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ABSTRACT 
 

This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency 
of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh 
tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as 
Forward-Weighted CADIS (FW-CADIS), is a variation on the Consistent Adjoint Driven 
Importance Sampling (CADIS) method, which has been used for some time to very effectively 
improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or 
reaction rate at a specific location. The basis of this method is the development of an importance 
function that represents the importance of particles to the objective of uniform Monte Carlo 
particle density in the desired tally regions. Implementation of this method utilizes the results from 
a forward deterministic calculation to develop a forward-weighted source for a deterministic 
adjoint calculation. The resulting adjoint function is then used to generate consistent space- and 
energy-dependent source biasing parameters and weight windows that are used in a forward 
Monte Carlo calculation to obtain approximately uniform statistical uncertainties in the desired 
tally regions. The FW-CADIS method has been implemented in the ADVANTG/MCNP 
framework and has been fully automated within the MAVRIC sequence of SCALE 6. Results of 
the application of the method to enabling the calculation of dose rates throughout an entire full-
scale pressurized-water reactor facility are presented and discussed.  
 
Key Words: Monte Carlo, variance reduction, hybrid transport, CADIS  

 
 

1. INTRODUCTION 
 
Recent applications’ needs have motivated efforts to develop approaches for optimizing Monte 
Carlo calculations for distributions, such as flux or dose rate distributions (e.g., mesh tallies), as 
well as responses at multiple localized detectors and spectra. Recent efforts at Oak Ridge 
National Laboratory (ORNL) have led to the development of a variation on the Consistent 
Adjoint Driven Importance Sampling (CADIS) method for effective global variance reduction. 
This method, referred to as Forward-Weighted CADIS (FW-CADIS), and an example of its 
application are presented in this paper. To the authors’ knowledge, this is a new method and 
novel use of the adjoint methodology for biasing Monte Carlo simulations. 
 
It has long been recognized that the adjoint function (i.e., the solution to the adjoint form of the 
Boltzmann transport equation) has physical significance [1] as a measure of the importance of a 
particle to some objective function (e.g., the response of a detector) and that this physical 
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interpretation makes the adjoint function well suited for biasing Monte Carlo simulations. 
Accordingly, recent trends in Monte Carlo code development have reflected a recognition of the 
benefits of using deterministic adjoint (importance) functions for Monte Carlo variance reduction 
[2]. The CADIS methodology [2, 3], which has been incorporated into codes such as ADVANTG 
[4] (based on MCNP) and the MAVRIC (Monaco with Automated Variance Reduction using 
Importance Calculations) [5] sequence of SCALE [6], has been used to accelerate three-
dimensional (3-D) Monte Carlo simulations for a number of real applications (see for example 
Refs. 2, 4, 7 and 8). 
 
Although the CADIS methodology has proved to be very effective for automated optimization of 
localized quantities, until very recently, efforts to optimize distributions (e.g., mesh tallies and/or 
spectra) have not been nearly as successful. A number of heuristic approaches, such as 
specification of the adjoint source (response function) throughout the problem phase space, have 
been tested and found to be ineffective. Specification of the adjoint source at the outer 
boundaries of a problem in an attempt to encourage particles to move outward through the entire 
system was found to be reasonably effective, but it raised concerns regarding convergence 
reliability in inner regions of the problem. Previous work by Cooper and Larsen, which used the 
inverted forward flux as an importance function (no adjoint calculation) in an attempt to 
distribute particles uniformly throughout a system, has demonstrated benefit [9]. Although this 
approach does encourage particles toward regions of lower flux and discourage particles from 
moving toward regions of higher flux, the forward flux does not represent the expected 
contribution to the desired response, which is postulated to be uniform particle density (or 
response) throughout the system. When applied to a large realistic application, this method was 
not found to be effective, particularly in cases where the desired tally regions are a subset of the 
total problem space. Hence, a need remained for an effective method for variance reduction of 
Monte Carlo calculations of distributions and multiple localized tally regions. 
 

2. THEORY 
 
The goal of many “traditional” Monte Carlo simulations is to calculate the response (i.e., flux, 
dose, reaction rate, etc.) at some location(s), which can be expressed as 

 ( ) ( )dPR P P dPψ σ= ∫  , (1) 

where ψ  is the particle flux, dσ  is some objective function (e.g., dose response function), and P 

refers to the independent variables ˆ, ,r E Ω . 
 

