
Precession Axis Modification
to a Semi-analytical Landau-
Lifshitz Solution Technique

Don Porter

Mike Donahue

Mathematical & Computational Sciences Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, Maryland



Background

• For fixedH, the Landau-Lifshitz equation

dm

dt
=

|γ|

1 + α2
H × m +

α|γ|

1 + α2
m × H × m (1)

has analytical solution.

• In spherical coordinates based onH and initialm,

φ(t) = |γH|t (2)

θ(t) = 2 tan−1(tan(
θ(0)

2
) exp(−|αγH|t)) (3)

• While H remains fixed, exact trajectorym(t) can be computed for

any time step.



Semi-analytical Solution Technique

• Apply analytical solution only over time steps small enoughthat fixed

H assumption remains an acceptable approximation.

• Computed trajectories satisfy|m| = 1.

• No renormalization scheme required.

• Naturally avoids errors in energy computations, dissipation rates, etc.

that renormalization schemes can introduce.

• Semi-analytical step extends to predictor-corrector scheme.

Ben Van de Wiele, Femke Olyslager, and Luc Dupré, “Fast semianalytical

time integration schemes for the Landau-Lifshitz equation”, IEEE Trans.

Magn., vol. 43, no. 6, pp. 2917–2919, June 2007.



Limitations

• H is a function ofm; varies over simulation time scales.

• When exchange or demagnetization dominates,H is expected to vary

at same rate asm.

• Semi-analytical technique only valid for small time steps



Landau-Lifshitz Analysis

• In LLG, H appears only as part ofH × m

dm

dt
=

|γ|

1 + α2
H × m +

α|γ|

1 + α2
m × H × m. (4)

• TorqueT = H × m drives the equation, not field.

• Changes to field that preserve torque, preserve LLG solution.

• Consider adding any scalar multiple ofm to H

H̃ = H + λm (5)

• Compute torque

T̃ = H̃ × m = H × m + λm × m (6)

= H × m = T . (7)

• Modified H̃ computes same torque; same LLG solutions.



Axis Modification

• Freedom to choosẽH

• What choice forH̃ best suits semi-analytical step?

• Value ofλ determines direction of̃H.

• Selectλ value equivalent to select axis direction,a.

• For long time steps, want single fixed̃H suitable for allm ∈ Ω, in a

neighborhood of a long trajectory segment.



T0

T1

a = T0 × T1

Ω

• H̃/‖H̃‖ independent ofm ∈ Ω

• =⇒ H̃ ‖ T0 × T1 for anym1, m2 in Ω.



Modified Axis Semi-analytical Algorithm

• From current value ofm, compute currentH.

• Use current and past torque values (T andTpast) to determine axisa.

• Fromm andH, compute(m × H × m).

• SolveH̃ = βa = H + λm; see figure below.

• Take semi-analytical step based onH̃.

• Extend this semi-analytical foundation to predictor-corrector scheme.



m
T=H×m

H

a

m×H×m

H+λm

H · (mxHxm) = βa·(mxHxm)

H=βa
~

β = H · (mxHxm) / a·(mxHxm)



Coupled Two-spin System

ma mb



Comparison Results

• Simulate two-spin system with several energy terms.

– Exchange (A = 13 nJ/m;∆ = 5 nm)

– Demag (M = 800 kA/m)

– Cubic Anisotropy (K = 57 kJ/m3)

• Compute trajectories forα = 0.01 over10 ps interval.

• Compute with three solvers

– Baseline solution via 5/4 Runge-Kutta-Fehlberg

∗ Time steps reduced to achieve converged solution

– Original semi-analytical predictor corrector

– Modified axis semi-analytical predictor corrector

• Plot error att = 10 ps against time step.
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Comparison Results

• Axis corrected solver achieves...

– ...order of magnitude less error at the same time step.

– ...same error magnitude with three times longer time steps.

• Both semi-analytical solvers exhibit second order convergence.

– Suitable for adjustable time step algorithms
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Adjustable Time Step Comparison

• Another two-spin system.

• Zeeman energy added.

• Simulation over5 ns duration.

• Baseline solution computed by the Runge-Kutta-Fehlberg solver with

1 fs time step.

• Both semi-analytical solvers compute solutions within2 × 10−6

relative error.

• Original semi-analytical solver time steps all< 2 fs.

• Axis corrected solver reaches time step> 200 fs.

• Overall thirty times less computation.



Exchange-only Analysis

• Consider two-spin system with only exchange energy.

• Effective field:

H1 =
2A

µ0M∆2
m2. (8)

• Axis-corrected field:

H̃ = H̃1 = H̃2 =
2A

µ0M∆2
(m1 + m2). (9)

• Time-evolution of axis-corrected field:

dH̃

dt
=

2A

µ0M∆2
(
dm1

dt
+

dm2

dt
) (10)

=
4A2α|γ|

(µ0M∆2)2
sin(θ) tan(

θ

2
)
m1 + m2

2
, (11)



Exchange-only Analysis

• Both H̃ anddH̃/dt in fixed direction(m1 + m2).

• Two spins precess around common, fixed axis, synchronized opposite

each other.

• Forα > 0, |H̃| increases to a limit.

• Thus precession frequency also increases to a limit:

fmax =
2A|γ|

πµ0M∆2
. (12)

• For smaller∆

– Precession frequency increases .

– Precession period decreases .

– Small time steps to represent precession .



Summary

• LLG driven by torque, not field.

• Field axis may be chosen to serve computing needs.

• Axis corrected version of semi-analytical solver more efficiently

solves LLG when strong coupling undermines fixedH assumption.

• Semi-analytical solvers have second order convergence.

• Semi-analytical solvers support adjustable time step algorithm.

• Analysis of exchange-only two-spin system suggests finer spatial

resolution may force smaller time steps.


