Precession Axis Modification to a Semi-analytical Landau-Lifshitz Solution Technique

Don Porter

Mike Donahue

Mathematical & Computational Sciences Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, Maryland

Background

• For fixed H, the Landau-Lifshitz equation

$$\frac{dm}{dt} = \frac{|\gamma|}{1+\alpha^2} \mathbf{H} \times m + \frac{\alpha |\gamma|}{1+\alpha^2} m \times \mathbf{H} \times m \tag{1}$$

has analytical solution.

• In spherical coordinates based on H and initial m,

$$\phi(t) = |\gamma \mathbf{H}|t \tag{2}$$

$$\theta(t) = 2 \tan^{-1}\left(\tan\left(\frac{\theta(0)}{2}\right) \exp\left(-|\alpha \gamma \boldsymbol{H}|t\right)\right)$$
(3)

• While H remains fixed, exact trajectory m(t) can be computed for any time step.

Semi-analytical Solution Technique

- Apply analytical solution only over time steps small enough that fixed *H* assumption remains an acceptable approximation.
- Computed trajectories satisfy |m| = 1.
- No renormalization scheme required.
- Naturally avoids errors in energy computations, dissipation rates, etc. that renormalization schemes can introduce.
- Semi-analytical step extends to predictor-corrector scheme.

Ben Van de Wiele, Femke Olyslager, and Luc Dupré, "Fast semianalytical time integration schemes for the Landau-Lifshitz equation", *IEEE Trans. Magn.*, vol. 43, no. 6, pp. 2917–2919, June 2007.

Limitations

- H is a function of m; varies over simulation time scales.
- When exchange or demagnetization dominates, *H* is expected to vary at same rate as *m*.
- Semi-analytical technique only valid for small time steps

Landau-Lifshitz Analysis

• In LLG, H appears only as part of $H \times m$

$$\frac{dm}{dt} = \frac{|\gamma|}{1+\alpha^2} H \times m + \frac{\alpha |\gamma|}{1+\alpha^2} m \times H \times m.$$
(4)

- Torque $T = H \times m$ drives the equation, not field.
- Changes to field that preserve torque, preserve LLG solution.
- Consider adding any scalar multiple of m to H

$$\tilde{H} = H + \lambda m \tag{5}$$

• Compute torque

$$\tilde{T} = \tilde{H} \times m = H \times m + \lambda m \times m$$

$$= H \times m = T.$$
(6)
(7)

• Modified \tilde{H} computes same torque; same LLG solutions.

Axis Modification

- Freedom to choose \tilde{H}
- What choice for \tilde{H} best suits semi-analytical step?
- Value of λ determines direction of \tilde{H} .
- Select λ value equivalent to select axis direction, a.
- For long time steps, want single fixed H̃ suitable for all m ∈ Ω, in a neighborhood of a long trajectory segment.

Modified Axis Semi-analytical Algorithm

- From current value of m, compute current H.
- Use current and past torque values (T and T_{past}) to determine axis a.
- From m and H, compute $(m \times H \times m)$.
- Solve $\tilde{H} = \beta a = H + \lambda m$; see figure below.
- Take semi-analytical step based on H.
- Extend this semi-analytical foundation to predictor-corrector scheme.

Comparison Results

- Simulate two-spin system with several energy terms.
 - Exchange ($A = 13 \text{ nJ/m}; \Delta = 5 \text{ nm}$)
 - Demag (M = 800 kA/m)
 - Cubic Anisotropy ($K = 57 \text{ kJ/m}^3$)
- Compute trajectories for $\alpha = 0.01$ over 10 ps interval.
- Compute with three solvers
 - Baseline solution via 5/4 Runge-Kutta-Fehlberg
 - * Time steps reduced to achieve converged solution
 - Original semi-analytical predictor corrector
 - Modified axis semi-analytical predictor corrector
- Plot error at t = 10 ps against time step.

Comparison Results

- Axis corrected solver achieves...
 - ...order of magnitude less error at the same time step.
 - ...same error magnitude with three times longer time steps.
- Both semi-analytical solvers exhibit second order convergence.
 - Suitable for adjustable time step algorithms

Adjustable Time Step Comparison

- Another two-spin system.
- Zeeman energy added.
- Simulation over 5 ns duration.
- Baseline solution computed by the Runge-Kutta-Fehlberg solver with 1 fs time step.
- Both semi-analytical solvers compute solutions within 2×10^{-6} relative error.
- Original semi-analytical solver time steps all < 2 fs.
- Axis corrected solver reaches time step > 200 fs.
- Overall thirty times less computation.

Exchange-only Analysis

- Consider two-spin system with only exchange energy.
- Effective field:

$$H_1 = \frac{2A}{\mu_0 M \Delta^2} m_2. \tag{8}$$

• Axis-corrected field:

$$\tilde{H} = \tilde{H}_1 = \tilde{H}_2 = \frac{2A}{\mu_0 M \Delta^2} (m_1 + m_2).$$
(9)

• Time-evolution of axis-corrected field:

$$\frac{d\tilde{H}}{dt} = \frac{2A}{\mu_0 M \Delta^2} \left(\frac{dm_1}{dt} + \frac{dm_2}{dt}\right)$$
(10)
$$= \frac{4A^2 \alpha |\gamma|}{(\mu_0 M \Delta^2)^2} \sin(\theta) \tan(\frac{\theta}{2}) \frac{m_1 + m_2}{2},$$
(11)

Exchange-only Analysis

- Both \tilde{H} and $d\tilde{H}/dt$ in fixed direction $(m_1 + m_2)$.
- Two spins precess around common, fixed axis, synchronized opposite each other.
- For $\alpha > 0$, $|\tilde{H}|$ increases to a limit.
- Thus precession frequency also increases to a limit:

$$f_{\rm max} = \frac{2A|\gamma|}{\pi\mu_0 M\Delta^2}.$$
 (12)

- For smaller Δ
 - Precession frequency increases .
 - Precession period decreases .
 - Small time steps to represent precession .

Summary

- LLG driven by torque, not field.
- Field axis may be chosen to serve computing needs.
- Axis corrected version of semi-analytical solver more efficiently solves LLG when strong coupling undermines fixed *H* assumption.
- Semi-analytical solvers have second order convergence.
- Semi-analytical solvers support adjustable time step algorithm.
- Analysis of exchange-only two-spin system suggests finer spatial resolution may force smaller time steps.