
Presented by

Understanding and Optimizing

Data Input/Output of Large-Scale

Scientific Applications

Jeffrey S. Vetter

Leader
Future Technologies Group

Computer Science and Mathematics Division

Team Members
Weikuan Yu, Yong Chen, Philip C. Roth

2 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

I/O for large-scale scientific computing

• Reading input and restart files

• Writing checkpoint files

• Writing movie, history files

• Gaps of understanding across
domains; low efficiency

Metadata
Server

Object
Storage
Server

Object
Storage
Server

Object
Storage
Server

Compute
Node

Compute
Node

Compute
Node

Compute
Node Compute

Node

Compute
Node

Compute
Node

Compute
Node

3 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

The I/O gap

• Widening gap between
application I/O demands
and system I/O capability

• Gap may grow too large
for existing techniques
(e.g., checkpointing) to be
viable, due to decreases
in system reliability as
systems get larger

Application I/O Demand

I/O System Capability

I/O Gap

System size

Application I/O Demand

Expected Time Between System Failures

System size

Checkpoints eventually take
longer than System MTTF

4 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Insight into I/O behavior

• Scalable performance data collection infrastructure for Cray XT

• Gathers detailed I/O request data without
changes to application source code

• Useful for
– Characterizing application I/O
– Driving storage system simulations
– Deciding how and where to optimize I/O

Application

Instrumented MPI Function
Wrapper Library

MPI Library (Including MPI-IO)

Instrumented POSIX I/O
Wrapper Library

POSIX I/O Functions

Lustre File System

Portals Data Transfer Layer

Instrumented

Cray XT MPI

Software Stack

Event trace file size for FLASH I/O on Jaguar Cray XT4 at ORNL,

with ScalaTrace compression (yellow) and without (blue).

Note logarithmic Y axis.

Probabilistic Communication and I/O Tracing with Deterministic Replay at Scale, by X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P.C.

Roth, in 2011 International Conference on Parallel Processing (ICPP 2011)

5 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Layout-aware collective I/O

• Traditionally, parallel file systems and middleware are
designed separately

• Exposing physical layout information
to middleware
allows it to
reorder and
reorganize
accesses for
better locality
and improved
performance

0 1 2 3 0 1 2 3 0 1 2 3

File domains

(Logical)

Logical Block # 0 1 2 3 4 5 6 7 8 9 10 11

File Server#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

0

4

8

1

5

9

2

6

10

3

7

11

Processes Process

es
Processes Processes Processes

File servers

(Physical)

Logical

Blocks (LB)

LACIO: A New Collective I/O Strategy for Parallel I/O

Systems, by Y. Chen, X.-H. Sun, R. Thakur, P.C.

Roth, and W.D. Gropp, In 25th IEEE International

Parallel and Distributed Processing Symposium

6 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Layout-aware independent I/O

• Without awareness,
independent accesses by
multiple processes of a
parallel application contend
with each other

• With awareness,
independent accesses
serialized but do not
contend with each other,
giving better performance
to application as a whole

7 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

RXIO: High performance GridFTP on

InfiniBand

request

alloc conn *

rdma_accept *

Network Thread

(epoll_wait)

Main thread

(poll/select)

Server Client

established *

notification *

* alloc conn

* rdma_connect

* established

* notification

Network Thread

(epoll_wait)

Main thread

(poll/select)

pipe pipe

accept

rdma_listen *

Software

Architecture

Connection

Establishment

XIO System

RDM Driver

UDP File TCP

XIO System Extension

Existing XIO Drivers

8 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Performance benefits of RXIO

• Improve GridFTP bandwidth by three times compared to 10GigE

• At the same time, dramatically reduce the CPU utilization

Efficient Zero-Copy Noncontiguous I/O for Globus on InfiniBand by W. Yu, Y. Tian, J.S. Vetter. In Proceedings of the Third

International Workshop on Parallel Programming Models and Systems Software for High-End Computing (P2S2¹10), San Diego, CA.

9 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

neCODEC: Nearline data compression

for scientific applications

3 2 1 0

OST0

User Space Buffer

Compress/

Decompress

Compute node Service thread

Compress/

Decompress

Compress/

Decompress

Compress/

Decompress

OST1 OST2 OST3 OST4 OST5 OST6 OST7

Metafile

Subfile_001 Subfile_002 Subfile_003 Subfile_004

neCODEC: Nearline Data Compression for Data-Intensive Parallel Applications, by Y. Tian, W. Yu, J.S. Vetter, H. Liu. In review.

10 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Performance results of neCODEC

neCODEC improves the read and write bandwidth
for MPI-Tile-IO and BT-IO

0

100

200

300

400

500

600

4 8 16 36 64

T
h

ro
u

g
h

p
u

t(
M

b
y
te

/S
e
c
o

n
d

)

Number of Processes

original neCODEC

0

5

10

15

20

25

30

9 16 25 36 64 144

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

Number of Processes

neCODEC original

MPI-Tile-IO (Write) BT-IO Class B (Read)

11 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

TaskTracker

JobTracker

ReduceTask

TaskTracker

MapTask

MOFSupplier

Data

Engine
RDMA

Server

Fetch

Manager

Merging Thread

Merged Data

Merge

Manager RDMA

Client

NetMerger

Java

Hadoop

C++

RDMA Interconnects

Acceleration

Hadoop Acceleration – UDA

(Unstructured Data Accelerator)

Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal. Hadoop Acceleration through Network Levitated

Merging. SC11. Seattle, WA.

12 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Data Processing Scalability with UDA

Execution Time with Fixed

Dataset Per Reducer

Execution Time with Fixed

Data Size Per Job

13 Managed by UT-Battelle
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O

Reduced CPU Utilization with UDA

Contacts

Jeffery S. Vetter

Leader
Future Technologies Group
Computer Science and Mathematics Division
(865) 356-1649
vetter@ornl.gov

Weikuan Yu

ORNL/Auburn University
(344) 844-6330
wkyu@auburn.edu

Philip C. Roth

(865) 241-1543
rothpc@ornl.gov

For more information see

http://ft.ornl.gov/projects/io/

Yong Chen

Texas Tech
University(Formerly ORNL
Postdoc)
(806) 742-3527 x230
yong.chen@ttu.edu

