Polarized Electron Sources @ JLAB

WebPage - www.jlab.org/accel/inj_group

Scientists – Matt Poelker, Marcy Stutzman, Riad Suleiman, Joe Grames

Senior Technicians – Phil Adderley, John Hansknecht

Junior Technicians – Josh Brittian, Jim Clark

PhD Students

ellersan C

- Jonathan Dumas (Joseph Fourier University, France)
- Ashwini Jayaprakash (Old Dominion University)
- James McCarter (University of Virginia)
- Ken Surles-Law (Hampton University, JLab staff)
- Alicia Hofler (Old Dominion University, JLab staff)

Source Group "Hall of Famers" - Charlie Sinclair, Bruce Dunham, *Larry Cardman*, Scott Price, Peter Hartmann, Michael Steigerwald, Tony Day, *Kim Ryan*, *Danny Machie*, John Hogan, Bill Schneider, *Reza Kazimi*, Paul Rutt, *Ganapati Rao Myneni*

JLab Summer Science Series July 7, 2008

A history 30+ years and growing...

Polarized electron beams have wide application in studies which range from materials science to <u>nuclear and high energy physics</u>:

 \Rightarrow the latter has driven the development of polarized e- sources

Semiconductor sources introduced in 1975 via optical pumping of GaAs First e- source on an accelerator (P ~ 35%) : PEGGY, at SLAC (1978) Strained GaAs reaches higher polarization (P~75%) in early 90's (SLAC) Strained Superlattice GaAs even higher (P~85%) last few years (SLAC) Many accelerator facilities have had polarized e- GaAs sources: CEBAF, MAMI, Bonn, *SLAC, MIT-BATES*

1980 ~ 1 microAmp 2000 ~ 100 microAmp 2010 ~ milliAmp ??

efferson C

Thomas Jefferson National Accelerator Facility

Gallium Arsenide

3" wafer cleaved into square photocathodes (15.5 mm) for mounting on a "stalk" using I n and Ta cup.

Thomas Jefferson National Accelerator Facility

Photo-Emission from GaAs

Electron Spin & Polarization

Thomas Jefferson National Accelerator Facility

Aligning the Spin States in GaAs

Optical pumping between $P_{3/2}$ and $S_{1/2}$

The First GaAs Photoemission Gun

Thomas Jefferson National Accelerator Facility

lerson (

First High Voltage GaAs Photogun

Polarized e⁻ Gun for SLAC Parity Violation Experiment

Thomas Jefferson National Accelerator Facility

efferson Pa

Breaking the degeneracy ...

Thomas Jefferson National Accelerator Facility

Strained layer GaAs

Bandwidth Semiconductor (formerly SPIRE)

- MOCVD-grown epitaxial spin-polarizer wafer
- Lattice mismatch

 \Rightarrow split degeneracy of $P_{3/2}$

Thomas Jefferson National Accelerator Facility

Strained Layer - Superlattice GaAs

Photocathode Material

And, it really works!

Thomas Jefferson National Accelerator Facility

efferson G

CEBAF Overview

CEBAF Benefits;

- Ø Recirculating LI NACs
- Ø Superconducting Cavities
- Ø Three Halls = 3x the physics

Radio Frequency Pulsed Lasers

Thomas Jefferson National Accelerator Facility

(efferson \subset

Continuous Electron Beam Accelerator Facility

Synchronous Photoinjection

Laser Room for Dust & Climate Control

Thomas Jefferson National Accelerator Facility

New Fiber-Based Drive Laser

 $\boldsymbol{\varnothing}$ Gain-switching better than modelocking; no phase lock problems

Ø Very high power

ellerson C

- Ø Telecom industry spurs growth, ensures availability
- Ø Useful because of superlattice photocathode (requires 780nm)

Thomas Jefferson National Accelerator Facility

New fiber technology-based laser system

Thomas Jefferson National Accelerator Facility

"100 keV" Photoinjector

Thomas Jefferson National Accelerator Facility

JLab vent/bake polarized source...

Who wants polarized electrons?

Thomas Jefferson National Accelerator Facility

(effersan C

Bad, bad ions...

Imperfect vacuum => QE degrades via ion backbombardment

-Jefferson Lab-

Thomas Jefferson National Accelerator Facility

Better Vacuum = Longer Lifetime

We understand Alice's worry...

"The woods were dark and foreboding, and Alice sensed that sinister eyes were watching her every step. Worst of all, she knew that Nature abhorred a vacuum" – Gary Larson

The woods were dark and foreboding, and Alice sensed hat sinister eyes were watching her every step. Worst of all, she knew that Nature abhorred a vacuum.

