Scientists Discover Universe’s Largest Known Structure

Artist’s impression of a very distant quasar powered by a black hole with a mass two billion times that of the Sun. (Image: ESO/M. Kornmesser via Wikimedia Commons)

Artist’s impression of a very distant quasar powered by a black hole with a mass two billion times that of the Sun. (Image: ESO/M. Kornmesser via Wikimedia Commons)

Scientists have found the largest known structure in the universe, a cluster of galactic cores so vast it would take four billion years for a spacecraft traveling at the speed of light to cross it.

The sighting challenges a theory from Einstein which suggests such a massive object shouldn’t exist in the universe.

A quasar is the compacted center of a galaxy surrounding a massive black hole from the early days of the universe.  Quasars  go through periods of extreme brightness which can last anywhere from 10 to 100 million years. They tend to band together in enormous clusters, or structures, forming large quasar groups (LQGs).

The international group of scientists led by Roger Clowes from the University of Central Lancashire’s Jeremiah Horrocks Institute, used data from the Sloan Digital Sky Survey (SDSS), a major surveying project that uses 2.5-m wide-angle optical telescope located at New Mexico’s Apache Point Observatory, to make their findings.

Clowes and his colleagues are astounded by the size of this structure, which defies the Cosmological Principal, based on Albert Einstein’s theory of General Relativity that assumes when you look at the universe from a sufficiently large scale; it looks the same no matter where you are observing it from.  The Cosmological Principle, according to the research team, is assumed but has never been demonstrated observationally ‘beyond reasonable doubt.’

LQG - Large quasar group as imaaged by the Big Throughput Camera at the Cerro Tololo Inter-American Observatory in Chile (Photo: Chris Haines)

Large quasar group (LQG) as imaged by the Big Throughput Camera at the Cerro Tololo Inter-American Observatory in Chile (Photo: Chris Haines)

“While it is difficult to fathom the scale of this LQG, we can say quite definitely it is the largest structure ever seen in the entire universe,” said Clowes. “This is hugely exciting, not least because it runs counter to our current understanding of the universe. The universe doesn’t seem to be as uniform as we thought.”

Clusters of galaxies can be anywhere from six to 10 million light-years across, but the LQGs can be 650 million light-years or more across. Making calculations based on the Cosmological Principle, along with the modern theory of cosmology, astrophysicists shouldn’t be able to find a structure in the universe larger than 1.2 billion light-years, much less four billion light-years across as this newly sighted structure is.

To get some additional perspective of what the astronomers found, let’s step back and give it a sense of scale.  Our own galaxy, the Milky Way, is separated from its nearest neighbor, the Andromeda Galaxy, by a distance of 2.5 million light-years.

Clowes points out that his team’s discovery does have a typical dimension of 1.6 billion light-years. But, because it is elongated, its longest dimension is four billion light-years, making it about 1,650 times larger than the distance from the Milky Way to Andromeda.

Science Images of the Week

A mosaic of images of Saturn and its moon, Titan, taken by NASA's Cassini spacecraft. Seasons have changed on Saturn, the azure blue in the planet’s northern hemisphere is now fading while the southern hemisphere is now taking on a bluish hue. Scientists say these changes are likely due to the reduced intensity of ultraviolet light and the haze it produces in the southern hemisphere as winter approaches, and the increasing intensity of ultraviolet light and haze production in the northern hemisphere as summer approaches. (Photo: NASA)

A composite of a mosaic of images of Saturn and its moon, Titan, taken by NASA’s Cassini spacecraft. Seasons have changed on Saturn, the azure blue in the planet’s northern hemisphere is now fading while the southern hemisphere is now taking on a bluish hue. Scientists say these changes are likely due to the reduced intensity of ultraviolet light and the haze it produces in the southern hemisphere as winter approaches, and the increasing intensity of ultraviolet light and haze production in the northern hemisphere as summer approaches. (Photo: NASA)

The Soyuz TMA-04M spacecraft with ISS Expedition 32 Commander Gennady Padalka of Russia, NASA Flight Engineer Joe Acaba and Russian Flight Engineer Sergei Revin lands in a remote area near the town of Arkalyk, Kazakhstan, on Sept. 17, 2012 (Kazakhstan time). (Photo: NASA/Carla Cioffi)

The Soyuz TMA-04M spacecraft, carrying two cosmonauts and a NASA flight engineer, lands in a remote area near the town of Arkalyk, Kazakhstan, on Sept. 17, 2012. (Photo: NASA)

NASA Flight Engineer Joe Acaba signs the side of his Soyuz TMA-04M spacecraft that brought him and his crew mates back to Earth on September 17, 2012.  Acaba, along with Gennady Padalka and Sergei Revin of Russia returned from four months on board the International Space Station where they served as members of the Expedition 31 and 32 crews. (Photo: NASA/Carla Cioffi)

