESCRIPTION OF COMPUTER CODE AND INPUT MODEL	3
3. RESULTS	5
4. CONCLUSIONS	11
5. REFERENCES	13

LIST OF FIGURES

Fi	gure	Page
1.	Calculated k _{eff} for UF ₆	6
2.	Calculated keff values for water-reflected UO2F2 deposits.	9
3.	Calculated k _{eff} values for unreflected UO ₂ F ₂ deposits.	10

LIST OF TABLES

T:	able	<u>Page</u>
1.	Atom densities of steel and water	4
2.	Composition of modeled UF ₆ deposits	4
3.	Composition of modeled UO ₂ F ₂ deposits	4
4.	Calculated values of k _{eff} for reflected and unreflected UO ₂ F ₂ deposits	7

1. INTRODUCTION

The purpose of this report is to provide an evaluation of the criticality safety aspects of using up to 8-in.-inner-diameter (ID) piping as part of a system to monitor the ²³⁵U enrichment in uranium hexafluoride (UF₆) gas both before and after an enrichment down-blending operation. The evaluated operation does not include the blending stage but includes only the monitors and the piping directly associated with the monitors, which are in a separate room from the blending operation. There are active controls in place to limit the enrichment of the blended UF₆ to a maximum of 5 weight percent (wt %) ²³⁵U.

Under normal operating conditions of temperature and pressure, the UF₆ will stay in the gas phase and criticality will not be credible. The two accidents of concern are solidification of the UF₆ along with some hydrofluoric acid (HF) and water or moisture ingress, which would cause the UF₆ gas to react and form a hydrated uranyl fluoride (UO₂F₂) solid or solution. Of these two types of accidents, the addition of water and formation of UO₂F₂ is the most reactive scenario and thus limits related to UO₂F₂ will bound the limits related to UF₆.

Two types of systems are included in the monitoring process. The first measures the enrichment of the approximately 90 wt % enriched UF_6 before it is blended. This system uses a maximum 4-in.-(10.16-cm-) ID pipe, which is smaller than the 13.7-cm-cylinder-diameter subcritical limit for UO_2F_2 solution of any enrichment as given in Table 1 of American National Standard ANSI/ANS-8.1.¹ Therefore, this system poses no criticality concerns for either accident scenario.

The second type of system includes two enrichment monitors for lower-enriched UF₆. One monitors the approximately 1.5 wt % enriched UF₆ entering the blending process, and the second monitors the approximately 5 wt % enriched UF₆ coming out of the blending process. Both use a maximum 8-in.-(20.32-cm-) ID piping, where the length of the larger ID piping is approximately 9.5 m. This diameter of piping is below the 26.6-cm-cylinder-diameter subcritical limit for 5 wt % enriched UO₂F₂ solutions as given in Table 6 of ANSI/ANS-8.1. Therefore, for up to 5 wt % enriched UF₆, this piping does not present a criticality concern for either accident scenario.

Calculations were performed to determine the enrichment level at which criticality could become a concern in these 8-in.-ID piping sections. Both unreflected and fully water-reflected conditions were considered.

2. DESCRIPTION OF COMPUTER CODE AND INPUT MODEL

Nuclear criticality calculations were performed using the KENO V.a code within the SCALE 4.4a system² and the 238-group ENDF/B-V cross-section library. KENO V.a uses the Monte Carlo method to calculate a system's effective neutron multiplication factor (k_{eff}). Other modules within the SCALE 4.4a system perform cross-section processing to convert the ENDF/B-V data into a problem-specific working library. The BONAMI module performs resonance self-shielding for the unresolved resonance range using Bondarenko data. The NITAWL module performs resonance self-shielding for the resolved resonance range using the Nordheim integral transport method.

These computer codes and cross-section data have been used extensively to calculate many types of systems. For homogeneous low-enriched and high-enriched ²³⁵U systems, no significant calculational biases have been detected as a function of either neutron energy or moderation level.^{3,4} However, few critical experiments are available for validating calculations involving low-moderated UF₆ or UO₂F₂. Because of the limited number of applicable critical experiments, the calculated value of k_{eff} used as an upper safety limit was 0.92. This is consistent with values used for safety basis evaluations at the Oak Ridge National Laboratory.

