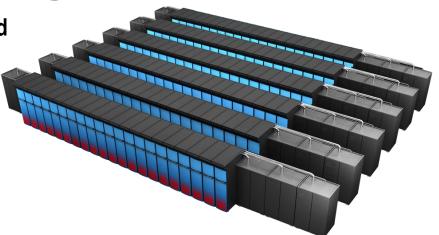
Petascale System Infrastructure

Presented by

Galen M. Shipman

Group Leader, Technology Integration National Center for Computational Sciences

A demanding computational environment


Jaguar XT5 (upgrading to XE6)	18,688 Nodes	224,256 Cores	300+ TB memory	2.3 Pflops
Titan	10-20 PF system – scheduled deployment in 2012			
Frost (SGI Ice)	128 Node institutional cluster			
Smoky	80 Node software development cluster			
Lens	30 Node visualization and analysis cluster			

ORNL's "Titan" system goals

- Similar number of cabinets, cabinet design, and cooling as Jaguar
- Operating system upgrade of today's Linux operating system
- Gemini interconnect
- 3-D Torus
 - Globally addressable memory
 - Advanced synchronization features
 - AMD Opteron 6200 processor (Interlagos)
- New accelerated node design using NVIDIA multicore accelerators
- 10-20 PF peak performance
 - Performance based on available funds
- Larger memory more than 2x more memory per node than Jaguar

Titan Specs		
Nodes	18,688	
Memory per node	32 GB + 6 GB	
NVIDIA "Fermi"	665 GFlops	
# of Fermi chips	960	
NVIDIA Kepler	NDA	
Opteron	2.2 GHz	
Opteron performance	141 Gflops	
Total Opteron Flops	2.6 Pflops	

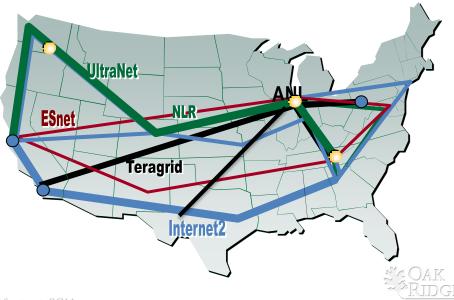
OLCF networking

- A service-rich computational environment interconnected via our InfiniBand System Area Network
 - Over 3,000 InfiniBand ports
 - Over 3 miles of cables
 - Scales as computational environment grows
 - An InfiniBand-based network helps meet the bandwidth and scaling needs for the center at reasonable costs

A robust Ethernet network

- Ubiquitous connectivity for systems management
- Over 750 1-GBe and 150 10-GBe ports
- Wide-area networking via ESNet and others

High bandwidth connectivity to NCCS enables efficient remote user access


Connected to Majo	or Science Networks
--------------------------	---------------------

ORNL-owned dark fiber and DWDM equipment linking ORNL to Chicago,

Nushvine, and Adame	Nas	hvil	le,	and	Atlanta
---------------------	-----	------	-----	-----	---------

OC192 to ESNET with backup OC48 - Added 10 Gb SDN dynamically	10 Gb to NSF Teragrid
reconfigurable (layer 2)	
10 Gb to Internet2	2 x 10 Gb UltraScienceNet
4 x 10 Gb to National Lambda Rail	10 Gb Futurenet to NSF Cheetah net

- ORNL participating in the Advanced Networking Initiative (ANI)
 - 100 Gb native optical network in a loop that includes OLCF, ALCF, and other facilities in the northeast as well as a spur from Chicago to the west coast

Spider

One of the Fastest Lustre file systems in the world

Demonstrated bandwidth of 240 GB/s on the center-wide file system

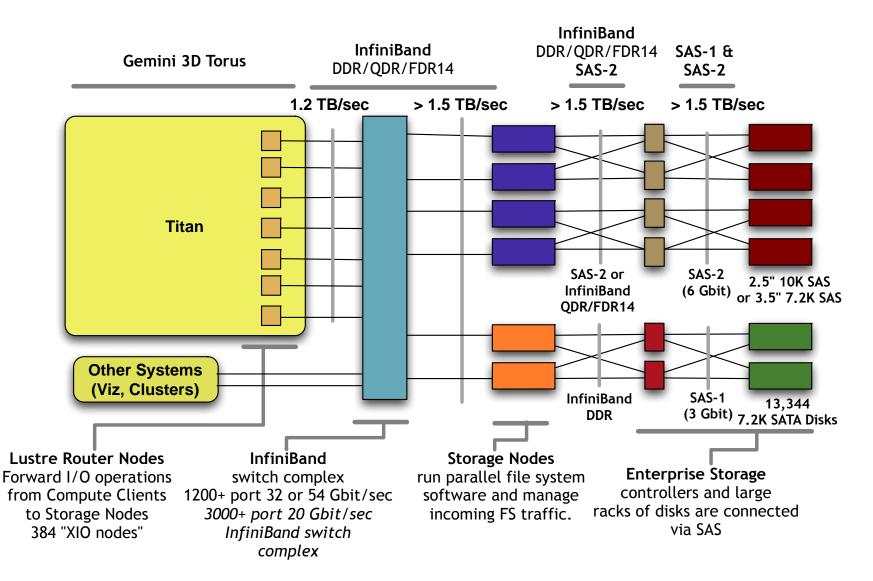
Largest scale Lustre file system in the world

