Scientists Confirm Higgs Boson Discovery

The Large Hadron Collider/ATLAS at CERN (Photo: CERN)

The Large Hadron Collider at CERN (CERN)

Scientists working with the world’s largest atom smasher say the mystery particle they found last summer was a Higgs boson, which is believed to give mass to everything in the universe.

However, while the physicists at the European Organization for Nuclear Research (CERN) confirm the particle is a Higgs boson, it doesn’t appear to have all of the properties the theoretical Higgs boson is said to have.

“The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson though we still have a long way to go to know what kind of Higgs boson it is,” said Joe Incandela, a spokesperson for CMS, one of the two independent teams behind last year’s discovery.

Physicist Peter Higgs arrives at a seminar, July 4, 2012 at CERN where it was announced that a new subatomic particle, said be consistent with the long-sought Higgs boson, had been discovered. (Photo: AP Photo/Denis Balibouse, Pool)

Peter Higgs at CERN for the July 4, 2012 announcement that a new particle, consistent with  the Higgs boson, which was named for the physicist, had been discovered. (AP)

The teams wound up analyzing two-and-a-half times more data than was available when they announced the particle’s discovery last year.

This week in Italy, both teams reported the new particle is looking more and more like a Higgs boson.

But the scientists still don’t know if the Higgs boson they found was the one predicted by the Standard Model of particle physics, or if it could possibly be the lightest of several bosons which have been predicted in theories that go beyond the Standard Model.

In order to answer that question, the teams say they’ll need more data from the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, as well as more time to study and analyze the existing data.

Another view of a segment of the Large Hadron Collider at CERN. (Photo: AP/CERN)

Another view of a segment of the Large Hadron Collider at CERN. (AP/CERN)

“The beautiful new results represent a huge effort by many dedicated people,” said Dave Charlton, a spokesperson for ATLAS, one of the research teams. “They point to the new particle having the spin-parity of a Higgs boson as in the Standard Model. We are now well started on the measurement program in the Higgs sector.”

The two research teams still need to determine the particle’s  quantum properties as well as how it interacts with other particles.

The data the teams have been working with is generated by CERN’s collider, located along the border of France and Switzerland.   The LHC first went online on September 10, 2008.

Is There Another Higgs Boson Out There?

Dr. Pierre Savard (Photo: University of Toronto)

Dr. Pierre Savard (Photo: University of Toronto)

Tired, and rushing to meet a looming deadline,  Dr. Pierre Savard and his colleagues didn’t realize what they’d found when they first came across a particle that looked a lot like the long-sought-after Higgs boson.  But it didn’t take long for them to realize their hard work had paid off.

“When we looked at it, we kind of saw it,” Savard says. “It was unbelievable.”

The University of Toronto  professor belongs to ATLAS, one of two teams tasked with finding whether the mystery subatomic particle – which is believed to give all objects mass ­- actually exists.

The team’s excitement about finding the new particle grew when it discovered the second team, CMS, had found virtually the same thing.

“It’s a big thing.  Essentially, it’s as if we discovered a new fundamental force of nature,” Savard says. “So we know about, for instance, electromagnetism, electricity and magnetism. We know about gravity… but now we’ve found something new and it also plays a key role in our current theory for how we understand how matter interacts with particles and forces. It’s a big deal.”

The ATLAS detector at the Large Hadron Collider (Photo: CERN)

The ATLAS detector at the Large Hadron Collider (Photo: CERN)

Despite helping to find the most sought-after particle in modern science, Savard actually hopes the new discovery is not the Higgs boson.

“Many of us are hoping that it’s not exactly the particle that’s predicted by our theory, that it may be something close,” he says.

Since problems have been found with their current theory, if the mystery particle doesn’t turn out to be Higgs boson, Savard hopes the new particle  offers  hints as to “what’s out there.”

“The ‘Standard Model’ of particle physics explains a lot, but there’s a lot that it does not explain,”  Savard says.

Some  suggest there might be more than one Higgs boson and that the same theories contained within the Standard Model, could also  explain dark matter or dark matter particles.

Dark matter particles are a type of matter which cannot be seen directly but are believed to make up a great part of the total mass in the universe.

Physicist Peter Higgs arrives at a seminar at CERN where it was announced that a new subatomic particle, said be consistent with the long-sought Higgs boson, had been discovered. (Photo: AP Photo/Denis Balibouse, Pool)

Physicist Peter Higgs arrives at a seminar, July 4, at CERN where it was announced that a new subatomic particle, said be consistent with the long-sought Higgs boson, had been discovered. (Photo: AP Photo/Denis Balibouse, Pool)

Even if the find is the Higgs boson, “there are still some big questions out there,” says Dr. Savard.

