Motion of magnetic domain walls in thin, narrow strips

Michael J. Donahue Donald G. Porter

NIST, Gaithersburg, Maryland, USA

wall mobility in nanowires of rectangular cross section," unpublished.

$$\begin{aligned} & \textbf{Constitutive Equations} \\ & \textbf{Energies:} \\ & E_{\text{exchange}} = \int_{V} \frac{A}{M_{s}^{2}} \left(|\nabla M_{x}|^{2} + |\nabla M_{y}|^{2} + |\nabla M_{z}|^{2} \right) d^{3}r \\ & E_{\text{demag}} = \frac{\mu_{0}}{8\pi} \int_{V} \mathbf{M}(r) \cdot \left[\int_{V} \nabla \cdot \mathbf{M}(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}} d^{3}r' \\ & - \int_{S} \mathbf{\hat{n}} \cdot \mathbf{M}(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}} d^{2}r' \right] d^{3}r \\ & E_{\text{Zeeman}} = -\mu_{0} \int_{V} \mathbf{M} \cdot \mathbf{H}_{\text{applied}} d^{3}r \end{aligned}$$

•

• Velocity non-monotonic in H_{applied}

Wall Motion Snapshots

Demag field Green: into plane

Magnetization Orange: out of plane

						¥						

$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	* *	×	1	1	↑	8	ĸ	K	ຼ	≮	≮- ◄	 ← •	← ←	- 🔶
$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	* *	ѫ	7	1	↑	R	R	K	◄	≮	* •	 ← •	← ←	- 🔶 (
$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	* *	ѫ	Я	1	↑	R	R	K	◄	≮	* •	 ← •	← ←	- 🔶
$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	* *	ѫ	Я	1	↑	R	K	ҝ	◄	≮	* •	 ← •	← ←	- 🔶
$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	* *	ѫ	ѫ	1	↑	R	K	ҝ	ҝ	≮-	* •	 ← •	← ←	- 🔶
$\rightarrow \rightarrow \rightarrow \rightarrow$	→ → →	77	ѫ	ѫ	1	↑	R	K	ҝ	ҝ	*	* 	 ~ •	← ←	- 🔶

Exchange field

																						_
	,	,	N	×	ĸ	*	*	*	K	¥	¥	×	*	→	-7	ж	я	,	,	,		
							←	*	K	¥	↓	¥	*	1	+							
							+	*	K	¥	↓	¥	*	1	+							
							*	*	¥	¥	↓	X	>	1	+							
							*	←	K	¥	♦	X	*	+	7							
							*	*	+	K		*	->	->	ѫ							

Domain Wall Width

Minimize exchange + demag energy:

$$a = a(\theta) = 1.15\pi \sqrt{\frac{A}{K_m(\theta)}}$$

$$K_m(\theta) = \frac{\mu_0 M_S^2}{2} \{ f(\frac{W}{T}) \cos^2 \theta + f(\frac{T}{W}) \sin^2 \theta \}$$

$$f(\sigma) = 1 - \frac{2}{\pi} \tan^{-1}(\sigma) + \frac{1}{2\sigma\pi} \log(1 + \sigma^2) - \frac{\sigma}{2\pi} \log(1 + \sigma^{-2})$$

Theory: Equations of Motion

• Tilt angle θ of wall wrt xy-plane

$$\frac{d\theta}{dt} = |\gamma| \left(H_{\rm app} - \alpha H_{\rm D}^{\perp} \right) / \left(1 + \alpha^2 \right)$$

 Demag field due to θ (N_y, N_z: demag factors of wall region)

$$H_{\rm D}^{\perp} = M_{\rm s} \left(N_z - N_y \right) \cos \theta \sin \theta$$

 Wall velocity: precess about demag + damp toward applied

$$v = v(\theta) = \gamma \left(\frac{a}{\pi} \right) \left(H_{\rm D}^{\perp} + \alpha H_{\rm app} \right) / \left(1 + \alpha^2 \right)$$

Earlier work

- A. Thiaville, J. M. García, and J. Miltat, *J. Magn. Magn. Mater.*, **242**, 1061–1063, 2002.
- L. R. Walker, Bell Telephone Laboratories memorandum, 1956, unpublished.

Consequences (H_{app})

$$\frac{d\theta}{dt} = |\gamma| \left(H_{\rm app} - \alpha H_{\rm D}^{\perp} \right) / \left(1 + \alpha^2 \right)$$

leads to

10

$$\frac{d\theta}{dt} = 0 \iff H_{\rm app} = \alpha H_{\rm D}^{\perp}$$

$$\alpha H_{\rm D}^{\perp} = \alpha M_{\rm s} \left(N_z - N_y \right) \cos \theta \sin \theta$$
$$\leq \alpha M_{\rm s} \left(N_z - N_y \right) / 2$$

The "Walker field."

Retrograde Motion, $\alpha = 0.01$													
	3105 ps	3285 ps	3465 ps	3645 ps	3825 ps	4005 ps	4185 ps						
$\mu_0 H_{app} = 25 \text{ mT}$		$ \begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$ \begin{array}{c} \downarrow \downarrow$	***************************************	······································	→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→							

.

••••

•

••••

.

• •

. . . .

Summary

- Transverse wall motion predominately precession about $\mathbf{H}_{demag}^{\perp}$
- Velocity depends on aspect ratio and wall tilt angle θ .
- Retrograde motion occurs if $\mathbf{H}_{\mathrm{applied}}$ > Walker field.
- Simple analytic model agrees quite well with full micromagnetic results.
- http://math.nist.gov/oommf
- D. G. Porter and M. J. Donahue, "Velocity of transverse domain wall motion along thin, narrow strips," to appear in *J. Appl. Phys.*

References

- 1. D. G. Porter and M. J. Donahue, "Velocity of transverse domain wall motion along thin, narrow strips," to appear in *J. Appl. Phys.*
- 2. A. Thiaville, J. M. García, and J. Miltat, *J. Magn. Magn. Mater.*, **242**, 1061–1063, 2002.
- L. Lopez-Diaz, J. Sanchez, L. Torres, et al., "Computational study of domain wall mobility in nanowires of rectangular cross section," unpublished.
- 4. L. R. Walker, Bell Telephone Laboratories memorandum, 1956, unpublished.