DOE UltraScience Net: High-Performance Experimental Network Research Testbed

Presented by

Nagi Rao Steve Poole

Extreme Scale Systems Center Computer Science and Mathematics Division

Research currently supported by the Department of Defense and previously supported by Department of Energy's Office of Science Office of Advanced Scientific Computing High-Performance Networking Program

The need

- Large-scale applications on supercomputers and experimental facilities require high-performance networking
 - Moving exascale data sets, collaborative visualization, and computational steering
- Application areas span the disciplinary spectrum: Highenergy physics, climate, astrophysics, fusion energy, genomics, and others

Promising solution

- High bandwidth and agile network capable of providing on-demand dedicated channels: 150 Mbps to multiple 10/40/100Gbps
- Protocols are simpler for dedicated high throughput and control channels with limited/ known traffic floes

Challenges

- In 2003, several technologies needed to be (fully) developed
- User-/application-driven agile control plane
 - Dynamic scheduling and provisioning
 - Security—encryption, authentication, authorization
- Protocols, middleware, and applications optimized for dedicated channels and multicore hosts

UltraScience Net – In a nutshell

Experimental network research testbed

• To support advanced networking and related application technologies for large-scale science projects

Features

- End-to-end guaranteed bandwidth channels
- Dynamic, in-advance reservation and provisioning of fractional/full lambdas
- Secure control-plane for signaling

Peered with ESnet, National Science Foundation's CHEETAH, and other networks

ORNL-Atlanta connections upgraded to 40 Gbps

- 10Gbps Infrastructure emulated using ANUE devices

USN Contributions

4

•	Provided long haul production links for experimentation	
	 8000 mile 10Gbps and 70,000 mile 1Gbps connections 	2004
•	First advanced reservation and scheduling of dedicated connections	
	 Deployed in USN control plane in 2005 – demonstrated at SC2005 	2005
•	Identified network throughput bottlenecks in dedicated connections supercomputers	
•	Peering of layer-2 and layer-3 networks using VLANS:	2007
	 coast-to-coast connections over USN, Esnet and CHEETAH 	
•	Infiniband extensions to thousands of miles	2008
	 IB-RDMA throughputs: local 7.6 Gbps: 8600 miles: 7.2 Gbps: SC2008 	2000
•	10Gbps Crypto devices	
	 TCP performance improved: higher throughput with less #streams 	2009
•	Cross-Calibration of emulations and testbed connections	
	 Segmented regression to extend measurements to other modalities 	2010
•	40 Gbps upgrade to ORNL-Atlanta infrastructure	
	 39.5 Gbps throughputs between multi-core hosts 	2011
Ma for	anaged by UT-Battelle the U.S. Department of Energy	National Lab

InfiniBand over 10 GigE: cross-traffic

ORNL-Chicago-Seattle-Sunnyvale loop—8600 miles

COAK RIDGE National Laboratory

5 Managed by UT-Battelle for the U.S. Department of Energy

Performance profiles of IB over 10 GigE

Results are almost the same as in SONET case

Connection length (miles) <i>d_i</i>	0.2	1400	6600	8600
Throughput (Gbps) – 8M msg	7.5	7.49	7.39	7.36
Std-dev (Mbps)	0.07	0.69	0.00	0.20
DPM (Mbps) $D_B(d_i)$	0	0.012	0.017	0.016

Testing of 10Gbps Encryption Devices:

host1-host2 Plain Connections host3-host4 Encrypted Connections

Vational Laborator

7 Managed by UT-Battelle for the U.S. Department of Energy

TCP Profiles Comparison: Better Throughput with 10Gbps devices host1-2 Plain and host3-4 Encrypted Connections

Fiber loop between 10Gbps devices : 9 Gbps TCP throughput Chicago loop: host3-4 connection achieved 8Gbps Sunnyvale loop: host3-4 connection 1.5 time higher throughput

Observations:

Compared to plain connections, for encrypted connections:

- higher throughput is achieved with less number of streams
- higher throughput is achieved at longer distances

8 Managed by UT-Battelle for the U.S. Department of Energ

Differential Regression Method for Cross-Calibration

Basic Question: Predict performance on connection length not realizable on USN

Example: IB-RDMA or HTCP throughput on 900 mile connection

 $M_{S}(d)$ Measurements on OPNET simulated path of distance d

 $M_{\rm E}(d)$ Measurements on ANUE emulated path of distance d

 $M_{U}(d_{i})$ Measurements on USN path distance d_{i}

<u>Measurement Regression</u>: for $A \in \{S, E, U\}$

 $\bar{M}_{A}(.)$ Regression of measurements on

Differential Regression: for $A \in \{S, E, U\}, B \in \{S, E, U\}$ $\Delta \overline{M}_{A,B}(.) = \overline{M}_{A}(.) - \overline{M}_{B}(.)$

