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Abstract 

This paper describes the generalized-geometry capabilities of the two-
dimensional NEWT transport solver, used within the TRITON depletion 
sequence of the SCALE code system for lattice physics calculation.  With 
the release of SCALE 5.1 in 2006, NEWT will introduce a new automated 
grid generation procedure based on simple body specifications, using an 
input format based on the SCALE Generalized-Geometry Processor.  The 
paper will contrast the discretization techniques against those used in other 
unstructured grid treatments; illustrate the ease of model development, 
features, capabilities; and demonstrate the unique adaptability of NEWT 
for a wide range of fuel configurations. 
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1. Introduction 

The radiation transport equation, a linearized derivative of the Boltzmann 
equation, provides an exact description of a neutral-particle radiation field in terms of the 
position, direction of travel, and energy of every particle in the field.  Both stochastic and 
deterministic forms of the transport equation have been developed and are heavily 
utilized in nuclear applications.  Each approach has its strengths and weaknesses.  
Stochastic approaches are extremely effective for problems with complex geometries 
where the calculations of integral quantities such as radiation dose and neutron 
multiplication factors are desired.  However, calculations to obtain accurate differential 
information such as the neutron flux as a function of space and energy can be difficult 
and inefficient at best, and prone to inaccuracies (even if the integral quantity is correct).  
Deterministic techniques are better suited for problems where differential quantities such 
as the neutron flux as a function of energy or space are desired.  Hence, there exists a 
need for a deterministic transport solver that can match Mote Carlo methods in terms of 
geometric flexibility, while simultaneously remaining computationally efficient. 

First publicly released with SCALE 5.0 in June 2004, the NEWT [1] transport 
solver provides a two-dimensional, unstructured-mesh discrete-ordinates solution for 
multigroup neutron transport calculations for a wide variety of applications.  NEWT 
employs a mesh defined by arbitrary polygons; extended step characteristic (ESC) 
discretization is applied to calculate transport between sides within each computational 
cell [2,3].  Using the ESC solution method, computational cells are developed in the form 
of arbitrary polygons, which are further divided into trapezoids as a function of angle for 



a number of angles in a quadrature set.  While similar in concept to the Method of 
Characteristic (MOC) class of discretization, ESC provides a more rigorous spatial 
representation of bodies and allows significantly more control of spatial mesh refinement. 

Grid-generation within NEWT is automated, and models are developed by the 
placement of simple bodies.  With the release of Version 5.1 of SCALE, a new input 
specification paradigm and grid generation algorithm have been employed in NEWT.  
The input format has been adapted from the SCALE Generalized-Geometry Processor 
(SGGP).  This combinatorial input format is employed by SCALE’s KENO VI Monte 
Carlo criticality code and is being implemented in the MONACO Monte Carlo Shielding 
code.  The use of a common input format will reduce the learning curve in model 
development for SCALE users.  Although limited to two dimensions, the use of the 
SGGP input format provides virtually all the geometric flexibility of Monte Carlo for a 
deterministic solution.  It also allows a means for direct comparison of Monte Carlo vs 
deterministic methods.  Using the same cross section data and virtually identical 
geometric configurations, differences in results can be attributed to differences in the two 
transport techniques.  

Within the SCALE code system, the TRITON sequence [4] is used to couple 
NEWT (or KENO) with ORIGEN-S for depletion calculations.  This functionality has 
been extended over the last 4 years to be able to use NEWT to produce burnup-dependent 
lattice physics parameters for use in nodal analyses and includes a branching capability at 
each depletion state point.  This work has been performed under contract with the U.S. 
Nuclear Regulatory Commission (NRC) to provide NRC staff with a high-fidelity lattice 
physics capability for the analysis of mixed-oxide (MOX) fuel assembly designs. [5]   

With the evolution of fuel assembly designs for current-generationlight water 
reactors (LWRs), along with anticipated MOX loadings in some core designs and with 
potential departure from traditional LWR designs in Gen IV, existing (or newly 
developed) methods must be verified against independent rigorous methods that have the 
ability to accurately model complex and nonstandard fuel lattice designs.  NEWT 
provides such an analysis capability. 

This paper will provide a demonstration of the geometric capabilities of NEWT 
and will describe some of the features and functionality of the code for various types of 
transport analysis and lattice physics calculations. 

