

Vortex head-to-head domain wallsand their formationin onion-state ring elements - p.3/17

Vortex head-to-head domain wallsand their formationin onion-state ring elements - p.4/17

MFM detail, $D_{I/O}=0.6$

t = 40 nm

t = 65 nm

Vortex head-to-head domain wallsand their formationin onion-state ring elements - p.11/17

Energy comparisons

.

t	$D_{\mathrm{I/O}}$	One Vortex Wall			Two Vortex Wall		
(nm)		Exch	Demag	Total	Exch	Demag	Total
40	0.4	896	4729	5625	1221	3806	5028
	0.5	894	4770	5664	1241	4056	5297
	0.6	921	4796	5718	1306	4190	5496
	0.8	1122	5071	6193	1653	4622	6275
55	0.6	1071	5871	6942	1437	5054	6490
65	0.6	-	-	-	1567	5500	7067
	0.7	1484	6128	7612	1667	5533	7200
	0.8	1561	6179	7740	1840	5698	7538

Energy units: J/m³

Summary

- Good agreement between MFM and micromagnetics for Ni₈₀Fe₂₀ ring elements.
- Single-vortex head-to-head walls observed in 40 nm elements.
- Double-vortex head-to-head walls observed in 65 nm elements.
- Micromagnetics indicate double-vortex wall has lower energy in 40 nm element, but is inaccessible.
- Nucleation event evident in micromagnetic simulations as spike in exchange energy.