
Magnetization Normalization
Methods for

Landau-Lifshitz-Gilbert
Don Porter

Mike Donahue

Mathematical & Computational Sciences Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, Maryland



Introduction

• Exact solutions of LLG,

ṁ =
dm

dt
=

γ

1 + α2
m × Heff −

αγ

1 + α2
m × Heff × m (1)

satisfy |m| = 1.

• Cartesian numerical solvers allow |m| 6= 1.

• Renormalization required to put solvers back on track.

• Different renormalization techniques influence results.



Example: Single Spin Undamped Precession
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Renormalization Artifiacts

• Traditional (naive) renormalization

– Keep direction

– Reset magnitude to 1.

– Nearest point on sphere.

• Produces error in m · Heff .

• Therefore, error in energy, dissipation rates, etc.



Single Spin, Euler Integration
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• Damping α = 0 ⇒ mz (= -energy) should be constant.

(rk2 is second order Runge-Kutta, others are 1st order Euler.)



Single Spin, Runge-Kutta Integration
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• Similar (but smaller) errors. Time step = 10 ps.

(rk4 = 4th order; rkf54 = 5 + 4th order Runge-Kutta-Fehlberg.)



Micromagnetic Example: Instabilities
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Renormalization Induced Instability

0.02594

0.02595

0.02596

0.02597

0.0 0.5 1.0 1.5 2.0
-8

-4

 0

 4

 8

R
ed

uc
ed

 m
ag

ne
tiz

at
io

n

R
el

at
iv

e 
en

er
gy

 (
J 

x 
10

-2
5 )

Time (ns)

Correct
Energy

my, corner spin

• rkf54 method, variable stepsize.



Revised Example: Modified Normalization
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Revised Example: Modified Normalization

• Modified renormalization

– Adjust both direction and magnitude.

– Nearest point on “orbit of precession”.

– Generalized orbit: Nearest point on intersection of sphere and

plane through unnormalized value perpendicular to ṁ1 × ṁ2 .

– Generalized orbit accounts for non-zero damping and for depen-

dence of Heff on m.

• Greatly reduced errors.



Modified Normalization, Single Spin
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• Revised normalization improves all integration techniques.

(Data points are subsampled.)



Modified Normalization, Stability
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• Revised normalization greatly reduces instability.



Revised Equation

ṁ =
γ

1 + α2
m × Heff −

αγ

1 + α2
m × Heff × m + u(|m| − 1)V (m) (2)

• u(·) is scalar weighting function, output from PID controller. Initially,

u(0) = 0.

• V (m) is vector in same direction as modified normalization.

• Exact solutions of (2) are same as exact solutions of (1).

• Correction term in the equation itself has advantages:

– More direct use by solvers with automatic step size control

– Multi-step solvers do not require resets at normalization points.



Modified LLG, Stability
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• No instability with modified LLG.

• Also fixes single spin precession (not shown).



Summary

• Cartesian solvers employ renormalization when solving LLG.

• Simple renormalization choice introduces artifacts.

– Energy calculation errors compared with analytical solution.

– Numerical instabilities in more complex problems.

• Modified renormalization techniques yield improved results

– Normalization to “orbit of precession”

– Modified equation that self-corrects to normalized values.


