Performance Engineering Research Institute (PERI)

Presented by

Philip C. Roth

Future Technologies Group Computer Science and Mathematics Division

Performance engineering: enabling petascale science

Petascale computing is about delivering performance to scientists

Maximizing performance is getting harder **IBM BG/P at ANL**

- Systems are more complicated
 - -0(100 K)processors
 - Multicore with SIMD extensions
- Scientific software is more complicated
 - Multidisciplinary and multiscale

Cray XT5 at ORNL

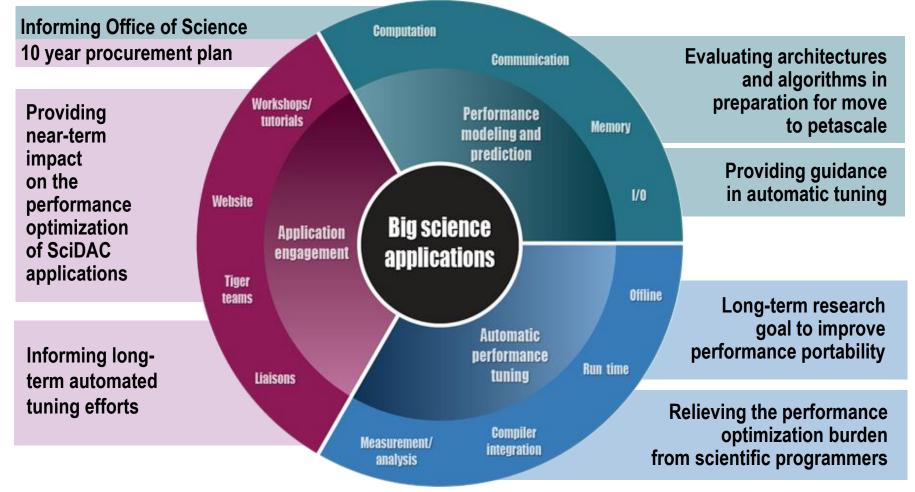
PERI addresses this challenge

in three ways

performance

 Model and predict application performance

BeamBeam3D accelerator modeling


analysis and tuning

- S3D turbulent combustion modeling

- Investigate novel strategies for automatic performance tuning

SciDAC-2 Performance Engineering Research Institute (PERI)

Engaging SciDAC software developers

Application survey

- Collect data on SciDAC-2 and INCITE code characteristics and performance requirements
- Use data to determine PERI engagement activities and to direct PERI research

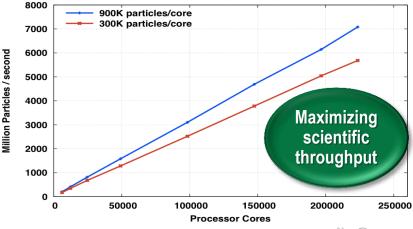
http://icl.cs.utk.edu/peri/

Optimizing kernels

Optimizing PFLOTRAN Jacobian initialization: using Morton space-filling curve to order initialization reduces L3 cache misses by 26%, TLB misses by 34% [source: Marin, ORNL]

Application liaisons

- Long-term partnerships between PERI researchers and scientific code teams
- Currently working actively with several application teams

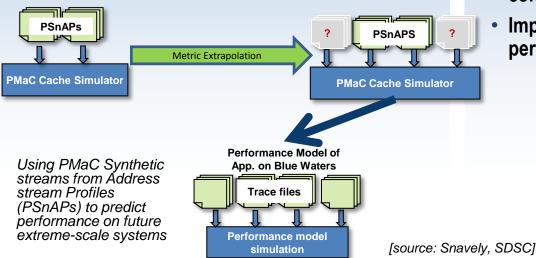

Tiger teams

- Focus on DOE's highest priorities: SciDAC-2, INCITE, JOULE
- Currently building models to estimate performance at scale and on new architectures

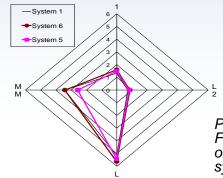
Weak Scaling Graph for XGC1 Cray XT5 (jaguarpf), 900K ptl/thread, Full-f simulation 12 cores per node, 2 MPI processes per node

XGC1 performance on 3mm ITER grid

Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation


[source: Worley, ORNL]

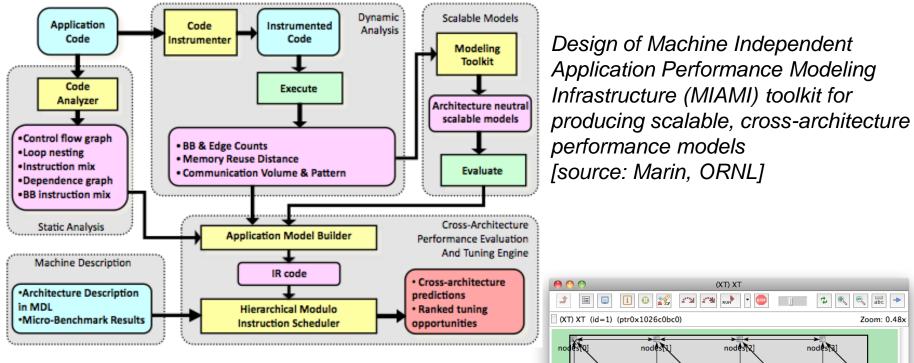
Performance modeling


Modeling is critical for automation of performance tuning

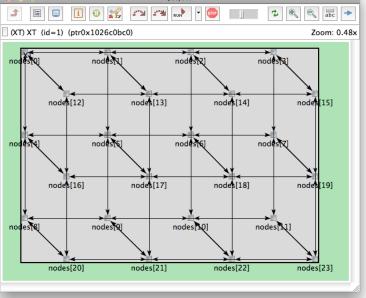
- Guidance to the developer
 - New algorithms, systems, etc.
- Need to know where to focus effort
- Need to know when we are done tuning
- Predictions for new or hypothetical systems