Vacuum Conditions at CEBAF

Application	Pressure Range	Location	Vacuum Regime
Beamline to dumps	10 ⁻⁵ Torr	Target to dump line	Medium
Insulating vacuum for cryogens	10 ⁻⁴ Torr to 10 ⁻⁷ Torr	Cryomodules, transfer lines	Medium to high
Targets, Scattering Chambers	10 ⁻⁶ to 10 ⁻⁷ Torr	Experimental Halls	High to very high
RF waveguide warm to cold windows	10 ⁻⁷ to 10 ⁻⁹ Torr	Between warm and cold RF windows	High to very high
Warm beamline vacuum	10 ⁻⁷ to 10 ⁻⁸ Torr or better	Arcs, Hall beamline, BSY, some injector	High to very high
Warm region girders	10 ⁻⁹ Torr or better	Girders adjacent to cryomodules	Very high to ultrahigh
Differential pumps	Below 10 ⁻¹⁰ Torr	Ends of linacs, injector cryomodules and guns	Ultrahigh vacuum
Baked beamline	10 ⁻¹⁰ to 10 ⁻¹¹ Torr	Y chamber, Wien filter, Pcup	Ultra high vacuum
Polarized guns	10 ⁻¹¹ to 10 ⁻¹² Torr	Inside Polarized guns	Ultra/Extreme high vacuum
SRF cavity vacuum	< 10 ⁻¹² Torr	Inside SRF cavities with walls at 2K	Extreme high vacuum

Vacuum regimes

- Low, Medium Vacuum (>10⁻³ Torr)
 - Viscous flow
 - interactions between particles are significant
 - Mean free path less than 1 mm
- High, Very High Vacuum (10⁻³ to 10⁻⁹ Torr)
 - Transition region
- Ultra High Vacuum (10⁻⁹ 10⁻¹² Torr)
 - Molecular flow
 - interactions between particles are negligible
 - interactions primarily with chamber walls
 - Mean free path 100-10,000 km
- Extreme High (<10⁻¹² Torr)
 - Molecular flow

effersan C

– Mean free path 100,000 km or greater

Thomas Jefferson National Accelerator Facility

Air ~ 10¹⁶ / Torr-cm³

Where does the gas come from?

Outgassing from the system

- Metal and non-metal (viton o-rings, ceramics) all outgas
- Primarily water in unbaked systems
- Primarily hydrogen from steel in baked systems

Leaks

- Real
 - Gaskets not sealed
 - Cracks in welds, bellows, ceramics, window joints
 - Superleaks that only open at very low temperatures
- Virtual
 - Small volumes of gas trapped inside system (screw threads, etc.) that pump out slowly over time

• Gas load caused by the beam

- Desorption of gases by elevated temperatures, electrons or photons striking surfaces, etc.
- Engineered Loads (targets, etc.) where gas is added
- Permeation of gasses through materials
 - Viton gaskets worse than metal seals
 - Hydrogen can permeate through stainless steel!

Thomas Jefferson National Accelerator Facility

Ultra High Vacuum Pumps

Getter Pumps

- Chemically active surface
 - Titanium sublimed from hot filament
 - Non-Evaporative Getters
- Molecules stick when they hit
 - Does not work well for inert gasses such as Argon, Helium or for methane

Ion Pumps

- Electric field to ionize gasses
- Magnetic field to direct gasses into cathodes where they are trapped
 - Has some pumping capability for noble gasses

• Baking used to get pressures below 10⁻¹⁰ Torr

- 250°C for 30 hours removes water vapor bonded to surface that otherwise limits pressure
- Avoid contamination by oils due to roughing pumps, fingerprints, machining residue.

NEG pump array

Ion Pump

Thomas Jefferson National Accelerator Facility

CEBAF Gun Charge Lifetime (2001-2004)

Thomas Jefferson National Accelerator Facility

GaAs Trending Higher Average Current

CEBAF Photoinjector

1997

Long photocathode lifetime:

- Gun & Beamlines "NEG's" => Good Vacuum
- No short focal length elements
- Photocathodes with anodized edge
- Synchronous photoinjection
- (Spare Gun)

(efferson A

Thomas Jefferson National Accelerator Facility

Improvements to the High Voltage Chamber Vacuum

Thomas Jefferson National Accelerator Facility

New Load Lock Gun in Test Stand Spring '06

CEBAF e- source: current & lifetime

1 milliAmp demo from High-P Photocathode*

NEW CEBAF Load Locked Gun

No more gun bakeouts! Photocathode replaced in 8 hours versus 4 days.

Multiple samples,
No more photocathode edge anodizing,
Smaller surface area and no more venting means:
Better gun vacuum,
Longer photocathode

lifetime

Thomas Jefferson National Accelerator Facility

Build Higher Voltage Inverted Gun

Eliminate Field Emission

Implement the SRF-cavity technique "high pressure rinsing"

Recent work of Maria Chevtsova, Ken Surles-Law with shaped electrodes

Ken is collaborating with SRF Institute to build single crystal Niobium electrodes.

Gefferson Pa

Thomas Jefferson National Accelerator Facility