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I/O for large-scale scientific computing 

• Reading input and restart files 

• Writing checkpoint files 

• Writing movie, history files 

• Gaps of understanding across  
domains; low efficiency 
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The I/O gap 

• Widening gap between 
application I/O demands 
and system I/O capability 

• Gap may grow too large  
for existing techniques  
(e.g., checkpointing) to be 
viable, due to decreases  
in system reliability as 
systems get larger 
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Insight into I/O behavior 

• Scalable performance data collection infrastructure for Cray XT 

• Gathers detailed I/O request data without  
changes to application source code 

• Useful for 
– Characterizing application I/O 
– Driving storage system simulations 
– Deciding how and where to optimize I/O 

Application 

Instrumented MPI Function 
Wrapper Library 

MPI Library (Including MPI-IO) 

Instrumented POSIX I/O 
Wrapper Library 

POSIX I/O Functions 

Lustre File System 

Portals Data Transfer Layer 

Instrumented 

Cray XT MPI 

Software Stack 

Event trace file size for FLASH I/O on Jaguar Cray XT4 at ORNL, 

with ScalaTrace compression (yellow) and without (blue). 

Note logarithmic Y axis. 

Probabilistic Communication and I/O Tracing with Deterministic Replay at Scale, by X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P.C. 

Roth, in 2011 International Conference on Parallel Processing (ICPP 2011) 
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Layout-aware collective I/O 

• Traditionally, parallel file systems and middleware are 
designed separately 

• Exposing physical layout information 
to middleware 
allows it to 
reorder and 
reorganize 
accesses for 
better locality 
and improved 
performance 
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LACIO: A New Collective I/O Strategy for Parallel I/O 

Systems, by Y. Chen, X.-H. Sun, R. Thakur, P.C. 

Roth, and W.D. Gropp, In 25th IEEE International 

Parallel and Distributed Processing Symposium 



6 Managed by UT-Battelle 
 for the U.S. Department of Energy Understanding and Optimizing Large Scale I/O 

Layout-aware independent I/O 

• Without awareness, 
independent accesses by 
multiple processes of a 
parallel application contend 
with each other 

• With awareness, 
independent accesses 
serialized but do not 
contend with each other, 
giving better performance 
to application as a whole 
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RXIO: High performance GridFTP on 

InfiniBand 
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Performance benefits of RXIO 

• Improve GridFTP bandwidth by three times compared to 10GigE 

• At the same time, dramatically reduce the CPU utilization 

Efficient Zero-Copy Noncontiguous I/O for Globus on InfiniBand by W. Yu, Y. Tian, J.S. Vetter. In Proceedings of the Third 

International Workshop on Parallel Programming Models and Systems Software for High-End Computing (P2S2¹10), San Diego, CA. 
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neCODEC: Nearline data compression 

for scientific applications 
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neCODEC: Nearline Data Compression for Data-Intensive Parallel Applications, by Y. Tian, W. Yu, J.S. Vetter, H. Liu. In review. 
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Performance results of neCODEC 

neCODEC improves the read and write bandwidth 
for MPI-Tile-IO and BT-IO 
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Acceleration 

Hadoop Acceleration – UDA 

(Unstructured Data Accelerator) 

Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal. Hadoop Acceleration through Network Levitated 

Merging. SC11. Seattle, WA. 
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Data Processing Scalability with UDA 

Execution Time with Fixed 

Dataset Per Reducer 

Execution Time with Fixed 

Data Size Per Job 
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Reduced CPU Utilization with UDA 
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