Statistical Physics of Fracture: Recent Advances through High-Performance Computing

Presented by

Phani Nukala

Computational Materials Sciences Computer Science and Mathematics Division

Acknowledgments

- **ASCR DOE Office of Science**
- **INCITE award: Computer resources on BG/P (ORNL) and BG/L (ANL)**
- **Leadership Computing Facility allocation on Cray XT4 Jaguar at ORNL**
- **Relevant journal publications:**
	- **J. Phys. Math. Gen. 36 (2003); 37 (2004); IJNME 62 (2005)**
	- **European Physical Journal B 37 (2004)**
	- **JSTAT, P08001 (2004); JSTAT (2006)**
	- **Phys. Rev. E 71 (2005a, 2005b, 2005c); 73 (2006a, 2006b)**
	- **Adv. Phys. (2006); Int. J. Fracture (2006)**
	- **Phys. Rev. E (2007); Phys. Rev. B (2007); IJNME (2007)**
	- **Phys. Rev. Lett. (2008); Phys. Rev. E (2008); Int. J. Fracture (2008a, 2008b)**
	- **J. Phys. D (2009); J. Chem. Phys. (2009); Phys. Rev. B (2009)**
	- **JSTAT (2010a, 2010b); Phys. Rev. E (2010a, 2010b)**

Motivation

- **What are the size effects and scaling laws of fracture of disordered materials?**
- **What are the signatures of approach to failure?**
- **What is the relation between toughness and crack surface roughness?**
- **How can the fracture surfaces of materials as different as metallic alloys and glass, for example, be so similar?**

Universality of roughness

for the U.S. Department of Energy

Universal roughness scaling law

 $2\sqrt{1/2}$ $\Delta h_{2D}(\Delta z, \Delta x) = (\langle (h(z_A + \Delta z, x_A + \Delta x) - h(z_A, x_A))^2 \rangle)$ $<<$ 1 if $u \ll 1$ *if u* Δ *z* $f(u)$ ∞ $\Delta h_{2D}(\Delta x,\Delta z)=\Delta x^{\beta}$ $h_{2D}(\Delta x, \Delta z) = \Delta x^{\beta} f(\frac{2}{\Delta x})$ $(\Delta x, \Delta z) = \Delta x^{\beta} f(\frac{\Delta z}{\Delta x^{1/z}})$ $\left\{\begin{array}{c} \mathcal{L} \\ \mathcal{L} \end{array}\right\}$ $\chi_{2D}(\Delta x,\Delta z)=\Delta x$ $\int \sqrt{\Delta x}^{1/2}$ *z* u^{ζ} *if* u $>>$ 1 $10²$ 10^2 $\widehat{\Xi}_{10}$ 200 m A B 0 β
 $^{10^{0}}$
 $^{10^{0}}$
 $^{10^{0}}$
 $^{10^{0}}$

Aluminum alloy
 $^{10^{0}}$
 $\Delta z/\Delta x$ \circ $\Delta x = 1 \mu m$ $+ \Delta x = 2 \mu m$ \triangleright $\Delta x = 3 \mu m$ Δz Δx -200 \triangle $\Delta x = 6$ um 600 $* \Delta x = 9 \text{um}$ 600 * ∆x=16µm \star $\Delta x = 26 \mu m$ 400 400 4 $\Delta x = 43 \mu m$ ⊽ ∆x=73µm 200 D z (μm) $x \text{ } (\mu m)$ $*$ $\Delta x = 120 \mu m$ 10^{1} 10^2 Direction of Crack front 0 0 direction propagation 1 z

Anisotropic roughness scaling

Random thresholds fuse model

- **Scalar or electrical analogy**
- **For each bond, assign unit conductance, and the thresholds are prescribed based on a random thresholds distribution**
- **The bond breaks irreversibly whenever the current (stress) in the fuse exceeds the prescribed thresholds value**
- **Currents (stresses) are redistributed instantaneously**
- **The process of breaking one bond at a time is repeated until the lattice falls apart**

Fracture of a 2-D lattice system

- **CPU ~ O(L4.5)**
- **Capability issue: Previous simulations have been limited to a system size of L = 128**
- **Largest 2-D lattice system (L = 1024) analyzed for investigating fracture and damage evolution**
- **Effective computational**

gain ~ 80 times **progressive damage/crack propagation**

Fracture of 3-D lattice system

- **CPU ~ O(L6.5)**
- **Largest cubic lattice system analyzed for investigating fracture and damage evolution in 3-D systems (L = 64)**
- **On a single processor, a 3-D system of size L = 64 requires 15 days of CPU time!**

High-performance computing

Roughness 3-D crack

- **Study the roughness properties of a crack surface**
- **Largest ever 3-D lattice system (L = 128) used**
- **For the first time, roughness exhibits anomalous scaling, as observed in experiments**
- **Local roughness ~ 0.4**
- **Global roughness ~ 0.5**

Interfacial cracks

- **Study the roughness properties of an interfacial crack front**
- **Largest ever 3-D lattice system (L = 128) used for studying interfacial fracture**
- **Figures show crack fronts at various damage levels**
- **Roughness exponent is equal to 0.3**

Scaling law for material strength

- **Study the size-effect and scaling law of material strength**
- **Largest ever 2-D (L = 1024) and 3-D lattice systems (L = 128) used for studying size-effect of fracture**
- **Figures show crack propagation and fracture process zone**
- **A novel scaling law for material strength is obtained in the disorder-dominated regime**

Summary of accomplishments

- **7 refereed journal publications**
	- **150-page review article**

3 refereed conference proceedings

- **13 conference presentations (6 invited)**
	- **SciDAC 06 (invited)**
	- **Multiscale Mathematics and Materials (invited)**
- **INCITE award for 1.5 million hours on Blue Gene/L**

- **6 refereed journal publications**
- **14 conference presentations (8 invited)**
	- **StatPhys 23 (invited)**
	- **Multiscale Modeling (invited)**
- **INCITE award for 1.1 million hours on Blue Gene/L**

FY 2006 FY 2007 FY 2008–2010

- **18 refereed journal publications**
- **5 refereed conference proceedings**
- **24 conference presentations (16 invited)**

Contacts

Phani Nukala

Computational Materials Sciences Computer Science and Mathematics Division (865) 574-7472 nukalapk@ornl.gov

Srdjan Simunovic

Computational Materials Sciences Computer Science and Mathematics Division (865) 241-3863 simunovics@ornl.gov

Thomas Schulthess

ETH and ORNL Visiting Distinguished Professor schulthess@cscs.ch