 
2. Extended-Step Characteristic Discretization 

 
The transport solution algorithm within NEWT is based on Extended-Step 

Characteristic (ESC) discretization.  ESC discretization is a short characteristic 
implementation of the characteristic form of the transport equation, as opposed to Method 
of Characteristics (MOC) approaches that rely on long characteristics.  The characteristic 
form of the transport equation, 
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in which Q(s) is the neutron source, may be easily solved assuming a “step 
approximation” in which properties and sources are assumed constant; the angular flux at 
any position s measured in a single angular (characteristic) direction is then found to be  
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where ψ 0 is the known angular flux at s = 0.  Some approaches use a linear characteristic 
approximation, in which Q is assumed to vary linearly with s, which gives a somewhat 
more complex solution.   

The distinction between the long characteristic (e.g., MOC) and short 
characteristic (e.g., ECS) approaches is the length of the ray over which the formulation 
is applied.  Long characteristic solutions perform transport calculations along a set of 
characteristic rays with a given angular orientation across the entire problem domain, 
whereas a short characteristic approach defines rays with the same angular orientation but 
only within the extent of a single computational cell.  In both methods, a unique set of 
rays is defined for a number of angular orientations, with resulting angular fluxes 
integrated to obtain scalar fluxes. 

 
3. Comparison of ESC to the Method of Characteristics  

 
MOC methods have become a popular approach for unstructured mesh 

calculations [6-9] and are extremely powerful.  However, the short characteristic 
approach used in ESC discretization offers improved resolution in space along with a 
more flexible form of ray placement that allows “localized” ray refinement.  

The “step” approximation in the step characteristic approach is the assumption of 
a constant source.  The source term, Q, comprised of scattering and fission neutrons, will 
clearly vary spatially.  In the limit, as s goes to zero, the solution becomes exact.  
However, for relatively short distances, it is reasonable to assume that Q(s) can be 
approximated by an average,Q .  Hence, discretization of the spatial domain becomes 
necessary such that Eq. (2) is integrated over a reasonable track length.  In MOC 
methods, individual bodies are used to define a track length; within a body, properties are 
constant, and it is assumed that the source term along a ray moving in a given direction 
may be well represented by an average.  A volume is associated with each ray, based on 
the ray-to-ray spacing.  The treatment of the body is exact, but the treatment of internal 
volumes effectively replaces the body with a series of effectively one-dimensional (1-D) 
parallel rectangles (i.e. no transverse leakage) in which volume is conserved via fixup 
factors.  Rays are placed globally for each of a finite set of angles, but rays are broken 
into shorter segments at each body intersection.  Conversely, in the ESC approach, all 
bodies are approximated as polygons with an equivalent volume.  Within a computational 
cell, rays are defined by the vertices of each region.  A volume is defined by the four-
sided polygon enclosed by the rays, and the average angular flux across the volume is 
calculated using Eq. (2).  No fixups are necessary – the set of polygons comprising each 
body will always exactly match the volume of the body.  Furthermore, the solution within 
a cell is truly 2-D.  Average angular fluxes on outgoing sides are calculated as a function 
of angular flux contribution from all incoming sides, which intimately couples all 



adjacent cells.  In MOC methods, there is no spatial coupling of rays, requiring a very 
fine mesh of 1-D rays to approximate two dimensions. 

These two approaches are best demonstrated with an illustration.  Consider a 
transport calculation for a simple cylindrical fuel element within a square moderator 
region.  In the MOC method, for each of a set of angles, a set of rays are laid over the 
entire domain, as shown in Fig. 1(a).  The volume associated with one ray passing 
through the fuel is represented by the rectangular shaded area in the figure.  Fig. 1(b) 
illustrates the nature of the set of rays generated in the ESC approach.  Rays are 
generated as needed to capture the detail of the bodies modeled.  Effectively, MOC 
methods integrate a volume using a Simpson’s Rule approximation, while ESC performs 
a Trapezoidal Rule integration.  Both are exact as the ray spacing goes to zero, but the 
ESC approach converges to the limit faster and does not need as many rays for a given 
level of accuracy. 

 
Figure 1.  Comparison of ray tracing concepts between (a) MOC and (b) ESC 

approaches. 
 

