Science Goals Involving H>O and HDO Measurements

Measurements:

e Water vapor: Lyman-«, JLH, ICOS, Frostpoint, CLH, Maycomm
e Total water/ice water content:. CSI, CLH, HOXotope

e HDO vapor: ICOS

e HDO total water: HOXotope

e HDO and DLH on the DC-8

Thanks to Lenny Pfister, Tom Hanisco, Liz Moyer, and Jessica
Smith for helpful input and figures.



1. How important is deep convection for regulating stratospheric humidity?

e Can convective injection of H>,O above the cold point decouple
stratospheric humidity from tropopause temperature?

e Can isotope measurements be used to constrain convective
input?
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Calculated stratospheric H,0

® No convection case
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Monthly averaged H,O at6 = 400 K. Capping convection below the
tropopause (6 = 380 K) has a small effect on [H,O]..

e Dessler/Fueglistaler calculations suggest 1.5-2.5 ppmv
enhancement in H>,O¢ resulting from convective input
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e Pfister approach produces very little convective enhancement of
H->O in the upper TTL.



Effect of Convection on HDO
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e In curtain simulations with slow ascent, convective injection only
slightly increases 46-D in the upper TTL.

e Parcels not reaching uppermost TTL
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e In Pfister curtain simulations with fast ascent indicated by CO»
clock, simulated 6-D is lower than indicated by measurements,

even with convection.
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e Regional variations need to be considered.
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Mission strategy: determining convective origin

Clear-sky profiles of H>O and HDO in airmasses with varying
degrees of convective influence.

Attempt to sample air influenced by convection into both super-
saturated and subsaturated regions.

Measure the isotopic content of anvil ice.

CALIPSO and CloudSat data should help quantify deep convec-
tion height distributions.



2. What fraction of tropical cirrus was generated directly
(or indirectly) by deep convection?

e Does anvil cirrus sporadically reform downwind of convective
systems?

e Are TTL cirrus typically formed in situ or related to deep
convective systems?



Mission strategy: supersaturation distributions

e Measure total water and vapor H>,O/HDO in TTL cirrus to distin-
guish convectively-generated, re-generated, and in-situ formed

cirrus.

e Seek out TTL cirrus in air that had been influenced by convection
hours—days before.

Vapor Ice Conclusion
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How Prevalent are Supersaturations in the Tropopause Region?

J. Smith et al.
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Mission strategy

e Sampling clear and cloudy air in the tropopause region,
particularly at low temperatures.

e Examine small-scale structure in RHI field using high-frequency
(8-20 Hz) H>,O and temperature measurements.
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What is the temporal and latitudinal variability in 6-D?

e How homogeneous is the stratospheric isotopic composition?
e How isolated is the stratosphere from the troposphere?

e What is the seasonal variability in UT/LS §-D?



Mission strategy: variability in 6-D

Head north on one of the test flights.
Include stratospheric sampling on local flights and ferry flights.

Obtain UT/LS profiles in air of different latitudinal origin based on
trajectory analysis.

Ascend to maximum altitude at the end of each flight.