Recent progress

- Trace extrapolation techniques to enable performance prediction on larger systems
- HPCToolkit, PAPI, and PerfTrack extended to better support performance modeling
- Modeling Assertions extended to support performance predictions of workloads containing I/O activity
- Improved characterization of memory performance in multicore processors

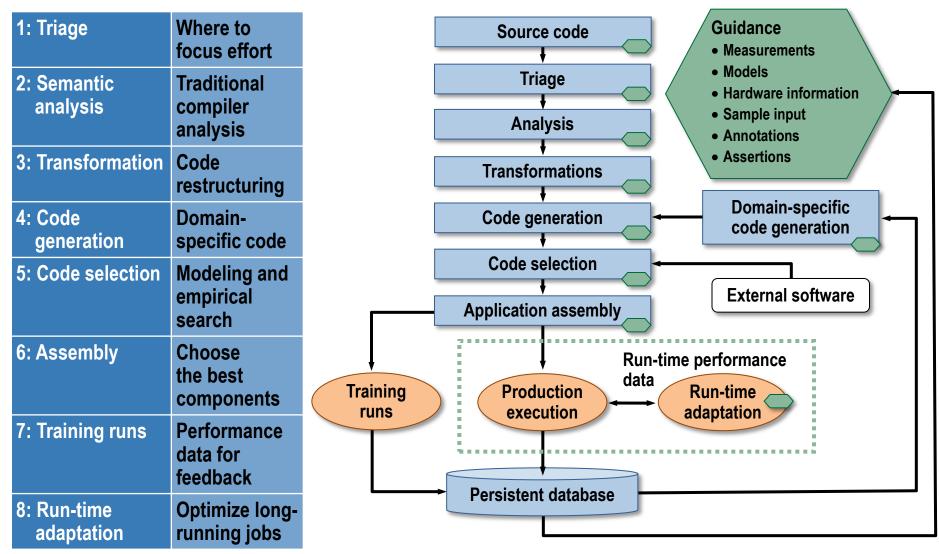


Projections for FLASH performance on several future systems


Modeling efforts contribute to procurements and other activities beyond PERI automatic tuning

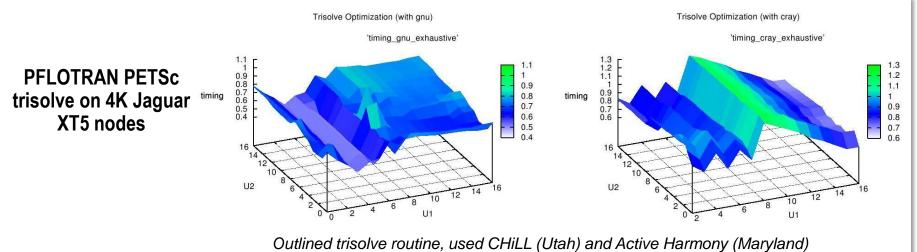
PERI performance modeling at ORNL

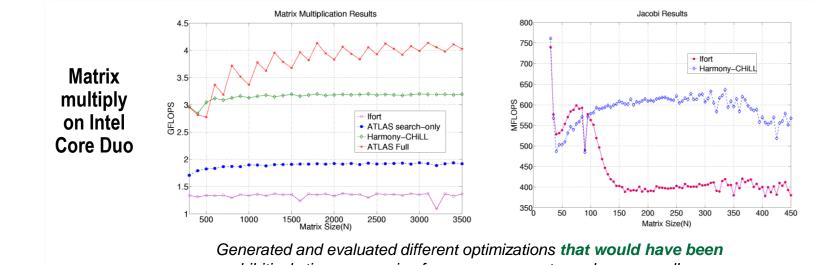
Graphical user interface for discrete-event simulation of small Cray XT-like system with 3D torus interconnection network [source: Roth, ORNL]


Automatic performance tuning of scientific code

Long-term goals for PERI

- Obtain hand-tuned performance from automatically generated code for scientific applications
 - General loop nests
 - Key application kernels
- Reduce the performance portability challenge facing computational scientists
 - Adapt quickly to new architectures
- Integrate compiler-based and empirical search tools into a framework accessible to application developers
- Run-time adaptation of performance-critical parameters


Automatic tuning workflow


[source: Norris, ANL]

Automatic tuning examples

to identify algorithm parameters and compiler that yield best performance

prohibitively time consuming for a programmer to explore manually

The team

ANL Paul Hovland Boyana Norris	LBNL David Bailey Katherine Yelick	LLNL Bronis de Supinski Daniel Quinlan Lawrence Livermore National Laboratory	NCSU G. Mahinthakumar NC STATE UNIVERSITY	ORNL Philip Roth Jeffrey Vetter Patrick Worley
Rice	UCSD	UMD	UNC	Oregon
John Mellor-Crummey	Allan Snavely Laura Carrington	Jeffrey Hollingsworth	Rob Fowler	Allen Malony
RICE	UCSD	SHUERSITP 18 18 18 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10		UNIVERSITY OF OREGON
	USC	UTK	Utah	
	Jacqueline Chame	Jack Dongarra Shirley Moore	Mary Hall	
2	Robert Lucas (PI) USC UNIVERSITY OF SOUTHERN CALIFORNIA		THE UNIVERSITY OF UTAH	

10 Managed by UT-Battelle for the U.S. Department of Energy

Contacts

Philip C. Roth

Future Technologies Group Computer Science and Mathematics Division (865) 241-1543 rothpc@ornl.gov

Daniel Hitchcock

Office of Advanced Scientific Computing Research DOE Office of Science

Managed by UT-Battelle for the U.S. Department of Energy