The model used for these calculations began with a solid 9.5-m-long cylindrical deposit with an outer diameter of 20.32 cm. This deposit was surrounded by a 0.635-cm- (0.25-in.-) thick pipe wall made of carbon steel. For the water-reflected cases, this was further surrounded by a 30.48-cm- (12-in.-) thick water region. Vacuum boundary conditions were used at the ends of the pipe and outside the carbon steel pipe or water reflector. Calculations were also performed with deposits of shorter length and with deposits containing annular space to determine the sensitivity of k_{eff} to these parameters.

To show that limits related to UO_2F_2 will bound limits related to UF_6 , calculations were done with UF_6 enriched to 90 wt % ²³⁵U. This enrichment was chosen to bound actual conditions, even though highly-enriched uranium is not expected to enter the 8-in.-ID pipe. The moderation level was varied from a hydrogen to uranium ratio (H/U) of 0 to 2 in small increments by adding HF.

For the calculations with UO_2F_2 , the enrichment in weight percent of ²³⁵U was varied from 5 to 60%. The moderation level of the deposit was also varied from an H/U of 5 to 100 to determine the optimum moderation level for each enrichment. The highest enrichment for which k_{eff} did not exceed 0.92 for any moderation level was chosen as the enrichment limit.

The atom densities of the various materials were calculated using SCALE 4.4a. Standard Composition Library materials were used for the carbon steel and the water, which resulted in the atom densities shown in Table 1.

Mixtures of UF_6 and HF were created using densities for each compound as a function of the H/U ratio taken from Ref. 5. These material densities and resulting atom densities are given in Table 2.

Mixtures of UO_2F_2 and water were created using densities for each compound as a function of the H/U ratio taken from Ref. 6. These material densities and resulting atom densities are given in Table 3.

Element	Atom density (atoms/barn·cm)			
Carbon steel				
Iron	8.35E-02			
Carbon	3.93E-03			
Water				
Hydrogen	6.68E-02			
Oxygen	3.34E-02			

Table 1. Atom densities of steel and water

Table 2. Composition of modeled UF₆ deposits

	LIE _c density	HF density	Н	F	U
H/U	(g/cm^3)	(g/cm^3)	(atoms/	(atoms/	(atoms/
	(g/em)	(g/em)	barn·cm)	barn·cm)	barn·cm)
0.0	5.0750	0.0000	0.00E+00	5.25E-02	8.75E-03
0.1	4.9390	0.0284	8.56E-04	5.19E-02	8.51E-03
0.2	4.7967	0.0552	1.66E-03	5.13E-02	8.27E-03
0.4	4.5352	0.1044	3.14E-03	5.01E-02	7.82E-03
0.6	4.3004	0.1486	4.47E-03	4.90E-02	7.41E-03
0.8	4.0887	0.1883	5.67E-03	4.80E-02	7.05E-03
1.0	3.8969	0.2244	6.75E-03	4.71E-02	6.72E-03
1.5	3.4889	0.3013	9.07E-03	4.52E-02	6.01E-03
2.0	3.1576	0.3636	1.09E-02	4.36E-02	5.44E-03

Table 3. Composition of modeled UO_2F_2 deposits

	UO_2F_2	U O donaitu	Н	0	F	U
H/U	density	(a/am^3)	(atoms/	(atoms/	(atoms/	(atoms/
	(g/cm^3)	(g/cm)	barn•cm)	barn·cm)	barn·cm)	barn·cm)
5	3.7519	0.5539	3.71E-02	3.32E-02	1.47E-02	7.34E-03
10	2.4130	0.7125	4.77E-02	3.33E-02	9.44E-03	4.72E-03
15	1.9105	0.7720	5.16E-02	3.33E-02	7.48E-03	3.74E-03
20	1.4080	0.8315	5.56E-02	3.33E-02	5.51E-03	2.76E-03
25	1.1646	0.8611	5.76E-02	3.34E-02	4.56E-03	2.28E-03
30	1.0870	0.8706	5.82E-02	3.34E-02	4.25E-03	2.13E-03
40	0.7670	0.9082	6.07E-02	3.34E-02	3.00E-03	1.50E-03
50	0.6260	0.9242	6.18E-02	3.34E-02	2.46E-03	1.23E-03
60	0.5272	0.9364	6.26E-02	3.34E-02	2.07E-03	1.04E-03
70	0.4559	0.9448	6.32E-02	3.34E-02	1.79E-03	8.96E-04
80	0.4013	0.9512	6.36E-02	3.34E-02	1.58E-03	7.89E-04
100	0.3250	0.9598	6.42E-02	3.34E-02	1.28E-03	6.39E-04

