Statistical Physics of Fracture: Recent Advances through High-Performance Computing

Presented by

Phani Nukala

Computational Materials Sciences Computer Science and Mathematics Division

Acknowledgments

- ASCR DOE Office of Science
- INCITE award: Computer resources on BG/P (ORNL) and BG/L (ANL)
- Leadership Computing Facility allocation on Cray XT4 Jaguar at ORNL
- Relevant journal publications:
 - J. Phys. Math. Gen. 36 (2003); 37 (2004); IJNME 62 (2005)
 - European Physical Journal B 37 (2004)
 - JSTAT, P08001 (2004); JSTAT (2006)
 - Phys. Rev. E 71 (2005a, 2005b, 2005c); 73 (2006a, 2006b)
 - Adv. Phys. (2006); Int. J. Fracture (2006)
 - Phys. Rev. E (2007); Phys. Rev. B (2007); IJNME (2007)
 - Phys. Rev. Lett. (2008); Phys. Rev. E (2008); Int. J. Fracture (2008a, 2008b)
 - J. Phys. D (2009); J. Chem. Phys. (2009); Phys. Rev. B (2009)
 - JSTAT (2010a, 2010b); Phys. Rev. E (2010a, 2010b)

Motivation

- What are the size effects and scaling laws of fracture of disordered materials?
- What are the signatures of approach to failure?
- What is the relation between toughness and crack surface roughness?
- How can the fracture surfaces of materials as different as metallic alloys and glass, for example, be so similar?

Universality of roughness

Universal roughness scaling law

 $\Delta h_{2D}(\Delta z, \Delta x) = \left(\left\langle \left(h(z_A + \Delta z, x_A + \Delta x) - h(z_A, x_A) \right)^2 \right\rangle \right)^{1/2}$ $f(u) \propto \begin{cases} 1 \text{ if } u <<1\\ u^{\zeta} \text{ if } u >>1 \end{cases}$ $\Delta h_{2D}(\Delta x, \Delta z) = \Delta x^{\beta} f\left(\frac{\Delta z}{\Delta x^{1/z}}\right)$ 10^{2} 10^{2} ଇ 10 200 ш $\Delta h/\Delta x^{\beta}$ 0 10¹ 10^{2} o ∆x=1µm (μm) + ∆x=2µm ⊳ ∆x=3µm -200 △ ∆x=6um 600 600 ★ ∆x=16µm 400 **`400** Aluminum alloy 10⁰ 200 D z (μm) x (μm) Δx=120µm 10^{-1} 10⁻² 10⁰ 10^{2} 10^{1} Crack front Direction of 0 0 direction propagation $\Delta z / \Delta x^{\frac{1}{z}}$

Anisotropic roughness scaling

Random thresholds fuse model

- Scalar or electrical analogy
- For each bond, assign unit conductance, and the thresholds are prescribed based on a random thresholds distribution
- The bond breaks irreversibly whenever the current (stress) in the fuse exceeds the prescribed thresholds value
- Currents (stresses) are redistributed instantaneously
- The process of breaking one bond at a time is repeated until the lattice falls apart

Fracture of a 2-D lattice system

- CPU ~ O(L4.5)
- Capability issue: Previous simulations have been limited to a system size of L = 128
- Largest 2-D lattice system (L = 1024) analyzed for investigating fracture and damage evolution
- Effective computational gain ~ 80 times

Stress redistribution in the lattice due to progressive damage/crack propagation

Fracture of 3-D lattice system

- CPU ~ O(L6.5)
- Largest cubic lattice system analyzed for investigating fracture and damage evolution in 3-D systems (L = 64)
- On a single processor, a 3-D system of size
 L = 64 requires
 15 days of CPU time!

High-performance computing

			100^3 benchmark			лж	- The second	24				
High- performance	Processing time		16,384 8,192		nchi	mark						
computing		î c	0,152									
L = 64 on 128	3 hours	ond	4,096					- IB	M BG/L	-		
L = 100 on 1024	12 hours	(sec ls br	2,048	48								
L = 128 on 1024	3 days	time	1,024									
L = 200 on 2048	20 days (est.)	Wall-clock time (seconds) per 1,000 bonds broken	512									
		all-cl er 1,	256									
		Š ď	128		Cra	ay XT3						
			64									
			64	8	16	32	64	128	256	512	1,024	
	Number of processors											
10 Managed by UT-Battelle	P (Y X J										<u>NIDGE</u>	

Roughness 3-D crack

- Study the roughness properties of a crack surface
- Largest ever 3-D lattice system (L = 128) used
- For the first time, roughness exhibits anomalous scaling, as observed in experiments
- Local roughness ~ 0.4
- Global roughness ~ 0.5

Interfacial cracks

- Study the roughness properties of an interfacial crack front
- Largest ever 3-D lattice system (L = 128) used for studying interfacial fracture
- Figures show crack fronts at various damage levels
- Roughness exponent is equal to 0.3

Scaling law for material strength

- Study the size-effect and scaling law of material strength
- Largest ever 2-D (L = 1024) and 3-D lattice systems (L = 128) used for studying size-effect of fracture
- Figures show crack propagation and fracture process zone
- A novel scaling law for material strength is obtained in the disorder-dominated regime

Summary of accomplishments

FY 2006

- 7 refereed journal publications
 - 150-page review article

• 3 refereed conference proceedings

- 13 conference presentations (6 invited)
 - SciDAC 06 (invited)
 - Multiscale
 Mathematics and
 Materials (invited)
- INCITE award for 1.5 million hours on Blue Gene/L

FY 2007

- 6 refereed journal publications
- 14 conference presentations (8 invited)
 - StatPhys 23 (invited)
 - Multiscale
 Modeling (invited)
- INCITE award for 1.1 million hours on Blue Gene/L

FY 2008-2010

- 18 refereed journal publications
- 5 refereed conference proceedings
- 24 conference presentations (16 invited)

Contacts

Phani Nukala

Computational Materials Sciences Computer Science and Mathematics Division (865) 574-7472 nukalapk@ornl.gov

Srdjan Simunovic

Computational Materials Sciences Computer Science and Mathematics Division (865) 241-3863 simunovics@ornl.gov

Thomas Schulthess

ETH and ORNL Visiting Distinguished Professor schulthess@cscs.ch

