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Background
• For fixed H, the Landau-Lifshitz equation

ṁ =
|γ|

1 + α2
H × m +

α|γ|

1 + α2
m × H × m(1)

has analytical solution.

• In spherical coordinates based on H and initial m,

φ(t) = |γH|t(2)

θ(t) = 2 tan−1(tan(
θ(0)

2
) exp(−|αγH|t))(3)

• While H remains fixed, exact trajectory m(t) can be
computed for any time step.
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Semi-analytical Solution Technique
• Apply analytical solution only over time steps small enough

that fixed H assumption remains an acceptable

approximation.

• Computed trajectories satisfy |m| = 1.

• No renormalization scheme required.

• Naturally avoids errors in energy computations, dissipation

rates, etc. that renormalization schemes can introduce.

• Semi-analytical step extends to predictor-corrector scheme.

Ben Van de Wiele, Femke Olyslager, and Luc Dupré, “Fast semianalytical time
integration schemes for the Landau-Lifshitz equation”, IEEE Trans. Magn., vol. 43, no. 6,
pp. 2917–2919, June 2007.
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Semi-analytical predictor/corrector

Step 1a: Compute H0 at m0.

Step 1b: Assuming H = H0 is fixed, compute m1

using (2) and (3).

Step 1c: Compute H1 at m1.

Step 2: Compute mfinal using (2) and (3) and
H = (H0 + H1)/2.

The resulting method is 2nd order in ∆t.
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Semi-analytic method
(step 1) H0

m0
H0×m(t)

m1
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Semi-analytic method
(step 2) Have= (H0+H1)/2

m0

mfinalHave ×m(t)

m1
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Limitations
• H is a function of m; varies over simulation

time scales.
• When exchange or demagnetization

dominates, H is expected to vary at same
rate as m.

• Semi-analytical technique only valid for small
time steps
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Predictor/corrector using dH/dt

Idea: Use Ḣ0 to produce time-varying estimate
H(t).

Step 1a: Compute H0 and Ḣ0 at m0.

Step 1b: Compute m1 along sphere using linear
estimate H(t) = H0 + tḢ0.

Step 1c: Compute H1 at m1.
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dH/dt method
(step 1) H0

m0 H(t)×m(t) m1

H(t) = H0 + tH
•

0

t
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Predictor/corrector using dH/dt

Step 2a: Fit quadratic estimate
H(t) = H0 + tḢ0 + ct2 where

c =
[

H1 −
(

H0 + t1Ḣ0

)]

/t21.

Step 2b: Compute mfinal using quadratic H(t)
estimate.

The resulting method is 3rd order in ∆t.
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dH/dt method
(step 2) H0

m0

mfinal

H(t) = H0 + tH
•

0 + ct2

H(t)×m(t)

c = [H1 - (H0 + t1H
•

0)]/t
2
1

m1

t
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Computation of dH/dt

Hdemag
i = −

∑

j Nijmj Ḣdemag
i = −

∑

j Nijṁj

Hexch
i = 2A

µ0Ms∆2

∑

j∈Ni
mj Ḣexch

i = 2A
µ0Ms∆2

∑

j∈Ni
ṁj

Hanis
i = 2K1

µ0Ms

(mi · ui) ui Ḣanis
i = 2K1

µ0Ms

(ṁi · ui) ui

HZeeman = ? ḢZeeman = ?̇ (often 0)

Notes: ṁ is given by (1). Computational cost for
dH/dt similar to cost for H.
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Coupled Two-spin System

ma mb

(Includes exchange, demag, Zeeman,
 and cubic anisotropy energies)
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Two spin results
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Two spin results, scaled
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Multi-spin study
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Multi-spin results
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Multi-spin results
(RK4 timestep/4)
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Summary: Two spin system
• LLG has been integrated on the sphere using

H0, Ḣ0, and H1.

• Computing Ḣ0 costs similar to computing H0.
• Proposed predictor/corrector method is 3rd

order in ∆t.
• On 2-spin test, proposed method yields

smaller errors than 4th order Runge-Kutta for
reasonable ∆t.
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Summary: Multi-spin test
• Smaller cells require smaller ∆t to reach

stable regime.
• In stable regime, integration error depends on

∆t but not cellsize.
• Stability critical ∆t for 4th order RK is 4 times

larger than for 2nd order RK.
• The semi-analytic methods have good

stability characteristics.
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