3. RESULTS

Each calculation included 200,000 neutron histories, with 1000 neutrons per generation and 203 generations, skipping a minimum of three generations. This was adequate to ensure source convergence for these models and resulted in an average Monte Carlo uncertainty of 0.0016.

The pipe models containing UF₆ deposits at 90 wt % ²³⁵U enrichment did not approach a calculated k_{eff} of 0.92 under any of the moderation conditions from H/U of 0 to 2 (Fig. 1). The highest calculated k_{eff} was 0.83 at an H/U of 0.4, and at higher moderation levels the k_{eff} declined steadily. Therefore, it may be concluded that solid deposits of UF₆ do not pose a criticality hazard under the conditions evaluated in this report and that deposits of UO₂F₂ represent the bounding worst-case scenario.

The models containing UO_2F_2 and water were examined for various values of enrichment and moderation. This report presents data for fully water-reflected models with enrichments between 5 and 20 wt %, and unreflected models with enrichments between 50 and 60 wt %. The moderation level of the deposit was also varied from an H/U of 5 to 100 to determine the optimum moderation level for each enrichment. The respective enrichment and moderation ranges that are presented here are the culmination of a broader analysis that determined the range where the system k_{eff} peaked at a value around 0.92. The results of these calculations are shown in Table 4 and in Figs. 2 and 3.

For fully water-reflected pipe, the maximum enrichment for which the calculated value of k_{eff} remained below 0.92 for all moderation levels was 10 wt %. The maximum k_{eff} for 10 wt % enriched UO₂F₂ was 0.9173, which occurred at an H/U of 15 and a hydrogen-to-²³⁵U ratio (H/X) of 150.

For unreflected pipe, the maximum enrichment for which the calculated value of k_{eff} remained below 0.92 for all moderation levels was 50 wt %. The maximum k_{eff} for 50 wt % enriched UO_2F_2 was 0.9135, which occurred at an H/U of 40 and an H/X of 80.

The system k_{eff} was more sensitive to changes in annular void space than it was for deposit length. Values of k_{eff} began to drop off significantly once the annular void space exceeded 1 cm in radius. However, calculations with progressively shorter deposits showed that the k_{eff} of the system is not significantly lowered until the deposit reached about 1.5 meters, reduced from the model baseline of 9.5 meters. These results imply that a deposit does not need to reach the full 9.5 meters in length to have substantial reactivity, but that an annular void space through a deposit can have a noticeable effect on reactivity.

Fig. 1. Calculated k_{eff} for UF₆.

Enrichment	Reflection	H/U	H/X	$\mathbf{k}_{\mathbf{eff}}$
5	Water	5	100	0.7568
5	Water	10	200	0.8065
5	Water	15	300	0.8061
5	Water	20	400	0.7855
5	Water	25	500	0.7622
5	Water	30	600	0.7506
5	Water	40	800	0.6873
10	Water	5	50	0.8409
10	Water	10	100	0.9055
10	Water	15	150	0.9173
10	Water	20	200	0.9140
10	Water	25	250	0.9041
10	Water	30	300	0.8992
10	Water	40	400	0.8630
20	Water	5	25	0.9061
20	Water	10	50	0.9722
20	Water	15	75	0.9936
20	Water	20	100	1.0058
20	Water	25	125	1.0064
20	Water	30	150	1.0058
20	Water	40	200	0.9918
50	Unreflected	5	10	0.8034
50	Unreflected	10	20	0.8536
50	Unreflected	15	30	0.8645
50	Unreflected	20	40	0.8896
50	Unreflected	25	50	0.9063
50	Unreflected	30	60	0.9087
50	Unreflected	40	80	0.9135
50	Unreflected	50	100	0.9112
50	Unreflected	60	120	0.9087
50	Unreflected	70	140	0.9079
50	Unreflected	80	160	0.8989
50	Unreflected	100	200	0.8883