 
(a) 

 
(b) 

  
A limitation in standard MOC methods is that the ray spacing must be small 

enough to provide appropriate sampling (at least one ray) for all bodies.  The ESC 
approach, as implemented in NEWT, automatically places at least one ray in each body, 
irrespective of angle, and adds rays as necessary to capture the structure of all bodies, no 
matter what size or shape they may be.  Further, this ray refinement is local rather than 
global, so that a globally fine ray spacing is not necessary to capture locally fine details.  
NEWT also allows user control over local grid refinement, by adding a rectangular mesh 
on top of body placement.  This mesh reduces cell sizes and thus reduces the volume 
associated with each ray; it also increases the localized ray spacing.  Figure 2 illustrates 
the addition of an overlaid grid structure, with the corresponding discretization of 
characteristic rays and computational cells.  Within NEWT, the rectangular grid is user 
controlled and may be easily varied to test convergence.  Again, the grid is also locally 
defined, so refinement may be placed only where needed. 

 
 
 

 



Figure 2.  Computational cell refinement by addition of rectangular grid. 
 

 
 
 

4. NEWT Model Development 
 

The SCALE Generalized Geometry Package provides the geometric flexibility 
necessary to develop extremely complex models for KENO-VI Monte Carlo calculations.   
Although limited to two-dimensional analysis in an (x-y) plane, the application of the 
combinatorial SGGP input structure provides the ability to easily develop models for 
complex configurations in two dimensions.  Because it is limited to 2-D, certain bodies 
(e.g., spheres) cannot be modeled; however, the input flexibility is limited only by the    
2-D constraint.   

SGGP input is body-based, with bodies placed, rotated, translated, and cut as 
required for the desired configuration.  Bodies are placed into “units,” which are basic 
building blocks for model development.  Units may be placed within other units, either in 
the form of a single placement or in the form of an array; NEWT supports both 
rectangular and hexagonal array structures.  

To this point, the capabilities of the 2-D SGGP implementation in NEWT mirror 
the capabilities of KENO VI.  However, because the ESC methodology is really just an 
advanced realization of the discrete ordinates method, a grid structure must be 
introduced.  Traditional discrete ordinates methods are based on a grid structure of 
orthogonal cells in which finite-difference relationships are used to estimate transport 
across a computational cell.  The ESC method uses a short characteristics approach to 
calculate transport across arbitrary polygons.  Diamond-differencing is an approximation 
in which the derivatives of the flux are assumed to be linear across a computational cell, 
requiring cell sizes small enough to approximate this assumption.  The characteristic 
solution is an exact representation of transport across a cell; however, approximations are 
introduced by the calculation of side-averaged fluxes, which limit the length of cell sides 
such that the variation of the angular flux along a side may be properly represented by an 
average.  Both traditional and ESC discrete ordinates methods are also constrained in size 
by the assumption of a constant source within the cell.  Hence, a grid structure must be 
introduced to further subdivide the problem domain.  In NEWT, this is achieved by the 
introduction of a rectangular grid; computational cells are defined by the intersection of 
the rectangular grid and placed bodies.  The problem domain is characterized by a largely 



rectangular grid which has additional polygonal structure at the intersection of bodies and 
rectangular cells. 

The rectangular grid in NEWT models is imposed at the unit level.  An m by n 
rectangular grid is assigned to each defined unit.  The grid is local to that cell and need 
not correspond to grid structure in other units.  When a unit is place within another unit, 
the underlying grid of the container unit is removed in favor of the grid associated with 
the placed unit. 

  
Figure 3.  Global grid structure for a unit with one grid refinement placed within 

another with a more coarse grid structure. 
 

 

 
unit 1 
cylinder 10 0.5 
cylinder 20 0.55 
media 1 1 10 
media 2 1 20 -10 
boundary 20 5 5 
global unit 2 
hole 1 
cuboid 10 4p0.75 
media 3 1 10 
boundary 10 3 3 

 
Figure 3 illustrates the grid structure developed for a hypothetical pin cell, along 

with the geometrical specification for this model.  This input also specifies mixture 
placement, indicated by the three colors.  Note that in this case, the grid structure for the 
unit consisting of two cylinders replaces the grid for the cuboid.  The grids for the two 
regions can be individually set according to the needs of the configuration being 
analyzed. 
 