From the forward and adjoint forms of the transport equation [1], 

 ,H qψ =   (2) 
 
 ,H qψ+ + +=  (3) 

and the following adjoint identity 

 , ,H Hψ ψ ψ ψ+ + +=  , (4) 
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one can show that 

 , ,q qψ ψ+ +=  , (5) 

where H and H +  are the forward and adjoint transport operators, ψ +  is the adjoint function, q  
and q+ are the forward and adjoint sources, and 〈 〉  signify integration over all the independent 
variables. If one lets q+ = dσ , the left-hand side of Eq. (5) is the detector response [i.e., Eq. (1)] 
and the right-hand side is an alternate formulation for the response in terms of the adjoint 
function, resulting in the following two expressions for response: 

 dPPqPR
P

)()( +∫= ψ  (6a)

 dPPqPR
P

)()(+∫= ψ . (6b)

 From Eq. (6b), the adjoint function, +ψ , has physical meaning as the expected contribution to the 
response R  from a particle in phase-space P , or, in other words, the importance of a particle in 
that phase space to the response. It is this physical interpretation that is used in the CADIS 
methodology to optimize local quantities. Specifically, the user defines a response (at some 
location) for optimization, which is used as the source in the deterministic adjoint calculation.  

2.1 CADIS Method 

The CADIS methodology is briefly reviewed in this section to provide background for the 
FW-CADIS discussion in the following section.  
 
In the CADIS methodology, which evolves from Eq. (6b) and the concept of importance 
sampling [10], the biased source distribution is given by 

 
4

ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )ˆˆ( , , ) ˆ ˆ ˆ( , , ) ( , , )
E V

r E q r E r E q r Eq r E
Rr E q r E drdEd

π

ψ ψ
ψ

+ +

+

Ω Ω Ω Ω
Ω = =

Ω Ω Ω∫ ∫ ∫
 ,  (7)

where the numerator is the detector response from a particle in )ˆ,,( ΩEr , and the denominator is 
the total detector response, R . Therefore, the ratio is a measure of the contribution from 

)ˆ,,( ΩEr to the total detector response. Intuitively, it is useful to bias the sampling of source 
particles by the ratio of their contribution to the detector response; therefore, this expression 
could also be derived from physical arguments. 
 
Since the source variables are sampled from a biased probability density function, the statistical 
weight of the source particles must be corrected so that 

 0
ˆ ˆ ˆˆ( , , ) ( , , ) ( , , )w r E q r E w q r EΩ Ω = Ω  , (8)

where 0w is the unbiased particle starting weight, which is set equal to 1. Substituting Eq. (7) into 
Eq. (8) and rearranging, we obtain the following expression for the statistical weight of the 
particles: 
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 ˆ( , , ) ˆ( , , )
Rw r E

r Eψ +Ω =
Ω

 .  (9)

This equation shows the inverse relationship between the adjoint (importance) function and the 
statistical weight. The relationships for the particle statistical weights, which are used in source 
sampling and the particle transport process, are consistent. Consequently, particles are created 
with weights that reside within their corresponding weight windows. This is an important 
characteristic of the CADIS methodology because it eliminates the incompatibility between 
source and transport biasing that has been problematic in other approaches as a result of poor 
computational efficiency and/or false convergence. For example, if the statistical weights of the 
source particles are not within the weight windows, the particles are immediately split or 
rouletted in an effort to bring their weights into the weight window. This results in unnecessary 
splitting/rouletting and a corresponding degradation in computational efficiency. Furthermore, 
for problems in which the adjoint function varies significantly within the source region (space 
and/or energy), the source biasing is very effective for improving computational efficiency. 

2.2 FW-CADIS Method 

For global variance reduction, one is typically interested in determining a space- and/or energy-
dependent flux or response (e.g., dose rates) with uniformly low statistical uncertainty. To 
achieve this objective in a Monte Carlo simulation, it has been suggested [9] that the distribution 
of Monte Carlo particles should be uniform throughout the system. Although this is not a 
“physical” response, it does intuitively represent a desirable objective for obtaining uniform 
uncertainty and indicates that it may be possible to develop an adjoint importance function that 
represents the importance of particles to achieving this desired objective, i.e., uniformly 
distributed Monte Carlo particles. To do so, we cast the problem of calculating Monte Carlo 
particle density into our response formulation: 
 
