M.J. Donahue

OOMMF

Parallel processing

Edges

Finite Difference Micromagnetics

Michael J. Donahue

National Institute of Standards and Technology Gaithersburg, Maryland

12-Nov-2008

▲ロト ▲御 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

1

DISCLAIMER

Commercial equipment and software referred to on these pages are identified for informational purposes only, and does not imply recommendation of or endorsement by the National Institute of Standards and Technology, nor does it imply that the products so identified are necessarily the best available for the purpose.

OOMMF is an experimental system. NIST assumes no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.

OOMMF

M.J. Donahue

OOMMF

arallel processing

Portable, extensible, public domain programs & tools for micromagnetics

- Finite difference code
- Rectangular elements
- FFT-base demag
- Fully 3D
- Landau-Lifshitz & energy minimization solvers
- Time varying applied fields
- All parameters ptwise adj.

Contacts: Michael Donahue, Donald Porter

http://math.nist.gov/oommf

Movie credit: June Lau

M.J. Donahue

OOMMF

Parallel processing

Finite difference methods

Advantages:

- Easy to implement
- Simple meshing
- FFT for demagnetizing field
- Accessibility of higher order methods

Disadvantages:

"Stairstep" edges on curved boundaries

OOMMF

M.J. Donahue

OOMMF

Parallel processing

Curved boundary corrections

OOMMF

M.J. Donahue

OOMMF

arallel processing

Edges

M.J. Donahue and R.D. McMichael, *IEEE Trans Magn*, **43**, 2878–2880 (2007).

OOMMF class structure

····· **** Problem Tcl Control Specification Script ······ LLG Evolver Director 1...n A/ Driver Evolver 1...m Energy General Mesh Uniaxial Minimization Evolver Anisotropy. Cubic Rectangular Anisotropy, Mesh 6-Ngbr Exchange and the second second Const Mag Demag

OOMMF

M.J. Donahue

OOMMF

Parallel processing

OOMMF 3rd party extensions

thetaevolve: Finite temperature

- oommf_pbc: Periodic boundaries
- Southampton_UniaxialAnisotropy4
- Southampton_CubicAnisotropy8
- anv_spintevolve: Spin torque

OOMMF

M.J. Donahue

OOMMF

arallel processing

Parallel processing

OOMMF

M.J. Donahue

Parallel processing

M.J. Donahue

Number of cores

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q @

M.J. Donahue

4 2.2 GHz Opteron 848, 4 processors • 2.4 GHz Core2, quad core △ 2.8 GHz Opteron 8220, 8 dual-core ⊽ 3.5 Speed-up (normalized) 3 2.5 2 1.5 2 8 12 4 6 10 14 16 Number of cores

OOMMF

Parallel processing

Edge study

J.W. Lau, R.D. McMichael, M.A. Schofield and Y. Zhu, JAP **102**, 023916 (2007).

OOMMF

M.J. Donahue

OOMMF

Parallel processing

Edge study

OOMMF

M.J. Donahue

OOMMF

arallel processing

Edges

▲□▶▲□▶▲□▶▲□▶ □ のへの

Mode simulations

50 nm CoPd disk, 12 nm thick:

Credits: J. Shaw, J. Lau, R. McMichael; see also poster FT-03

OOMMF

M.J. Donahue

OOMMF

arallel processing

Edges

Mode simulations

OOMMF

M.J. Donahue

OOMMF

arallel processing

Edges

Defect spectroscopy

OOMMF

M.J. Donahue

OOMMF

Parallel processing

Edges

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > りんの

Spin torque on pinned domain walls (Pure translation: $\epsilon'_{LL} = 0$ or $\epsilon'_G = \alpha \epsilon$)

(b)

Ni₈₀Fe₂₀ strip, 300 nm wide, 12 nm thick.

OOMMF

M.J. Donahue

OOMMF

arallel processing

Spin torque on pinned domain walls ("Pure translation")

OOMMF

M.J. Donahue

OOMMF

arallel processing

Edges

・ロト ・四ト ・ヨト ・ヨト

э