Magnetization Normalization Methods for Landau-Lifshitz-Gilbert

Don Porter

Mike Donahue

Mathematical & Computational Sciences Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, Maryland

Introduction

• Exact solutions of LLG,

$$\dot{m} = \frac{dm}{dt} = \frac{\gamma}{1 + \alpha^2} m \times H_{\text{eff}} - \frac{\alpha\gamma}{1 + \alpha^2} m \times H_{\text{eff}} \times m \quad (1)$$

satisfy |m| = 1.

- Cartesian numerical solvers allow $|m| \neq 1$.
- Renormalization required to put solvers back on track.
- Different renormalization techniques influence results.

Example: Single Spin Undamped Precession

Renormalization Artifiacts

- Traditional (naive) renormalization
 - Keep direction
 - Reset magnitude to 1.
 - Nearest point on sphere.
- Produces error in $m \cdot H_{\text{eff}}$.
- Therefore, error in energy, dissipation rates, etc.

• Damping $\alpha = 0 \Rightarrow m_z$ (= -energy) should be constant. (rk2 is second order Runge-Kutta, others are 1st order Euler.)

Single Spin, Runge-Kutta Integration

Similar (but smaller) errors. Time step = 10 ps.
(rk4 = 4th order; rkf54 = 5 + 4th order Runge-Kutta-Fehlberg.)

Micromagnetic Example: Instabilities

58 nm

Thickness = 2 nm Py material parameters Simulation cellsize = 2nm

Damping $\alpha = 0.001$

Renormalization Induced Instability

• rkf54 method, variable stepsize.

Revised Example: Modified Normalization

Revised Example: Modified Normalization

- Modified renormalization
 - Adjust both direction and magnitude.
 - Nearest point on "orbit of precession".
 - Generalized orbit: Nearest point on intersection of sphere and plane through unnormalized value perpendicular to $\dot{m}_1 \times \dot{m}_2$.
 - Generalized orbit accounts for non-zero damping and for dependence of H_{eff} on m.
- Greatly reduced errors.

Modified Normalization, Single Spin

• Revised normalization improves all integration techniques. (Data points are subsampled.)

Modified Normalization, Stability

• Revised normalization greatly reduces instability.

Revised Equation

$$\dot{m} = \frac{\gamma}{1+\alpha^2} m \times H_{\text{eff}} - \frac{\alpha\gamma}{1+\alpha^2} m \times H_{\text{eff}} \times m + u(|m|-1)V(m)$$
(2)

- $u(\cdot)$ is scalar weighting function, output from PID controller. Initially, u(0) = 0.
- V(m) is vector in same direction as modified normalization.
- Exact solutions of (2) are same as exact solutions of (1).
- Correction term in the equation itself has advantages:
 - More direct use by solvers with automatic step size control
 - Multi-step solvers do not require resets at normalization points.

- No instability with modified LLG.
- Also fixes single spin precession (not shown).

Summary

- Cartesian solvers employ renormalization when solving LLG.
- Simple renormalization choice introduces artifacts.
 - Energy calculation errors compared with analytical solution.
 - Numerical instabilities in more complex problems.
- Modified renormalization techniques yield improved results
 - Normalization to "orbit of precession"
 - Modified equation that self-corrects to normalized values.