 
 
  
where )ˆ,,( ΩErf  is some function that converts flux to Monte Carlo particle density. Since the 

physical particle density, )ˆ,,( ΩErn , is related to the Monte Carlo particle density, )ˆ,,( ΩErm , by 
the average particle weight, )ˆ,,( ΩErw , 

 ( ) ( ) ( )ˆ ˆ ˆ, , , , , ,n r E w r E m r EΩ = Ω Ω ,  (10)

and  
 ( ) ( ) ( )ˆ ˆ ˆ, , , , , ,r E n r E v r Eψ Ω = Ω Ω  ,  (11)

where )ˆ,,( ΩErv is the particle velocity, the Monte Carlo particle density can be estimated by 

 

 
( ) ( )

( )
( )

( ) ( )ΩΩ
Ω

=
Ω
Ω

=Ω ˆ,,ˆ,,

ˆ,,
ˆ,,

ˆ,,ˆ,,
ErvErw

Er
Erw
ErnErm ψ  (12)

 

)ˆ,,()ˆ,,(
4

ΩΩΩ= ∫ ∫ ∫ ErfErdEdVdR
V E

ψ
π

,
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and the total Monte Carlo particle density can be estimated by 

 

 4

1ˆ ˆ( , , ) ˆ ˆ( , , ) ( , , )E V
R r E drdEd

w r E v r Eπ
ψ

⎡ ⎤
= Ω Ω∫ ∫ ∫ ⎢ ⎥Ω Ω⎣ ⎦

 .  (13)

Recalling from Cooper and Larsen [9] that if the average particle weight is set proportional to the 
physical particle density, then the Monte Carlo particle density should be approximately uniform 
(constant), as desired, i.e.,  

 
.,
,
.

for m cont
w n and
wν ψ

≈
∝
∝

 

Therefore, by substituting the forward flux, )ˆ,,( ΩErψ , for )]ˆ,,()ˆ,,([ ΩΩ ErvErw , Eq. (13) 
becomes 

 
4

1ˆ ˆ( , , ) ˆ( , , )E V
R r E drdEd

r Eπ
ψ

ψ
⎡ ⎤

= Ω Ω∫ ∫ ∫ ⎢ ⎥Ω⎣ ⎦
.  (14)

Recognizing the similarities between Eqs. (14) and (6a), we see that by defining the adjoint 
source as the bracketed term in Eq. (14),   

 ( ) ( )
1ˆ, , ˆ, ,

q r E
r Eψ

+ Ω =
Ω

 , (15)

we can calculate an adjoint importance function that represents the importance of particles to 
achieving the desired objective, i.e., uniformly distributed Monte Carlo particles, which should 
correspond to approximately uniform statistical uncertainties. Physically, this corresponds to 
weighting the adjoint source with the inverse of the forward flux. Hence, where the forward flux 
is low, the adjoint source will be high, and vice versa. Once the adjoint is determined, the 
standard CADIS methodology is used to calculate consistent source biasing parameters and 
weight windows [see Eqs. (7) and (9)]. Therefore, we refer to this new method as the Forward-
Weighted CADIS method. 
 
Following these same steps, it is also possible to determine an importance function for 
optimizing other responses. For example, if dose rate throughout a model is the desired objective 
of the Monte Carlo calculation and dσ  represents the dose response function, the adjoint source 
can be defined as 

 
ˆ( , , )ˆ( , , ) ˆ ˆ ˆ( , , ) ( , , )

d

d

r Er Eq
r E r E dE d

σ
σ ψ

+ Ω
Ω =

′ ′ ′ ′ ′ ′Ω Ω Ω∫∫
  (16) 

so that 

 
ˆ( , , )ˆ ˆ( ) ( , , ) ˆ ˆ ˆ( , , ) ( , , )

d

d

r ER r r E dEd
r E r E dE d

σψ
σ ψ

Ω′ = Ω Ω∫∫
′ ′ ′ ′ ′ ′Ω Ω Ω∫∫

 (17) 
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and the individual spatial contributions to the total response are uniform, as desired for variance 
reduction of the spatial dose distribution. If, on the other hand, the dose rate throughout a portion 
of the problem volume, V , is the desired objective, then the adjoint source can be defined as  

 

ˆ( , , )
for rˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )

0 for r

r E
d V

r Eq r E r E dE d
d

V

σ

σ ψ+

⎧ Ω
⎪ ∈⎪Ω = ′ ′ ′ ′ ′ ′Ω Ω Ω⎨ ∫∫
⎪

∉⎪⎩

. (18)

The adjoint source can be defined for whatever objective is desired. If space- and energy- 
dependent flux is desired, ˆ( , , )d r Eσ Ω  is unity and the adjoint source is the inverse of the space- 
and energy-dependent forward flux, integrated over angle. Subsequently, the individual space 
and energy contributions to the total response are uniform (unity), as desired. 
 