Demonstrated stability and concurrent mounts on all major OLCF systems

- Jaguar XT5
- Opteron Dev Cluster (Spider)
- Visualization Cluster (Lens)
- End-to-end Cluster (Sith)

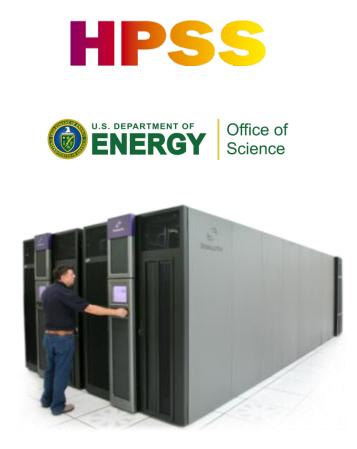
Over 19,000 clients mounting the file system in production

Over 282,000,000 files Multiple petabytes of data stored

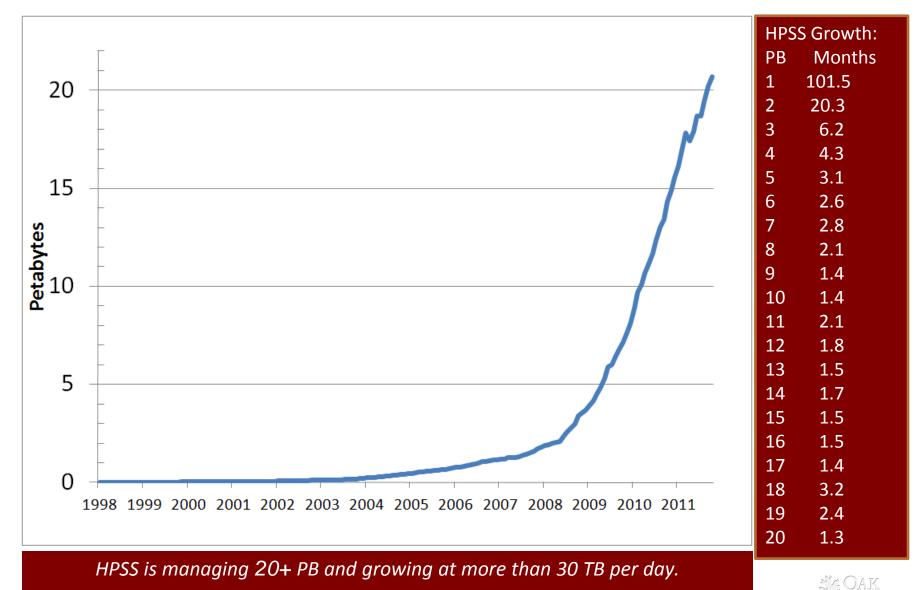

Cutting edge resiliency at scale

Demonstrated resiliency features on Jaguar

- DM Multipath
- Lustre Router failover

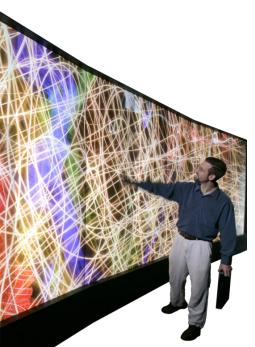


A next generation file system for Titan


Archival storage infrastructure

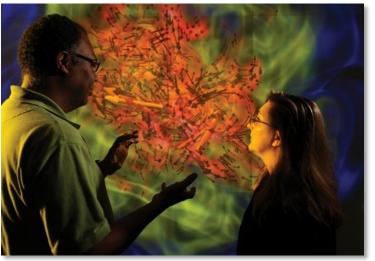
- HPSS provides archival storage for all systems (60 PB capacity; easily expandable)
- HPSS has been upgraded with two additional tape libraries to add additional capacity and bandwidth
- HPSS software has already demonstrated ability to scale to many petabytes
- Capacity and bandwidth on both tapes and disks are scaled to maintain a balanced system
- Utilize new methods to improve data transfer speeds between parallel file systems and archival system (transfer agent, LFM)

HPSS – Managing Exponential Growth in Storage



Shipman_Infrastruct_SC11

Visualization and data analysis resources


Hardware

- **Everest Powerwall**
 - 30 ft by 8 ft 35 megapixel display wall
- Lens Cluster
 - 32 nodes each with 64 GB and four quad-core Opterons w/ GPUs
- Everest Cluster
 - 18 nodes to drive display wall

Software

- VisIT
- **EnSight Gold and DR**
- ParaView
- AVS/Express
- R MPI
- IDL
- SCIRun
- Xmgrace, Gnuplot, Kepler

Contact

Galen Shipman

Technology Integration National Center for Computational Sciences (865) 576-2672 gshipman@ornl.gov