Table 4. Calculated values of k_{eff} for reflected and unreflected UO_2F_2 deposits

Table 4 (continued)				
Enrichment	Reflection	H/U	H/X	k _{eff}
55	Unreflected	5	9	0.8171
55	Unreflected	10	18	0.8607
55	Unreflected	15	27	0.8806
55	Unreflected	20	36	0.8982
55	Unreflected	25	45	0.9100
55	Unreflected	30	55	0.9139
55	Unreflected	40	73	0.9237
55	Unreflected	50	91	0.9240
55	Unreflected	60	109	0.9211
55	Unreflected	70	127	0.9141
55	Unreflected	80	145	0.9136
55	Unreflected	100	182	0.9034
60	Unreflected	5	8	0.8260
60	Unreflected	10	17	0.8687
60	Unreflected	15	25	0.8883
60	Unreflected	20	33	0.9093
60	Unreflected	25	42	0.9177
60	Unreflected	30	50	0.9211
60	Unreflected	40	67	0.9310
60	Unreflected	50	83	0.9320
60	Unreflected	60	100	0.9270
60	Unreflected	70	117	0.9276
60	Unreflected	80	133	0.9277
60	Unreflected	100	167	0.9128

 Table 4 (continued)

Fig. 2. Calculated k_{eff} values for water-reflected UO_2F_2 deposits.

Fig. 3. Calculated k_{eff} values for unreflected UO_2F_2 deposits.

4. CONCLUSIONS

The results given in this report are based on the assumption that UF_6 enriched beyond 5 wt % ²³⁵U cannot enter the 8-in.-ID piping sections. For the 8-in.-ID pipe evaluated in this report, solid deposits of UF_6 do not present a criticality hazard. Solid deposits of UO_2F_2 will not be a criticality risk if the enrichment stays below 10 wt % ²³⁵U. Also, with the enrichment monitoring equipment in place, it is probable that the formation of a solid deposit would be detected before it became large. Other administrative controls, such as material balance, could also be used to ensure that a large solid deposit does not form.

5. REFERENCES

- 1 American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors, ANSI/ANS-8.1-1998, American Nuclear Society, La Grange Park, IL, 1998.
- SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2R6), Vols. I, II, III, May 2000. Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-545.
- S. M. Bowman, W. C. Jordan, J. F. Mincey, C. V. Parks, and L. M. Petrie, *Experience with* the SCALE Criticality Safety Cross-Section Libraries, NUREG/CR-6686 (ORNL/TM-1999/322), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, October 2000.
- 4. P. B. Fox and L. M. Petrie, *Validation and Comparison of KENO V.a and KENO-VI*, ORNL/TM-2001/110, UT-Battelle, LLC, Oak Ridge National Laboratory, May 2002.
- 5. W. C. Jordan and J. C. Turner, *Minimum Mass of Moderator Required for Criticality of Homogeneous Low-enriched Uranium Systems*, ORNL/CSD/TM-284, Martin Marietta Energy Systems, Oak Ridge National Laboratory, December 1992.
- W. C. Jordan and J. C. Turner, *Estimated Critical Conditions for UO*₂F₂-H₂O Systems in Fully Water-Reflected Spherical Geometry, ORNL/TM-12292, Martin Marietta Energy Systems, Oak Ridge National Laboratory, December 1992.

ORNL/TM-2003/239

INTERNAL DISTRIBUTION

- 1. W. C. Carter, 5700, MS-6170
- 2-3. K. R. Elam, 5700, MS-6170
 - 4. J. N. Herndon, 4500N, MS-6248
 - 5. D. J. Hill, 5700, MS-6152
 - 6. D. F. Hollenbach, 5700, MS-6170
 - 7. C. M. Hopper, 5700, MS-6170
 - 8. J. A. March-Leuba, 3500, MS-6010
 - 9. C. V. Parks, 5700, MS-6170
 - 10. D. H. Powell, 9114, MS-8284
 - 11. J. C. Wagner, 5700, MS-6170
 - 12. R. M. Westfall, 5700, MS-6170
- 13. J. D. White, 3500, MS-6010

- 14. Laboratory Records RC 6011, MS-6283
- 15. Central Research Library 4500N, MS-6191