From adjoint transport theory, if we consider a point source of the form 

 0 0 0
ˆ ˆ ˆ( , , ) ( ) ( ) ( )q r E r r E Eδ δ δΩ = − − Ω −Ω  ,  (19) 

in Eq. (6b), we obtain 

 0 0 0
ˆ( , , )R r Eψ +′ = Ω  . (20) 

Therefore, the adjoint function is the contribution from particles produced at 0 0 0
ˆ, ,r E Ω  to the 

detector response, which, from Eq. (14), is uniform throughout the system. It is this physical 
interpretation that makes this “nontraditional” adjoint function well suited to global optimization 
of Monte Carlo simulations.  
 
In the FW-CADIS method, forward information (e.g., flux, dose) is used to define an appropriate 
response (adjoint source) to be used in a deterministic adjoint calculation to generate the adjoint 
importance function for achieving uniform particle density (or response) throughout the system. 
With this method it is possible to optimize for distributions, such as flux or dose rate 
distributions throughout a problem, as well as multiple individual responses, such as response at 
multiple localized detectors (see for example Ref. 11) or spectra, simply depending on how the 
adjoint source is defined. 
 

3. IMPLEMENTATION  
 
The FW-CADIS method requires two (one forward and one adjoint) deterministic calculations, 
prior to the Monte Carlo simulation. Once the adjoint (importance) function is determined, the 
CADIS methodology is used to calculate consistent source and transport (weight windows) 
space- and energy-dependent biasing parameters, as has been described in detail elsewhere [2, 3]. 
This capability is implemented and automated in the SCALE 6 MAVRIC sequence (uses Denovo 
[12] for the 3-D deterministic calculations and the SCALE Monaco code for 3-D multigroup 
Monte Carlo calculations). The capability is also implemented and automated in the ADVANTG 
code (currently uses TORT or Denovo for 3-D deterministic calculations and the MCNP code for 
3-D continuous energy Monte Carlo calculations). Note that although the CADIS methodology is 
general, the implementation is currently limited to space and energy. 
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4. EXAMPLE PROBLEM 
 

The FW-CADIS method was developed to address the computational challenge associated with 
calculating the dose rates throughout an entire pressurized-water reactor (PWR) facility, resulting 
from the core or spent fuel neutron and photon sources. An actual “as-built” PWR facility, 
including containment, auxiliary, and turbine buildings, was modeled with the MCNP code (see 
Fig. 1). The model size is approximately 85×125×70 m. As expected, it is not possible to achieve 
statistically meaningful results in locations other than those very near the source regions without 
variance reduction. Hence, the ADVANTG code (using the CADIS methodology) was applied 
with the adjoint source specified at the outer boundaries of the problem in an attempt to 
encourage particles to move outward through the entire system. This approach did yield 
meaningful, good results but required manual iteration/intervention to adjust the adjoint source 
magnitude at the boundaries (e.g., to increase adjoint source on the boundary furthest from the 
source regions) and raised concerns about the dose being underestimated in regions between the 
source and boundary as a result of the extensive biasing toward the boundaries. Also, note that 
this approach would not be well suited for achieving convergence of energy-dependent 
quantities. 
 

 
 

 
Figure 1.  Plan X-Y view of PWR facility MCNP model. The containment, auxiliary, and 

turbine buildings and major components are shown. 
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For these reasons, the FW-CADIS method was developed and applied. The objective of this 
application is uniform statistical convergence of dose (integrated over energy) throughout the 
facility calculated via the mesh tally feature. With this objective, the energy dependence of the 
adjoint source is the energy-dependent dose response function; and the spatial dependence is the 
inverted total dose response for each cell (from a forward deterministic calculation), as shown in 
Eq. (16). With this approach, the ADVANTG code was used with MCNP5 to calculate the dose 
map throughout the entire PWR facility [13]. 
 
Figure 2 compares dose rate results based on an analog (implicit-capture-only) simulation; the 
standard CADIS approach, with the adjoint source specified on the exterior boundaries of the 
problem; and the FW-CADIS method for similar amounts of computational time. It is readily 
apparent that analog Monte Carlo is not a viable option for this problem. In fact, the analog 
calculation was subsequently allowed to run five times longer than the time shown in Fig. 2 (i.e., 
5E+10 particle histories, ~125 CPU days) and the results look essentially the same (i.e., the same 
as what is shown in Fig. 2 for the analog case). 
 
