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Background 

• Large networks are becoming ubiquitous in many  
domains – biology, physics, chemistry,  
infrastructure, communications, and sociology 

• Graph problems have high computational  
complexity and require excessive computation for  
large networks 

• Hard to solve efficiently on distributed memory machines. 

 

A partial map of the Internet, January 15 2005 

The US electric transmission system.  

Courtesy North American Reliability Corporation. 

Drug-Target Network.  

Nature Biotechnology 25(10), October 2007 
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Motivation: graph problems are easier 

on trees 

• Many NP-hard problems can be solved in polynomial time on trees (graphs 
with no cycles) 

Example: Maximum Weighted Independent Set: Complexity O(|V|) 
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Idea: generalize to “tree-like” graphs 

• Tree decompositions are specialized maps of graphs onto 
trees, with subsets of V assigned to nodes of T.  

• A graph is more “tree-like” if the subsets are all small. 

• Many NP-hard decision/optimization problems are fixed-
parameter tractable w.r.t. max subset size in map. 

• This includes all problems expressible in second order 
monadic logic, including coloring, partial constraint 
satisfaction, maximum clique/independent set. 
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Tree Decompositions 

The width of a tree decomposition is max(|Xi|-1), and the  treewidth of a graph is the 

minimum width over all valid tree decompositions. 
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• Solving decision/optimization problems uses DP on the tree decomposition. 

• The general strategy is to root the tree and then work “up” from the leaves, 
solving sub-problems & storing partial solutions (tables) along the way, as in 
MWIS on a tree. 

 

 

 

 

 

 

 

• Solving the sub-problems requires information about only a small part of the 
original graph, represented by the child nodes lower in the tree. 

• The complexity of processing a specific node can be exponential in its bag size  

Dynamic Programming 

In a tree decomposition, computing the 

dynamic programming table at node c 

requires information about the vertices in 

the bag Vc and the children’s tables, Ta and 

Tb.  The complexity of this computation 

can be exponential in |Vc|. 
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Progress 

• Sequential code improvements include: 

– bitwise representation of vertex subsets that enable fast unions, 
intersections, quick elimination of families of non-independent subsets 

– storage of reduced dynamic programming tables using parent-child 
intersection properties (5-10% memory reduction on average test graph, 
more for sparser examples) 

– two-stage refinement technique for the decomposition to solve 
optimization problem with solution reconstruction makes two dynamic 
programming sweeps (demonstrated storage savings of up to an 
additional 80-85%) 

• These improvements enabled the computation of MWIS on a 2 million node 
graph with a decomposition of over 1.8 million tree nodes, and on graphs 
with widths over 400. 

“Tree decomposition based algorithms are a valuable alternative whenever the underlying 

graphs have small treewidth. As a rule of thumb, the typical border of practical feasibility lies 

somewhere below a treewidth of 20 for the underlying graph” 

-Huffner, Niedermeier, Wernicke (2007) 
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Some Implementation Details 

• We represent a subset S in Xt as a single 128-bit word (type uint128_t) where a 
1-bit in position i indicates that the i-th entry in Xt is in S 

• The required union/intersection operations can be done via AND's and OR's 

• The binary representation is convenient to rule out many of the 2k possibilities 
in a single stroke (where |Xt| = k): 

– Suppose the edge (7,11) exists in G, so that any set S containing both 7 
and 11 is not independent. 

– Let {13,11,7,5,3,2,1} be a bag, and consider what happens as we process 
subsets. We will encounter the set {7,11} as: 
 

 

 

– Now we know any mask of the form 011**** cannot represent an 
independent set and we eliminate 24 - 1 additional possible subsets at 
once 

– Several other similar tricks are used to speed up the computations 

Bag 13 11 7 5 3 2 1 

Mask 0 1 1 0 0 0 0 
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Running Time Analysis 

• Generated k-trees for k =50; 52; … ; 120 with n = 500; 1000; … 5000. 

• Solved MWIS to optimality; recorded total time.  

• Lines in the plot correspond to runs with a fixed decomposition width 

Demonstrated (approx) linear growth in running time with graph size for fixed width 
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Maximum Memory Usage 

• Generated k-trees for k =50; 52; … ; 120 with n = 500; 1000; … 5000. 

• Solved MWIS to optimality; recorded total time.  

• Lines in the left plot correspond to fixed width, right plot correspond to fixed size 

Memory usage also seems to grow 

linearly with graph size for fixed 

width, but exponentially with width for 

fixed graph size 
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Memory Savings from Reconstruction Pruning 

• Generated k-trees for k =50; 52; … ; 120 with n = 500; 1000; … 5000. 

• Solved MWIS to optimality; recorded memory high water mark.  

• Negligible additional computation time required for second DP pass. 

Second DP sweep on reduced decomposition reduces consumption drastically 
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