Exploiting Effective Field Time Derivative Information to ImproveAccuracy of ^a Norm-preservingLandau-Lifshitz Solver

> Donald G. PorterMichael J. Donahue

NIST, Gaithersburg, Maryland, USA

Background

• For fixed H , the Landau-Lifshitz equation

(1)
$$
\dot{m} = \frac{|\gamma|}{1 + \alpha^2} H \times m + \frac{\alpha |\gamma|}{1 + \alpha^2} m \times H \times m
$$

has analytical solution.

 $\bullet\,$ In spherical coordinates based on H and initial $m,$

$$
(2) \qquad \phi(t) \quad = \quad |\gamma H|t \qquad \qquad \alpha
$$

(3)
$$
\theta(t) = 2 \tan^{-1}(\tan(\frac{\theta(0)}{2}) \exp(-|\alpha \gamma H|t))
$$

• While H remains fixed, exact trajectory $m(t)$ can be computed for any time step.

Semi-analytical Solution Technique

- • Apply analytical solution only over time steps small enoughthat fixed H assumption remains an acceptable approximation.
- •• Computed trajectories satisfy $|m|=1$.
- •No renormalization scheme required.
- • Naturally avoids errors in energy computations, dissipationrates, etc. that renormalization schemes can introduce.
- Semi-analytical step extends to predictor-corrector scheme.

Ben Van de Wiele, Femke Olyslager, and Luc Dupré, "Fast semianalytical timeintegration schemes for the Landau-Lifshitz equation", IEEE Trans. Magn., vol. 43, no. 6, pp. 2917–2919, June 2007.

Limitations

- H is a function of m ; varies over simulation time scales.
- • When exchange or demagnetizationdominates, H is expected to vary at same
rote as ∞ rate as $m_{\rm \scriptscriptstyle I}$
- • Semi-analytical technique only valid for small time steps

Predictor/corrector using dH/dt

ldea: Use \dot{H}_0 $_{\rm 0}$ to produce time-varying estimate $H(t).$

Step 1a: Compute H_0 and \dot{H}_0 $_0$ at $m_0.$

 ${\bf Step~1b:}$ Compute m_1 along ${\bf sph}$ estimate $H(t)=H_0+t\dot{H}_0.$ $_{\rm 1}$ along sphere using linear

 $\operatorname{\mathbf{Step}}{}$ **1c:** Compute H_1 $\frac{1}{1}$ at m_1 .

Predictor/corrector using dH/dt

Step 2a: Fit quadratic estimate $H(t)=H_0+t\dot{H}_0+ct^2$ where $c=$ $\sqrt{ }$ $H_1-\,$ $\left(\begin{array}{c}\right)$ H_0+t $t_1\dot H$ $\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} t \end{bmatrix}$ 21.

Step 2b: Compute m_{final} using quadratic $H(t)$ estimate.

The resulting method is 3rd order in $\Delta t.$

Computation of
$$
dH/dt
$$

\n
$$
H_i^{\text{demag}} = -\sum_j N_{ij} m_j \qquad \dot{H}_i^{\text{demag}} = -\sum_j N_{ij} m_j
$$
\n
$$
H_i^{\text{exch}} = \frac{2A}{\mu_0 M_s \Delta^2} \sum_{j \in \mathcal{N}_i} m_j \qquad \dot{H}_i^{\text{exch}} = \frac{2A}{\mu_0 M_s \Delta^2} \sum_{j \in \mathcal{N}_i} m_j
$$
\n
$$
H_i^{\text{anis}} = \frac{2K_1}{\mu_0 M_s} (m_i \cdot u_i) u_i \qquad \dot{H}_i^{\text{anis}} = \frac{2K_1}{\mu_0 M_s} (m_i \cdot u_i) u_i
$$
\n
$$
H^{\text{Zeeman}} = ? \qquad \dot{H}^{\text{Zeeman}} = \dot{?} \text{ (often 0)}
$$
\n**Notes:** \dot{m} is given by (1). Computational cost for

\n
$$
dH/dt
$$
 similar to cost for H .

Coupled Two-spin System (Includes exchange, demag, Zeeman, $\mathbf{m}_{\scriptscriptstyle\rm a}$ \mathbf{m}_{b} and cubic anisotropy energies)

Exploiting Effective Field Time Derivative Information to Improve Accuracy of ^a Norm-preserving Landau-Lifshitz Solver – p. 14/20

Exploiting Effective Field Time Derivative Information to Improve Accuracy of ^a Norm-preserving Landau-Lifshitz Solver – p. 15/20

Summary: Two spin system

- •• LLG has been integrated on the sphere using H_0 , \dot{H}_0 , and H_1 .
- •• Computing \dot{H}_0 $\overline{}_0$ costs similar to computing $H_0.$
- • Proposed predictor/corrector method is 3rdorder in $\Delta t.$
- • On 2-spin test, proposed method yields smaller errors than 4th order Runge-Kutta forreasonable $\Delta t.$

Summary: Multi-spin test

- •• Smaller cells require smaller Δt to reach stable regime.
- •• In stable regime, integration error depends on Δt but not cellsize.
- •• Stability critical Δt for 4th order RK is 4 times larger than for 2nd order RK.
- • The semi-analytic methods have goodstability characteristics.