One problem Savard sees with the Standard Model is that it doesn’t explain the asymmetry between matter and antimatter.

“In our colliders, we produce essentially equal amounts of matter and antimatter but the universe is made up matter and the Standard Model really doesn’t explain why there’s such an asymmetry,” he says.

He’d  also like to see more research devoted to exploring dark matter, which he says is “probably carried by a particle that we don’t’ know about.”

With the mysteries of matter, antimatter and dark matter lurking, Savard says  the Standard Model explains only about a fraction of the universe. That’s why he hopes  new phenomena will be found with the LHC – the world’s largest atom smasher – which would help unlock these many mysteries of the universe.

New boson discovered at CERN 07/04/12 – (Video © 2012 CERN)

Listen to Science World’s interview with Dr. Pierre Savard here…

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Nailing Down the Elusive Higgs Boson

ATLAS Experiment illustration of two protons beams colliding. Experiments similar to this one will be analyzed for Higgs boson particle production.. (Photo: © 2011 CERN - Atlas collaboration)

Illustration of two protons beams colliding in the Large Haldron Collider. Experiments similar to this one will be analyzed for Higgs boson particle production. (© 2011 CERN – Atlas collaboration)

 

Although it was the Fourth of July holiday in the United States, there were plenty of fireworks in Europe, where scientists announced they’d probably found the elusive Higgs boson, a particle believed to give all objects mass.

At  CERN headquarters in Geneva, two independent scientific teams – ATLAS and CMS – announced they’ve observed a new particle in the mass region around 125-126 GeV (gigaelectron volt).

But is this newly-discovered particle actually the previously-unseen Higgs boson first proposed in 1964 by British theoretical physicist Peter Higgs?

Well, they’re pretty sure it is, but can’t say with 100 percent  certainty.

“We observe, in our data, clear signs of a new particle at the level of 5 sigma, in the mass region around 126 GeV,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.”

Peter Higgs is best known for his theory explaining the origin of mass of elementary particles in general and the Higgs Boson in particular. (Photo: Gert-Martin Greuel via Wikipedia Commons)

Peter Higgs is best known for his theory explaining the origin of mass of elementary particles in general and the Higgs Boson in particular. (Photo: Gert-Martin Greuel via Wikipedia Commons)

CERN describes “Five sigma” as the top end of a scale particle physicists use to describe the certainty of a discovery. One sigma means the results could be random fluctuations in the data, three sigma counts as an observation and a five-sigma result is a discovery.

“This is indeed a new particle. We know it must be a boson and it’s the heaviest boson ever found,” said CMS experiment spokesperson Joe Incandela. “The implications are very significant and it is precisely for this reason that we must be extremely diligent in all of our studies and cross-checks.”

The Higgs boson is believed to play a critical role in physics, as a building block of the universe.

The theoretical subatomic particle should help explain the origins of mass and why matter has mass. It is considered to be a key component of “The Standard Model of particle physics.”

“It’s hard not to get excited by these results,” said Sergio Bertolucci, CERN research director. “We stated last year that in 2012 we would either find a new Higgs-like particle or exclude the existence of the Standard Model Higgs. With all the necessary caution, it looks to me that we are at a branching point: the observation of this new particle indicates the path for the future towards a more detailed understanding of what we’re seeing in the data.”

The Large Hadron Collider/ATLAS at CERN (Photo: CERN)

The Large Hadron Collider at CERN (Photo: CERN)

The results presented this week in Geneva are based on data collected by CERN’s Large Hadron Collider (LHC), the the world’s largest atom smasher, in 2011 and 2012.  More 2012 LHC data is being processed, so a complete analysis isn’t expected until around the end of July.

Next week, I talk with Dr. Pierre Savard,  an Atlas team member, who will give us an insider’s view of the search for most sought-after particle in modern science.

If you have any questions you’d like to ask Dr. Savard, please let me know through our comments section below.

About Science World

Science World

Science World is VOA’s on-air and online magazine covering science, health, technology and the environment.

Hosted by Rick Pantaleo, Science World‘s informative, entertaining and easy-to-understand presentation offers the latest news, features and one-on-one interviews with researchers, scientists, innovators and other news makers.

Listen to a Recent Program

Broadcast Schedule

Broadcast Schedule

Science World begins after the newscast on Friday at 2200, Saturday at 0300, 1100 and 1900 and Sunday at 0100, 0400, 0900, 1100 and 1200.

Science World may also be heard on some VOA affiliates after the news on Saturday at 0900 and 1100. (All times UTC).

Contact US

E-Mail
science@voanews.com

Postal Mail
Science World
Voice of America
330 Independence Ave., SW
Washington, DC 20237
USA