5. Acceleration on an Arbitrary Grid 

 
As with other discrete ordinates methods, NEWT can be slow to converge, 

especially in low absorbing media.  However, the structure of the NEWT grid was found 
to be compatible with coarse-mesh finite-difference (CMFD) acceleration.  CMFD 
methods generally require an orthogonal grid structure within which constituent mixtures 
can be homogenized on a cell-by-cell basis.  A lower-order diffusion solution can then be 
performed using a finite-difference approach.  Prolongation of the solution can then be 
performed to update the source term estimate for each cell on the fine-mesh transport 
model.  Although a NEWT grid is completely arbitrary and does not necessarily contain 
the required continuous orthogonal grid structure, addition of such structure is easily 
accommodated.  In fact, due to the use of a rectangular grid for the global unit (the 
outermost unit of a problem that encloses all bodies), a continuous grid is actually always 



possible.  In general, the “background” grid, i.e., the grid associated with the global unit, 
is suppressed when a different grid structure is imposed on it, as illustrated in Fig. 3.  
However, it is possible to allow the background grid to “show through,” or coexist.  
Figure 4 illustrates the same pin cell as shown in Fig. 3, but with the background grid 
retained.  This introduces additional computational cells in the fine-mesh (ESC) 
discretization, but makes CMFD acceleration possible (in this case, on the 3 ×3 base 
square mesh), which more than offsets the additional work caused by additional transport 
effort. 

Figure 4.  Modified computational grid to accommodate CMFD acceleration. 

 
 
This approach to discretization for a coarse-mesh acceleration makes it possible to 

apply CMFD to nonorthogonal fuel bundle designs.  Consider the ACR-700 fuel bundle 
with surrounding moderator, illustrated in Fig. 5.  Representation of such a configuration 
is easily accomplished with NEWT, but the large amount of deuterium outside the fuel 
tube makes the problem extremely difficult to converge.  Use of CMFD is essential for 
problems of this nature, and NEWT makes it possible to combine the power of an 
arbitrary grid transport solver with the speed and simplicity of a low-order coarse-mesh 
accelerator. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 5.  NEWT model of ACR-700 assembly with surrounding heavy-water 

moderator. 

 
 

 
6. Conclusions 

 
The ESC approach implemented in NEWT provides a unique capability for 

discrete ordinates calculations on an arbitrary grid.  The approach is robust, accurate, and 
provides mechanisms for localized, user-controlled refinement of spatial grids without 
necessitating a global refinement.   

With the 5.1 release of SCALE, NEWT supports a geometry specification 
paradigm based on the SCALE Generalized-Geometry Package used by the KENO-VI 
Monte Carlo criticality code.  SGGP is also the basis for geometry definition of the 
MONACO Monte Carlo shielding code being developed at ORNL.  The use of a 
conceptually identical package within key modules of the SCALE suite of codes 
facilitates other development efforts (e.g., Graphical User Interface packages) and 
reduces the training/learning curve burden on users of multiple modules.  But most 
important for NEWT, the SGGP provides a powerful combinatorial geometry input 
specification that allows complicated model development in simple body-based 
specifications.  Furthermore, the ability to rapidly translate input specifications from 
KENO-VI to NEWT, and vice versa, provides an excellent methods to cross-check 
methods (Monte Carlo vs deterministic) in a manner when only the transport solution is 
different; both codes use identical cross-section data, which can eliminate data-related 
uncertainties in code-to-code comparisons. 

The addition of a coarse-mesh finite-difference accelerator with this release of 
NEWT improves the efficiency of the solution method, especially for scattering-
dominant media.  Although NEWT’s grid structure supports completely arbitrary 



polygons, the use of a rectangular base grid that combines with body shapes to define that 
grid makes possible the use of a simple CMFD accelerator that can easily exchange 
information with the arbitrary ESC grid. 

NEWT has become the mainstay of a lattice physics package that supports 
ORIGEN-S-based depletion with branching; this capability is described in a companion 
paper in this Proceedings [10].  The arbitrary-grid capabilities of NEWT have also been 
recently combined with the continuous-energy resonance-processing code CENTRM [3] 
in a proof-of-principle 2-D resonance processing code known as GEMINEWTRN [11].  
This code will not be available in the SCALE 5.1 release, but is expected to be prepared 
for public release in SCALE 6.  GEMINEWTRN provides an explicit treatment of 2-D 
spatial effects in a continuous-energy transport solution that can provide accurate 
spatially-dependent multigroup cross section weighting for irregular geometric 
configurations. 
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