Although the CADIS method enables calculation of dose rates (within ~20 CPU days) outside 
the reactor containment, meaningful results are not achieved in large portions of the problem 
without the FW-CADIS method. Figure 3 shows the relative errors associated with each case. A 
comparison of relative error histograms, which illustrates the fraction of mesh tally cells below a 
certain relative error, is provided in Fig. 4. Figure 5 shows the relative error histogram for tally 
cells in which the dose rate is ≥ 1 mrem/h and reveals that with the FW-CADIS method, ~95% of 
those tally cells have relative errors of  <3%. 
 
These figures clearly illustrate that analog Monte Carlo is not viable for this problem and that the 
FW-CADIS method provides superior convergence. This outcome is expected because the 
importance function used in the FW-CADIS method corresponds to the actual desired objective. 
Although regions of large statistical uncertainty still remain with the FW-CADIS method, note 
that this is an incredibly large problem with dose rates varying by nearly 30 orders of magnitude 
and that the results are based on only ~20 CPU days. With the use of the FW-CADIS method and 
multiple processors, this problem becomes quite manageable. Nevertheless, future work is 
planned to further investigate the performance and convergence behavior of the FW-CADIS 
method. It is currently hypothesized that the regions of large statistical uncertainty that are 
present in the FW-CADIS results are associated with deficiencies/inaccuracies in the TORT 
deterministic calculations, which used very coarse spatial meshing because of the very large size 
of the problem. However, this has not been confirmed. For the CADIS and FW-CADIS cases, the 
deterministic calculations required approximately 17 hours of CPU time each. 
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Figure 2.  Dose rates (mrem/h) computed using analog (left), CADIS with the adjoint source on 
the outer boundaries of the model (center), and FW-CADIS (right).  

 

 

Figure 3.  Relative errors computed using analog (left), CADIS with the adjoint source on the 
outer boundaries of the model (center), and FW-CADIS (right). 
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Figure 4.  Relative error histograms for the different methods. 

 
Figure 5.  Relative error histogram for tally cells with dose rates ≥ 1 mrem/h. 

 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

Relative Error (RE) (%)

Fr
ac

tio
n 

of
 M

es
h 

T
al

ly
 C

el
ls 

FW-CADIS
CADIS
analog

~35% of mesh tally 
cells have RE < 20% >99.8% of mesh tally 

cells have RE> 95%

~60% of mesh tally 
cells have RE < 20%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

Relative Error (RE) (%)

Fr
ac

tio
n 

of
 M

es
h 

T
al

ly
 C

el
ls

 FW-CADIS

~95% of meshes tally 
cells have RE < 3%



FORWARD-WEIGHTED CADIS METHOD FOR VARIANCE REDUCTION OF MONTE CARLO CALCULATIONS  
OF DISTRIBUTIONS AND MULTIPLE LOCALIZED QUANTITIES 

2009 International Conference on Mathematics, Computational  
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

11/12 

 

5. SUMMARY 
 
A new hybrid (Monte Carlo/deterministic) transport method has been developed for increasing 
the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions 
(e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. The method 
was applied to the problem of determining dose rates throughout a full-scale PWR facility and 
was shown to enable a continuous-energy Monte Carlo-based solution for dose rates throughout 
the facility, which would otherwise be computationally prohibitive. The method has also been 
applied to other relevant and challenging problems, including an array of commercial spent fuel 
storage casks [14, 15], criticality accident alarm system (CAAS) analyses [16], and nuclear well-
logging simulations [11]. In all applications to date, excellent results have been achieved. The 
method requires two approximate discrete ordinates calculations (one forward and one adjoint) to 
generate consistent source biasing and weight window parameters for the subsequent Monte 
Carlo simulation and does not require any modifications to existing Monte Carlo codes. A 
distinguishing characteristic of this method, as compared with other global variance reduction 
methods [9, 17], is that it can be used to optimize results for a subset (or subsets) of the problem 
space, as opposed to the entire problem space. Furthermore, this method should be suitable for a 
large range of problems, including the use of Monte Carlo for depletion calculations and 
continuous-energy Monte Carlo for generation of problem-dependent multigroup cross sections. 
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