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Problem space: HPC storage crisis 

• Data checkpointing, staging, and offloading are all 
affected by data unavailability and I/O bandwidth 
bottleneck issues 

– Checkpointing terabytes of data to a traditional file system 
results in an I/O bottleneck 

– Compute time wasted on staging at the beginning of the job 

– Early staging and late offloading waste scratch space 

– Delayed offloading renders result data vulnerable to purging 

– Upshot 

• Increased turnaround time, checkpoint bottleneck 

• Increased job wait times due to staging/offloading and storage 
delays/errors 

• Poor end-user data delivery options 
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Stdchk: An aggregate SSD/memory-

based checkpoint storage system 

• Aggregates storage space from 
compute node-local SSD/memory to 
present a collective, intermediate 
checkpoint storage or a staging ground 

– Job’s own allocated nodes can 
contribute storage space 

• Transparent FS interface to the storage 
using FUSE (e.g., /AggregateSSDstore) 

• Benefactor process contributes SSD 
space or memory buffers to a manager 

• Manager maintains metadata on 
benefactor status, contributions and 
chunk to benefactor mapping 

• Application writes to the mount point translated into striping of chunks across a stripe width 
of benefactors 

– Parallel I/O across distributed SSD or memory 
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Stdchk (cont’d) 

• Features 

– Draining of checkpoint images to a parallel file system 

– Striping policies factor in SSD locality (i.e., preference to node-local SSD) 

– Incremental checkpointing and pruning of checkpoint files 

• Compare chunk hashes from two successive intervals 

• Initial experiments suggest a 10–25% reduction in size for BLCR checkpoints 

• Purge images from previous interval once the current image is safely stored 

• File system is unable to perform such optimizations 

– A multitiered storage of aggregate memory and aggregate SSD layers 

– Applications can also mmap() into the aggregate SSD storage to perform 
out-of-core computations  
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Checkpoint throughput 

• Results 

– Up to 1800 cores checkpointing 
0.25 GB each ~ 0.5 TB overall 

– Aggregate SSD Store 

• 32 GB each 

• Ramdisk SSD emulator ~ 175 MB/s 

• Peak aggregate SSD throughput of 
45 GB/s 

– Aggregate Memory Store 

• 600 benefactors with 1 GB each 

• 300 benefactors with 1 GB shows 
the effect of draining to PFS 

• Peak aggregate memory throughput 
of 56 GB/s 



6 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Scratch as cache 

• Globally manage  
the scratch cache 

• Data movement is 
performed using cache 
population and eviction 
tools 

• Users cannot arbitrarily 
move data  

• Input and output data are 
not retained beyond the 
lifetime of the application 
run 

 

 
 Addresses many of the problems of disjoint management! 

Hints 

Retention: 

Evict(n) 
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script 
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Just In Time (JIT) staging 

• Staging constraints 
– Max(Tj) ≤ TJobStartup 

– Exposure window of each input dataset, Ewj = TJobStartup – Max(Tj); Ew = Sum(Ewj) 

– The closer Ew is to 0, the better 

Site A 

HPC Center 

Job output data Job queue 
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Service 

Offload result data by a 

specified deadline to 

ensure continuity in job 

workflow 

Offload result data by a specified 

deadline to avoid purging 

Eager offloading of result data 

• Eager offloading features: 
– Reconcile offload constraint: before center purge and by the user-specified 

deadline: Toffload < Min(Dpurge, JSLA)  

– Use replication and erasure coding of chunks for redundancy 

– Integration with PBS, NWS, and Bittorrent 
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Eager 

offloading 

architecture 
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Results:  

Adapting to dynamic network behavior 

SLA is 600 seconds 

Transferring 2.1 GB file 
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http://www.csm.ornl.gov/~vazhkuda/Storage.html 
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