
Presented by

Robust Storage Management in the

Machine Room and Beyond

Sudharshan Vazhkudai

 Computer Science Research Group
Computer Science and Mathematics Division

In collaboration with

Virginia Tech: Ali Butt, Henry Monti, Min Li
North Carolina State University: Xiaosong Ma, Fei Meng
ORNL: Chao Wang, Youngjae Kim, Christian Engelmann

2 Managed by UT-Battelle
 for the U.S. Department of Energy

Problem space: HPC storage crisis

• Data checkpointing, staging, and offloading are all
affected by data unavailability and I/O bandwidth
bottleneck issues

– Checkpointing terabytes of data to a traditional file system
results in an I/O bottleneck

– Compute time wasted on staging at the beginning of the job

– Early staging and late offloading waste scratch space

– Delayed offloading renders result data vulnerable to purging

– Upshot

• Increased turnaround time, checkpoint bottleneck

• Increased job wait times due to staging/offloading and storage
delays/errors

• Poor end-user data delivery options

3 Managed by UT-Battelle
 for the U.S. Department of Energy

Stdchk: An aggregate SSD/memory-

based checkpoint storage system

• Aggregates storage space from
compute node-local SSD/memory to
present a collective, intermediate
checkpoint storage or a staging ground

– Job’s own allocated nodes can
contribute storage space

• Transparent FS interface to the storage
using FUSE (e.g., /AggregateSSDstore)

• Benefactor process contributes SSD
space or memory buffers to a manager

• Manager maintains metadata on
benefactor status, contributions and
chunk to benefactor mapping

• Application writes to the mount point translated into striping of chunks across a stripe width
of benefactors

– Parallel I/O across distributed SSD or memory

4 Managed by UT-Battelle
 for the U.S. Department of Energy

Stdchk (cont’d)

• Features

– Draining of checkpoint images to a parallel file system

– Striping policies factor in SSD locality (i.e., preference to node-local SSD)

– Incremental checkpointing and pruning of checkpoint files

• Compare chunk hashes from two successive intervals

• Initial experiments suggest a 10–25% reduction in size for BLCR checkpoints

• Purge images from previous interval once the current image is safely stored

• File system is unable to perform such optimizations

– A multitiered storage of aggregate memory and aggregate SSD layers

– Applications can also mmap() into the aggregate SSD storage to perform
out-of-core computations

5 Managed by UT-Battelle
 for the U.S. Department of Energy

Checkpoint throughput

• Results

– Up to 1800 cores checkpointing
0.25 GB each ~ 0.5 TB overall

– Aggregate SSD Store

• 32 GB each

• Ramdisk SSD emulator ~ 175 MB/s

• Peak aggregate SSD throughput of
45 GB/s

– Aggregate Memory Store

• 600 benefactors with 1 GB each

• 300 benefactors with 1 GB shows
the effect of draining to PFS

• Peak aggregate memory throughput
of 56 GB/s

6 Managed by UT-Battelle
 for the U.S. Department of Energy

Scratch as cache

• Globally manage
the scratch cache

• Data movement is
performed using cache
population and eviction
tools

• Users cannot arbitrarily
move data

• Input and output data are
not retained beyond the
lifetime of the application
run

 Addresses many of the problems of disjoint management!

Hints

Retention:

Evict(n)

Eviction
Population: JIT staging

Cache manager

Parser

Cache Ops

User submits

instrumented job

script

7 Managed by UT-Battelle
 for the U.S. Department of Energy

Just In Time (JIT) staging

• Staging constraints
– Max(Tj) ≤ TJobStartup

– Exposure window of each input dataset, Ewj = TJobStartup – Max(Tj); Ew = Sum(Ewj)

– The closer Ew is to 0, the better

Site A

HPC Center

Job output data Job queue

Decentralized transfer
Overlay of intermediate nodes

Remove archive

(e.g., HPSS)

Internet database

(e.g., NCBI, SDSS)

Direct

transfer

Enduser

location

Batch queue

prediction

Data staging

manager

Running

jobs’ data

/scratch

Minimize time spent by

input data of queued jobs

Job wait

time estimate

8 Managed by UT-Battelle
 for the U.S. Department of Energy

HPC Center

Site C

Site B

Site A

Job Input Data

Job Output Data

Enduser

Location

75%full

/scratch

Job Queue

I/O Nodes

Compute Nodes

Job SLA

Purge

Policy

Deletion

Center’s Purge

Deadline

Data Offload

Service

Offload result data by a

specified deadline to

ensure continuity in job

workflow

Offload result data by a specified

deadline to avoid purging

Eager offloading of result data

• Eager offloading features:
– Reconcile offload constraint: before center purge and by the user-specified

deadline: Toffload < Min(Dpurge, JSLA)

– Use replication and erasure coding of chunks for redundancy

– Integration with PBS, NWS, and Bittorrent

9 Managed by UT-Battelle
 for the U.S. Department of Energy

Eager

offloading

architecture

Result-data

Node
manager

Offload
manager

Erasure
coding

Transfer
module

NWS
query

Center SLA

NWS

Chunks

Nodes for overlay

SLA
compliance

Results:

Adapting to dynamic network behavior

SLA is 600 seconds

Transferring 2.1 GB file

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 51 101 151 201 251 301 351 401 451 501 551

A
va

ila
b

le
 b

an
d

w
id

th
 a

t
e

ac
h

 n
o

d
e

(M

B
/s

)

Time (s) Time 10 s direct

bandwidth reduced

by 1/10

Time 150 s

node bandwidth

drops to 1MB/s
Time 250 s

node fails

A staged offload is

capable of adapting

to bandwidth

changes or failures

10 Managed by UT-Battelle
 for the U.S. Department of Energy
10 Managed by UT-Battelle
 for the U.S. Department of Energy

http://www.csm.ornl.gov/~vazhkuda/Storage.html

Contact

Sudharshan Vazhkudai

 Computer Science Research Group
Computer Science and Mathematics Division
(865) 576-5547
vazhkudaiss@ornl.gov