Approach: Under active development

- **1.** Collect simulation or emulation measurement for d
- **2.** Apply differential regression to obtain the estimate $C \in \{S, E\}$

$$\hat{M}_{U}(d) = M_{C}(d) - \Delta \overline{M}_{C,U}(d)$$

9 Managed by UT-Battelle for the U.S. Department of Energy simulated/emulated measurements

point regression estimate

Analysis of iperf and XDD measurements - joint work with I/O Team

- Estimated differential regressions:
 - $T_M^{\varepsilon}(x)$:memory transfer throughput emulated connection of length x
 - $T_D^{\varepsilon}(x)$: single disk transfer throughput emulated connection
 - $T_{DD}^{\varepsilon}(x)$: dual disk transfer throughput emulated connection
 - $f_M^{P\otimes\varepsilon}(x)$: differential regression for memory transfer throughput - between physical and emulated connections of length *x*

x (miles)	0.2	1400	6600	8600
$\tilde{f}_{M}^{P\otimes \mathcal{E}}(x)/T_{M}^{\mathcal{E}}(x)$	5.14%	5.80%	10.99%	14.98%
$T_M^{\mathcal{E}}(x)$ - Gbps	9.73	9.65	8.83	8.81
$\hat{f}_D^{P\otimes \mathcal{E}}(x)/T_D^{\mathcal{E}}(x)$	28.03%	-2.82%	-2.26%	-0.91%
$\tilde{T}_D^{\mathcal{E}}(x)$ - MB/s	829.47	644.59	670.57	640.98
$\tilde{f}_{DD}^{P\otimes \mathcal{E}}(x)/T_{DD}^{\mathcal{E}}(x)$	7.37%	-2.19%	0.56%	-0.99%
$\tilde{T}_{DD}^{\mathcal{E}}(x) - MB/s$	1233.98	899.91	715.89	684.06

Estimated memory transfer throughput: $\hat{Y}_{P;M} = Y_{\in;M} + f_M^{P \otimes \varepsilon} (x)$

measured memory transfer throughput: length x

Analysis of iperf and XDD measurements - joint work with I/O Team

 Measurements collected on USN connections and ANUE-emulated connections: Compared with measurements

 Iperf memory transfers 	memory transfer throughputs - Mbps			
VDD file transfore		predicted	measured	percent error
- ADD me transfers	anue	8981.09	9060.00	-0.87
Segmented Regression Method	usn	7920.56	7710.00	2.73
Internalation for 6600 mile	anue-usn	7999.47	7710.00	3.75
	disk transfer throughputs - MB/s - single hosts			
connection		predicted	measured	percent error
— USN and ANUE measurements	anue	768.06	816.76	-5.96
	usn	801.13	820.03	-2.31
used to interpolate for	anue-usn	849.82	820.03	3.63
ANUE using ANUE	disk transfer throughputs - MB/s - two hosts			
USN using USN		predicted	measured	percent error
	anue	925.02	890.65	3.86
• USN using	usn	934.92	906.17	3.17
ANUE + differential regression	anue-usn	900.56	906.17	-0.62

- Summary:
 - For 10Gbps ANUE network emulators can closely match USN measurements somewhat larger margins than IB measurements
 - Continue 10Gbps testing after USN de-commissioning

Analysis of iperf and XDD measurements - joint work with I/O Team

 Measurements collected ANUE-emulated USN connections used for interpolation/ extrapolation – compared with emulated connections

 Interpolation/extrapolation: 	memory transfer throughputs - Mbps				
	rtt	predicted	measured	percent error	
 Apply differential regression 	100 ms	9235.70	9250.00	-0.15	
to obtain USN prodictions	150 ms	8912.75	8980.00	-0.75	
	200 ms	8525.25	8580.00	-0.64	
Interpolation: 100 and 150ms	disk transfer throughputs - MB/s - single hosts				
	rtt	predicted	measured	percent error	
 Not feasible on USN 	100 ms	662.84	609.22	8.80	
In the stars are larger than	150 ms	656.51	598.83	9.63	
– In-between lengths	200 ms	619.53	594.40	4.23	
 Extrapolation: 200 ms disk transfer throughput 			puts - MB/s - two hosts		
,	rtt	predicted	measured	percent error	
 Not feasible on USN 	100ms	954.66	906.59	5.30	
- ·	150ms	877.35	869.27	0.93	
– Ioo long	200ms	842.35	835.83	0.78	

- Interpolation and extrapolation:
 - For 10Gbps ANUE network emulators can provide measurements for connection lengths not feasible (too long or in-between) on USN
 - Enable us to continue 10Gbps testing after 10Gbps USN de-commissioning

