Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> Kristof M. Lebecki Universität Konstanz, Konstanz, Germany

> > Michael J. Donahue NIST, Gaithersburg, Maryland

> > > 13-May-2009

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

MFM of cobalt wires

Experimental wire result and conjectured explanation:[†]

Wire radius: 50 nm

[†]Y. Henry, K. Ounadjela, et al., Eur. Phys. J. B **20**, 35 (2001).

イロト 不得 トイヨト イヨト 三日

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

200 nm Co film with perpendicular anisotropy

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Analytic theory^{\ddagger}

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

[‡]G. Bergmann, J.G. Lu, et al., Phys. Rev. B **77**, 054415 (2008).

< □ > < □ > < □ > < □ > < □ > < □ > = □

Analytic theory^{\ddagger}

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$a_{\rm ex}/u_{\rm no}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k_2/u_{00}	(10^{-2})	s_{\min}	$\theta_{\rm min}$	u_{\min}/u_{00}	$u[\mathbf{M} \ \hat{\mathbf{z}}]$	$u[\mathbf{M} \ \hat{\mathbf{x}}]$
0.125 1.36 1.5 0.9 0.417 71 0.47 0.5	0 0.083 0.083 0.125	0.68 1.36 0.68 1.36 0.68	2.3 1.75 2.1 1.6 2.1	0.7 0.3 1.0 0.8 1.0	0.333 88 0.341 37 0.378 83 0.396 9 0.397 04	0.34 0.34 0.425 0.425 0.47	0.5 0.5 0.5 0.5 0.5
	0.125	1.36	1.5	0.9	0.417 71	0.47	0.5

[‡]G. Bergmann, J.G. Lu, et al., Phys. Rev. B **77**, 054415 (2008).

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Model schematic

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Discretization error for sinusoidal state

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Analytic theory^{\ddagger}

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

[‡]G. Bergmann, J.G. Lu, et al., Phys. Rev. B **77**, 054415 (2008).

< □ > < □ > < □ > < □ > < □ > < □ > = □

Micromagnetic simulations

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

z-vortex state, radius dependence

Radius: 30.4 nm

Radius: 200 nm

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

y-vortex states, radius dependence

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Thin film, micromagnetic simulation

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

э

Energy density for y-vortex state

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Multiple metastable y-vortex states

Radius: 40 nm.

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Relative energy densities (40 nm radius)

э

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Effects of simulation window size

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

^{*}H. Kronmuller and M. Fähnle, *Micromagnetism and the Microstructure of Ferromagnetic Solids* (Cambridge, 2003).

Variation of t_z with r

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

<i>r</i> (nm)	t_z (nm)
30	46
40	52
50	51
64	56
80	54
100	62
128	68
200	70
	1

In this range,

$$\alpha = (p - t_z)/2p \in [0.25, 0.4]$$

Periodicity formula

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

$$p(r) = 2\sqrt{\frac{8r\sqrt{AK_1}}{f(\alpha)4\mu_0M_s^2/\pi^3 + 2\alpha^2K_1}}$$

here

$$\begin{array}{ll} \alpha = 0.25 & \Longrightarrow & f(\alpha) \approx 0.5259 \\ \alpha = 0.4 & \Longrightarrow & f(\alpha) \approx 0.130887 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

y-vortex period

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

Summary table

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy

> K.M. Lebecki, M.J. Donahue

Material constants			Sinusoidal state			Vortex-like states		
K_1	K_2	A	$s_{ m sin}$	$\theta_{ m sin}$	u_{sin}	$u_{\rm zvort}$	$u_{\rm yvort}$	р
(MJ/m^3)	(MJ/m^3)	(pJ/m)						(nm)
0.41	0.0	26	2.24	0.6849	0.3344	0.2268	0.247	168
0.41	0.0	52	1.75	0.3212	0.3422	0.2832	0.307	220
0.41	0.1	26	2.09	0.9555	0.3788	0.2463	0.263	168
0.41	0.1	52	1.57	0.8499	0.3972	0.3094	0.322	216
0.41	0.15	26	2.09	1.0251	0.3972	0.2551	0.270	176
0.41	0.15	52	1.53	0.9452	0.4179	0.3213	0.323	216
0.20	0.03	13	-	-	-	0.1274	0.148	144
0.50	0.0	13	2.73	1.0409	0.3687	0.2062	0.221	150

<ロ> (四) (四) (三) (三) (三) (三)

Summary

- Wide range of material constants and wire radii considered.
- Lowest non-saturated energy in z-vortex and periodic y-vortices states.
 - y-vortex periodicity in rough agreement with experiment
- Z-vortex and periodic y-vortices have comparable energy.
- y-vortex period described using simple quasi-stripe domain theory.

Quasi-stable vortex magnetization structures in nanowires with perpendicular anisotropy