NASA Flight Engineer Joe Acaba signs the side of the Soyuz TMA-04M spacecraft which brought him and his crew mates back to Earth on Sept. 17, 2012. Acaba, along with Gennady Padalka and Sergei Revin of Russia, returned from four months on board the International Space Station where they served as members of the Expedition 31 and 32 crews. (Photo: NASA)

A giraffe calf was recently born at the Dickerson Park Zoo in Springfield, MO. Here, the baby giraffe sits while mother licks its head (Photo: Dickerson Park Zoo)

A giraffe calf, which was recently born at the Dickerson Park Zoo in Springfield, Missouri, with its mother. (Photo: Dickerson Park Zoo)

With the Martian landscape in the background this is the Mars Hand Lens Imager (MAHLI), one of seventeen cameras on NASA’s Curiosity rover. The photo was recently taken by the rover’s Mast Camera – MastCam (Photo: NASA/JPL-Caltech/MSSS)

With the Martian landscape in the background, this is the Mars Hand Lens Imager (MAHLI), one of 17 cameras on NASA’s Curiosity rover. The photo was taken by the rover’s Mast Camera – MastCam (Photo: NASA)

The Heat Island Group at Lawrence Berkeley National Laboratory works to cool buildings, cities, and the planet by making roofs, pavements, and cars cooler in the sun.  Here, Jordan Woods takes measurements of new cool pavement coating using a device albedometer. Other sample pavement coatings can be seen behind him. (Photo: Lawrence Berkeley National Laboratory)

The Heat Island Group at Lawrence Berkeley National Laboratory works to cool buildings, cities, and the planet by making roofs, pavements, and cars cooler in the sun. Here, Jordan Woods takes measurements of new cooler pavement coating. Other sample pavement coatings can be seen behind him. (Photo: Lawrence Berkeley National Laboratory)

While the Mars rover Curiosity is the center of attention right now, Opportunity, a rover that has been on the Red Planet since January 2004 recently sent images of a collection of little spheres that scientists nicknamed ‘blueberries’.  These puzzling little objects were found on an outcrop of rock called "Kirkwood" and each is about 3 millimeters in diameter. (NASA/JPL-Caltech/Cornell Univ. / USGS/Modesto Junior College)

Opportunity, a rover which has been on Mars since January 2004, captured this image of little spheres that scientists nicknamed ‘blueberries.’ These puzzling little objects were found on an outcrop of rock called “Kirkwood” and each is about 3 millimeters in diameter. (Photo: NASA)

An extreme close up of a wild tomato’s trichomes, hair-like protrusions, that produce a mixture of special chemicals that shape the interactions between the plant and its environment some of which act as the first line of defense against pests. (Photo: Michigan State University)

An extreme close up of a wild tomato’s trichomes, hair-like protrusions that produce a mixture of special chemicals which shape the interactions between the plant and its environment, some of which act as the first line of defense against pests. (Photo: Michigan State University)

Astronomers recently discovered two gas giant planets orbiting stars in the Beehive cluster, a collection of about 1,000 tightly packed stars. The planets are the first ever found around sun-like stars in a cluster of stars. This is an artist’s conception of one of the gas giants to the right of its sun-like star, and all around, the stars of the Beehive cluster shine brightly in the dark. (Image: NASA/JPL-Caltech)

Shown above are the spiral galaxies NGC 3788 (top) and NGC 3786 (bottom) in the constellation Ursa Major (home of the Big Dipper). These two galaxies, like many found throughout the Sloan Digital Sky Survey, are gravitationally interacting. (Photo: Sloan Digital Sky Survey) 

A close look at active lava flows produced by Hawaii's Kīlauea Volcano (Photo: USGS Hawaiian Volcano Observatory)

A close look at active lava flows produced by Hawaii’s Kīlauea Volcano (Photo: USGS Hawaiian Volcano Observatory)

About Science World

Science World

Science World is VOA’s on-air and online magazine covering science, health, technology and the environment.

Hosted by Rick Pantaleo, Science World‘s informative, entertaining and easy-to-understand presentation offers the latest news, features and one-on-one interviews with researchers, scientists, innovators and other news makers.

Listen to a Recent Program

Broadcast Schedule

Broadcast Schedule

Science World begins after the newscast on Friday at 2200, Saturday at 0300, 1100 and 1900 and Sunday at 0100, 0400, 0900, 1100 and 1200.

Science World may also be heard on some VOA affiliates after the news on Saturday at 0900 and 1100. (All times UTC).

Contact US

E-Mail
science@voanews.com

Postal Mail
Science World
Voice of America
330 Independence Ave., SW
Washington, DC 20237
USA